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Preface

These are the proceedings of the conference on “Quadratic Forms And
Their Applications” which was held at University College Dublin from 5th to
9th July, 1999. The meeting was attended by 82 participants from Europe
and elsewhere. There were 13 one-hour lectures surveying various appli-
cations of quadratic forms in algebra, number theory, algebraic geometry,
topology and information theory. In addition, there were 22 half-hour lec-
tures on more specialized topics.

The papers collected together in these proceedings are of various types.
Some are expanded versions of the one-hour survey lectures delivered at the
conference. Others are devoted to current research, and are based on the
half-hour lectures. Yet others are concerned with the history of quadratic
forms. All papers were refereed, and we are grateful to the referees for their
work.

This volume includes one of the last papers of Oleg Izhboldin who died
unexpectedly on 17th April 2000 at the age of 37. His untimely death is a
great loss to mathematics and in particular to quadratic form theory. We
shall miss his brilliant and original ideas, his clarity of exposition, and his
friendly and good-humoured presence.

The conference was supported by the European Community under the
auspices of the TMR network FMRX CT-97-0107 “Algebraic K-Theory,
Linear Algebraic Groups and Related Structures”. We are grateful to the
Mathematics Department of University College Dublin for hosting the con-
ference, and in particular to Thomas Unger for all his work on the TEX and
web-related aspects of the conference.

Eva Bayer-Fluckiger, Besançon
David Lewis, Dublin
Andrew Ranicki, Edinburgh

October, 2000
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GALOIS COHOMOLOGY OF
THE CLASSICAL GROUPS

Eva Bayer–Fluckiger

Introduction

Galois cohomology sets of linear algebraic groups were first studied in the late
50’s – early 60’s. As pointed out in [18], for classical groups, these sets have classical
interpretations. In particular, Springer’s theorem [22] can be reformulated as an
injectivity statement for Galois cohomology sets of orthogonal groups; well–known
classification results for quadratic forms over certain fields (such as finite fields,
p–adic fields, . . . ) correspond to vanishing of such sets. The language of Galois
cohomology makes it possible to formulate analogous statements for other linear
algebraic groups. In [18] and [20], Serre raises questions and conjectures in this
spirit. The aim of this paper is to survey the results obtained in the case of the
classical groups.

1. Definitions and notation

Let k be a field of characteristic 6= 2, let ks be a separable closure of k and let
Γk = Gal(ks/k).

1.1. Algebras with involution and norm–one–groups (cf. [9], [15]). Let
A be a finite dimensional k–algebra. An involution σ : A → A is a k–linear antiau-
tomorphism of A such that σ2 = id.

Let (A, σ) be an algebra with involution. The associated norm–one–group UA

is the linear algebraic group over k defined by

UA(E) = {a ∈ A⊗ E |aσ(a) = 1 }

for every commutative k–algebra E.

1.2. Galois cohomology (cf. [20]). For any linear algebraic group U defined
over k, set H1(k, U) = H1(Γk, U(ks)). Recall that H1(k, U) is also the set of
isomorphism classes of U–torsors (principal homogeneous spaces over U).

1.3. Cohomological dimension. Let k be a perfect field. We say that the
cohomological dimension of k is ≤ n, denoted by cd(k) ≤ n, if Hi(Γk, C) = 0 for
every i > n and for every finite Γk–module C.

c©2000 American Mathematical Society
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2 EVA BAYER–FLUCKIGER

We say that the virtual cohomological dimension of k is ≤ n, denoted by
vcd(k) ≤ n, if there exists a finite extension k′ of k such that cd(k′) ≤ n. It is
known that this holds if and only if cd(k(

√−1)) ≤ n, see for instance [4], 1.2.

1.4. Galois cohomology mod 2. Set Hi(k) = Hi(Γk,Z/2Z). Recall that
we have H1(k) ' k∗/k∗2 and H2(k) ' Br2(k).

If q '< a1, . . . , an > is a non–degenerate quadratic form, we define the discrim-
inant of q by disc(q) = (−1)

n(n−1)
2 a1 . . . an ∈ k∗/k∗2, and the Hasse–Witt invariant

by w2(q) = Σi<j(ai, aj) ∈ Br2(k).

1.5. Galois cohomology and quadratic forms. Let q be a non–degenerate
quadratic form over k and let Oq be its orthogonal group. Then H1(k, Oq) is in
bijection with the set of isomorphism classes of non–degenerate quadratic forms
over k that become isomorphic to q over ks (equivalently, those which have the
same dimension as q) (cf. [20], III, 1.2. prop. 4).

2. Injectivity results

Some classical theorems of the theory of quadratic forms can be formulated in
terms of injectivity of maps between Galois cohomology sets H1(k, O), where O is
an orthogonal group. This reformulation suggests generalisations to other linear
algebraic groups, as pointed out in [18] and [21]. The aim of this § is to give a
survey of the results obtained in this direction, especially in the case of the classical
groups.

2.1. Springer’s theorem. Let q and q′ be two non–degenerate quadratic
forms defined over k. Springer’s theorem [22] states that if q and q′ become iso-
morphic over an odd degree extension, then they are already isomorphic over k.
This can be reformulated in terms of Galois cohomology as follows. Let Oq be the
orthogonal group of q. If L is an odd degree extension of k, then the canonical map

H1(k, Oq) → H1(L, Oq)

is injective.
Serre makes this observation in [18], 5.3., and asks for generalisations of this

result to other linear algebraic groups. One has the following

Theorem 2.1.1. Let U be the norm–one–group of a finite dimensional k–
algebra with involution. If L is an odd degree extension of k, then the canonical
map

H1(k, U) → H1(L, U)
is injective.

Proof. See [1], Theorem 2.1.

The above results concern injectivity after a base change. As noted in [21],
some well–known results about quadratic forms can be reformulated as injectivity
statements of maps between Galois cohomology sets H1(k, U) → H1(k, U ′), where
U is a subgroup of U ′. This is for instance the case of Pfister’s theorem :

2.2. Pfister’s theorem. Let q, q′ and φ be non–degenerate quadratic forms
over k. Suppose that the dimension of φ is odd. A classical result of Pfister says
that if q ⊗ φ ' q′ ⊗ φ, then q ' q′ (see [15], 2.6.5.). This can be reformulated as



GALOIS COHOMOLOGY OF THE CLASSICAL GROUPS 3

follows. Denote by Oq the orthogonal group of q, and by Oq⊗φ the orthogonal group
of the tensor product q ⊗ φ. Then the canonical map H1(k, Oq) → H1(k, Oq⊗φ) is
injective. One can extend this result to algebras with involution as follows :

Theorem 2.2.1. Let (A, σ) and (B, τ) be finite dimensional k–algebras with
involution. Let us denote by UA the norm–one–group of (A, σ), and by UA⊗B the
norm–one–group of the tensor product of algebras with involution (A, σ) ⊗ (B, τ).
Suppose that dimk(B) is odd. Then the canonical map

H1(k, UA) → H1(k, UA⊗B)

is injective.

Note that Theorem 2.2.1 implies Pfister’s theorem quoted above, and also a
result of Lewis [10], Theorem 1.

For the proof of 2.2.1, we need the following consequence of Theorem 2.1.1.

Corollary 2.2.2. Let U and U ′ be norm–one–groups of finite dimensional
k–algebras. Suppose that there exists an odd degree extension L of k such that
H1(L,U) → H1(L,U ′) is injective. Then H1(k, U) → H1(k, U ′) is also injective.

Proof of 2.2.1. By a “dévissage” as in [1], we reduce to the case where A
and B are central simple algebras with involution, that is either central over k with
an involution of the first kind, or central over a quadratic extension k′ of k with a
k′/k-involution of the second kind. Using 2.2.2, we may assume that B is split and
that the involution is given by a symmetric or hermitian form. We conclude the
proof by the argument of [2], proof of Theorem 4.2.

It is easy to see that Theorem 2.2.1 does not extend to the case where both
algebras have even degree.

2.3. Witt’s theorem. In 1937, Witt proved the “cancellation theorem” for
quadratic forms [26] : if q1, q2 and q are quadratic forms such that q1 ⊕ q ' q2 ⊕ q,
then q1 ' q2. The analog of this result for hermitian forms over skew fields also
holds, see for instance [8] or [15].

These results can also be deduced from a statement on linear algebraic groups
due to Borel and Tits :

Theorem 2.3.1. ([20], III.2.1., Exercice 1) Let G be a connected reductive
group, and P a parabolic subgroup of G. Then the map H1(k, P ) → H1(k, G) is
injective.

3. Classification of quadratic forms and Galois cohomology

Recall (cf. 1.5.) that if Oq is the orthogonal group of a non–degenerate, n–
dimensional quadratic form q over k, then H1(k, Oq) is the set of isomorphism
classes of non–degenerate quadratic forms over k of dimension n. Hence determining
this set is equivalent to classifying quadratic forms over k up to isomorphism. The
cohomological description makes it possible to use various exact sequences related
to subgroups or coverings, and to formulate classification results in cohomological
terms. This is explained in [20], III.3.2., as follows :

Let SOq be the special orthogonal group. We have the exact sequence

1 → SOq → Oq → µ2 → 1.
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This exact sequence induces an exact sequence in cohomology

SOq(k) → Oq(k) det→ µ2 → H1(k, SOq) → H1(k, Oq)
disc→ k∗/k∗2.

The map H1(k, Oq)
disc→ k∗/k∗2 is given by the discriminant. More precisely,

the class of a quadratic form q′ is sent to the class of disc(q)disc(q′) ∈ k∗/k∗2.
Note that the map Oq(k) det→ µ2 is onto (reflections have determinant −1).

Hence we see that

Proposition 3.1. In order that H1(k, SOq) = 0 it is necessary and sufficient
that every quadratic form over k which has the same dimension and the same
discriminant as q is isomorphic to q.

Example. Suppose that k is a finite field. It is well–known that non–degenerate
quadratic forms over k are determined by their dimension and discriminant. Hence
by 3.1. we have H1(k, SOq) = 0 for all q.

We can go one step further, and consider an H2–invariant (the Hasse–Witt
invariant) that will suffice, together with dimension and discriminant, to classify
non–degenerate quadratic forms over certain fields.

Let Spinq be the spin group of q. Suppose that dim(q) ≥ 3. We have the exact
sequence

1 → µ2 → Spinq → SOq → 1.

This exact sequence induces the cohomology exact sequence

SOq(k) δ→ k∗/k∗2 → H1(k, Spinq) → H1(k, SOq)
∆→ Br2(k),

where SOq(k) δ→ k∗/k∗2 is the spinor norm, and H1(k, SOq)
∆→ Br2(k) sends the

class of a quadratic form q′ with dim(q) = dim(q′), disc(q) = disc(q′) to the sum of
the Hasse–Witt invariants of q and q′, w2(q′) + w2(q) ∈ Br2(k) (cf. [23]).

Hence we obtain the following :

Proposition 3.2. (cf. [20], III, 3.2.) In order that H1(k, Spinq) = 0, it is
necessary and sufficient that the following two conditions be satisfied :

(i) The spinor norm SOq(k) → k∗/k∗2 is surjective ;
(ii) Every quadratic form which has the same dimension, the same discriminant

and the same Hasse–Witt invariant as q is isomorphic to q.

Example. Let k be a p–adic field. Then it is well–known that the spinor norm
is surjective, and that non–degenerate quadratic forms are classified by dimension,
discriminant and Hasse–Witt invariant. Hence by 3.2. we have H1(k, Spinq) = 0
for all q.

4. Conjectures I and II

In the preceding §, we have seen that if k is a finite field then H1(k, SOq) = 0;
if k is a p–adic field and dim(q) ≥ 3, then H1(k, Spinq) = 0. Note that SOq is
connected, and that Spinq is semi–simple, simply connected. These examples are
special cases of Serre’s conjectures I and II, made in 1962 (cf. [18]; [20], chap. III) :

Theorem 4.1. (ex–Conjecture I) Let k be a perfect field of cohomological di-
mension ≤ 1. Let G be a connected linear algebraic group over k. Then H1(k, G) =
0.

This was proved by Steinberg in 1965, cf. [24]. See also [20], III.2.
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Conjecture II. Let k be a perfect field of cohomological dimension ≤ 2.
Let G be a semi–simple, simply connected linear algebraic group over k. Then
H1(k, G) = 0.

This conjecture is still open in general, though it has been proved in many
special cases (cf. [20], III.3). The main breakthrough was made by Merkurjev and
Suslin [13], [25], who proved the conjecture for special linear groups over division
algebras. More generally, the conjecture is now known for the classical groups.

Theorem 4.2. Let k be a perfect field of cohomological dimension ≤ 2, and
let G be a semi–simple, simply connected group of classical type (with the possible
exception of groups of trialitarian type D4) or of type G2, F4. Then H1(k, G) = 0.

See [3]. The proof uses the theorem of Merkurjev and Suslin [13], [25] as well
as results of Merkurjev [12] and Yanchevskii [28], [29], and the injectivity result
Theorem 2.1.1. More recently, Gille proved Conjecture II for some groups of type
E6, E7, and of trialitarian type D4 (cf. [7]).

5. Hasse Principle Conjectures I and II

Colliot–Thélène [5] and Scheiderer [16] have formulated real analogues of Con-
jectures I and II, which we will call Hasse Principle Conjectures I and II. Let us
denote by Ω the set of orderings of k. If v ∈ Ω, let us denote by kv the real closure
of k at v.

Hasse Principle Conjecture I. Let k be a perfect field of virtual coho-
mological dimension ≤ 1. Let G be a connected linear algebraic group. Then the
canonical map

H1(k, G) →
∏

v∈Ω

H1(kv, G)

is injective.

This has been proved by Scheiderer, cf. [16].

Hasse Principle Conjecture II. Let k be a perfect field of virtual cohomo-
logical dimension ≤ 2. Let G be a semi–simple, simply connected linear algebraic
group. Then the canonical map

H1(k, G) →
∏

v∈Ω

H1(kv, G)

is injective.

This conjecture is proved in [4] for groups of classical type (with the possible
exception of groups of trialitarian type D4), as well as for groups of type G2 and
F4.

If k is an algebraic number field, then we recover the usual Hasse Principle. This
was first conjectured by Kneser in the early 60’s, and is now known for arbitrary
simply connected groups (see for instance [13] for a survey).

In the case of classical groups, these results can be expressed as classification
results for various kinds of forms, in the spirit outlined in §3. This is done in [17]
in the case of fields of virtual cohomological dimension ≤ 1 and in [4] for fields of
cohomological dimension ≤ 2.
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(1993–1994).
[22] T. Springer, Sur les formes quadratiques d’indice zéro, C. R. Acad. Sci. Paris 234 (1952),
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SYMPLECTIC LATTICES

ANNE-MARIE BERGÉ

Introduction

The title refers to lattices arising from principally polarized Abelian varieties,
which are naturally endowed with a structure of symplectic Z-modules. The density
of sphere packings associated to these lattices was used by Buser and Sarnak [B-S]
to locate the Jacobians in the space of Abelian varieties. During the last five years,
this paper stimulated further investigations on density of symplectic lattices, or
more generally of isodual lattices (lattices that are isometric to their duals, [C-S2]).

Isoduality also occurs in the setting of modular forms: Quebbemann introduced
in [Q1] the modular lattices, which are integral and similar to their duals, and thus
can be rescaled so as to become isodual. The search for modular lattices with the
highest Hermite invariant permitted by the theory of modular forms is now a very
active area in geometry of numbers, which led to the discovery of some symplectic
lattices of high density.

In this survey, we shall focus on isoduality, pointing out its different aspects in
connection with various domains of mathematics such as Riemann surfaces, modu-
lar forms and algebraic number theory.

1. Basic definitions

1.1 Invariants. Let E be an n-dimensional real Euclidean vector space,
equipped with scalar product x.y, and let Λ be a lattice in E (discrete subgroup
of rank n). We denote by m(Λ) its minimum m(Λ) = minx6=0∈Λ x.x, and by det Λ
the determinant of the Gram matrix (ei.ej) of any Z-basis (e1, e2, · · · en) of Λ. The
density of the sphere packing associated to Λ is measured by the Hermite invariant
of Λ

γ(Λ) =
m(Λ)

detΛ1/n
.

The Hermite constant γn = supΛ⊂E γ(Λ) is known for n ≤ 8. For large n,
Minkowski gave linear estimations for γn, see [C-S1], I,1.

2000 Mathematics Subject Classification. Primary 11H55; Secondary 11G10,11R04,11R52.
Key words and phrases. Lattices, Abelian varieties, duality.

c©2000 American Mathematical Society

9



10 ANNE-MARIE BERGÉ

Another classical invariant attached to the sphere packing of Λ is its kissing
number 2s = |S(Λ)| where

S(Λ) = {x ∈ Λ | x.x = m(Λ)}
is the set of minimal vectors of Λ.

1.2 Isodualities. The dual lattice of Λ is

Λ∗ = {y ∈ E | x.y ∈ Z for all x ∈ Λ}.
An isoduality of Λ is an isometry σ of Λ onto its dual; actually, σ exchanges

Λ and Λ∗ (since tσ = σ−1), and σ2 is an automorphism of Λ. We can express this
property by introducing the group Aut# Λ of the isometries of E mapping Λ onto
Λ or Λ∗. When Λ is isodual, the index [Aut# Λ : AutΛ] is equal to 2 except in
the unimodular case, i.e. when Λ = Λ∗, and the isodualities of Λ are in one-to-one
correspondence with its automorphisms.

We attach to any isoduality σ of Λ the bilinear form

Bσ : (x, y) 7→ x.σ(y),

which is integral on Λ× Λ and has discriminant ±1 = det σ.

Two cases are of special interest:
(i) The form Bσ is symmetric, or equivalently σ2 = 1. Such an isoduality is

called orthogonal. For a prescribed signature (p, q), p + q = n, it is easily checked
that the set of isometry classes of σ-isodual lattices of E is of dimension pq. We
recover, when σ = ±1, the finiteness of the set of unimodular n-dimensional lattices.

(ii) The form Bσ is alternating, i.e σ2 = −1. Such an isoduality, which only
occurs in even dimension, is called symplectic. Up to isometry, the family of sym-
plectic 2g-dimensional lattices has dimension g(g + 1) (see the next section); for
instance, every two-dimensional lattice of determinant 1 is symplectic (take for σ a
planar rotation of order 4). Note that an isodual lattice can be both symplectic and
orthogonal. For example, it occurs for any 2-dimensional lattice with s ≥ 2. The
densest 4-dimensional lattice D4, suitably rescaled, has, together with symplectic
isodualities (see below), orthogonal isodualities of every indefinite signature.

2. Symplectic lattices and Abelian varieties

2.1 Let us recall how symplectic lattices arise naturally from the theory of
complex tori. Let V be a complex vector space of dimension g, and let Λ be a
full lattice of V . The complex torus V/Λ is an Abelian variety if and only if there
exists a polarization on Λ, i. e. a positive definite Hermitian form H for which
the alternating form Im H is integral on Λ × Λ. In the 2g-dimensional real space
V equipped with the scalar product x.y = ReH(x, y) = Im H(ix, y), multiplication
by i is an isometry of square −1 that maps the lattice Λ onto a sublattice of Λ∗ of
index det(Im H) (= detΛ). This is an isoduality for Λ if and only if det(ImH) = 1.
The polarization H is then said principal.

Conversely, let (E, .) be again a real Euclidean vector space, Λ a lattice of
E with a symplectic isoduality σ as defined in subsection 1.2. Then E can be
made into a complex vector space by letting ix = σ(x). Now the real alternating
form Bσ(x, y) = x.σ(y) attached to σ in 1.2(ii) satisfies Bσ(ix, iy) = Bσ(x, y)
(since σ is an isometry) and thus gives rise to the definite positive Hermitian form
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H(x, y) = Bσ(ix, y) + iBσ(x, y) = x.y + ix.σ(y), which is a principal polarization
for Λ (by 1.2 (ii)).

So, there is a one-to-one correspondence between symplectic lattices and prin-
cipally polarized complex Abelian varieties.

Remark. In general, if (V/Λ,H) is any polarized abelian variety, one can find
in V a lattice Λ′ containing Λ such that (V/Λ′,H) is a principally polarized abelian
variety. For example, let us consider the Coxeter description of the densest six-
dimensional lattice E6. Let E = {a + ωb | a, b ∈ Z} ⊂ C, with ω = −1+i

√
3

2 be the
Eisenstein ring. In the space V = C3 equipped with the Hermitian inner product
H((λi), (µi)) = 2

∑
λiµi, the lattice E3 ∪ (E3 + 1

1−ω (1, 1, 1)) is isometric to E6,
and the lattice 1

ω−ω{(λ1, λ2, λ3) ∈ E3 | λ1 + λ2 + λ3 ≡ 0 (1 − ω)} to its dual
E∗6 (see [M]). The rescaled lattice Λ = 3

1
4E∗6 satisfies iΛ ⊂ 3−

1
4 E3 ⊂ Λ∗ : while

the polarization H is not principal for Λ, it is principal on Λ′ = 3−
1
4 E3, and the

principally polarized abelian variety (C3/Λ′,H) is isomorphic to the direct product
of three copies of the curve y2 = x3 − 1.

2.2 We now make explicit (from the point of view of geometry of numbers)
the standard parametrization of symplectic lattices by the Siegel upper half-space

Hg = {X + iY, X and Y real symmetric g × g matrices, Y > 0}.
Let Λ ⊂ E be a 2g-dimensional lattice with a symplectic isoduality σ. It pos-

sesses a symplectic basis B = (e1, e2, · · · , e2g), i.e. such that the matrix (ei.σ(ej))
has the form

J =
(

O Ig

−Ig O

)
,

(see for instance [M-H], p. 7). This amounts to saying that the Gram matrix
A := (ei.ej) is symplectic. More generally, a 2g× 2g real matrix M is symplectic if
tMJM = J .

We give E the complex structure defined by ix = −σ(x), and we write B =
B1∪B2, with B1 = (e1, · · · , eg). With respect to the C-basis B1 of E, the generator
matrix of the basis B of Λ has the form ( Ig Z ), where Z = X + iY is a g × g
complex matrix. The isometry −σ maps the real span F of B1 onto its orthogonal
complement F⊥, and the R-basis B1 onto the dual-basis of the orthogonal projection
p(B2) of B2 onto F⊥. Since Y = Re Z is the generator matrix of p(B2) with respect
to the basis (−σ)(B1) = (p(B2))∗, we have Y = Gram(p(B2)) = (Gram(B1))−1; the
matrix Y is then symmetric, and moreover Y −1 represents the polarization H in
the C-basis B1 of E (since H(eh, ej) = eh.ej + ieh.σ(ej) = eh.ej for 1 ≤ h, j ≤ g).

Now, the Gram matrix of the basis B0 = B1 ⊥ p(B2) of E is Gram(B0) =
(

Y −1 O

O Y

)
.

Since the (real) generator matrix of the basis B with respect to B0 is P =
(

Ig X

O Ig

)
,

we have A = Gram(B) = tP Gram(B0)P , and it follows from the condition “A
symplectic” that the matrix X also is symmetric, so we conclude

A =
(

Ig O
X Ig

)(
Y −1 O
O Y

)(
Ig X
O Ig

)
, with X + iY ∈ Hg.

On the other hand, such a matrix A is obviously positive definite, symmetric and
symplectic.
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Changing the symplectic basis means replacing A by tPAP , with P in the
symplectic modular group

Sp2g(Z) = {P ∈ SL2g(Z) | tPJP = J}.

One can check that the corresponding action of P =
(

α β

γ δ

)
on Hg is the homography

Z 7→ Z ′ = (δZ + γ)(αZ + β)−1.

Most of the well known lattices in low even dimension are proportional to
symplectic lattices, with the noticeable exception of the above-mentioned E6: the
roots lattices A2, D4 and E8, the Barnes lattice P6, the Coxeter-Todd lattice K12,
the Barnes-Wall lattice BW16, the Leech lattice Λ24, . . . . In Appendix 2 to
[B-S], Conway and Sloane give some explicit representations X + iY ∈ Hg of them.
A more systematic use of such a parametrization is dealt with in section 6.

3. Jacobians

The Jacobian Jac C of a curve C of genus g is a complex torus of dimension g
which carries a canonical principal polarization, and then the corresponding period
lattice is symplectic. Investigating the special properties of the Jacobians among
the general principally polarized Abelian varieties, Buser and Sarnak proved that,
while the linear Minkowski lower-bound for the Hermite constant γ2g still applies
to the general symplectic lattices, the general linear upper bound is to be replaced,
for period lattices, by a logarithmic one (for explicit values, see [B-S], p. 29), and
thus one does not expect large-dimensional symplectic lattices of high density to be
Jacobians. The first example of this obstruction being effective is the Leech lattice.
A more conclusive argument in low dimension involves the centralizer Autσ(Λ) of
the isoduality σ in the automorphism group of the σ-symplectic lattice Λ: if Λ
corresponds to a curve C of genus g, we must have, from Torelli’s and Hurwitz’s
theorems, |Autσ(Λ)| = |Aut(Jac C)| ≤ 2|Aut C| ≤ 2× 84(g − 1). Calculations by
Conway and Sloane (in [B-S], Appendix 2) showed that |Autσ(Λ)| is one hundred
times over this bound in the case of the lattice E8, and one million in the case of
the Leech lattice!

However, up to genus 3, almost all principally polarized abelian varieties are
Jacobians, so it is no wonder if the known symplectic lattices of dimension 2g ≤ 6
correspond to Jacobians of curves: the lattices A2, D4 and the Barnes lattice P6

are the respective period lattices for the curves y2 = x3 − 1, y2 = x5 − x and
the Klein curve xy3 + yz3 + zx3 = 0 (see [B-S], Appendix 1). The Fermat quartic
x4+y4+z4 = 0 gives rise to the lattice D+

6 (the family D+
2g is discussed in section 7),

slightly less dense, with γ = 1.5, than the Barnes lattice P6 (γ = 1.512 . . . ) but with
a lot of symmetries (Autσ(Λ) has index 120 in the full group of automorphisms.

The present record for six dimensions (γ = 1.577 . . . ) was established in [C-
S2] by the Conway-Sloane lattice M(E6) (see section 7) defined over Q(

√
3). This

lattice was shown in [Bav1], and independently in [Qi], to be associated to the
exceptional Wiman curve y3 = x4 − 1 (the unique non-hyperelliptic curve with an
automorphism of order 4g, viewed in [Qi] as the most symmetric Picard curve).

In the recent paper [Be-S], Bernstein and Sloane discussed the period lattice
associated to the hyperelliptic curve y2 = x2g+2−1, and proved it to have the form
L2g = Mg ⊥ M ′

g, where Mg is a g-dimensional isodual lattice, and M ′
g a copy of

its dual. Here the interesting lattice is the summand Mg (its density is that of L2g,
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and its group has only index 2): it turns out to be, for g ≤ 3, the densest isodual
packing in g dimensions.

Remark. The Hermite problem is part of a more general systole problem (see
[Bav1]). So far, although a compact Riemann surface is determined by its polarized
Jacobian, no connection between its systole and the Hermite invariant of the period
lattice seems to be known.

4. Modular lattices

4.1 Definition. Let Λ be an n-dimensional integral lattice (i.e. Λ ⊂ Λ∗),
which is similar to its dual. If σ is a similarity such that σ(Λ∗) = Λ, its norm ` (σ
multiplies squared lengths by `) is an integer which does not depend on the choice
of σ. Following Quebbemann, we call Λ a modular lattice of level. Note that level
one corresponds to unimodular lattices.

For a given pair (n, `), the (hypothetical) modular lattices have a prescribed deter-
minant `n/2, thus, up to isometry, there are only finitely many of them; as usual
we are looking for the largest possible minimum m (the Hermite invariant γ = m√

`

depends only on it). In the following, we restrict to even dimensions and even
lattices.

Then, the modular properties of the theta series of such lattices yield constraints
for the dimension and the density analogous to Hecke’s results for ` = 1 ([C-S1],
chapter 7). Still, for some aspects of these questions, the unimodular case remains
somewhat special. For example, given a prime `, there exists even `-modular lattices
of dimension n if and only if ` ≡ 3 mod 4 or n ≡ 0 mod 4 (see [Q1]).

4.2 Connection with modular forms. Let Λ be an even lattice of minimum
m, and let ΘΛ be its theta series

ΘΛ(z) =
∑

x∈Λ

q(x.x)/2 = 1 + 2sqm/2 + · · · ( where q = e2πiz).

Now, when Λ is `-modular (` > 1), ΘΛ must be a modular form of weight n/2 with
respect to the so-called Fricke group of level `, a subgroup of SL2(R) which contains
Γ0(`) with index 2 (here again, the unimodular case is exceptional).

From the algebraic structure of the corresponding space M of modular forms,
Quebbemann derives the notion of extremal modular lattices extending that of
[C-S1], chapter 7. Let d = dimM be the dimension of M. If a form f ∈ M is
uniquely determined by the first d coefficients a0, a1, · · · , ad−1 of its q-expansion
f =

∑
k≥0 akqk, the unique form FM = 1 +

∑
k≥d akqk is called `. extremal, and

an even `-modular lattice with this theta series is called an extremal lattice. Such
a (hypothetical) extremal lattice has the highest possible minimum, equal to 2d
unless the coefficient ad of FM vanishes. No general results about the coefficients
of the extremal modular form and more generally of its eligibility as a theta series
seem to be known.

4.3 Special levels. Quebbemann proved that the above method is valid in
particular for prime levels ` such that ` + 1 divides 24, namely 2, 3, 5, 7, 11 and
23. (For a more general setup, we refer the reader to [Q1], [Q2] and [S-SP].) The
dimension of the space of modular forms is then d = 1 + bn(1+`)

48 c (which reduces



14 ANNE-MARIE BERGÉ

to Hecke’s result for ` = 1). The proof of the upper bound

m ≤ 2 + 2
⌊

n(1 + `)
48

⌋

was completed in [S-SP] by R. Scharlau and R. Schulze-Pillot, by investigating the
coefficients ak, k > 0 of the extremal modular form: all of them are even integers,
the leading one ad is positive, but ad+1 is negative for n large enough. So, for a
given level in the above list, there are (at most) only finitely many extremal lattices.
Other kinds of obstructions may exist.

4.4 Examples.
• ` = 7, at jump dimensions (where the minimum may increase) n ≡ 0 mod 6.

While ad+1 first goes negative at n = 30, Scharlau and Hemkemeier proved that
no 7-extremal lattice exists in dimension 12: their method consists in classifying
for given pairs (n, `) the even lattices Λ of level ` (i.e.

√
`Λ∗ is also even) with

detΛ = `n/2; for (n, `) = (12, 7), they found 395 isometry classes, and among them
no extremal modular lattice.

If an extremal lattice were to exist for (n, `) = (18, 7), it would set new records
of density. Bachoc and Venkov proved recently in [B-V2] that no such lattice exists:
their proof involves spherical designs.

• Extremal lattices of jump dimensions are specially wanted, since they often
achieve the best known density, like in the following examples:

Minimum 2. D4 ((n, `) = (4, 2)); E8 ((n, `) = (8, 1)).
Minimum 4. K12 ((n, `) = (12, 3)); BW16 ((n, `) = (16, 2)); the Leech lattice

((n, `) = (24, 1)).
Minimum 6. (n, `) = (32, 2): 4 known lattices, Quebbemann discovered the

first one (denoted Q32 in [C-S1]) in 1984; (n, `) = (48, 1): 3 known lattices P48p,
P48q from coding theory, and a “cyclo-quaternionic” lattice by Nebe.

• Extremal even unimodular lattices are known for any dimension n ≡ 0
mod 8, n ≤ 80, except for n = 72, which would set a new record of density. The
case n = 80 was recently solved by Bachoc and Nebe. The corresponding Hermite
invariant γ = 8 (largely over the upper bound for period lattices) does not hold the
present record for dimension 80, established at 8, 0194 independently by Elkies and
Shioda. The same phenomenon appeared at dimension 56.

We give in section 7 Hermitian constructions for most of the above extremal
lattices, making obvious their symplectic nature.

5. Voronoi’s theory

5.1 Local theory. In section 4, we looked for extremal lattices, which (if any)
maximize the Hermite invariant in the (finite) set of modular lattices for a given pair
(n, `). In the present section, we go back to the classical notion of an extreme lattice,
where the Hermite invariant γ achieves a local maximum. Here, the existence
of such lattices stems from Mahler’s compactness theorem. The same argument
applies when we study the local maxima of density in some natural families of
lattices such as isodual lattices, lattices with prescribed automorphisms etc. These
families share a common structure: their connected components are orbits of one
lattice under the action of a closed subgroup G of GL(E) invariant under transpose.
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For such a family F , we can give a unified characterization of the strict local maxima
of density. In order to point out the connection with Voronoi’s classical theorem

a lattice is extreme if and only if it is perfect and eutactic,
we mostly adopt in the following the point of view of Gram matrices. We denote by
Symn(R) the space of n× n symmetric matrices equipped with the scalar product
< M,N >= Trace(MN). The value at v ∈ Rn of a quadratic form A is then
tvAv =< A, vtv >.

5.2 Perfection, eutaxy and extremality. Let G be a closed subgroup of
SLn(R) stable under transpose, and let F = {tPAP,P ∈ G} be the orbit of a
positive definite matrix A ∈ Symn(R). We denote by TA the tangent space to the
manifold F at A, and we recall that S(A) stands for the set of the minimal vectors
of A.

• Let v ∈ Rn. The gradient at A (with respect to <,>) of the function F → R+

A 7→< A, vtv > det A−1/n is the orthogonal projection ∇v = projTA
(vtv) of vtv onto

the tangent space at A.

The F-Voronoi domain of A is

DA = convex hull {∇v, v ∈ S(A)}.
We say that A is F-perfect if the affine dimension of DA is maximum (= dim TA),
and eutactic if the projection of the matrix A−1 lies in the interior of DA.

These definitions reduce to the traditional ones when we take for F the whole
set of positive n × n matrices (and TA = Symn(R)). But in this survey we focus
on families F naturally normalized to determinant 1: the tangent space at A to
such a family is orthogonal to the line RA−1, and the eutaxy condition reduces to

“0 ∈
◦
DA”.

• The matrix A is called F-extreme if γ achieves a local maximum at A among
all matrices in F . We say that A is strictly F-extreme if there is a neighbourhood
V of A in F such that the strict inequality γ(A′) < γ(A) holds for every A′ ∈ V ,
A′ 6= A.

• The above concepts are connected by the following result.

Theorem ([B-M]). The matrix A is strictly F-extreme if and only if it is
F-perfect and F-eutactic.

The crucial step in studying the Hermite invariant in an individual family F is
then to check the strictness of any local maximum. A sufficient condition is that
any F-extreme matrix should be well rounded, i.e. that its minimal vectors should
span the space Rn. It was proved by Voronoi in the classical case.

5.3 Isodual lattices. Let σ be an isometry of E with a given integral repre-
sentation S. Then we can parametrize the family of σ-isodual lattices by the Lie
group and symmetrized tangent space at identity

G = {P ∈ GLn(R) | tP−1 = SPS−1}, TI = {X ∈ Symn(R) | SX = −XS}.
The answer to the question

does σ-extremality imply strict σ-extremality?
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depends on the representation afforded by σ ∈ O(E). It is positive for symplectic
or orthogonal lattices. A minimal counter-example is given by a three-dimensional
rotation σ of order 4: the corresponding isodual lattices are decomposable (see
[C-S2], th. 1), and the Hermite invariant for this family attains its maximum 1 on
a subvariety of dimension 2 (up to isometry).

In [Qi-Z], Voronoi’s condition for symplectic lattices was given a suitable com-
plex form. It holds for the Conway and Sloane lattice M(E6) (and of course for
the Barnes lattice P6 which is extreme in the classical sense) but not for the lattice
D+

6 . (An alternative proof involving differential geometry was given in [Bav1].)

In dimension 5 et 7, the most likely candidates for densest isodual lattices were
also discovered by Conway and Sloane; they were successfully tested for isodualities
σ of orthogonal type (of respective signatures (4, 1) and (4, 3)). In dimension 3,
Conway and Sloane proved by classification and direct calculation that the so called
m.c.c. isodual lattice is the densest one (actually, there are only 2 well rounded
isodual lattices, m.c.c. and the cubic lattice).

5.4 Extreme modular lattices. The classical theory of extreme lattices was
recently revisited by B. Venkov [Ve] in the setting of spherical designs. That the
set of minimal vectors of a lattice be a spherical 2- or 4-design is a strong form of
the conditions of eutaxy (equal coefficients) or extremality.

An extremal `-modular lattice is not necessarily extreme: the even unimodular
lattice E8 ⊥ E8 has minimum 2, hence is extremal, but as a decomposable lattice,
it could not be perfect. By use of the modular properties of some theta series
with spherical coefficients, Bachoc and Venkov proved ([B-V2]) that this phenom-
enon could not appear near the “jump dimensions”: in particular, any extremal
`-modular lattice of dimension n such that (` = 1, and n ≡ 0, 8 mod 24), or
(` = 2, and n ≡ 0, 4 mod 16), or (` = 3, and n ≡ 0, 2 mod 12), is extreme.

This applies to the famous lattices quoted in section 4. [For some of them,
alternative proofs of the Voronoi conditions could be done, using the automorphism
groups (for eutaxy), testing perfection modulo small primes, or inductively in the
case of laminated lattices.]

5.5 Classification of extreme lattices. Voronoi established that there are
only finitely many equivalence classes of perfect matrices, and he gave an algorithm
for their enumeration.

Let A be a perfect matrix, and DA its traditional Voronoi domain. It is
a polyhedron of maximal dimension N = n(n + 1)/2, with a finite number of
hyperplane faces. Such a face H of DA is simultaneously a face for the domain of
exactly one other perfect matrix, called the neighbour of A across the face H.

We get, in taking the dual polyhedron, a graph whose edges describe the neigh-
bouring relations; this graph has finitely many inequivalent vertices. Voronoi proved
that this graph is connected, and he used it up to dimension 5 to confirm the clas-
sification by Korkine and Zolotarev. His attempt for dimension 6 was completed
in 1957 by Barnes. Complete classification for dimension 7 was done by Jaquet in
1991 using this method. Recently implemented by Batut in dimension 8, Voronoi’s
algorithm produced, by neighbouring only matrices with s = N, N + 1 and N + 2,
exactly 10916 inequivalent perfect lattices. There may exist some more.

This algorithm was extended in [B-M-S] to matrices invariant under a given
finite group Γ ⊂ GLn(Z)): it works in the centralizer of Γ in Symn(R).
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That there are only finitely many isodual-extreme lattices of type symplectic or
orthogonal stems from their well roundness. But the present extensions of Voronoi’s
algorithm are very partial (see section 6).

5.6 Voronoi’s paths and isodual lattices. The densest known isodual
lattices discovered by Conway and Sloane up to seven dimensions were found on
paths connecting, in the lattice space, the densest lattice Λ to its dual Λ∗: such
a path turns out to be stable under a fixed duality, and the isodual lattice M(Λ)
is the fixed point for this involution. In [C-S2], these paths were constructed by
gluing theory.

Actually, the Voronoi algorithm for perfect lattices provides another interpre-
tation of them. In dimensions 6 and 7, the densest lattices E6 and E7 and their
respective duals are Voronoi neighbours of each other. The above mentioned paths
Λ− Λ∗ are precisely the corresponding neighbouring paths. For dimensions 3 and
5, we need a group action: for dimension 5, we use the regular representation Γ of
the cyclic group of order 5, and the path D5−D∗5 contains the Γ-neighbouring path
leading from D5 to the perfect lattice A3

5; for dimension 3, we use the augmentation
representation of the cyclic group of order 4, and the Conway and Sloane path
Λ − Λ∗ is part of the Γ-neighbouring path leading from Λ = A3 to the Γ-perfect
lattice called “axial centered cuboidal” in [C-S2].

5.7 Eutaxy. The first proof of the finiteness of the set of eutactic lattices (for
a given dimension and up to similarity) was given by Ash ([A]) by means of Morse
theory: the Hermite invariant γ is a topological Morse function, and the eutactic
lattices are exactly its non-degenerate critical points. Bavard proved in [Bav1] that
γ is no more a Morse function on the space of symplectic lattices of dimension
2g ≥ 4; in particular, one can construct continuous arcs of critical points, such as
the following set of symplectic-eutactic 4× 4 matrices

{
(

I O

O A

)
, A ∈ SL2(R) s.t. m(A) > 1}.

6. Hyperbolic families of symplectic lattices

This section surveys a recent work by Bavard: in [Bav2] he constructs families
of 2g-dimensional symplectic lattices for which he his able to recover the local and
global Voronoi theory, as well as Morse’s theory. The convenient frame for these
constructions is the Siegel space hg = {X + iY ∈ Symg(C) | Y > 0}, modulo
homographic action by the symplectic group Sp2g(Z).

In these families most of the important lattices (E8, K12, BW16, Leech . . . ) and
many others appear with fine Siegel’s representations Z = X + iY .

6.1 Definition.
In the following we fix an integral positive symmetric g × g matrix M .

To any complex number z = x + iy, y > 0 in the Poincaré upper half plane h, we
attach the complex matrix zM = xM + iyM ∈ hg, and we consider the family

F = {zM, z ∈ h} ⊂ hg.

On can check that the homographic action of
(

α β

γ δ

)
∈ PSL2(R) on h corresponds

to the homographic action of
(

αI βM

γM−1 δI

)
∈ Sp2g(R) on F . This last matrix is
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integral when
(

α β

γ δ

)
lies in a convenient congruence subgroup Γ0(d) of SL2(Z)

(one may take d = detM), thus up to symplectic isometries of lattices, one can
restrict the parameter z to a fundamental domain for Γ0(d) in h.

The symplectic Gram matrix Az associated to z = x+ iy, y > 0 ∈ h, as defined
in 2.2, is given by

Az =
1
y

(
M−1 xI
xI |z|2M

)
.

For g = 1 and M a positive integer, this is the general 2 × 2 positive matrix
of determinant 1, and we recover the usual representation in h/PSL2(Z) of the
2-dimensional lattices.

6.2 Voronoi’s theory. The Voronoi conditions of eutaxy and perfection for
the family F , as defined in 5.2, can be translated in the space h of the parameters,
equipped with its Poincaré metric ds = |dz|

y .
• Fix z ∈ h, and for any v ∈ R2g denote by ∇v the (hyperbolic) gradient at z of

the function z 7→ tvAzv; we can represent the Voronoi domain of Az by the convex
hull Dz in C of the ∇v, v ∈ S(Az); it has affine dimension 0, 1 or 2, this maximal
value means “perfection” for z. As defined in 5.2, z is eutactic if there exist strictly
positive coefficients cv such that

∑
v∈S(Az) cv∇v = 0.

Bavard showed that Voronoi’s and Ash’s theories hold for the family F :
Strict extremality ⇔ extremality ⇔ perfection and eutaxy,
Hermite’s function is a Morse function, its critical points are the eutactic ones.

Actually, these results are connected to the strict convexity of the Hermite function
on the family F (see [Bav1] for a more general setting).

Remark. In the above theory, the only gradients that matter are the extremal
points of the convex Dz. Following Bavard, we call principal the corresponding
minimal vectors. In the classical theory, all minimal vectors are principal; this is
no more true in its various extensions.

• The next step towards a global study of γ in F was to get an hyperbolic
interpretation of the values tvAzv. To this purpose, Bavard represents any vector
v ∈ R2g by a point p ∈ h∪∂h in such a way that for all z ∈ h, tvAzv is an exponential
function of the hyperbolic distance d(p, z) (suitably extended to the boundary ∂h).
In particular, there is a discrete set P corresponding to the principal minimal
vectors.

• There is now a simple description of the Voronoi theory for the family F . We
consider the Dirichlet-Voronoi tiling of the metric space (h, d) attached to the set
P: the cell around p is Cp = {z ∈ h | d(z, p) ≤ d(z, q) for all q ∈ P}.

We then introduce the dual partition: the Delaunay cell of z ∈ h is the convex
hull of the points of P closest to z (for the Poincaré metric), hence it can figure
the Voronoi domain Dz. As one can imagine, the F-perfect points are the vertices
of the Dirichlet-Voronoi tiling, and the F-eutactic points are those which lie in the
interior of their Delaunay cell.

The 1-skeleton of the Dirichlet-Voronoi tiling is the graph of the neighbouring
relation between perfect points. Bavard proved that it is connected, and finite
modulo the convenient congruence subgroup. For a detailed description of the
algorithm, we refer the reader to [Bav2], 1.5 and 1.6.
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6.3 Some examples.
• For M = Dg (g ≥ 3), the algorithm only produces one perfect point z = 1+i

2 ,
corresponding to the so-called lattice D+

2g (see next section).
• The choice M = Ag, g ≥ 1 is much less disappointing: it produces many

symplectic-extreme lattices, among them A2,D4, P6,E8,K12.
• The densest lattices in the families attached to the Barnes lattices M =

Pg, g = 8, 12 are the Barnes-Wall lattice BW16 and the Leech lattice.
• However, the union of the hyperbolic families of given dimension 2g has only

dimension g(g + 1)/2 + 1; hence it is no wonder that it misses some beautiful
symplectic lattices, for instance the lattice M(E6).

7. Other constructions

7.1 Hermitian lattices. Let K be a C.M. field or a totally definite quater-
nion algebra, and let M be a maximal order of K. All the above-mentioned famous
lattices (in even dimensions) can be constructed as M-modules of rank k equipped
with the scalar product trace(αx.y), where trace is the reduced trace K/Q, x.y the
standard Hermitian inner product on R⊗QKk and α ∈ K some convenient totally
positive element (see for example [Bay]). We see in the following examples that such
a construction often provides natural symplectic isodualities and automorphisms.

Lattices D+
2g, g ≥ 3. Here M = Z[i] ⊂ C is the ring of Gaussian inte-

gers. We consider in Cg equipped with the scalar product 1
2 trace(x.y) the lattice

{x = (x1, x2, · · · , xg) ∈ Mg | x1 +x2 + · · ·+xg ≡ 0 mod (1+ i)} which is isometric
to the root lattice D2g. Now we consider the conjugate elements e = 1

1+i (1, 1, · · · , 1)
and e (= ie = (1, 1, . . . , 1) − e) of Cg; then the sets D+

2g = D2g ∪ (e + D2g) and
D−2g = D2g ∪ (e + D2g) turn out to be dual lattices, that coincide when g is even.
In any case, the multiplication by i provides a symplectic isoduality. An obvious
group of Hermitian automorphisms consist of permutations of the xi’s and even
sign changes. Thus, comparing its order 2gg! to the Hurwitz bound (2)84(g − 1),
one sees that, except for g = 3, no lattice of the family is a Jacobian (in the opposite
direction, all lattices, except for g = 3, are extreme in the Voronoi sense).

Barnes-Wall lattices BW2k , k ≥ 2. Here, K is the quaternion field Q2,∞
defined over Q by elements i, j such that i2 = j2 = −1, ji = −ij, M is the Hurwitz
order (Z-module generated by (1, i, j, ω) where ω = 1/2(1 + i + j + ij)), and we
consider the two-sided ideal A = (1 + i)M of M. Starting from M0 = A, we define
inductively the right and left M-modules

Mk+1 = {(x, y) ∈ Mk ×Mk | x ≡ y mod AMk} ⊂ K2k+2
,

and for k odd (resp. even) we put Lk = Mk (resp. A−1Mk). For the scalar product
1
2 trace(x.y), we have L0 ∼ D4, L1 ∼ E8 and generally Lk ∼ BW22k+2 . These
lattices are alternatively 2-modular and unimodular: the right multiplication by
i (resp. j − i) for k odd (resp. k even) provides a symplectic similarity σ from
L∗k = Lk (resp. A−1Lk) onto Lk. Using their logarithmic bound for the density of a
period lattice, Buser and Sarnak proved that the Barnes-Wall lattices are certainly
not Jacobians for k ≥ 5. As usual, an argument of automorphisms extends this
result for 1 ≤ k ≤ 4: the group Autσ(Lk) embeds diagonally into Autσ(Lk+2), and
adding transpositions and sign changes, one obtains a subgroup of Autσ(Lk+2) of
order 27 ×Autσ(Lk); starting from the subgroup of automorphisms of D4 given by
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left multiplication by the 24 units of M, or from the group Autσ(E8), one sees that
|Autσ(Lk)| is largely over the Hurwitz bound.

Hermitian extensions of scalars. Let M the ring of integers of a imaginary
quadratic field. Following [G], Bachoc and Nebe show in [B-N] that by tensoring
over M a modular M-lattice, one can shift from one level to another; this construc-
tion preserves the symplectic nature of the isoduality, and hopefully, the minimum.
For this last question, we refer to [Cou].

In [B-N], M is the ring of integers of the quadratic field of discriminant −7. Let
Lr be an M-lattice of rank r, unimodular with respect to its Hermitian structure,
and consider the M-lattices L2r = (A2 ⊥ A2) ⊗M Lr and L4r = E8 ⊗M Lr. By a
determinant argument, one sees that (for the usual scalar product) the Z-lattices
Lr, L2r and L4r are symplectic modular lattices of respective levels 7, 3 and 1.
Starting from the Barnes lattice P6, Gross obtained the Coxeter-Todd lattice K12

and the Leech lattice, of minimum 4. The same procedure was applied in [B-N] to
a 20-dimensional lattice appearing in the ATLAS in connection with the Mathieu
group M22, and led to the first known extremal modular lattices of minimum 8,
and respective dimensions 40 and 80. Note that while coding theory was involved
in the original proof of the extremality of the unimodular lattices of dimension 80,
an alternative “à la Kitaoka” proof is given in [Cou].

7.2 Exterior power. Let 1 ≤ k < n be two integers, and let E be a Euclidean
space of dimension n; its exterior powers carry a natural scalar product which
makes the canonical map σ :

∧n−k
E → (

∧k
E)∗ an isometry

∧n−k
E → (

∧k
E)

of square (−1)k(n−k). Let L be a lattice in E. It is shown in [Cou1] that σ maps the
lattice

∧n−k
L onto

√
detL(

∧k
L)∗. In particular, when n = 2k, σ is a symplectic

or orthogonal similarity of the
(
2k
k

)
-dimensional lattice (

∧k
L) onto its dual; if

moreover L is integral, the lattice (
∧k

L) is modular of level det L.
For instance, the lattice

∧2 D4 is isometric to D+
6 , and the lattice

∧3 E6, in 20
dimensions, is 3-modular of symplectic type, with minimum 4, thus extremal.

Remark. Exterior even powers of unimodular lattices are unimodular lattices
of special interest for the theory of group representations. Let us come back to the
notation of this subsection. For even k, the canonical map Aut L → Aut

∧k
L has

kernel ±1, and induces an embedding AutL/(±1) ↪→ Aut
∧k

L. Actually, the exte-
rior squares of the lattice E8 and the Leech lattice provide faithful representations
of minimal degrees of the group O+

8 (2) and of the Conway group Co1 respectively.

7.3 Group representations. Many important symplectic modular lattices
were discovered by Nebe, Plesken ([N-P]) and Souvignier ([Sou]) while investigating
finite rational matrix groups. In [S-T], Scharlau and Tiep, using symplectic groups
over Fp, construct large families of symplectic unimodular lattices, among them
that of dimension 28 discovered by combinatorial devices by Bacher and Venkov in
[B-V1].

I am indebted to C. Bavard and J. Martinet for helpful discussions when I was
writing this survey. I am also grateful for the improvements they suggested after
reading the first drafts of this paper.
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Université Bordeaux 1
351 cours de la Libération
33405 Talence Cedex, France

E-mail address: berge@math.u-bordeaux.fr



Contemporary Mathematics

Universal Quadratic Forms and the
Fifteen Theorem

J. H. Conway

Abstract. This paper is an extended foreword to the paper of Manjul
Bhargava [1] in these proceedings, which gives a short and elegant proof
of the Conway-Schneeberger Fifteen Theorem on the representation of
integers by quadratic forms.

The representation theory of quadratic forms has a long history, start-
ing in the seventeenth century with Fermat’s assertions of 1640 about the
numbers represented by x2 + y2. In the next century, Euler gave proofs of
these and some similar assertions about other simple binary quadratics, and
although these proofs had some gaps, they contributed greatly to setting
the theory on a firm foundation.

Lagrange started the theory of universal quadratic forms in 1770 by
proving his celebrated Four Squares Theorem, which in current language is
expressed by saying that the form x2+y2+z2+t2 is universal. The eighteenth
century was closed by a considerably deeper statement – Legendre’s Three
Squares Theorem of 1798; this found exactly which numbers needed all four
squares. In his Theorie des Nombres of 1830, Legendre also created a very
general theory of binary quadratics.

The new century was opened by Gauss’s Disquisitiones Arithmeticae of
1801, which brought that theory to essentially its modern state. Indeed,
when Neil Sloane and I wanted to summarize the classification theory of
binary forms for one of our books [3], we found that the only Number Theory
textbook in the Cambridge Mathematical Library that handled every case
was still the Disquisitiones! Gauss’s initial exploration of ternary quadratics
was continued by his great disciple Eisenstein, while Dirichlet started the
analytic theory by his class number formula of 1839.

As the nineteenth century wore on, other investigators, notably H. J. S.
Smith and Hermann Minkowski, explored the application of Gauss’s concept
of the genus to higher-dimensional forms, and introduced some invariants
for the genus from which in this century Hasse was able to obtain a complete

c©0000 (copyright holder)
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and very simple classification of rational quadratic forms based on Hensel’s
notion of “p-adic number”, which has dominated the theory ever since.

In 1916, Ramanujan started the byway that concerns us here by asserting
that

[1, 1, 1, 1], [1, 1, 1, 2], [1, 1, 1, 3], [1, 1, 1, 4], [1, 1, 1, 5], [1, 1, 1, 6], [1, 1, 1, 7],
[1, 1, 2, 2], [1, 1, 2, 3], [1, 1, 2, 4], [1, 1, 2, 5], [1, 1, 2, 6], [1, 1, 2, 7], [1, 1, 2, 8],
[1, 1, 2, 9], [1, 1, 2, 10], [1, 1, 2, 11], [1, 1, 2, 12], [1, 1, 2, 13], [1, 1, 2, 14], [1, 1, 3, 3],
[1, 1, 3, 4], [1, 1, 3, 5], [1, 1, 3, 6], [1, 2, 2, 2], [1, 2, 2, 3], [1, 2, 2, 4], [1, 2, 2, 5],
[1, 2, 2, 6], [1, 2, 2, 7], [1, 2, 3, 3], [1, 2, 3, 4], [1, 2, 3, 5], [1, 2, 3, 6], [1, 2, 3, 7],
[1, 2, 3, 8], [1, 2, 3, 9], [1, 2, 3, 10], [1, 2, 4, 4], [1, 2, 4, 5], [1, 2, 4, 6], [1, 2, 4, 7],
[1, 2, 4, 8], [1, 2, 4, 9], [1, 2, 4, 10], [1, 2, 4, 11], [1, 2, 4, 12], [1, 2, 4, 13], [1, 2, 4, 14],
[1, 2, 5, 5], [1, 2, 5, 6], [1, 2, 5, 7], [1, 2, 5, 8], [1, 2, 5, 9], [1, 2, 5, 10]

were all the diagonal quaternary forms that were universal in the sense ap-
propriate to positive-definite forms, that is, represented every positive inte-
ger. In the rest of this paper, “form” will mean “positive-definite quadratic
form”, and “universal” will mean “universal in the above sense”.

Although Ramanujan’s assertion later had to be corrected slightly by
the elision of the diagonal form [1, 2, 5, 5], it aroused great interest in the
problem of enumerating all the universal quaternary forms, which was ea-
gerly taken up, by Gordon Pall and his students in particular. In 1940, Pall
also gave a complete system of invariants for the genus, while simultaneously
Burton Jones found a system of canonical forms for it, so giving two equally
definitive solutions for a problem raised by Smith in 1851.

There are actually two universal quadratic form problems, according
to the definition of “integral” that one adopts. The easier one is that for
Gauss’s notion, according to which a form is integral only if not only are all
its coefficients integers, but the off-diagonal ones are even. This is sometimes
called “classically integral”, but we prefer to use the more illuminating term
“integer-matrix”, since what is required is that the matrix of the form be
comprised of integers. The difficult universality problem is that for the
alternative notion introduced by Legendre, under which a form is integral
merely if all its coefficients are. We describe such a form as “integer-valued”,
since the condition is precisely that all the values taken by the form are
integers, and remark that this kind of integrality is the one most appropriate
for the universality problem, since that is about the values of forms.

For nearly 50 years it has been supposed that the universality problem
for quaternary integer-matrix forms had been solved by M. Willerding, who
purported to list all such forms in 1948. However, the 15-theorem, which I
proved with William Schneeberger in 1993, made it clear that Willerding’s
work had been unusually defective. In his paper in these proceedings, Manjul
Bhargava [1] gives a very simple proof of the 15-theorem, and derives the
complete list of universal quaternaries. As he remarks, of the 204 such
forms, Willerding’s purportedly complete list of 178 contains in fact only
168, because she missed 36 forms, listed 1 form twice, and listed 9 non-
universal forms!
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The 15-theorem closes the universality problem for integer-matrix forms
by providing an extremely simple criterion. We no longer need a list of
universal quaternaries, because a form is universal provided only that it
represent the numbers up to 15. Moreover, this criterion works for larger
numbers of variables, where the number of universal forms is no longer finite.
(It is known that no form in three or fewer variables can be universal.)

I shall now briefly describe the history of the 15-theorem. In a 1993
Princeton graduate course on quadratic forms, I remarked that a rework-
ing of Willerding’s enumeration was very desirable, and could probably be
achieved very easily in view of recent advances in the representation theory
of quadratic forms, most particularly the work of Duke and Schultze-Pillot.
Moreover, it was an easy consequence of this work that there must be a con-
stant c with the property that if a matrix-integral form represented every
positive integer up to c, then it was universal, and a similar but probably
larger constant C for integer-valued forms. At that time, I feared that per-
haps these constants would be very large indeed, but fortunately it appeared
that they are quite small.

I started the next lecture by saying that we might try to find c, and
wrote on the board a putative

Theorem 0.1. If an integer-matrix form represents every positive inte-
ger up to c (to be found!) then it is universal.

We started to prove that theorem, and by the end of the lecture had
found the 9 ternary “escalator” forms (see Bhargava’s article [1] for their
definition) and realised that we could almost as easily find the quaternary
ones, and made it seem likely that c was much smaller than we had expected.

In the afternoon that followed, several class members, notably William
Schneeberger and Christopher Simons, took the problem further by produc-
ing these forms and exploring their universality by machine. These calcula-
tions strongly suggested that c was in fact 15.

In subsequent lectures we proved that most of the 200+ quaternaries
we had found were universal, so that when I had to leave for a meeting
in Boston only nine particularly recalcitrant ones remained. In Boston I
tackled seven of these, and when I returned to Princeton, Schneeberger and
I managed to polish the remaining two off, and then complete this to a proof
of the 15-theorem, modulo some computer calculations that were later done
by Simons.

The arguments made heavy use of the notion of genus, which had en-
abled the nineteenth-century workers to extend Legendre’s Three Squares
theorem to other ternary forms. In fact the 15-theorem largely reduces to
proving a number of such analogues of Legendre’s theorem. Expressing the
arguments was greatly simplified by my own symbol for the genus, which
was originally derived by comparing Pall’s invariants with Jones’s canonical
forms, although it has since been established more simply; see for instance
my recent little book [2].
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Our calculations also made it clear that the larger constant C for the
integer-valued problem would almost certainly be 290, though obtaining a
proof of the resulting “290-conjecture” would be very much harder indeed.
Last year, in one of our semi-regular conversations I tempted Manjul Bhar-
gava into trying his hand at the difficult job of proving the 290-conjecture.

Manjul started the task by reproving the 15-theorem, and now he has
discovered the particularly simple proof he gives in the following paper,
which has made it unnecessary for us to publish our rather more complicated
proof. Manjul has also proved the “33-theorem” – much more difficult than
the 15-theorem – which asserts that an integer-matrix form will represent all
odd numbers provided only that it represents 1, 3, 5, 7, 11, 15, and 33. This
result required the use of some very clever and subtle arithmetic arguments.

Finally, using these arithmetic arguments, as well as new analytic tech-
niques, Manjul has made significant progress on the 290-conjecture, and I
would not be surprised if the conjecture were to be finished off in the near
future! He intends to publish these and other related results in a subsequent
paper.
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On the Conway-Schneeberger Fifteen Theorem

Manjul Bhargava

Abstract. This paper gives a proof of the Conway-Schneeberger Fif-
teen Theorem on the representation of integers by quadratic forms, to
which the paper of Conway [1] in these proceedings is an extended fore-
word.

1. Introduction. In 1993, Conway and Schneeberger announced the
following remarkable result:

Theorem 1 (“The Fifteen Theorem”). If a positive-definite quadratic
form having integer matrix represents every positive integer up to 15 then it
represents every positive integer.

The original proof of this theorem was never published, perhaps because
several of the cases involved rather intricate arguments. A sketch of this
original proof was given by Schneeberger in [4]; for further background and
a brief history of the Fifteen Theorem, see Professor Conway’s article [1] in
these proceedings.

The purpose of this paper is to give a short and direct proof of the
Fifteen Theorem. Our proof is in spirit much the same as that of the original
unpublished arguments of Conway and Schneeberger; however, we are able
to treat the various cases more uniformly, thereby obtaining a significantly
simplified proof.

2. Preliminaries. The Fifteen Theorem deals with quadratic forms that
are positive-definite and have integer matrix. As is well-known, there is a
natural bijection between classes of such forms and lattices having integer
inner products; precisely, a quadratic form f can be regarded as the inner
product form for a corresponding lattice L(f). Hence we shall oscillate freely
between the language of forms and the language of lattices. For brevity, by
a “form” we shall always mean a positive-definite quadratic form having
integer matrix, and by a “lattice” we shall always mean a lattice having
integer inner products.

c©0000 (copyright holder)
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A form (or its corresponding lattice) is said to be universal if it represents
every positive integer. If a form f happens not to be universal, define the
truant of f (or of its corresponding lattice L(f)) to be the smallest positive
integer not represented by f .

Important in the proof of the Fifteen Theorem is the notion of “escalator
lattice.” An escalation of a nonuniversal lattice L is defined to be any lattice
which is generated by L and a vector whose norm is equal to the truant of
L. An escalator lattice is a lattice which can be obtained as the result of a
sequence of successive escalations of the zero-dimensional lattice.

3. Small-dimensional Escalators. The unique escalation of the zero-
dimensional lattice is the lattice generated by a single vector of norm 1.
This lattice corresponds to the form x2 (or, in matrix form, [ 1 ]) which fails
to represent the number 2. Hence an escalation of [ 1 ] has inner product
matrix of the form [

1 a
a 2

]
.

By the Cauchy-Schwartz inequality, a2 ≤ 2, so a equals either 0 or ±1. The
choices a = ±1 lead to isometric lattices, so we obtain only two nonisometric
two-dimensional escalators, namely those lattices having Minkowski-reduced
Gram matrices

�
1 0
0 1

�
and

�
1 0
0 2

�
.

If we escalate each of these two-dimensional escalators in the same man-
ner, we find that we obtain exactly 9 new nonisometric escalator lattices,
namely those having Minkowski-reduced Gram matrices

2
4

1 0 0
0 1 0
0 0 1

3
5 ,

2
4

1 0 0
0 1 0
0 0 2

3
5 ,

2
4

1 0 0
0 1 0
0 0 3

3
5 ,

2
4

1 0 0
0 2 0
0 0 2

3
5 ,

2
4

1 0 0
0 2 0
0 0 3

3
5 ,

2
4

1 0 0
0 2 1
0 1 4

3
5 ,

2
4

1 0 0
0 2 0
0 0 4

3
5 ,

2
4

1 0 0
0 2 1
0 1 5

3
5 , and

2
4

1 0 0
0 2 0
0 0 5

3
5.

Escalating now each of these nine three-dimensional escalators, we find
exactly 207 nonisomorphic four-dimensional escalator lattices. All such lat-
tices are of the form [1]⊕ L, and the 207 values of L are listed in Table 3.

When attempting to carry out the escalation process just once more,
however, we find that many of the 207 four-dimensional lattices do not esca-
late (i.e., they are universal). For instance, one of the four-dimensional esca-
lators turns out to be the lattice corresponding to the famous four squares
form, a2 + b2 + c2 + d2, which is classically known to represent all inte-
gers. The question arises: how many of the four-dimensional escalators are
universal?

4. Four-dimensional Escalators. In this section, we prove that in fact
201 of the 207 four-dimensional escalator lattices are universal; that is to
say, only 6 of the four-dimensional escalators can be escalated once again.
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The proof of universality of these 201 lattices proceeds as follows. In
each such four-dimensional lattice L4, we locate a 3-dimensional sublattice
L3 which is known to represent some large set of integers. Typically, we
simply choose L3 to be unique in its genus; in that case, L3 represents all
integers that it represents locally (i.e., over each p-adic ring Zp). Armed
with this knowledge of L3, we then show that the direct sum of L3 with its
orthogonal complement in L4 represents all sufficiently large integers n ≥ N .
A check of representability of n for all n < N finally reveals that L4 is indeed
universal.

To see this argument in practice, we consider in detail the escalations

L4 of the escalator lattice
2
4

1 0 0
0 2 0
0 0 2

3
5 (labelled (4) in Table 1). The latter

3-dimensional lattice L3 is unique in its genus, so a quick local calculation
shows that it represents all positive integers not of the form 2e(8k+7), where
e is even. Let the orthogonal complement of L3 in L4 have Gram matrix
[m]. We wish to show that L3⊕ [m] represents all sufficiently large integers.

To this end, suppose L4 is not universal, and let u be the first integer not
represented by L4. Then, in particular, u is not represented by L3, so u must
be of the form 2e(8k + 7). Moreover, u must be squarefree; for if u = rt2

with t > 1, then r = u/t2 is also not represented by L4, contradicting the
minimality of u. Therefore e = 0, and we have u ≡ 7 (mod 8).

Now if m 6≡ 0, 3 or 7 (mod 8), then clearly u − m is not of the form
2e(8k + 7). Similarly, if m ≡ 3 or 7 (mod 8), then u − 4m cannot be of
the form 2e(8k + 7). Thus if m 6≡ 0 (mod 8), and given that u ≥ 4m, then
either u − m or u − 4m is represented by L3; that is, u is represented by
L3⊕ [m] (a sublattice of L4) for u ≥ 4m. An explicit calculation shows that
m never exceeds 28, and a computer check verifies that every escalation L4

of L3 represents all integers less than 4 × 28 = 112. It follows that any
escalator L4 arising from L3, for which the value of m is not a multiple of
8, is universal.

Of course, the argument fails for those L4 for which m is a multiple of
8. We call such an escalation “exceptional”. Fortunately, such exceptional
escalations are few and far between, and are easily handled. For instance, an

explicit calculation shows that only two escalations of L3 =
2
4

1 0 0
0 2 0
0 0 2

3
5 are

exceptional (while the other 24 are not); these exceptional cases are listed
in Table 2.1. As is also indicated in the table, although these lattices did
escape our initial attempt at proof, the universality of these four-dimensional
lattices L4 is still not any more difficult to prove; we simply change the

sublattice L3 from the escalator lattice
2
4

1 0 0
0 2 0
0 0 2

3
5 to the ones listed in the

table, and apply the same argument!
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It turns out that all of the 3-dimensional escalator lattices listed in Ta-
ble 1, except for the one labeled (6), are unique in their genus, so the univer-
sality of their escalations can be proved by essentially identical arguments,
with just a few exceptions. As for escalator (6), although not unique in its
genus, it does represent all numbers locally represented by it except possibly
those which are 7 or 10 (mod 12). Indeed, this escalator contains the lattice2
4

1 0 0
0 4 2
0 2 8

3
5 , which is unique in its genus, and the lattices

2
4

2 -2 2
-2 5 2
2 2 8

3
5 and

2
4

3 0 0
0 5 4
0 4 5

3
5, which together form a genus; a local check shows that the first

genus represents all numbers locally represented by escalator (6) which are
not congruent to 2 or 3 (mod 4), while the second represents all such num-
bers not congruent to 1 (mod 3). The desired conclusion follows. (This fact
has been independently proven by Kaplansky [3] using different methods.)

Knowing this, we may now proceed with essentially the same arguments

on the escalations of L3 =
2
4

1 0 0
0 2 1
0 1 4

3
5 . The relevant portions of the proofs

for all nonexceptional cases are summarized in Table 1.
“Exceptional” cases arise only for escalators (4) (as we have already

seen), (6), and (7). Two arise for escalator (4). Although four arise for
escalator (6), two of them turn out to be nonexceptional escalations of (1)
and (8) respectively, and hence have already been handled. Similarly, two
arise for escalator (7), but one is a nonexceptional escalation of (9). Thus
only five truly exceptional four-dimensional escalators remain, and these are
listed in Table 2. In these five exceptional cases, other three-dimensional
sublattices unique in their genus are given for which essentially identical
arguments work in proving universality. Again, all the relevant information
is provided in Table 2.

5. Five-dimensional Escalators. As mentioned earlier, there are 6 four-
dimensional escalators which escalate again; they have been italicized in
Table 3 and are listed again in the first column of Table 4. A rather large
calculation shows that these 6 four-dimensional lattices escalate to an addi-
tional 1630 five-dimensional escalators! With a bit of fear we may ask again
whether any of these five-dimensional escalators escalate.

Fortunately, the answer is no; all five-dimensional escalators are uni-
versal. The proof is much the same as the proof of universality of the
four-dimensional escalators, but easier. We simply observe that, for the 6
four-dimensional nonuniversal escalators, all parts of the proof of universal-
ity outlined in the second paragraph of Section 4 go through—except for
the final check. The final check then reveals that each of these 6 lattices
represent every positive integer except for one single number n. Hence once
a single vector of norm n is inserted in such a lattice, the lattice must au-
tomatically become universal. Therefore all five-dimensional escalators are
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universal. A list of the 6 nonuniversal four-dimensional lattices, together
with the single numbers they fail to represent, is given in Table 4.

Since no five-dimensional escalator can be escalated, it follows that there
are only finitely many escalator lattices: 1 of dimension zero, 1 of dimension
one, 2 of dimension two, 9 of dimension three, 207 of dimension four, and
1630 of dimension five, for a total of 1850.

6. Remarks on the Fifteen Theorem. It is now obvious that

(i) Any universal lattice L contains a universal sublattice of dimension at
most five.

For we can construct an escalator sequence 0 = L0 ⊆ L1 ⊆ . . . within L,
and then from Sections 4 and 5, we see that either L4 or (when defined) L5

gives a universal escalator sublattice of L.
Our next remark includes the Fifteen Theorem.

(ii) If a positive-definite quadratic form having integer matrix represents the
nine critical numbers 1, 2, 3, 5, 6, 7, 10, 14, and 15, then it represents every
positive integer.
(Equivalently, the truant of any nonuniversal form must be one of these nine
numbers.)

This is because examination of the proof shows that only these numbers
arise as truants of escalator lattices.

We note that Remark (ii) is the best possible statement of the Fifteen
Theorem, in the following sense.

(iii) If t is any one of the above critical numbers, then there is a quaternary
diagonal form that fails to represent t, but represents every other positive
integer.

Nine such forms of minimal determinant are [2, 2, 3, 4] with truant 1, [1, 3, 3, 5]
with truant 2, [1, 1, 4, 6] with truant 3, [1, 2, 6, 6] with truant 5, [1, 1, 3, 7] with
truant 6, [1, 1, 1, 9] with truant 7, [1, 2, 3, 11] with truant 10, [1, 1, 2, 15] with
truant 14, and [1, 2, 5, 5] with truant 15.

However, there is another slight strengthening of the Fifteen Theorem,
which shows that the number 15 is rather special:

(iv) If a positive-definite quadratic form having integer matrix represents
every number below 15, then it represents every number above 15.

This is because there are only four escalator lattices having truant 15, and
as was shown in Section 5, each of these four escalators represents every
number greater than 15.

Fifteen is the smallest number for which Remark (iv) holds. In fact:
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(v) There are forms which miss infinitely many integers starting from any
of the eight critical numbers not equal to 15.

Indeed, in each case one may simply take an appropriate escalator lattice of
dimension one, two, or three.

(vi) There are exactly 204 universal quaternary forms.

An upper bound for the discriminant of such a form is easily determined;
a systematic use of the Fifteen Theorem then yields the desired result. We
note that the enumeration of universal quaternary forms was announced
previously in the well-known work of Willerding [5], who found that there
are exactly 178 universal quaternary forms; however, a comparison with our
tables shows that she missed 36 universal forms, listed one universal form
twice, and listed 9 non-universal forms. A list of all 204 universal quaternary
forms is given in Table 5; the three entries not appearing among the list of
escalators in Table 3 have been italicized.

Acknowledgments. The author wishes to thank Professors Conway and
Kaplansky for many wonderful discussions, and for helpful comments on an
earlier draft of this paper.
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Three-dimensional Represents nos. Check
escalator lattice Truant not of the form∗ If m Subtract up to

(1)

2
4

1 0 0
0 1 0
0 0 1

3
5 7 2eu7 6≡ 0 (mod 8) m or 4m 112

≡ 0 (mod 8) does not arise -

(2)

2
4

1 0 0
0 1 0
0 0 2

3
5 14 2du7 6≡ 0 (mod 16) m or 4m 224

≡ 0 (mod 16) does not arise -

(3)

2
4

1 0 0
0 1 0
0 0 3

3
5 6 3du− 6≡ 0 (mod 9) m, 4m, or 16m 864

≡ 0 (mod 9) does not arise -

(4)

2
4

1 0 0
0 2 0
0 0 2

3
5 7 2eu7 6≡ 0 (mod 8) m or 4m 112

≡ 0 (mod 8) [See Table 2] -

(5)

2
4

1 0 0
0 2 0
0 0 3

3
5 10 2du5 6≡ 0 (mod 16) m or 4m 1440

≡ 0 (mod 16) does not arise -

(6)

2
4

1 0 0
0 2 1
0 1 4

3
5 7 7du− or 6≡ 0, 3, 9 (mod 12)

7, 10 (mod 12) & 6≡ 0 (mod 49) m, 4m, or 9m 3087

≡ 0 (mod 49) does not arise -

≡ 0, 3, 9 (mod 12) [See Table 2] -

(7)

2
4

1 0 0
0 2 0
0 0 4

3
5 14 2du7 6≡ 0 (mod 16) m or 4m 224

≡ 0 (mod 8) [See Table 2] -

(8)

2
4

1 0 0
0 2 1
0 1 5

3
5 7 2eu7 6≡ 0 (mod 8) m or 4m 252

≡ 0 (mod 8) does not arise -

(9)

2
4

1 0 0
0 2 0
0 0 5

3
5 10 5du− 6≡ 0 (mod 25) m or 4m 4000

≡ 0 (mod 25) does not arise -

Table 1. Proof of universality of four-dimensional escalators
(nonexceptional cases)
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“Exceptional” New unique in Unrepresented Check
Lattice genus sublattice numbers m Subtract up to

2
664

1 0 0 2
0 2 0 1
0 0 2 1
2 1 1 7

3
775

2
4

1 0 0
0 2 1
0 1 3

3
5 5du+ 40 m or 4m 160

2
664

1 0 0 0
0 2 0 1
0 0 2 1
0 1 1 7

3
775

2
4

2 0 1
0 2 1
1 1 7

3
5 2eu1, 2

eu5,

2du3, 2
du7, 3

du+
1 m 14

2
664

1 0 0 1
0 2 1 0
0 1 4 3
1 0 3 7

3
775

2
4

2 1 1
1 4 0
1 0 4

3
5 2du7 1 m, 4m, or 9m 9

2
664

1 0 0 0
0 2 1 1
0 1 4 0
0 1 0 7

3
775

† 2
4

2 0 0
0 4 2
0 2 10

3
5 2du7 90 m or 4m 504

2
664

1 0 0 1
0 2 0 0
0 0 4 2
1 0 2 14

3
775

2
4

1 0 0
0 4 2
0 2 13

3
5 2du5, 2

eu3 2 m or 4m 8

Table 2. Proof of universality of four-dimensional escalators (exceptional cases)

∗We follow the notation of Conway-Sloane [2]: pd (resp. pe) denotes an odd (resp.
even) power of p; if p = 2, uk denotes a number of the form 8n + k (k = 1, 3, 5, 7), and if
p is odd, u+ (resp. u−) denotes a number which is a quadratic residue (resp. non-residue)
modulo p.

†In this exceptional case, the sublattice given here shows only that all even numbers
are represented. However, the original argument of Table 1 (using escalator (6) as sublat-
tice, with m = 315) shows that all odd numbers are represented, so the desired universality
follows. [It turns out there is no sublattice unique in its genus that single-handedly proves
universality in this case!]
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1: 1 1 1 0 0 0 16: 2 3 3 2 0 0 30: 2 4 4 2 0 0 49: 2 3 9 2 2 0 72: 2 5 8 4 0 0

2: 1 1 2 0 0 0 17: 1 2 9 2 0 0 31: 2 3 6 2 2 0 49: 2 4 7 0 0 2 74: 2 4 10 2 2 0

3: 1 1 3 0 0 0 17: 1 3 6 2 0 0 31: 2 4 5 0 2 2 49: 2 5 6 0 2 2 76: 2 4 10 0 2 0

3: 1 2 2 2 0 0 17: 2 3 4 0 2 2 32: 2 4 4 0 0 0 50: 2 4 7 2 2 0 77: 2 5 9 4 2 0

4: 1 1 4 0 0 0 18: 1 2 9 0 0 0 32: 2 4 5 4 0 0 50: 2 5 5 0 0 0 78: 2 4 10 2 0 0

4: 1 2 2 0 0 0 18: 1 3 6 0 0 0 33: 2 3 6 0 2 0 51: 2 3 9 0 2 0 78: 2 5 8 2 0 0

4: 2 2 2 2 2 0 18: 2 2 5 2 0 0 33: 2 4 5 2 0 2 52: 2 3 9 2 0 0 80: 2 4 10 0 0 0

5: 1 1 5 0 0 0 18: 2 3 3 0 0 0 34: 2 3 6 2 0 0 52: 2 5 6 2 0 2 80: 2 4 11 4 0 0

5: 1 2 3 2 0 0 18: 2 3 4 2 0 2 34: 2 4 5 2 2 0 52: 2 5 6 4 0 0 80: 2 5 8 0 0 0

6: 1 1 6 0 0 0 19: 1 2 10 2 0 0 34: 2 4 6 4 0 2 53: 2 5 6 2 2 0 82: 2 4 11 2 2 0

6: 1 2 3 0 0 0 19: 2 3 4 2 2 0 35: 2 4 5 0 0 2 54: 2 3 9 0 0 0 82: 2 5 9 4 0 0

6: 2 2 2 2 0 0 20: 1 2 10 0 0 0 36: 2 3 6 0 0 0 54: 2 4 7 2 0 0 83: 2 5 9 2 2 0

7: 1 1 7 0 0 0 20: 2 2 5 0 0 0 36: 2 4 5 0 2 0 54: 2 5 6 0 0 2 85: 2 5 9 0 2 0

7: 1 2 4 2 0 0 20: 2 2 6 2 2 0 36: 2 4 6 4 2 0 54: 2 5 7 4 2 2 86: 2 4 11 2 0 0

7: 2 2 3 2 0 2 20: 2 4 4 4 2 0 36: 2 5 5 4 2 2 55: 2 3 10 2 2 0 87: 2 5 10 4 2 0

8: 1 2 4 0 0 0 21: 2 3 4 0 2 0 37: 2 5 5 4 2 0 55: 2 5 6 0 2 0 88: 2 4 11 0 0 0

8: 1 3 3 2 0 0 22: 1 2 11 0 0 0 38: 2 4 5 2 0 0 55: 2 5 7 4 0 2 88: 2 4 12 4 0 0

8: 2 2 2 0 0 0 22: 2 2 6 2 0 0 38: 2 4 6 0 2 2 56: 2 4 7 0 0 0 88: 2 5 9 2 0 0

8: 2 2 3 2 2 0 22: 2 3 4 2 0 0 39: 2 3 7 0 2 0 56: 2 4 8 4 0 0 90: 2 4 12 2 2 0

9: 1 2 5 2 0 0 22: 2 3 5 0 2 2 40: 2 3 7 2 0 0 57: 2 3 10 0 2 0 90: 2 5 9 0 0 0

9: 1 3 3 0 0 0 23: 1 2 12 2 0 0 40: 2 4 5 0 0 0 58: 2 3 10 2 0 0 92: 2 4 13 4 2 0

9: 2 2 3 0 0 2 23: 2 3 5 2 0 2 40: 2 4 6 2 0 2 58: 2 4 8 2 2 0 92: 2 5 10 4 0 0

10: 1 2 5 0 0 0 24: 1 2 12 0 0 0 40: 2 4 6 4 0 0 58: 2 5 6 2 0 0 93: 2 5 10 2 2 0

10: 2 2 3 2 0 0 24: 2 2 6 0 0 0 41: 2 4 7 4 0 2 58: 2 5 7 0 2 2 94: 2 4 12 2 0 0

10: 2 2 4 2 0 2 24: 2 2 7 2 2 0 42: 2 3 7 0 0 0 60: 2 3 10 0 0 0 95: 2 5 10 0 2 0

11: 1 2 6 2 0 0 24: 2 3 4 0 0 0 42: 2 4 6 0 0 2 60: 2 4 9 4 2 0 96: 2 4 12 0 0 0

11: 1 3 4 2 0 0 24: 2 4 4 0 2 2 42: 2 4 6 2 2 0 60: 2 5 6 0 0 0 96: 2 4 13 4 0 0

12: 1 2 6 0 0 0 24: 2 4 4 4 0 0 42: 2 5 5 4 0 0 61: 2 5 7 2 0 2 98: 2 4 13 2 2 0

12: 1 3 4 0 0 0 25: 1 2 13 2 0 0 43: 2 3 8 2 2 0 62: 2 4 8 2 0 0 98: 2 5 10 2 0 0

12: 2 2 3 0 0 0 25: 2 3 5 2 2 0 43: 2 5 5 2 0 2 62: 2 5 7 4 0 0 100: 2 4 13 0 2 0

12: 2 2 4 0 0 2 26: 1 2 13 0 0 0 44: 2 4 6 0 2 0 63: 2 5 7 0 0 2 100: 2 4 14 4 2 0

13: 2 2 5 2 0 2 26: 2 2 7 2 0 0 45: 2 4 7 0 2 2 63: 2 5 7 2 2 0 100: 2 5 10 0 0 0

13: 2 3 3 2 2 0 26: 2 4 4 2 2 0 45: 2 5 5 0 2 0 64: 2 4 8 0 0 0 102: 2 4 13 2 0 0

14: 1 2 7 0 0 0 27: 1 2 14 2 0 0 45: 2 5 6 4 2 2 66: 2 4 9 2 2 0 104: 2 4 13 0 0 0

14: 1 3 5 2 0 0 27: 2 3 5 0 2 0 46: 2 3 8 2 0 0 67: 2 5 8 4 2 0 104: 2 4 14 4 0 0

14: 2 2 4 2 0 0 27: 2 4 5 4 0 2 46: 2 4 6 2 0 0 68: 2 4 9 0 2 0 106: 2 4 14 2 2 0

15: 1 2 8 2 0 0 28: 1 2 14 0 0 0 46: 2 5 6 4 0 2 68: 2 4 10 4 2 0 108: 2 4 14 0 2 0

15: 1 3 5 0 0 0 28: 2 2 7 0 0 0 47: 2 4 7 2 0 2 68: 2 5 7 2 0 0 110: 2 4 14 2 0 0

15: 2 2 5 0 0 2 28: 2 3 5 2 0 0 47: 2 5 6 4 2 0 70: 2 4 9 2 0 0 112: 2 4 14 0 0 0

15: 2 3 3 0 2 0 28: 2 4 4 0 2 0 48: 2 3 8 0 0 0 70: 2 5 7 0 0 0

16: 1 2 8 0 0 0 28: 2 4 5 4 2 0 48: 2 4 6 0 0 0 72: 2 4 9 0 0 0

16: 2 2 4 0 0 0 30: 2 3 5 0 0 0 48: 2 5 5 2 0 0 72: 2 4 10 4 0 0

Table 3. Ternary forms‡ L such that [1]⊕ L is an escalator.
(The six entries not appearing in Table 5 have been italicized.)

‡We use the customary shorthand “D: a b c d e f” to represent the three-dimensional

lattice

2
4

a f/2 e/2
f/2 b d/2
e/2 d/2 c

3
5 of determinant D.
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Nonuniversal four-dimensional escalator Unique number not represented




1 0 0 0
0 2 0 1
0 0 3 0
0 1 0 4


 10




1 0 0 0
0 2 1 0
0 1 4 1
0 0 1 5


 10




1 0 0 0
0 2 0 0
0 0 5 1
0 0 1 5


 15




1 0 0 0
0 2 0 0
0 0 5 0
0 0 0 5


 15




1 0 0 0
0 2 0 1
0 0 5 2
0 1 2 8


 15




1 0 0 0
0 2 0 1
0 0 5 1
0 1 1 9


 15

Table 4. Nonuniversal four-dimensional escalator lattices.
(The 1630 five-dimensional escalators are obtained from these.)
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1: 1 1 1 0 0 0 16: 1 2 8 0 0 0 28: 2 3 5 2 0 0 48: 2 3 8 0 0 0 72: 2 4 9 0 0 0

2: 1 1 2 0 0 0 16: 2 2 4 0 0 0 28: 2 4 4 0 2 0 48: 2 4 6 0 0 0 72: 2 4 10 4 0 0

3: 1 1 3 0 0 0 16: 2 3 3 2 0 0 28: 2 4 5 4 2 0 48: 2 5 5 2 0 0 72: 2 5 8 4 0 0

3: 1 2 2 2 0 0 17: 1 2 9 2 0 0 30: 2 3 5 0 0 0 49: 2 3 9 2 2 0 74: 2 4 10 2 2 0

4: 1 1 4 0 0 0 17: 1 3 6 2 0 0 30: 2 4 4 2 0 0 49: 2 4 7 0 0 2 76: 2 4 10 0 2 0

4: 1 2 2 0 0 0 17: 2 3 4 0 2 2 31: 2 3 6 2 2 0 49: 2 5 6 0 2 2 77: 2 5 9 4 2 0

4: 2 2 2 2 2 0 18: 1 2 9 0 0 0 31: 2 4 5 0 2 2 50: 2 4 7 2 2 0 78: 2 4 10 2 0 0

5: 1 1 5 0 0 0 18: 1 3 6 0 0 0 32: 2 4 4 0 0 0 51: 2 3 9 0 2 0 78: 2 5 8 2 0 0

5: 1 2 3 2 0 0 18: 2 2 5 2 0 0 32: 2 4 5 4 0 0 52: 2 3 9 2 0 0 80: 2 4 10 0 0 0

6: 1 1 6 0 0 0 18: 2 3 3 0 0 0 33: 2 3 6 0 2 0 52: 2 5 6 2 0 2 80: 2 4 11 4 0 0

6: 1 2 3 0 0 0 18: 2 3 4 2 0 2 34: 2 3 6 2 0 0 52: 2 5 6 4 0 0 80: 2 5 8 0 0 0

6: 2 2 2 2 0 0 19: 1 2 10 2 0 0 34: 2 4 5 2 2 0 53: 2 5 6 2 2 0 82: 2 4 11 2 2 0

7: 1 1 7 0 0 0 19: 2 3 4 2 2 0 34: 2 4 6 4 0 2 54: 2 3 9 0 0 0 82: 2 5 9 4 0 0

7: 1 2 4 2 0 0 20: 1 2 10 0 0 0 35: 2 4 5 0 0 2 54: 2 4 7 2 0 0 85: 2 5 9 0 2 0

7: 2 2 3 2 0 2 20: 2 2 5 0 0 0 36: 2 3 6 0 0 0 54: 2 5 6 0 0 2 86: 2 4 11 2 0 0

8: 1 2 4 0 0 0 20: 2 2 6 2 2 0 36: 2 4 5 0 2 0 54: 2 5 7 4 2 2 87: 2 5 10 4 2 0

8: 1 3 3 2 0 0 20: 2 3 4 0 0 2 36: 2 4 6 4 2 0 55: 2 3 10 2 2 0 88: 2 4 11 0 0 0

8: 2 2 2 0 0 0 20: 2 4 4 4 2 0 36: 2 5 5 4 2 2 55: 2 5 6 0 2 0 88: 2 4 12 4 0 0

8: 2 2 3 2 2 0 22: 1 2 11 0 0 0 37: 2 5 5 4 2 0 55: 2 5 7 4 0 2 88: 2 5 9 2 0 0

9: 1 2 5 2 0 0 22: 2 2 6 2 0 0 38: 2 4 5 2 0 0 56: 2 4 7 0 0 0 90: 2 4 12 2 2 0

9: 1 3 3 0 0 0 22: 2 3 4 2 0 0 38: 2 4 6 0 2 2 56: 2 4 8 4 0 0 90: 2 5 9 0 0 0

9: 2 2 3 0 0 2 22: 2 3 5 0 2 2 39: 2 3 7 0 2 0 57: 2 3 10 0 2 0 92: 2 4 13 4 2 0

10: 1 2 5 0 0 0 23: 1 2 12 2 0 0 40: 2 3 7 2 0 0 58: 2 3 10 2 0 0 92: 2 5 10 4 0 0

10: 2 2 3 2 0 0 23: 2 3 5 2 0 2 40: 2 4 5 0 0 0 58: 2 4 8 2 2 0 93: 2 5 10 2 2 0

10: 2 2 4 2 0 2 24: 1 2 12 0 0 0 40: 2 4 6 2 0 2 58: 2 5 6 2 0 0 94: 2 4 12 2 0 0

11: 1 2 6 2 0 0 24: 2 2 6 0 0 0 40: 2 4 6 4 0 0 58: 2 5 7 0 2 2 95: 2 5 10 0 2 0

11: 1 3 4 2 0 0 24: 2 2 7 2 2 0 41: 2 4 7 4 0 2 60: 2 3 10 0 0 0 96: 2 4 12 0 0 0

12: 1 2 6 0 0 0 24: 2 3 4 0 0 0 42: 2 3 7 0 0 0 60: 2 4 9 4 2 0 96: 2 4 13 4 0 0

12: 1 3 4 0 0 0 24: 2 4 4 0 2 2 42: 2 4 6 0 0 2 60: 2 5 6 0 0 0 98: 2 4 13 2 2 0

12: 2 2 3 0 0 0 24: 2 4 4 4 0 0 42: 2 4 6 2 2 0 61: 2 5 7 2 0 2 98: 2 5 10 2 0 0

12: 2 2 4 0 0 2 25: 1 2 13 2 0 0 42: 2 5 5 4 0 0 62: 2 4 8 2 0 0 100: 2 4 13 0 2 0

12: 2 3 3 0 2 2 25: 2 3 5 0 0 2 43: 2 3 8 2 2 0 62: 2 5 7 4 0 0 100: 2 4 14 4 2 0

13: 2 2 5 2 0 2 25: 2 3 5 2 2 0 44: 2 4 6 0 2 0 63: 2 5 7 0 0 2 100: 2 5 10 0 0 0

13: 2 3 3 2 2 0 26: 1 2 13 0 0 0 45: 2 4 7 0 2 2 63: 2 5 7 2 2 0 102: 2 4 13 2 0 0

14: 1 2 7 0 0 0 26: 2 2 7 2 0 0 45: 2 5 5 0 2 0 64: 2 4 8 0 0 0 104: 2 4 13 0 0 0

14: 1 3 5 2 0 0 26: 2 4 4 2 2 0 45: 2 5 6 4 2 2 66: 2 4 9 2 2 0 104: 2 4 14 4 0 0

14: 2 2 4 2 0 0 27: 1 2 14 2 0 0 46: 2 3 8 2 0 0 68: 2 4 9 0 2 0 106: 2 4 14 2 2 0

15: 1 2 8 2 0 0 27: 2 3 5 0 2 0 46: 2 4 6 2 0 0 68: 2 4 10 4 2 0 108: 2 4 14 0 2 0

15: 1 3 5 0 0 0 27: 2 4 5 4 0 2 46: 2 5 6 4 0 2 68: 2 5 7 2 0 0 110: 2 4 14 2 0 0

15: 2 2 5 0 0 2 28: 1 2 14 0 0 0 47: 2 4 7 2 0 2 70: 2 4 9 2 0 0 112: 2 4 14 0 0 0

15: 2 3 3 0 2 0 28: 2 2 7 0 0 0 47: 2 5 6 4 2 0 70: 2 5 7 0 0 0

Table 5. Ternary forms L such that [1]⊕ L is universal.
(The three entries not appearing in Table 3 have been italicized.)
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On Trace Forms and the Burnside Ring

Martin Epkenhans

Abstract. We discuss the annihilating polynomials of trace forms arising in
the literature. An improvement of these results is obtained by using a reduction
to 2-groups. In several cases we determine the minimal monic annihilating
polynomial of trace forms with given Galois action.

1. Introduction

Let L/K be a finite separable field extension, with char(K) 6= 2. Let N be a
normal closure of L/K and let G = G(N/K) be the Galois group of N/K. We are
interested in a (monic) polynomial p(X) ∈ Z[X] of minimal degree, depending only
on the Galois action of G on the set of left cosets of G/G(N/L), such that p(X)
annihilates the trace form of L/K in the Witt ring W (K) of K.

During the last decade several examples of annihilating polynomials have ap-
peared in the literature. First D. Lewis [Lew87] defined a monic polynomial Ln(X)
which annihilates any quadratic form of dimension n. Hence there exists a monic
annihilating polynomial of minimal degree in our situation. P.E. Conner [Con87]
gave a polynomial of lower degree which annihilates trace forms. Beaulieu and
Palfrey [BP97] and recently Lewis and McGarraghy [LM00] recover these results
by giving annihilating polynomials which divide the corresponding Beaulieu-Palfrey
polynomials. In [Epk98] we defined a polynomial q(X), called the signature polyno-
mial, which divides any annihilating polynomial. Further, there exists some integer
e ≥ 0 such that 2eq(X) is an annihilating polynomial. Since the only torsion in the
Witt ring is 2-torsion, we more like to get monic polynomials.

In this paper we discuss all these polynomials. We show that the Lewis-
McGarraghy result improves the Beaulieu-Palfrey theorem. We improve the Lewis-
McGarraghy theorem on trace forms of field extensions by using Springer’s theorem
on the lifting of quadratic forms to odd degree extensions.

In section 3 we give several examples which show that all the definitions of
annihilating polynomials are essentially different.

In some cases we are able to give a further improvement by using some explicit
calculations of the trace ideal T (G) of the Burnside ring B(G) of G.

Unfortunately we are not able to present a unified approach which yields a
minimal monic annihilating polynomial. In section 5.2 we give an example of a
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group G acting transitively on a set S such that the signature polynomial is not an
annihilating polynomial.

2. The Polynomials

We start by defining the different annihilating polynomials arising in the liter-
ature. The first polynomial is given by D. Lewis in [Lew87].

2.1. The Lewis polynomial Ln(X).

Definition 2.1. For n ∈ N the Lewis polynomial is defined as

Ln(X) = X(X2 − 22)(X2 − 42) . . . (X2 − n2) if n is even,
Ln(X) = (X2 − 12)(X2 − 32) . . . (X2 − n2) if n is odd.

Theorem 2.2. Let ψ be a quadratic form of dimension n over the field K.
Then

Ln(ψ) = 0 ∈ W (K)
in the Witt ring W (K) of K.

Observe, that the zeros of Ln(X) are exactly those integers which arise as
signatures of quadratic forms of dimension n.

We now restrict our attention to trace forms. Let A be an étale K-algebra of
dimension n over the field K of characteristic 6= 2. Then

A → K : x 7→ traceA/Kx2

defines a quadratic form of dimension n over K, called the trace form of A/K. We
denote the trace form by < A/K > or simply by < A > if no confusion can arise.
We know by Sylvester and Jacobi that trace forms have non-negative signatures.

2.2. The Conner polynomial Cn(X).

Definition 2.3. For n ∈ N the Conner polynomial Cn(X) is defined to be

Cn(X) = X(X − 2)(X − 4) . . . (X − n) if n is even,
Cn(X) = (X − 1)(X − 3) . . . (X − n) if n is odd.

Hence Cn(X) =
∏

k≥0,Ln(k)=0(X − k) is the positive part of Ln(X). From
unpublished notes of P.E. Conner [Con87] we get

Theorem 2.4. Let L/K be a separable field extension of degree n. Then

Cn(< L >) = 0 ∈ W (K).

The results of Lewis and Conner are optimal in the following sense. Let M be
a class of quadratic forms. Then

IM = {f ∈ Z[X] : f(ψ) = 0 ∈ W (K) for all ψ ∈ M}
is the vanishing ideal of M . Regarding the signatures of quadratic forms we observe
the following result. Ln(X) generates the principal ideal IQn , where Qn contains
all quadratic forms of dimension n. Let Tn be the class of trace forms of dimension
n of fields of characteristic 6= 2. Then ITn = (Cn(X)) (see [Epk98]). Hence the
signatures are the only obstructions.

Let L/K be separable field extension of degree n. Choose a normal closure
N ⊃ L of L/K. Denote the Galois group of N/K by G(N/K) and set H = G(N/L).
Let f(X) ∈ K[X] be a polynomial with L ' K[X]/(f). Then the transitive action
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of G on the roots of f(X) is equivalent to the faithful action of G on the set of left
cosets of H in G. Instead of fixing a field extension L/K we choose a finite group
G and a subgroup H < G such that the action

G×G/H → G/H

is faithful. We know that the action is transitive. Further G acts faithfully if and
only if ∩σ∈GσHσ−1 = 1 if and only if H contains no subgroup 6= 1 which is normal
in G.

Definition 2.5. Let H < G be finite groups with ∩σ∈GσHσ−1 = 1. Let
M(G,H) denotes the class of all quadratic forms ψ such that there is an irreducible
and separable polynomial f(X) ∈ K[K] with Galois group Gal(f) ' G and such
that

(1) the action of Gal(f) on the roots of f(X) is equivalent to the action of G
on G/H, and

(2) ψ and the trace form of K[X]/(f(X)) over K are isometric.

We look for a polynomial mG,H(X) ∈ Z[X] such that mG,H(X) annihilates any
quadratic form in M(G,H). Actually we are interested in a (monic) polynomial of
minimal degree with the property cited above.

Beaulieu and Palfrey [BP97] gave an annihilating polynomial which divides
Conner’s polynomial. In general their polynomial has smaller degree.

2.3. The Beaulieu-Palfrey polynomial BG,H(X). Let G be a finite group
acting on a finite set S. For σ ∈ G let χ(σ) = ]Sσ be the number of fixed point of
σ acting on S. Then the Galois number tG,S is defined to be the maximum value
of 1 + χ(σ) as σ runs over all elements of G which do not act as the identity on S.
Beaulieu and Palfrey proved the following theorem.

Theorem 2.6. Let G be a finite group and let H < G be a subgroup with
∩σ∈GσHσ−1 = 1. Let t = tG,H denote the Galois number of the action of G on
G/H. Set

BG,H(X) = (X − n)
t−1∏

k=0,k≡0 mod 2

(X − k),

where n = [G : H]. Then BG,H(X) annihilates any ψ ∈ M(G,H).

In [EG99] we find a complete list of the Galois numbers of all doubly transitive
permutation groups. Let us give some examples and consequences. We get Cn(X) =
Bn(X) in the case of the symmetric group Sn acting on n letters.

A Frobenius group G of degree n has Galois number 2. Hence the Beaulieu-
Palfrey polynomial is X − n, if n is odd and X(X − n) if n is even.

Recently Lewis and McGarraghy [LM00] gave an annihilating polynomial for
trace forms which divides the Beaulieu-Palfrey polynomial.

2.4. The Lewis-McGarraghy polynomial pG,H(X). Again let a finite group
G act on a finite set S. For any subgroup U < G let

SU = {s ∈ S : sσ = s for all σ ∈ U}
be the set of fixed points of U . Set ϕU (S) = ]SU .
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Definition 2.7. Let the finite group G act on set S. Let n = ]S and set

ϕ(S) = {ϕU (S) : U < G, ϕU (S) ≡ 0 mod 2}.
Now define

pG,S =
∏

k∈ϕ(S)

(X − k).

Set pG,H = pG,G/H .

The result of Lewis and McGarraghy is as follows.

Theorem 2.8. Let A = K[X]/(f(X)) be an étale K-algebra. Consider the
action of the Galois group G of f(X) on the set S of roots of f(X). Then pG,S(X)
annihilates the trace form < A >.

As we will see, this theorem improves the Beaulieu-Palfrey result in two direc-
tions. It also holds for étale algebras and, as we see later, there are examples where
the degree of pG,S(X) is strictly smaller then the degree of BG,H(X). Observe the
following. Let σ ∈ G be a non-identity element. Then χ(σ) = ϕ<σ>(S). Further
ϕU (S) ≤ χ(σ) for all σ ∈ U . Hence pG,S(X) divides BG,H(X) and the maximal
root 6= n of both polynomials coincide.

2.5. The dyadic annihilating polynomials B
(2)
G,H(X)and p

(2)
G,H(X). The

proofs of the trace form results cited above are in two steps. Consider the Burnside
ring B(G) of G. Let χH be an element defined by the subgroup H < G. First we
have to find a polynomial g(X) ∈ Z[X] such that g(χH) = 0. Let N/K be a Galois
extension with Galois group isomorphic to G. Then there is a homomorphism
hN/K : B(G) → W (K) which maps χH onto < NH >. Hence g(X) annihilates the
trace form of the fixed field NH of H over K. By the fact that there are no non-
trivial zero divisors of odd degree in W (K), we can omit several roots of g(X). We
call it the even-odd trick. Hence the results of Conner, Beaulieu-Palfrey, and Lewis-
McGarraghy follow from identities in the Burnside ring via a ring homomorphism
together with the even-odd trick.

Next we show that we get better results by using Springer’s theorem on the
lifting of quadratic forms according to odd degree extensions.

Definition 2.9. Let G be a finite group and let H < G be a subgroup of index
n such that ∩σ∈GσHσ−1 = 1. Let G2 be a Sylow 2-group of G. Let t = tG2,G/H

be the Galois number of the action of G2 on G/H. Set

B
(2)
G,H(X) = (X − n)

t−1∏

k=0,k≡n mod 2

(X − k)

and
p
(2)
G,H = pG2,G/H(X) =

∏

k∈ϕ(G/H)

(X − k),

where ϕ(G/H) = {ϕU (G/H) : U < G2}.
Observe, that ϕU (G/H) ≡ n mod 2 for any 2-group U . Hence the application

of the even-odd trick in this situation does not yield polynomials of lower degree.
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Theorem 2.10. Consider the situation of theorem 2.6 and set H = G(N/L).
We get

B
(2)
G,H(< L >) = p

(2)
G,H(< L >) = 0 ∈ W (K).

.

Proof. As above, we see that p
(2)
G,H(X) divides B

(2)
G,H(X). Let F be the fixed

field of G2 in N . Then < L/K > lifts to the trace form of an étale algebra over
F . By [LM00] p

(2)
G,H(X) annihilates < L/K > ⊗KF in W (F ). Since F/K has odd

degree, we are done by Springer’s theorem [Sch85][I.5.5.9]. ¤
Next we define a polynomial which turns out to divide any annihilating poly-

nomial.

2.6. The signature polynomial qG,H(X). We are interested in an optimal
annihilating polynomial. In [Epk98] we defined the following polynomial. Let G
act on S. For any σ ∈ G with σ2 = 1 let signσ(S) = ]Sσ be the signature of S
defined by the involution σ. Set

qG,S(X) =
∏

k∈{signσ(S):σ∈G,σ2=1}
(X − k).

For S = G/H set qG,H(X) = qG,S . In [Epk98] we proved

Theorem 2.11. Let H, G be as above. Then

IM(G,H) ⊂ (qG,H(X)).

There exists some integer e ≥ 0, which only depends on G and H, such that

(2eqG,H(X)) ⊂ IM(G,H).

We call ]Sσ a signature, since this value corresponds to signatures of trace
forms via the homomorphism hN/K .

3. The main result on annihilating polynomials

In this section we analyze the known vanishing results.

Theorem 3.1. Let G be a finite group with Sylow 2-group G2 and let H < G
be a subgroup of index n with ∩σ∈GσHσ−1 = 1. Then

qG,H(X) | pG,H(X) | BG,H(X) | Cn(X) | Ln(X)

and
qG,H(X) | p(2)

G,H(X) | B(2)
G,H(X).

All polynomials except the signature polynomial qG,H(X) are contained in IM(G,H).
There are examples, where qG,H(X) /∈ IM(G,H). In general, these polynomials are
different.

We already proved the results on the divisibility of the polynomials. In section
5.2 we give an example with qG,H(X) /∈ IM(G,H).

Cn(X) and Ln(X) are different by definition. Since the maximal root 6= n of
Cn(X) is n− 2 we get

Lemma 3.2. BG,H(X) = Cn(X) if and only if G contains a transposition.

In [EG99] we find a lot of example with tG,H ≤ n− 3. As already mentioned
above, BG,H has degree ≤ 2 if G is a Frobenius group.
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Lemma 3.3. Let H < G be finite groups with ∩σ∈GσHσ−1 = 1.
(1) Let [G : H] be odd. If G acts doubly transitive, then

X − 1 | p(2)
G,H(X).

(2) Let [G : H] be even. Then X | p(2)
G,H(X).

X | qG,H(X) if and only if G contains an involution which is not conjugate
to any element in H.

Hence p
(2)
G,H(X) 6= qG,H(X) if [G : H] 6≡ ]H ≡ 1 mod 2. And X 6 |qG,H(X) if G

contains only one class of involutions and H has even order. The Ree group R(q)
and any group with cyclic or generalized quaternion Sylow 2-group contain only
one conjugacy class of involutions.

Proof. 1. A two point stabilizer does not contain a Sylow 2-group. Hence
ϕG2(G/H) = 1.
2. A one point stabilizer contains a Sylow 2-group of G if and only if H has odd
index in G. Hence ϕG2(G/H) = 0. Now see corollary 11 in [Epk99]. ¤

We now prove that the Lewis-McGarraghy result improves the Beaulieu-Palfrey
theorem.

Proposition 3.4. Let R(q) =2 G2(q), q = 32n+1, where n ≥ 1 be the Ree group.
Consider R(q) in its doubly transitive representation of degree q3 + 1. Let H be a
one-point stabilizer. Then

B
(2)
G,H(X) = BG,H(X) = (X − n) ·

q+1∏

k=0,k≡0 mod 2

(X − k),

qG,H(X) = (X − (q + 1)) · (X − (q3 + 1)),

pG,H(X) = X(X − 2) · qG,H(X),

p
(2)
G,H(X) = X · qG,H(X).

Further
IM(G,H) = (qG,H).

Proof. See [HB82][XI 13.2] for some basic facts on the Ree group. By
[EG99][proposition 17] the Galois number is q + 2. Further q + 1 is the num-
ber of fixed points of a non-trivial involution in R(q). This gives the result for
both Beaulieu-Palfrey polynomials B

(2)
G,H(X), BG,H(X). Since all involutions are

conjugate in R(q), qG,H(X) has degree 2. By lemma 3.3 X divides p
(2)
G,H .

Now let V < R(q) be a subgroup with ϕV (S) ≥ 3, where S = G/H. Then V
is contained in the stabilizer of three letters, which has order 2. Hence ϕV (S) = n
if V = 1 and ϕV (S) = q + 1 otherwise.

Finally, let V be the stabilizer of two letters. Then ϕV (S) = 2, since V has
order q − 1 6= 2. Since 0 ≡ q3 + 1 ≡ 2 ≡ q + 1 ≡ n mod 2, the even-odd trick
does not reduce the number of roots. We later prove that qG,H(X) is already an
annihilating polynomial (see proposition 4.3). ¤

Recently, McGarraghy found some other examples which show that the Lewis-
McGarraghy-polynomial improves the Beaulieu-Palfrey result. Let us give another
example.
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Proposition 3.5. Let G = AGL(n, q), n ≥ 2 be the affine linear group over Fq.
Consider the action of G on the vector space V = Fn

q by semilinear transformations
and let H = G0 be the stabilizer of the zero vector. Then H = GL(n, q). We get

B
(2)
G,H(X) = BG,H(X) = (X − qn) ·

qn−1∏

k=0,k≡q mod 2

(X − k).

If q is odd, then

p
(2)
G,H(X) = pG,H(X) = qG,H(X) =

n∏

k=0

(X − qk).

If q is even, we get

p
(2)
G,H(X) = pG,H(X) = X ·

n∏

k=1

(X − qk)

and

qG,H(X) = X ·
n∏

k=1,2k≥n

(X − qk).

Proof. Let U < G be a subgroup with ϕU (V ) ≥ 1. We can assume that U
is a subgroup of G0 = GL(n, q). Hence the set of fixed points of U in V is the
intersection of all eigenspaces of the eigenvalue 1 of all φ ∈ U . Therefore ϕU (V ) is
a power of q.

For any k = 0, . . . , n there is a linear map σ ∈ GL(n, q) which has 1 as an
eigenvalue of geometric multiplicity qk. If q is odd, choose the diagonal matrix
Ek ⊕ (−En−k).

Let q be even. Then x 7→ x + t(1, . . . , 1) is a fixed point free involution. For
k = 2, . . . , n set

Jk =




1 1 0

0
. . . . . .

...
. . . . . . 1

0 . . . 0 1



∈ Mk(Fq)

and Bk = Jk ⊕En−k. Then Bk is an element of 2-power order having qn−k+1 fixed
points. Any involution has a Jordan matrix of the form r · J2 ⊕ En−2r. ¤

It remains to give an example with B
(2)
G,H(X) 6= BG,H(X). Note that B

(2)
G,H(X) =

BG,H(X) if and only if the Galois number tG,H is given by an involution.

Proposition 3.6. Let G be a doubly transitive permutation group acting on
F6

3 with a one point stabilizer H = G0 ' SL(2, 13). Then

BG,H(X) = (X − 36)
4∏

k=0

(X − (2k + 1)),

pG,H(X) = (X − 36)(X − 9)(X − 1),

B
(2)
G,H(X) = (X − 36)(X − 1) = p

(2)
G,H(X) = qG,H .

Hence
IM(G,H) = (qG,H).
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Proof. A two point stabilizer has order 3. Hence any non-trivial involution
has exactly one fixed point. By proposition 9 in [EG99] the Galois number equals
10. ¤

The next example is due to Pierre Conner.

Proposition 3.7. Let G be a group of odd order and let H be a non trivial
subgroup with ∩σ∈GσHσ−1 = 1. Then

qG,H = p
(2)
G,H(X) = B

(2)
G,H(X) = (X − n) 6= pG,H(X), BG,H(X).

Proof. Observe, that tG,H ≥ 2, if H 6= 1. Now see [Epk98] proposition 4. ¤

4. The trace ideal

4.1. Definitions and basic properties. To make further progress on anni-
hilating polynomials we introduce the Burnside ring B(G) and the trace ideal T (G)
of a finite group G (see [Epk98], [Epk99], [Hup98][p. 159]). We briefly recall the
definitions. For any subgroup H of G let χH = χG

H denote the character induced
by the representation of G on the left cosets of H.

Definition 4.1. The Burnside ring B(G) is a free abelian group. The set

{χH : H runs over a set of representatives of conjugacy classes of subgroups of G}
is a free set of generators of B(G). The multiplication is induced by the tensor
product of the underlying representations. Hence

χH · χU =
⊕

σ∈H\G/U

χH∩σUσ−1 .

Let σ ∈ G be an element with σ2 = 1. The number of fixed points signσχH =
ϕ<σ>(G/H) of σ on G/H is called the signature of χH . This definition extends by
linearity to a ring homomorphism signσ : B(G) → Z. Let

L(G) = ∩σ∈G,σ2=1ker(signσ)

be the kernel of the total signature homomorphism.
Now let N/K be a Galois extension with Galois group G(N/K) ' G. Then

there is a unique homomorphism

hN/K : B(G) → W (K) : hN/K(χH) =< NH >

(see [Dre71], [BP97], [Epk98], [Epk99]). Now the trace ideal T (G) in B(G) is
defined to be the intersection of all kernels of homomorphisms hN/K , where N/K
runs over all Galois extensions with Galois group ' G of fields of characteristic
6= 2. From [Epk99] theorem 6 we know that L(G)/T (G) is a finite 2-group. We
calculated several examples in [Epk98], [Epk99]. Now we focus our attention on
the polynomial qG,H(X).

Proposition 4.2. Let H < G be finite groups with ∩σ∈GσHσ−1 = 1. Then

qG,H(χH) ∈ L(G).

If G has even order, then deg(qG,H(X)) ≥ 2.

Proof. The roots of qG,H(X) are by definition the possible signature values of
hN/K(χH) =< NH > . Any non-identity involution σ does not act as the identity
on G/H. Hence signσχH 6= [G : H] = sign1χH . ¤
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We now illustrate how the concept of the trace ideal yields an optimal annihi-
lating polynomial in some cases.

Proposition 4.3. Let G be a finite group with Sylow 2-group G2 6= 1. Let H
be a subgroup with ∩σ∈GσHσ−1 = 1. Suppose, that any subgroup of G2 is normal
in G2 and that L(G2)/T (G2) has exponent 2. Then

qG,H(χG
H) ∈ T (G)

Hence
IM(G,H) = (qG,H(X)).

Proof. We prove that the image of qG,H(χG
H) under the restriction homomor-

phism
resG

G2
: B(G) → B(G2)

lies in the trace ideal T (G2). By lemma 4 [Epk98]

resG
G2

(qG,H(χG
H)) = qG,H(resG

G2
(χG

H)) ∈ L(G2).

Since L(G2)/T (G2) has exponent 2, the ideal T (G2) is, regarded as a submodule of
L(G2), given by a system of linear equations modulo 2. Hence it remains to consider
the coefficients of resG

G2
(qG,H(χG

H)) modulo 2. From signσχG
H ≡ [G : H] mod 2 we

get

resG
G2

(qG,H(χG
H)) ≡ qG,H(resG

G2
(χG

H))

≡ (resG
G2

(χG
H)− [G : H]χG2

G2
)d mod 2B(G2),

where d = deg(qG,H). Let

resG
G2

(χG
H) =

∑

σ∈G2\G/H

χG2
G2∩σHσ−1 =

∑

U<G2

mUχG2
U .

Then mG2 = ϕG2(G/H) ≡ [G : H] mod 2. By assumption any subgroup U < G2 is
normal in G2. Therefore (χG2

U )2 = [G2 : U ]χG2
U , which implies

(resG
G2

(χG
H)− [G : H]χG2

G2
)2 ≡

∑

U 6=G2

m2
U (χG2

U )2 ≡
∑

U 6=G2

mU [G2 : U ]χG2
U

≡ 0 mod 2 · B(G2).

By proposition 4.2 d ≥ 2. ¤

As an application we get IM(G,H) = (qG,H) in proposition 3.4, since the Sylow
2-group of R(q) is an elementary abelian group of order 8. Now use proposition 6
[Epk98].

The assumption of the proposition above holds if G2 is cyclic, or elementary
abelian or a direct product of two cyclic groups. These examples yield the question.

Is L(G2)/T (G2) elementary abelian if G2 is abelian?

4.2. A finiteness theorem. In this section we prove that T (G) is an inter-
section of finitely many kernels of homomorphisms hN/K , where the field extensions
can chosen to consist of Hilbertian fields.

Lemma 4.4. For any finite group G there exists a finite set M of Galois exten-
sions N/K with Galois group G(N/K) ' G such that

T (G) = ∩N/K∈Mker(hN/K).
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Proof. For any element σ ∈ G of order ≤ 2 we can choose a Galois extension
Nσ/Kσ of algebraic number fields such that G(Nσ/Kσ) ' G and σ corresponds to
the complex conjugation on Nσ (apply lemma 2 [Epk99]). We get

T (G) = ∩N/K,G(N/K)'G ker(hN/K) ⊂ ∩σ ker(hNσ/Kσ
) ⊂ L(G).

By theorem 2 [Epk99] the index of T (G) in L(G) is finite. Hence we are done. ¤

Lemma 4.5. Let N/K be a finite Galois extension and let L/K be any field
extension such that L∩N = K. Then the restriction homomorphism G(NL/L) →
G(N/K) induces an isomorphism τ such that

B(G(NL/L)) -hNL/L W (L)

W (K)

τ s?

B(G(N/K))

6 6

-hN/K

commutes. We get

ker(hN/K) ⊂ ker(hNL/L).

If s? is injective, then equality holds.

Proof. The isomorphism τ is defined by

τ(χG(N/K)
H ) = χ

G(NL/L)

G(NHL/L)

for H ≤ G(N/K). Note, that L ∩N = K implies that G(NL/L) and G(N/K) are
isomorphic. Hence τ is well defined. Therefore the results follows. ¤

Theorem 4.6. For any finite group G there exists a finite set M of Galois
extensions N/K of Hilbertian fields with G(N/K) ' G such that

T (G) = ∩N/K∈M ker(hN/K).

Proof. Let N/K be a Galois extension with G(N/K) ' G. Choose

f(X) = Xm +
m−1∑

i=0

aiX
i ∈ K[X]

with N ' K[X]/(f(X)). Set K1 = K0(a0, . . . , am−1), where K0 is the prime field
of K. Let N ′ ⊂ N be a splitting field of f(X) over K1 and set K ′ = N ′ ∩K. Then
N ′/K ′ is a Galois extension with Galois group isomorphic to G. Now lemma 4.5
implies ker(hN ′/K′) ⊂ ker(hN/K). By theorem 2 p.155 [Lan62] the field K1 is a
finite field or a Hilbertian field.
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N

K ′ = N ′ ∩K

K1 = K0(a0, . . . , am−1)

K0

N ′ K

¡¡

@@

@@

¡¡

First suppose that K1 is finite. Then G is cyclic. By proposition 5 in [Epk98]
T (G) is the intersection of finitely many kernels of homomorphisms hN/K which
are defined via algebraic number fields N/K.
If K1 is a Hilbertian field then so is K ′ ([FJ86] Cor 11.7). By lemma 4.4 there
exists a finite set M of Galois extensions N/K with Galois group isomorphic to G
and such that T (G) = ∩N/K∈M ker(hN/K). For any N/K ∈ M choose some N ′/K ′

as above. This defines a set M′. We conclude

T (G) ⊂ ∩N ′/K′∈M′ ker(hN ′/K′) ⊂ ∩N/K∈M ker(hN/K) = T (G).

¤

Proposition 4.7. Let G be a finite group with Sylow 2-group G2. Suppose
G2 has a normal abelian complement A in G. Then χ ∈ T (G) if and only if
resG2

G (χ) ∈ T (G2).

Proof. Let N/K be a Galois extension of Hilbertian fields with G(N/K) '
G2. By [Mat87] IV.3 Satz 2 the split embedding problem defined by N/K and the
exact sequence 1 −→ A −→ G −→ G2 −→ 1 has a proper solution L/K. Lemma
4.5 together with Springer’s theorem implies ker(hN/K) = ker(hL/LG2 ). Now the
assertion follows from lemma 4.6 and [Epk99] proposition 21(2). ¤

Together with [Epk99] proposition 23 we get

Corollary 4.8. Let G be an abelian group with Sylow 2-group G2. Then
χ ∈ T (G) if and only if resG2

G (χ) ∈ T (G2). Further

L(G)/T (G) ' L(G2)/T (G2).

4.3. The trace ideal of the dihedral group D2n of order 2n. In [Epk98]
we determined the trace ideal of an elementary abelian 2-group, of a cyclic 2-group
and of the quaternion group of order 8. Now we consider the dihedral group D2n of
order 2n. We explicitly determine the trace ideal of D8. In general, we only show
that L(D2n)/T (D2n) has exponent 2. Let

D2n =< σ, τ | σ2n−1
= τ2 = 1, τ−1στ = σ−1 >

be the dihedral group of order 2n. Then

R(D8) = {1, < τ >, < τσ >,< σ2 >, < σ >, V =< τ, σ2 >,W =< τσ, σ2 >,D8}
is a complete set of representatives of the conjugacy classes of subgroups of D8.
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Proposition 4.9. We get

T (D8) = {χ =
∑

U∈R(D8)

mUχU : χ ∈ L(G),m<τ> ≡ m<τσ> ≡ 0 mod 2}.

Proof. Let

χ = mGχG + mτχ<τ> + mσ2χ<σ2> + mτσχ<τσ>

+mσχ<σ> + mV χV + mW χW + m1χ1 ∈ T (D8).

The system of linear equations defining L(D8) is given by

mG +2mV +2mW +2mσ +4mτ +4mσ2 +4mτσ +8m1 = 0
mG +2mV +2mτ = 0
mG +2mV +2mW +2mσ +4mσ2 = 0
mG +2mW +2mτσ = 0

Let N/K be a Galois extension with G(N/K) ' D8. Set Lτ := N<τ>. There is an
irreducible polynomial f = X4 + aX2 + b ∈ K[X] such that N is the splitting field
of f over K. Assume a 6= 0. The relevant intermediate fields of N/K and their
trace forms are as follows

H NH < NH >
G K < 1 >
< τ > K(α) < 1, a2 − 4b,−2a,−2ab(a2 − 4b) >

< σ2 > K(
√

b,
√

a2 − 4b) 2× < 1, b(a2 − 4b) >

< τσ > K(
√

b,
√

2
√

b− a) < 1, b,−a,−ab(a2 − 4b) >

< σ > K(
√

b(a2 − 4b)) < 2, 2b(a2 − 4b) >

V K(
√

a2 − 4b) < 2, 2(a2 − 4b) >

W K(
√

b) < 2, 2b >
< id > N 2× < 1, b(a2 − 4b),−a,−ab(a2 − 4b) >

Calculating the image of χ in W (K) we get

hN/K(χ) = mτσ× < 1,−2 > ⊗ < b > ⊗ < 1,−ab,−a(a2 − 4b),−b(a2 − 4b) > .

If mτσ is even, then mτσ× < 1,−2 >= 0. Consider the generic situation: K =
Q(X1, X2), f = X4 + X1X

2 + X2. Then Gal(f) ' D8. Further

ψ =< 1,−X1X2,−X1(X2
1 − 4X2),−X2(X2

1 − 4X2) >

does not represents 2. Hence < 1,−2 > ⊗ψ 6= 0. The case f = X4 + b is left to the
reader. ¤

Proposition 4.10. Let n ≥ 2. Then L(D2n)/T (D2n) is an elementary abelian
2-group.

Proof. By proposition 6 [Epk98] and by proposition 4.9 we can assume n ≥ 4.
We only give a sketch of the proof. Set G = D2n , V =< τ, σ2 >, χτ = χG

<τ>, χτσ =
χG

<τσ>, χσ = χG
<σ> and χV = χG

V . We easily observe, that the following set B of
elements in B(D2n) defines a basis of L(D2n).

X1 =χ1 − 2χτ + 2χV − 2χσ ∈ B.

Xτσ =χτσ − χτ + 2χV − χσ − 2χG ∈ B.

For any cyclic group U ⊂< σ2 >,U 6= 1 set

XU =χU − [G : U ]
2

χσ ∈ B.
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If U ⊂< τ, σ4 > is a non-cyclic group, set

XU =χU − χ2 − [G : U ]− 2
2

χσ ∈ B.

If U 6= G is a non-cyclic subgroup with τσ ∈ U , set

XU =χU − [G : U ]
2

χσ + χV − 2χG ∈ B.

Now we have to prove 2χ ∈ T (D2n) for any χ ∈ B. This follows by induction using
corollary 4 [DEK97] and a fact from the theory of embedding problems which we
recall now (Theorem 6 [Kim90]).

Let a, b ∈ K?, such that a, b, ab are not squares in K? and such the qua-
dratic forms < 1, b > and < a, ab > are isometric. Set Θ = a +

√
a. Then

L = K(
√

a,
√

b,
√

2qΘ), q ∈ K? parametrizes the D8-extensions which contain√
a,
√

b and which are cyclic over K(
√

b). Further L/K is contained in a D16 exten-
sion, which is cyclic over K(

√
b) if and only if < 1,−2,−a, 2a >'< 1,−q, b,−qb >.

We get
< K(

√
2qΘ) >'< 1, a, qa, qab >'< 1, a, q, qb > .

2×< 1,−2,−a, 2a >= 0 = 2×< 1,−q, b,−qb > implies 2×< 1, b >' 2×< q, qb > .
Hence 2× < K(

√
2qθ) >' 2× < 1, 1, a, b >, if K(

√
2qθ) is contained in a D16-

extension. The case b = −1 in [Kim90] has to be treated separately. ¤

5. Some applications

5.1. Groups with dihedral Sylow 2-group. The complete classification of
groups with dihedral Sylow 2-group can be found in [Gor68][16.3].

Proposition 5.1. Let G be a finite group with Sylow 2-group a dihedral group
of order 2n ≥ 8. Then for any subgroup H < G with ∩σ∈GσHσ−1 = 1 we get

IM(G,H) = (qG,H(X)).

Proof. Let n = 3. Since L(D8)/T (D8) has exponent 2, we only have to
consider the coefficients of resG

G2
(qG,H(χG

H)) modulo 2. Let

resG
G2

(χG
H) =

∑

U∈R(D8)

mUχG2
U .

We get qG,H(X) ≡ (X − [G : H])d mod F2[X], where d = deg(qG,H(X)). We
know that mG2 is the number of fixed points of the action of G2 on G/H. Hence
mG2 ≡ [G : H] mod 2. Therefore

χ = (resG
G2

(χG
H)− [G : H]χG2

G2
)2 ≡

∑

U∈R(D8),U 6=G2

m2
U (χG2

U )2 mod 2B(G).

For any normal subgroup U we get (χG2
U )2 = [G : U ]χG2

U . Hence

χ ≡ m2
τ (χG2

τ )2 + m2
τσ(χG2

τσ )2 ≡ mτ (2χG2
τ + χG2

1 ) + mτσ(2χG2
τσ + χG2

1 )

≡ (mτ + mτσ)χG2
1 ≡ 0 mod 2B(G),

since mτ ≡ mτσ mod 2 for any element in L(D8). Since d = 2, 3, 4, we are done.
Now consider n ≥ 4. Then χ =

∑
aUχG2

U +2χ̃, where U runs over all nontrivial
cyclic subgroups of < σ2 >. Further χ̃ ∈ B(G2). Let U, V ∈ G2 be non-trivial
subgroups of G2 such that U is normal in G2 and V 6= G. Then χG2

U ·χG2
V ∈ 2B(G2).
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We conclude χ · (resG
G2

(χG
H) − [G : H]χG2

G2
) ∈ 2 · B(G2). Hence we are done if

d = deg(qG,H(X)) ≥ 3.
Let d = 2. Observe, that a1 is even. By corollary 4 [DEK97] χU ≡ [G2:U ]

2 χG2
σ mod

T (G2) for any U ⊂< σ2 >,U 6= 1. Hence resG
G2

(qG,H(χG
H)) = 2rχG2

σ + 2χ̃ + ˜̃χ,

where r ∈ Z, ˜̃χ ∈ T (G2) ⊂ L(G2). Therefore rχG2
σ + χ̃ ∈ L(G2). ¤

5.2. Groups with quaternion Sylow 2-group. The aim of this section is
to give an example where qG,H(X) does not annihilate < L >. Let us first recall
the determination of the trace ideal of the quaternion group Q8 of order 8. By
[Epk98] proposition 7 we get

Proposition 5.2.

T (Q8) = {χ =
∑

H<Q8

mHχH : χ ∈ L(Q8), mH1 ≡ mH2 ≡ mH3 mod 4 for all

subgroups H1,H2,H3 of order 4 in Q8}.
Proposition 5.3. Let G be a finite group with Sylow 2-group G2 a quaternion

group of order 8. Let H be a subgroup of G such that G acts faithfully on G/H.
Set n := [G : H] and s := signσχG

H . Then

IM(G,H) = (qG,H(X)) = ((X − n)(X − s))

if one of the following cases occur

(1) H is of odd order.
(2) ]H ≡ 2 mod 4.
(3) ]H ≡ 0 mod 4 and the permutation representation defined by G on G/H

contains only even permutations.

Proof. Since G2 has a unique involution σ we get

qG,H(X) = (X − n)(X − s).

We will prove resG2
G (qG,H(χG

H)) ∈ T (G2) in the cases cited above. By proposition
5.2 we have to determine the coefficients of χG2

Hi
in resG2

G (qG,H(χG
H)). Let

resG2
G (χG

H) = aχG2
G2

+ cχG2
σ + dχG2

1 +
3∑

i=1

biχ
G2
Hi

.

Since all subgroups of G2 are normal we get

χG2
U χG2

V = [G2 : V ]χG2
1 if U ⊂ V

χG2
Hi

χG2
Hj

= χG2
σ if i 6= j.

Hence

resG2
G (qG,H(χG

H)) = a′χG2
G2

+ c′χG2
σ + d′χG2

1 +
3∑

i=1

bi(2bi + 2a− n− s)χG2
Hi

.

Further bi = ]{τ ∈ G2\G/H : G2 ∩ τHτ−1 = Hi}. Hence b1 = b2 = b3 = 0 if
]H 6≡ 0 mod 4.
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Now suppose ]H ≡ 0 mod 4. We get s = signσχG
H = a + 2b1 + 2b2 + 2b3 + 4c ≡

n mod 8. Hence s+n
2 ≡ n mod 4. Let i 6= j. Then

bi(2bi + 2a− n− s)− bj(2bj + 2a− n− s)

= 2(bi − bj)(bi + bj + a +
s + n

2
)

≡ 0 mod 4

if and only if (bi − bj)(bi + bj + a + n) is even. Since a ≡ n mod 2, we have to
determine the parity of b1, b2, b3. Let σi be a generator of Hi. The action of G2 on
G/H has the following types of orbits:

order of orbit number of orbits isotropy group
1 a G2

2 bi Hi

4 c < σ >
8 d 1

Hence the sign of σi regarded as a permutation on G/H equals (−1)bj+bk , where
{i, j, k} = {1, 2, 3}. ¤

Observe, that G contains an odd permutation if and only if σi is odd for some
i = 1, 2, 3. Now we would like to consider the following situation:

]H ≡ 0 mod 4 and G contains an odd permutation.

Lemma 5.4. Under the condition above we get:
G is a semidirect product of G2 and a normal subgroup A of odd order. The con-
jugation of G2 on A induces a monomorphism

Φ : G2 → Aut(A).

Proof. Let U be the kernel of the homomorphism sign : G → {1,−1} defined
by the action of G on G/H. Since U is a normal subgroup of index 2, its Sylow
2-group are cyclic of order 4. By [Gor68] 7.6.1 U contains a normal subgroup A
of index 4 in U . By [Hup67] I.4.9 A is a normal subgroup of G. Hence G is a
semidirect product of G2 and A. Let

Φ : G2 → Aut(A) : π 7→ (x 7→ πxπ−1)

Assume, that Φ is not injective. Then σ lies in the kernel of Φ, which implies
σπ = πσ for all π ∈ A. Since σ is commutes with every π ∈ G2 it lies in the center
of G. Hence σ is the unique involution in G. Since H has even order, G can not
act faithfully on G/H, a contradiction. ¤

Proposition 5.5. Let G be a finite group with Sylow 2-group G2 ' Q8. Let
H < G be a subgroup with

(1) ]H ≡ 0 mod 4
(2) G acts faithfully on G/H.
(3) the action of (2) contains odd permutations.

Then
(1) G is a semidirect product of G2 and a normal subgroup A of odd order.
(2) resG2

G (qG,H(χG
H)) 6∈ T (G2).

(3) If A is abelian, then qG,H(χG
H) 6∈ T (G), but 2qG,H(χG

H) ∈ T (G).
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Proof. (2) follows from the remark following the proof of proposition 5.3. (3)
is a consequence of (2) and proposition 4.7. ¤

Now choose a group A of odd order such that the automorphism group of A
contains a quaternion group of order 8. Let

Φ : Q8 → Aut(A)

be a monomorphism and set G = A ×Φ Q8. Let H be a subgroup of G with
]H ≡ 4 mod 8. We can assume that H1 < Q8 is a Sylow 2-group of H. We now
determine the polynomial p

(2)
G,H(X) = p(X). As above, let

resQ8
G (χG

H) = aχQ8
Q8

+ cχQ8
σ + dχQ8

1 +
3∑

i=1

biχ
Q8
Hi

=
∑

U<Q8

mUχQ8
U .

We know
mU = ]{τ ∈ Q8\G/H : Q8 ∩ τHτ−1 = U}.

Hence a = 0.
Claim: b2 = b3 = 0. Assume b2 6= 0. Then H2 ⊂ τHτ−1 for some τ ∈ G = AQ8.
Since H2 is normal in Q8, we can choose τ ∈ A. By Sylow’s theorem we get
H2 = τH1τ

−1 for some τ ∈ A, which is impossible.
Hence resQ8

G (qG,H(χG
H)) = b1χ

Q8
H1

+ cχQ8
σ + dχQ8

1 . Therefore ϕQ8(S) = ϕH2(S) =
ϕH3(S) = 0, ϕ1(S) = n, ϕσ(S) = s = 2b1 + 4c and ϕH1(S) = 2b1. We get

p
(2)
G,H(X) =

{
X(X − n)(X − s), if c = 0
X(X − n)(X − s)(X − 2b1), if c 6= 0.

We conclude that b1 is odd. Hence we are in the situation of proposition 5.5. Now
we give a concrete example.

Example 5.6. Let A = Z3 × Z3 and set G = A ×Φ Q8, where Φ : Q8 →
Aut(A) ' S̃4 is a monomorphism. Let H = H1 < Q8 be a group of order 4. Then

IM(G,H) = ( X(X − 18)(X − 2), 2(X − 18)(X − 2) )
= {(X − 18)(X − 2)f(X) : f(X) ∈ Z[X], f(0) ≡ 0 mod 2}.

Proof. Observe, that the automorphism group of A is a double cover of the
symmetric group S4, which contains a quaternion group of order 8. We get n =
[G : A] = 18.
Claim: c = ]{τ ∈ H\G/Q8 : Q8 ∩ τHτ−1 =< σ >} = 0.

Assume σ ∈ τHτ−1 for some non-trivial element τ ∈ A. Then τ is an eigenvector
according to the eigenvalue 1 of the linear map defined by Φ(σ). But Φ(σ) = −id.
Hence signσχG

H = s = 2b1 = φH(S). Since 18 = n = 2b1 + 8d, d 6= 0 we get s = 2,
or s = 10. Lemma 11.5 in [Hup98] gives

s =
18 · ](Gσ ∩H)

]Gσ
=

18
]Gσ

6= 10.

Hence s = 2, which implies qG,H(X) = (X − 18)(X − 2) and p2(X) = X(X −
18)(X − 2). Now

( X(X − 18)(X − 2), 2(X − 18)(X − 2)) ⊂ IM(G,H) ⊂ ((X − 18)(X − 2)).

The ideal of the left hand side has index 2 in ((X − 18)(X − 2)). By proposition
5.5(3) we are done. ¤
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6. Some examples

We close by giving some more examples.

Proposition 6.1. Let G be a Frobenius group of degree n.
(1) If n is odd, then

IM(G,H) = (BG,H) = (qG,H) = (X − n).

(2) Let n be even. Then

IM(G,H) = (BG,H) = (qG,H) = X(X − n).

Proposition 6.2. (1) For p = 7, 11 consider the doubly transitive group
PSL(2, p) of degree p. Then p

(2)
G,H(X) = (X − 1)(X − 3)(X − p) and

IM(G,H) = (qG,H) = ((X − 3)(X − p)).

(2) Consider A7 in its doubly transitive representation of degree 15. Then
p
(2)
G,H(X) = (X − 1)(X − 3)(X − 15) and

IM(G,H) = (qG,H) = ((X − 3)(X − 15)).

Proof. By lemma 3.3 X − 1 divides p
(2)
G,H(X). The Galois number is 4 in

each case (see proposition 11,14,24 in [EG99]). We calculate qG,H(X) with the
help of the character table in the ATLAS [CCN+85]. qG,H(X) is an annihilating
polynomial since the Sylow 2-groups are elementary abelian or dihedral of order
8. ¤

Proposition 6.3. Let G be a Zassenhaus group of degree n.
(1) If n is odd, then

IM(G,H) = (qG,H) = (p(2)
G,H) = ((X − 1)(X − n)).

(2) Let n be even. Then p
(2)
G,H(X) = X(X − 2)(X − n).

We know G = PSL(2, q), PGL(2, q), PML(2, q) with q odd.
(a) If q ≡ 3 mod 4 or G = PGL(2, q), then

IM(G,H) = (qG,H) = (p(2)
G,H).

(b) If q ≡ 1 mod 4 and G 6= PGL(2, q). Then qG,H(X) = (X−2)(X−n).
If G = PSL(2, q), then IM(G,H) = (qG,H).

The result on IM(PML(2,q),H) is unknown at present.
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Contemporary Mathematics

Equivariant Brauer groups

A. Fröhlich and C.T.C. Wall

Introduction

Suppose A an algebra over a field K (e.g. a group algebra K[G]), provided
with an involutory anti-automorphism σ (e.g. induced by g 7→ g−1 for g ∈ G).
There are natural definitions of σ-symmetric bilinear and quadratic forms (see
e.g. [6]). In order to classify forms, we may seek to simplify A. Suppose A
semi-simple: then we may decompose A as a sum of simple algebras, when the
quadratic forms also decompose; and then use a Morita-type theory of algebras-
with-involution to reduce to the case when A is a division ring. We are thus
led to contemplate a Brauer group of central simple algebras with involution,
and to seek to calculate such groups. This programme is performed in detail
(for finite, local and global fields) in [6].

There are natural generalisations in several directions. We may replace K
by an arbitrary commutative ring R (or even by an arbitrary scheme), and the
single anti-automorphism of order 2 by a group Γ of automorphisms and anti-
automorphisms. Also, along with the Brauer group, we may consider projective
class groups and unit groups on one hand, or look at higher K-groups on the
other.

A theory encompassing several of these generalisations was worked out by
us about 30 years ago, and parts of it were published in [1], [2], [3] and [7].
However a further lengthy (1971) preprint ‘Generalisations of the Brauer group
I’1 never attained final form, and this was the manuscript in which the extension
to include anti-automorphisms was developed. It is our object here to outline
the main features of this theory. We will omit the proofs, most of which involve
verifications of identities; we also omit the discussion of automorphisms which
was included in the earlier manuscript. Part of our motivation came from
algebraic number theory: an example was developed in [2]: see also [3, §8].

The plan of the paper is as follows. We begin with general definitions and
results about Γ-graded monoidal categories. The next section is devoted to
the construction of categories of modules and of algebras which satisfy these
conditions. We then obtain a number of exact sequences relating the groups and

1II - never written - was to include Brauer groups of graded - or, as they later became
known, super-algebras.

c©0000 (copyright holder)
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monoids we have defined. These form a particularly satisfying pattern when
the grading group Γ is finite, and give explicit interpretations of several groups
previously defined abstractly. In §5 we return to the abstract theory to seek
a justification for this pattern: this leads to some open questions. Up to this
point the group Γ is fixed: in the final section we indicate the effect of varying
it.

1. Graded monoidal categories

The concept of monoidal category is now classical (see e.g. [4]). A monoidal
category consists of a category C, a covariant functor ∇ : C×C → C, an object E
of C, and natural equivalences a : A∇(B∇C) → (A∇B)∇C, c : A∇B → B∇A
and e : E∇A → A satisfying certain standard identities. In [3] we defined a
category MC of monoidal categories. Here and below we will omit discussion
of compatibility with the natural equivalences a, c and e.

If Γ is an abstract group, a Γ-grading on a category C is a functor g : C → Γ.
For any morphism f , we refer to g(f) as the grade of f . From now on we drop g
from the notation, though we may make Γ explicit when needed. The grading
is stable if for all C ∈ ob C, γ ∈ Γ there is an equivalence f ∈ C with domain
C and grade γ. A Γ-graded monoidal category consists of a stably Γ-graded
category (C, g), a covariant Γ-functor ∇ : C ×Γ C → C (so only morphisms
of the same grade can be ‘added’), a covariant Γ-functor E : Γ → C (whose
image object is also denoted E), and natural equivalences (of grade 1) a, c, e
satisfying the standard identities. We have a category Γ −MC of Γ-graded
monoidal categories.

For C a Γ-graded monoidal category, we define Rep(Γ, C) to be the category
of Γ-functors F : Γ → C and natural transformations (of grade 1): we omit
Γ from the notation if it is clear which group Γ is. An object of Rep(C) thus
consists of an object C of C together with a representation of Γ by automor-
phisms of C. We have a functor Rep : Γ −MC → MC. More trivially, if ∆
is a subgroup of Γ we have a functor Γ −MC → ∆ −MC defined by forget-
ting all morphisms other than those whose grade belongs to ∆. If ∆ is trivial,
we denote this by Ker : Γ −MC → MC, and we have a (forgetful) natural
transformation T : Rep → Ker.

For any monoidal category C, we write k(C) for the abelian monoid of iso-
morphism classes of objects of C. An object A of C is said to be invertible if
there exist an object B and an isomorphism A∇B → E. Thus k(C) is a group if
and only if all objects of C are invertible. If C is stably graded, there is a natural
action of Γ on k(C) defined as follows. If X ∈ ob (C) and γ ∈ Γ, choose a mor-
phism f : X → Y of grade γ and define [X]γ := [Y ]. The functor T (C) induces
a homomorphism kRep(C) → kKer(C), with image contained in the invariant
part H0(Γ; kKer(C)): we will denote the map kRep(C) → H0(Γ; kKer(C)) by
TC .

Write U(C) for the abelian group (of ‘units’) of automorphisms (of grade 1)
of the identity element E of C. There is a natural action of Γ on U(C) defined
as follows. If u ∈ U(C), choose a morphism h : E → E of grade γ and define
uγ := h−1 ◦ u ◦ h.
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We have [7] algebraic K-theory groups Kn(C) := Kn(Ker(C)), and define
the equivariant algebraic K-groups to be Kn(C, Γ) := Kn(Rep(Γ, C)). We can
identify K0(C) with the ‘Grothendieck group’ of the monoid k(C), and K1(C)
with the group U(C). The equivariant Brauer group which is our main interest
is an equivariant K2 group (but of a 2-category: we return to this in §5). We
aim to obtain exact sequences to calculate such groups.

The projective category (so-called because of the relation to projective rep-
resentations) PC is defined as follows. For u ∈ U(C) and C ∈ ob (C), the
formula θC(u) := eC ◦ (u∇1C) ◦ e−1

C defines an automorphism (of grade 1) of
C, and θC : U(C) → Aut C(C) is a homomorphism, which is an isomorphism if
C is invertible. Define two morphisms s1, s2 : C → D to be equivalent if, for
some u ∈ U(C), s2 = s1 ◦ θC(u). Then PC has the same objects as C and its
morphisms are the equivalence classes of those of C (equivalence respects the
grade). Given a stable Γ-graded monoidal category C, elementary arguments
[3, 4.5] yield a sequence of abelian monoids

S(C) : 1 → H1(Γ; U(C)) φC−→ kRep(C) µC−→ kRep(PC) ωC−→ H2(Γ;U(C))
which is exact up to kRep(C), and is exact if all objects are invertible. A functor
F : C → D induces a morphism S(F ) of sequences.

A monoidal category is called precise if each of the natural equivalences a, c
and e is equal to the corresponding identity. It is shown in [3, §5] that if, for
all C ∈ ob (C), the map cC,C : C∇C → C∇C is the identity — we then say
that C is strictly coherent — then C is equivalent to a precise category. If C is a
precise monoidal category we say that C is group-like if every object and every
morphism is invertible. If the objects of C form a group under the composition
law ∇, we call C a group category. Again, a strictly coherent group-like category
is equivalent to a group category. These conditions on a monoidal category are
very restrictive, but will be satisfied in important examples below.

If C is a Γ-graded group category, we can define cohomology groups Hn(Γ; C)
(zero in negative degrees), and establish an exact sequence [3, 7.2]

H(C) : . . . Hn(Γ; U(C)) αn,C−→ Hn(Γ; C) βn,C−→ Hn−1(Γ; k(C)) δn,C−→ Hn+1(Γ; U(C)) . . .

which is functorial in an appropriate sense. Moreover we have an isomorphism
S(C) ∼= H1(C), where H1(C) denotes the part of H(C) between H1(Γ; U(C))
and H2(Γ;U(C)). In particular, we have isomorphisms

H0(Γ; C) ∼= H0(Γ; U(C)), H1(Γ; C) ∼= kRep(C), H0(Γ; k(C)) ∼= kRep(PC).
See also [5] for a reinterpretation of the groups Hn(Γ; C).

A more K-theoretic formulation of this was given in [7]. We will discuss it
in more detail in §5.

In order to use all this, we need to construct some stable Γ-graded monoidal
categories, and in particular some group categories. However, before proceeding
to explicit examples, it is convenient here to recall the general construction of
‘twisting’ described in [3, §11]: we again omit details relating to compatibility
with the equivalences a, c, e. Let C be a monoidal category, and D : C → C a
morphism in MC such that there is a natural equivalence j : I → D ◦D with
Dj = jD. We define a {±1}-graded category C∗ by setting Ker C∗ := C and
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letting the morphisms of grade −1 from P to P ′ correspond to C-morphisms
from DP to P ′. Composition with a morphism P ′ → P ′′ of grade +1 is defined
in the natural way; if g : DP ′ → P ′′ defines a morphism in C∗ of grade −1, the
composite with f : P → P ′ or with f : DP → P ′ is defined by g ◦ Df or by
g ◦Df ◦ jP respectively. This composition is associative since Dj = jD.

If C is Γ-graded, the same construction works to give a Γ × {±1}-graded
monoidal category C∗. Now if w : Γ → {±1} is a homomorphism, with graph
Γw ⊂ Γ× {±1}, we may restrict to the morphisms whose grades belong to Γw

to obtain a Γw-graded monoidal category, which we say is obtained from C by
twisting.

Similarly, given two triples (C, D, j) and (C′, D′, j′) satisfying the conditions,
we can enhance a functor T : C → C′ to T ∗ : C∗ → C′∗ provided we are given
a natural transformation h : D′ ◦ T → T ◦ D such that, for each P ∈ ob C,
TjA = hDA ◦D′hA ◦ jTA.

2. Construction of categories of modules and algebras

We use ‘ring’ to mean ring with identity element. If Γ is a group, a Γ-ring
consists of a ring E together with an action of Γ by ring automorphisms. If E
and F are Γ-rings, the category EModF of E-F -bimodules is enhanced to a Γ-
graded category by defining a morphism M → N of grade γ to be a pair (φ, γ)
where φ : M → N is a morphism of additive groups with φ(emf) = eγφ(m)fγ

for all e ∈ E, m ∈ M, f ∈ F . Then Rep(EModF ) is equivalent to the category
of bimodules with Γ-action. If G is a further Γ-ring there are functors

⊗F : (EModF )×Γ (FModG) → EModG,
HomF : (EModop

F )×Γ (GModF ) → GModE

of Γ-graded monoidal categories.
Fix a group Γ and a homomorphism w : Γ → {±1}. A (Γ, w)-ring consists

of a ring E and an action of Γ on the additive group such that (e1e2)γ = eγ
1eγ

2
if w(γ) = +1 and eγ

2eγ
1 if w(γ) = −1. If w(γ) = −1, a morphism of grade γ

from an E-F -bimodule M to an F -E-bimodule M ′ is a group homomorphism
φ such that φ(emf) = fγφ(m)eγ for all e ∈ E, f ∈ F,m ∈ M . The pair (Γ, w)
will be fixed throughout §2-§5, and will usually be omitted from the notation.
However, we add an affix + to the notation to signify if (Γ, w) is replaced
by (Γ, 1). A case of particular interest for the application to quadratic forms
is when w is an isomorphism, so the action of Γ on E is given by an involution σ.

From now on we fix a commutative ring R, and consider only R-modules
(and algebras) such that the left and right actions of R agree; write ModR (=
ZModR) for the category of R-modules. First suppose w trivial. Then ModR is
a Γ-graded monoidal category, where — as throughout §2-§4 — we take tensor
product ⊗ as the operator ∇. Define GenR to be the subcategory of ModR

whose objects are the R-progenerators, i.e. faithful, finitely generated projective
R-modules, and whose morphisms are the invertible ones of all grades. This is
a stable Γ-graded monoidal category.

To deal with the case when w is non-trivial, first observe that taking duals
M∗ = HomR(M, R) of objects and inverse duals f∗ for morphisms gives an
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equivalence ∗ : GenR
∼= GenR of Γ-graded monoidal categories so that ∗∗ ∼=

1GenR
. We can now use the twisting construction defined earlier. We can

interpret a morphism M → N of grade γ in GenR with w(γ) = −1 is a morphism
M∗ → N of grade γ in Gen+

R. There is a natural definition of composition in
each case, leading to a well-defined Γ-graded monoidal category GenR.

The invertible objects of GenR are the invertible R-modules, i.e. rank 1
projectives: these form a category CR. The category CR is strictly coherent,
hence equivalent to a group category. Write iR : CR → GenR for the inclusion
functor.

The unit group U(CR) = U(GenR) = U(ModR) is identified with the group
U(R) of units of R, and k(CR) is the Picard group or class group C(R) of R.
We inherit actions of Γ on U(R) and C(R). Note that the class cl (M) ∈ C(R)
of M ∈ ob (CR) satisfies cl (M∗) = cl (M)−1 and for u ∈ U(GenR), u∗ = u−1.
The induced action of Γ on both C(R) and U(R) is thus obtained from the
corresponding action for C+

R by tensoring by w: care is needed with signs in all
cases when w is not trivial.

Since morphisms in GenR of grade γ with w(γ) = −1 correspond to ho-
momorphisms M∗ → N , or equivalently to pairings between M∗ and N∗, we
may reformulate the definitions as follows. First define the category EPairF

(where E and F are rings) to have objects triples (M, M ′, µ) with M an E-F -
bimodule, M ′ an F -E-bimodule and µ : M ×M ′ → E a pairing that defines an
E-E-bimodule map M ⊗F M ′ → E. A morphism (M,M ′, µ) → (N,N ′, ν) of
grade γ is a triple (φ, φ′, γ) where φ and φ′ are morphisms of grade γ and

if w(γ) = 1, φ : M → N , φ′ : M ′ → N ′,
if w(γ) = −1, φ : M → N ′, φ′ : M ′ → N ,

and in both cases ν(φ(m), φ′(m′)) = µ(m, m′)γ . There is a functor
⊗F : (EPairF )×Γ (FPairG) → EPairG

of monoidal Γ-graded categories. Given h : Γ → Aut
EPairF

(M,M ′, µ), define
µσ : M ×M → E by µσ(m1,m2) = µ(m1, hσ(m2)). Then µσ is sesquilinear and
reflexive: µσ(m1,m2) = µσ(hσ2(m2), m1); if σ2 = 1, µσ is hermitian.

Now for R commutative define PairR := ZPairR, and let GenPairR de-
note the full subcategory of PairR whose objects are triples (M,M ′, µ) with M
and M ′ progenerators and µ non-singular. Then if 〈, 〉 : M ×M∗ → R is the
canonical pairing, the embedding functor M 7→ (M, M∗, 〈, 〉) is an equivalence
of Γ-graded monoidal categories from GenR onto GenPairR. We may thus work
with the latter when this is more convenient.

We now define the category AlgR. The objects are associative R-algebras
with identity and if w = 1, a morphism (h, γ) : A → B of grade γ is given by
a ring homomorphism h which is a morphism of grade γ in ModR. Taking op-
posite algebras defines an equivalence op : AlgR

∼= AlgR of Γ-graded monoidal
categories, so that op ◦op ∼= 1. We may thus again apply the twisting construc-
tion. Thus a morphism (h, γ) : A → B of grade γ with w(γ) = −1 is given by a
ring homomorphism of Aop to B (equivalently, anti-homomorphism h : A → B,
i.e. satisfies h(xy) = h(y)h(x)), which is a morphism of grade γ in ModR.
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We pick out the subcategory AzR of AlgR whose objects are the Azumaya
(central separable) algebras and whose morphisms are the invertible ones only.
Both AlgR and AzR are stable Γ-graded monoidal categories.

Write Lin R : AlgR →ModR for the forgetful functor from an algebra to the
underlying module. If w is trivial, this induces functors Lin R : AlgR →ModR

and Lin R : AzR → GenR of Γ-graded monoidal categories. To extend to the
case when w is non-trivial we require a natural equivalence h : (Lin RA)∗ →
Lin R(Aop). For this we use the reduced trace τA : A → R, which is defined for
Azumaya algebras and has the properties:

(i) the pairing TA : A × A → R given by TA(a1, a2) = τA(a1a2) is non-
singular,

(ii) we have τA(a2a1) = τA(a1a2),
(iii) τAop(aop) = τA(a),
(iv) if f : A → B is a Γ-ring isomorphism of grade γ, τB(f(a)) = τA(a)γ ,
(v) τA⊕B = τA ⊕ τB.

Here (i) shows that the map A → A∗ induced by TA has an inverse, which we
can take as h, (iv) yields the commutative diagram required for compatibility;
(ii) and (iii) imply compatibility with the equivalences ‘j’, and (v) with sums.

More directly, we can define Lin R : AzR → GenPairR by Lin R(A) :=
(A,A, τA), and check that this defines a functor of Γ-graded monoidal categories,
and hence induces a morphism from AzR to GenR.

Taking the endomorphism ring defines a morphism in Γ −MC in the op-
posite direction, End R : GenR → AzR. This is clear if w is trivial, and there is
an equivalence End R ◦ ∗ ∼= op ◦ End R of functors of Γ-graded monoidal cate-
gories, which allows us to extend to the twisted case. There is now a Γ−MC-
equivalence 1AzR

⊗R op ∼= End R ◦ Lin R induced by the standard isomorphism
jA : A ⊗R Aop ∼= End R(A) given by jA(a ⊗ bop)(c) = acb. Thus the functor
End R is cofinal.

If (X, h) is an object of Rep(Γ,GenR), so that h : Γ → Aut GenR
(X), then

Rep(End R)(X, h) is the object of Rep(Γ,AzR) given by the algebra End R(X),
where γ acts by conjugation with the semi-linear automorphism or anti-auto-
morphism h(γ) according as w(γ) = 1 or −1. The fibre of the functor End is
described by

Lemma 2.1. (i) Let M, N ∈ ob (GenR). Then End R(M) ∼= End R(N) if
and only if, for some P ∈ ob (CR), M ∼= N ⊗R P .

(ii) Let (f, γ), (g, γ) be morphisms in GenR. Then End R(f, γ) = End R(g, γ)
if and only if, for some u ∈ C(R), (f, γ) = (u, 1) ◦ (g, γ).

(iii) The functor End R : GenR → AzR factors as

GenR
PR−→ PGenR

PEndR−→ AzR.

Taking inner automorphisms gives a homomorphism A× → Aut (A) of the
multiplicative group A× of invertible elements of A, whose image Inn (A) con-
sists of the inner automorphisms. We define new stable Γ-graded monoidal
categories QAlgR and QAzR whose objects are those of AlgR or AzR respec-
tively, but morphisms are equivalence classes of morphisms under the relation

f ∼ g : if f = g ◦ a for some a ∈ A×
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(the notation draws on the analogy with the construction of the projective cat-
egory). There are quotient functors QAR : AlgR → QAlgR, QAR : AzR →
QAzR, and since QAR ◦ op ∼= op ◦QAR, the construction passes to the twisted
case. The category QAzR is strictly coherent.

An object of Rep(Γ, QAlgR) is an R-algebra A together with a family {gγ}
of ring automorphisms or antiautomorphisms according as w(γ) = ±1 such that
gγ restricts to γ on R, and for each γ, δ ∈ Γ there exists a(γ, δ) ∈ A× such that
gγ ◦ gδ = i(a(γ, δ)) ◦ gγδ.

We define the category Mod − AlgR, in the case when w is trivial, to
have objects R-algebras, and a morphism A → B of grade γ is a B − A-
bimodule M such that mr = rγm for r ∈ R, m ∈ M . There are natural
definitions of composition, identity and tensor product giving the structure
of Γ-graded monoidal category; isomorphism in this category corresponds to
Morita equivalence of algebras. An object A of the category is invertible if and
only if there exists another object B with A⊗B equivalent to R. It follows that
A must be an Azumaya algebra. Conversely, if A is Azumaya, the isomorphism
jA : A ⊗R Aop ∼= End R(Lin R(A)) shows that, since End R(A) is equivalent in
Mod−AlgR to R, Aop provides an inverse object to A.

Now restrict to the subcategory of invertible morphisms. Then we have
an endofunctor op which uses opposite algebras, viewing M as an Aop − Bop-
bimodule M , and defining Mop as the inverse to M so that e.g. M1 ⊗R M2

∼=
M1 ⊗R M2, Mop

1 ⊗R Mop
2
∼= (M1 ⊗R M2)op, and if CNB, BMA are invertible

bimodules, then N ⊗B M ∼= M⊗Bop N and Nop⊗Bop Mop ∼= (N⊗B M)op. Then
op is an equivalence of Γ-graded monoidal categories, and op ◦ op ∼= 1Mod−AlgR

.
We now extend the definition of Mod − AlgR by twisting to allow non-trivial
w. Equivalently, a morphism A → B of grade γ with w(γ) = −1 is a Bop −A-
bimodule M such that mr = rγm for r ∈ R, m ∈ M .

Thus if w is trivial, an object of Rep(Γ,Mod−AlgR) is a pair (A, h) with
A an R-algebra and, for each γ, h(γ) = Mγ an A − A-bimodule such that
vr = rγv for all r ∈ R, v ∈ V and there are isomorphisms Mγ ⊗ Mδ

∼= Mγδ

of A − A-bimodules. In the case where w is an isomorphism, an object of
Rep(Γ,Mod−AlgR) is a pair (A,M) with A an R-algebra and M an Aop−A-
bimodule so that vr = rγv as above, and ((M), γ) ◦ ((M), γ) is an identity
morphism, i.e. Mop ⊗Aop M ∼= A or equivalently, M ∼= M .

We now define a functor W : AlgR → Mod − AlgR of Γ-graded monoidal
categories. If w is trivial, W is the identity on objects, and sends the morphism
(f, γ) : A → B with w(γ) = 1 to the bimodule Bf whose left B-module structure
is that of B and right A module structure given by bf .a = (bf(a))f . Then
W ◦ op ∼= op ◦W , so the functor W extends by twisting to the case w(γ) = −1.
Equivalently, if w(γ) = −1 we must replace B by Bop.

Finally we define the Brauer category BR of R to be the subcategory of
Mod−AlgR consisting of Azumaya algebras and invertible morphisms. Then
BR is a stable Γ-graded monoidal category, and is strictly coherent. Thus BR

is equivalent to a group category. The functor W restricts to define a functor



64 A. FRÖHLICH AND C.T.C. WALL

W : AzR → BR, and this factors through QAR : AzR → QAzR to define
W ′ : QAzR → BR.

3. Exact sequences of k groups and monoids

We now introduce notations for the monoids k of the categories Gen, C,Az
and B, and their projective and equivariant versions (the categories Mod,Alg
and Mod−Alg were merely used in the constructions). Set

Gen(R) := k(GenR) Az(R) := k(AzR)
Gen(R, Γ) := k(Rep(Γ,GenR)) Az(R, Γ) := k(Rep(Γ,AzR))

PGen(R, Γ) := k(Rep(Γ, PGenR)) QAz(R, Γ) := k(Rep(Γ, QAzR))
C(R) := k(CR) B(R) := k(BR)

C(R, Γ) := k(Rep(Γ, CR)) RB(R, Γ) := k(Rep(Γ,BR))

Then also k(PGenR) = Gen(R) and k(QAzR) = Az(R); and the equivariant
class group C(R, Γ) is the maximal subgroup of the monoid Gen(R, Γ). We
have various maps induced by the functors

C(R) iR−→ Gen(R) End R−→ Az(R) WR−→ B(R);
↓PR

↗PEndR
↓QAR

↗W ′
R

PGenR QAzR

we denote the induced maps of k groups by the same letters; for the maps of
equivariant k groups we add Γ to the subscript. However, the notations for
maps to versions of B(R) will be defined ad hoc.

The unit groups of the categories are trivial for PGenR,AzR and QAzR; we
may identify

U(GenR) = U(CR) = U(R), U(BR) ∼= C(R).

We need more care in defining the equivariant versions of the Brauer group.
First we define the equivariant Brauer category B(R, Γ). Its objects are those of
Rep(Γ,AzR), which are R−Γ-algebras A with groups f(Γ) of (anti)automorph-
isms. If w is trivial, a morphism (A, f) → (B, g) is an isomorphism class of pairs
(M,h) where M = AMB is an invertible bimodule and h a homomorphism of
Γ to the automorphism group of the additive group M such that hγ(amb) =
fγ(a)hγ(m)gγ(b) for all a ∈ A, b ∈ B and m ∈ M .

Here we cannot use the twisting construction since we are not defining a
graded category. If w is non-trivial, then to define morphisms A → B we
start with the category Rep(Γ, APairB) and consider isomorphism classes of
quintuplets (M, M ′, φ, h, h′) with bimodules AMB, BM ′

A, a non-singular pairing
φ : M × M ′ → A over B with φ(hγm,h′γm′) = fγ(φ(m,m′)) and hγ(amb) =
gγ(b)hγ(m)fγ(a) for all a, b, m. After some (pages of) checking, we obtain

Proposition 3.1. The category B(R, Γ) is a strictly coherent group-like
category. The functor WR induces a functor WR,Γ : Rep(Γ,AzR) → B(R, Γ) of
monoidal categories such that the sequence

Gen(R, Γ)
EndR,Γ−→ Az(R, Γ)

WR,Γ−→ k(B(R, Γ))

is exact. Moreover, U(B(R, Γ)) ∼= C(R, Γ).
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Define

B(R, Γ) := k(B(R, Γ))) ∼= CokerEndR,Γ : Gen(R, Γ) → Az(R, Γ).

Then B(R, Γ) is a group, the equivariant Brauer group. Here the cokernel is the
group of Brauer equivalence classes of (R, Γ)-Azumaya algebras, k(B(R, Γ)) is
the group of Morita equivalence classes, so the isomorphism expresses the fact
that equivariant Brauer equivalence is the same as equivariant Morita equiva-
lence. Recall that if w is an isomorphism, an equivariant Morita equivalence
induces isomorphisms of categories of quadratic forms. Thus B(R, Γ) is the
group identified in the introduction as of particular importance.

If M ∈ ob(GenR) represents a class in H0(Γ;Gen(R)), there exists a section
h to Aut Gen(R)(M) → Γ. Define hγ := End(hγ). Since hγhδh

−1
γδ has grade

1, hγhδh
−1
γδ is an inner automorphism of EndR(M), so (EndR(M), h) defines

an object of Rep(Γ, QAzR). This object depends only on M and is denoted
QEnd(M). This construction induces a homomorphism

QEndR,Γ : H0(Γ; Gen(R)) → QAz(R, Γ).
We denote the cokernel — which is a group — by QB(R, Γ), and thus obtain
a commutative diagram, whose maps we denote as follows

Gen(R, Γ)
EndR,Γ−→ Az(R, Γ)

WR,Γ−→ B(R, Γ)
↓TGen

↓QAR,Γ
↓QBR,Γ

H0(Γ;Gen(R))
QEndR,Γ−→ QAz(R, Γ)

QWR,Γ−→ QB(R, Γ)

Since kRepW ′
R : QAz(R, Γ) → RB(R, Γ) vanishes on the image of H0(Γ;

Gen(R)), we have an induced homomorphism θ : QB(R, Γ) → RB(R, Γ).
Forgetting the group Γ induces a homomorphism QB(R, Γ) → B(R) whose

image is contained in the invariant subgroup H0(Γ; B(R)). We write Az0(R, Γ),
QAz0(R, Γ), B0(R, Γ) and QB0(R, Γ) for the kernels of the respective induced
maps to B(R). We also add a suffix 0 to denote the restrictions of various maps,
e.g. PEndR,Γ,0 : PGen(R, Γ) → Az0(R, Γ).

Theorem 3.2. (i) End R induces an exact sequence of Γ-modules

1 → C(R) iR−→ Gen(R) End R−→ Az(R) WR−→ B(R) → 1.

(ii) The following diagram commutes and the top two rows are exact.

1→ C(R, Γ)
iR,Γ−→ Gen(R, Γ)

EndR,Γ−→ Az(R, Γ)
WR,Γ−→ B(R, Γ) →1

↓TC ↓TGen ↓QAR,Γ ↓QBR,Γ

1→H0(Γ; C(R))
H0(iR)−→ H0(Γ; Gen(R))

QEndR,Γ−→ QAz(R, Γ)
QWR,Γ−→ QB(R, Γ) →1

| ↓ | ↓ ↓ TQAz ↓ TQB

H0(Γ; C(R))
H0(iR)−→ H0(Γ; Gen(R))

H0(EndR)−→ H0(Γ; Az(R))
H0(WR)−→ H0(Γ; B(R))

Exactness for sequences of monoids is interpreted in accordance with the
definitions in the appendix to [3]: here, in particular, the functor End R is
cofinal.

We also have exact sequences S(C) with C any of CR, GenR and BR and,
more importantly, H(C) with C either of CR and BR. Explicitly, these are
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H(CR) . . .Hn(Γ;U(R))
αn,C−→ Hn(Γ; CR)

βn,C−→ Hn−1(Γ;C(R))
δn,C−→ Hn+1(Γ; U(R)) . . .

H(BR) . . .Hn(Γ;C(R))
αn,B−→ Hn(Γ;BR)

βn,B−→ Hn−1(Γ;B(R))
δn,B−→ Hn+1(Γ;C(R)) . . .

Theorem 3.3. There is a commutative diagram with exact rows and injec-
tive columns

1 → QB0(R, Γ) −→ QB(R, Γ) −→ H0(Γ; B(R))
↓ ξ ↓ θ |↓

1 → H1(Γ; C(R))
α1,B−→ H1(Γ;BR)

β1,B−→ H0(Γ; B(R))

To prove this, we first establish that an algebra representing an element of
Ker θ is in ImQEndR,Γ, and then apply Theorem 3.2 to see that θ is injective.
Now the upper row is trivially exact, and the lower is part of H(BR). Since
the right hand square clearly commutes, there is an induced map ξ, which is
injective since θ is.

We now give two direct constructions of maps to H3(Γ; U(R)). If G is
a group, with centre Z(G) and group Out (G) := Aut (G)/Inn (G) of outer
automorphisms, then to any homomorphism h : Γ → Out (G) is associated a
cohomology class c(h) ∈ H3(Γ;Z(G)), the obstruction to the existence of a
group extension of G by Γ inducing h.

For A an R-algebra, write Aut +(A) for its group of automorphisms and anti-
automorphisms; recall that A× denotes the multiplicative group of invertible
elements. Define

κA : Aut +(A) → Aut (A×)
by κA(t)(u) = t(u) if t is an automorphism, and t(u)−1 if t is an anti-auto-
morphism. This induces a homomorphism

κA : Aut +(A)/Inn (A) → Out (A×).
If (A, f) is an object of Rep(Γ,AzR), f is a homomorphism of Γ to the

quotient Aut +(A)/Inn (A), hence we have a homomorphism
κA ◦ f : Γ → Out (A×)

and hence — since we can identify Z(A×) = U(R) — a cohomology class
ρ(A, f) := c(κA ◦ f) ∈ H3(Γ; U(R)).

Next let (A, (M)) ∈ obRep(Γ,BR). For each γ ∈ Γ with w(γ) = 1, Mγ

is an invertible A − A-bimodule of grade γ, and if w(γ) = w(δ) = 1 we may
choose isomorphisms fγ,δ : Mγ ⊗A Mδ

∼= Mγδ. If however w(γ) = 1 but
w(δ) = −1, Mδ is an Aop−A-bimodule, and we get instead an isomorphism fγ,δ :
Mop

γ ⊗Aop Mδ
∼= Mγδ. Given 3 elements γ1, γ2, γ3 ∈ Γ we get two isomorphisms

(of grade 1)
a(γ1, γ2, γ3), b(γ1, γ2, γ3) : M ′

γ1
⊗M ′

γ2
⊗M ′

γ3
−→ M ′

γ1γ2γ3
,

where M ′
γ denotes Mγ or Mop

γ and the tensor products are over A or Aop

according to the values w(γi).
Set u(γ1, γ2, γ3) := b(γ1, γ2, γ3) · a(γ1, γ2, γ3)−1. This is a grade 1 automor-

phism of an invertible module, so can be identified with an element of U(R).
Further calculations show that u defines a 3-cocycle of Γ with values in U(R),
and that varying the choice of the isomorphisms f(γ, δ) by multiplying by a fam-
ily v(γ, δ) of elements of U(R) has the effect of multiplying u by the coboundary
of v. We thus obtain a well defined cohomology class χ(A, (M)) ∈ H3(Γ; U(R)).
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Theorem 3.4. The above constructions define
(i) a map ρ : QB(R, Γ) → H3(Γ; U(R)) which is zero on the image of B(R, Γ),
(ii) a homomorphism χ : RB(R, Γ) → H3(Γ;U(R)), such that
(iii) we have ρ = χ ◦ θ : QB(R, Γ) → RB(R, Γ) → H3(Γ;U(R)),
(iv) we have δCR

= χ ◦ αBR
: H1(Γ;C(R)) → RB(R, Γ) → H3(Γ; U(R))

up to eventual signs!
For A an Azumaya R-algebra, write AM∗

R for the category of A − R-
bimodules where R acts the same way on both sides; note that tensor product
gives a functor ⊗R :A M∗

R × CR →A M∗
R.

Lemma 3.5. (i)Let Ai ∈ ob (AzR), Mi ∈ ob (AiM∗
R), Pi ∈ ob (CR) for

i = 1, 2, and let α : A1 → A2 be a morphism in AzR and f : M1 → M2,
g : M1⊗RP1 → M2⊗RP2 be isomorphisms of additive groups over the morphism
α. Then there is a unique R-module isomorphism c : P1 → P2 with g = f ⊗R c.

(ii) A corresponding conclusion holds if Γ acts on R and α is a morphism
of grade γ, also if w(γ) = −1.

Let (A, t) ∈ ob (Rep(Γ,AzR)), so t : Γ → AutAzR
(A). Suppose we have an

invertible A − R-bimodule M . Then if w(γ) = 1 we have P (γ) ∈ ob (CR) and
a group isomorphism fγ : M → M ⊗R P (γ) such that fγ(am) = tγ(a)fγ(m)
for all a ∈ A,m ∈ M . If w(γ) = −1 we have P (γ) ∈ ob (CR) and a group
isomorphism fγ : M → P (γ)∗ ⊗R M∗ such that fγ(am) = fγ(m)tγ(a) for all
a ∈ A,m ∈ M . From Lemma 3.5 we have unique additive isomorphisms

c(γ1, γ2) : p(γ2) →
{

P (γ1)∗ ⊗R P (γ1γ2) if w(γ1) = 1
(P (γ1)∗ ⊗R P (γ1γ2))∗ if w(γ1) = −1

such that fγ1γ2 · f−1
γ2

= [fγ1 , c(γ1, γ2)]. The elements c(γ1, γ2) define a cocycle
whose class in H2(Γ; CR) is independent of the choices of the Pγ and fγ . The
resulting map ψ′ : Az0(R, Γ) → H2(Γ; CR) is a monoid homomorphism inducing
an injective homomorphism ψ : B0(R, Γ) → H2(Γ; CR).

Denote by τ the composite map

PGen(R, Γ)
PEndR,Γ,0−→ Az0(R, Γ)

WR,Γ,0−→ B0(R, Γ).

Theorem 3.6. The following diagram is commutative (up to signs) and the
upper row is exact at B0(R, Γ).

PC(R, Γ)
PiR,Γ−→ PGen(R, Γ) τ−→ B0(R, Γ)

QBR,Γ,0−→ QB0(R, Γ)
↓o ↓ ωGen ↓ ψ ↓ ξ

H0(Γ;C(R))
δ1,C−→ H2(Γ; U(R)

α2,C−→ H2(Γ : CR)
β2,C−→ H1(Γ;C(R))

4. Finite groups

We will now assume Γ to be finite. With this restriction we can strengthen
the foregoing results.

Theorem 4.1. Let Γ be finite. Then
(i) the map ωGen : PGen(R, Γ) → H2(Γ : U(R)) is surjective;
(ii) the following maps are isomorphisms:

θ : QB(R, Γ) → k(Rep(Γ,BR)),
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ψ : B0(R, Γ) → H2(Γ; CR),
ξ : QB0(R, Γ) → H1(Γ; C(R)).

The proof of Theorem 4.1 uses the existence of a second operation besides
⊗: namely the direct sum ⊕, rather in the manner of Hilbert’s ‘Satz 90’. Indeed,
(i) of Theorem 4.1 is a special case of [3, Prop 11.1]. We recall the construction.
Given a cocycle u : Γ × Γ → U(R), take M as the free R-module with basis
{wγ | γ ∈ Γ}, and define fγ(rwδ) := rγu(γ, δ)wγδ. The cocycle property shows
that this defines a projective action of Γ.

As to (ii), it suffices to establish the first assertion, as the rest will follow by
diagram chasing using Theorem 3.3 and Theorem 3.6. We have already noted
that the map is injective. Conversely, given an element of k(Rep(Γ,BR)) repre-
sented by an Azumaya algebra A and invertible bimodules M(γ) such that there
exist isomorphisms fγ,δ : M(γ) ⊗A M(δ) ∼= M(γδ) satisfying the appropriate
conditions, we set X := ⊕γ∈ΓM(γ) and B := End A(X)op. We define isomor-
phisms gσ : M(σ) ⊗A X ∼= X by setting gσ(x(σ) ⊗ x(γ)) := fσ,γ(x(σ) ⊗ x(γ)).
Then M(σ) ⊗A X is an invertible A − B-bimodule, so there is a ring auto-
morphism tσ of B such that gσ(m(σ) ⊗ xb) = gσ(m(σ) ⊗ x)tσ(b). Now a few
pages of checking show that t defines the desired representation (modulo inner
automorphisms) of Γ on B.

Using these and the earlier results we obtain

Theorem 4.2. Let Γ be finite. Then we obtain a commutative diagram with
exact rows

H0(Γ; C(R))
δ1,C−→ H2(Γ; U(R))

α2,C−→ H2(Γ; CR)
β2,C−→ H1(Γ; C(R))

δ2,C−→ H3(Γ; U(R))
‖ ‖ ↑oψ ↑oξ ‖

H0(Γ; C(R)) −→ H2(Γ; U(R)) −→ B0(R; Γ)
QBR,Γ,0−→ QB0(R, Γ)

ρ0−→ H3(Γ; U(R))
↓ ↓ ↓ ↓ ↓

H0(Γ; C(R)) −→ H2(Γ; U(R)) −→ B(R; Γ)
QBR,Γ−→ QB(R, Γ)

ρ−→ H3(Γ; U(R))

Here the upper row is (part of) H(CR). The second map in the second row
is defined as ψ−1 ◦ α2,C : there is no direct construction.

For example, suppose C(R) trivial — e.g. R a field. Then as θ and β1,B are
isomorphisms, the lower sequence of (4.2) reduces to

0 → H2(Γ;U(R)) → B(R, Γ) → H0(Γ; B(R)) → H3(Γ; U(R)),

which we cited in [6, p.124] (with slight change in notation) for the case when
w is an isomorphism.

The exact sequences H(CR) and H(BR) in low degrees fit into a commutative
braid of exact sequences with the lower sequence of 4.2 and the sequence 0 →
B0(R, Γ) → B(R, Γ) → H0(Γ;B(R)). These should form part of an infinite
braid involving a new sequence of groups Hn(Γ; ER), as follows (we omit Γ
from the notation to make the diagram more readable).

−→ −→ −→
↗ ↘ ↗ ↘ ↗ ↘

Hn−1(C(R)) Hn+1(U(R)) Hn+1(ER) Hn−1(B(R))
↘ ↗ ↘ ↗ ↘ ↗

Hn−1(BR) Hn+1(CR) Hn(BR)
↗ ↘ ↗ ↘ ↗ ↘

Hn(ER) Hn−2(B(R)) Hn(C(R)) Hn+2(U(R))
↘ ↗ ↘ ↗ ↘ ↗

−→ −→ −→
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Here it follows from the diagram that we need to identify H0(ER) ∼= H0(CR) ∼=
H0(U(R)) and H1(ER) ∼= H1(CR), while H2(ER) = B(R, Γ) is our central
object of interest. We turn to the methods of [7] to seek a direct approach to
this conjecture.

5. An abstract approach

In this section we recall and slightly amplify some results from [7]. First,
suppose C is a Γ-graded group like category. Define a simplicial space BC
whose 0-simplices are objects of C, 1-simplices are morphisms (of all grades),
2-simplices are commutative triangles of morphisms, and higher simplices are
filled in when possible. Then BC fibres over BΓ and the fibre BKer C is an
infinite loop space with K0(C) := π0(BC) = k(C); K1(C) := π1(BC) = U(C),
and vanishing higher groups. Further [7, Theorem] there is a spectral sequence
with Ep,q

2 = Hp(Γ; K−q(C)) and abutment K−n(C, Γ) (we have changed some
signs to conform with standard notation for a cohomology spectral sequence).
Since only two groups Kq(C) are non-vanishing, the spectral sequence reduces
to an exact sequence, which is naturally identified with H(C).

For the present purpose we need a slightly more elaborate construction.
Define a simplicial space E as follows. The 0-simplices are the Azumaya R-
algebras Ai. The 1-simplices are the invertible bimodules iMj = AiMAj (of all
grades). The 2-simplices are the bimodule isomorphisms fi,j,k : iMj⊗Aj jMk →
iMk. The 3-simplices are the commutative diagrams

∆ijkl :
iMj ⊗ jMk ⊗ kMl

1⊗fj,k,l−→ iMj ⊗ jMl

↓fi,j,k⊗1 ↓fi,j,l

iMk ⊗ kMl
fi,k,l−→ iMl

and the n-simplices for n > 3 are the maps of the 3-skeleton of the standard
n-simplex to the partial complex just constructed. There is a map to the
classifying complex BΓ which takes each 1-simplex to its grade.

We claim that E is a Kan complex, and hence that E → BΓ is a Kan
fibration. We need to show, for each n, that any map into E of the complex
Λn−1 (obtained from the standard n-simplex ∆n by deleting the interiors of the
n-simplex and of one of its (n− 1)-dimensional faces) extends to a map of ∆n.
Since Λn−1 contains the (n− 2)-skeleton of ∆n, this is trivial for n ≥ 5.

For n = 1 the extension is possible since the Γ-grading on BR is stable -
given A there exist invertible bimodules of all grades.

For n = 2 if the missing face is the third, we complete the map of Λ1 defined
by the modules iMj and jMk by the isomorphism iMj ⊗Aj jMk → iMk. If the
missing face is different, the argument is essentially the same, since all the
bimodules are invertible, and we may use their inverses.

For n = 3 a map of Λ2 gives (perhaps after tensoring with some identity
maps) the isomorphisms on 3 edges of the desired commutative diagram, and
we may then complete the diagram uniquely.

Finally for n = 4 we are given 4 commutative diagrams and need to establish
commutativity of a fifth. This follows from the following diagram, where we
take the subscripts as 0, 1, 2, 3, 4 and omit the symbol M for brevity:
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(01)⊗ (12)⊗ (23)⊗ (34) −→ −→ −→ (01)⊗ (12)⊗ (24)
↓ ↘ ↙ ↓

(02)⊗ (23)⊗ (34) −→ (02)⊗ (24)
↓ ↓ ↓ ↓

(03)⊗ (34) −→ (04)
↓ ↗ ↖ ↓

(01)⊗ (13)⊗ (34) −→ −→ −→ (01)⊗ (14)

Here commutativity of the outer square follows from taking the tensor product
of M01 with the simplex ∆1234, of the left square follows from taking the tensor
product of M34 with the simplex ∆0123, of the centre square from ∆0234, of
the right square from ∆0124, of the lower square from ∆0134, and of the upper
square from the identity (f ⊗ 1)(1⊗ g) = (1⊗ g)(f ⊗ 1) where f and g are the
morphisms corresponding to the 1-simplices 012 and 234. Since all the maps
are isomorphisms, commutativity of any one square follows from that of the
rest, as desired.

There is thus again a spectral sequence. If, as seems fairly certain, the
fibre is an infinite loop space, the E2 term is determined since we can identify
Kq(Ker C) with U(R) if q = 2, C(R) if q = 1, B(R) if q = 0, and 0 otherwise.
Unfortunately, the abutment is given only in terms of homotopy groups of the
space of sections, and so is not easily interpreted.

We conjecture that, as in the case first described, there is an algebraic
model for the spectral sequence, given in terms of some cochain model. We
then expect that, up to chain homotopy equivalence, the spectral sequence is
that of a filtered complex 0 ⊂ F0 ⊂ F1 ⊂ F2 of free Γ-modules, zero in negative
degrees, such that F0, F1/F0 and F2/F1 give free resolutions of U(R), C(R) and
B(R) respectively; and the hypercohomology groups of F1 and F2/F0 give the
equivariant cohomology groups of the categories CR and BR. Thus the two ‘new’
sequences at the end of §4 would be the exact cohomology sequences belonging
to F0 → F2 → F2/F0 and F1 → F2 → F2/F1 respectively.

6. Change of groups

For the case of graded monoidal categories, a rather full discussion of con-
structions involving change of groups was given in [3, §9]. We content ourselves
here with a brief summary.

The most general formulation is as follows. For Γ a group, and X a finite
Γ-set, we form the Γ-graded category XΓ whose object set is X and morphism
set {(x, γ) : x → xγ |x ∈ X, γ ∈ Γ}. If C is a Γ-graded monoidal category,
H(X) := HomΓ(XΓ, C) can be considered a monoidal category, and H defines
a Mackey functor from the category of finite Γ-sets to the homotopy category
of MC, and hence, composing e.g. with k, to the category of abelian monoids.
If C is group-like we may compose with H i(Γ;−) to get a Mackey functor to
abelian groups.

It follows, for example, that if Γ has finite order N , then [3, 7.7] N annihi-
lates Hn(Γ; C) for n ≥ 2: this result is useful in some applications.

Let C be a Γ-graded group-like monoidal category, and i : ∆ → Γ the inclu-
sion of a subgroup. Then there are restriction maps i∗ : H i(Γ; C) → H i(∆; C)
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and, if the subgroup ∆ has finite index, corestriction maps i∗ in the opposite
direction: in particular, i∗ : Rep(Γ, C) → Rep(∆, C) and i∗ : Rep(∆, C) →
Rep(Γ, C). Since H is a Mackey functor, these satisfy the standard relations:
in fact [1] K0Rep is a Frobenius functor.

If ∆ is a normal subgroup of Γ, then Rep(∆, C) has the natural structure
of Γ/∆-graded monoidal category, and [1] Rep(Γ/∆,Rep(∆, C)) ∼= Rep(Γ, C).
Presumably if C is a group category there is a spectral sequence with E2-
term Hp(Γ/∆; Hq(∆; C)) and abutment Hn(Γ; C); at least we have [3, 9.7] the
expected exact sequence of terms of low degree. This applies to the case C = CR,
and in view of the isomorphism ψ gives information about B0(R; Γ) if Γ is finite.

Finally we return to the twisting relation. Let C be a Γ-graded monoidal
category, and D : C → C a morphism allowing us to extend the grading to
Γ × {±1}. Suppose given two homomorphisms wi : Γ → {±1} (i = 1, 2) with
equaliser ∆: write Γi ⊂ Γ × {±1} for the graph of wi, and ∆ := (∆, w1|∆).
Then [3, 10.2] there is a long exact sequence

· · ·H i(Γ1; C) −→ H i(∆; C) −→ H i(Γ2; C) −→ H i+1(Γ1; C) −→ · · ·
where the first map is restriction and the second is corestriction. Specialising
to CR, this gives
0 → H0(Γ1; U(R)) → H0(∆;U(R)) → H0(Γ2;U(R)) → C(R, Γ1) → C(R, ∆) →

→ C(R, Γ2) → B0(R, Γ1) → B0(R, ∆) → B0(R, Γ2).
Perhaps the most interesting case is the simplest, when Γ has order 2, so w1 is
an isomorphism and w2 is trivial (or vice-versa), and ∆ is trivial. The exactness
of these sequences may be verified directly.

We may also construct a braid with the exact sequences H(Γ1, C), H(Γ2, C),
H(∆, C), and exact cohomology sequences with coefficients U(R) and C(R).
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Isotropy of quadratic forms and field invariants

Detlev W. Hoffmann

Dedicated to the memory of Oleg Izhboldin

Abstract. This paper is intended to give a survey for non-specialists in the
algebraic theory of quadratic forms on the question of isotropy of quadratic
forms and how certain answers to this question can be obtained by considering
invariants of quadratic forms, such as the classical invariants dimension, signed
discriminant, Clifford invariant, and invariants of fields pertaining to quadratic
forms, such as the u-invariant, the Hasse number, the level, the Pythagoras
number, and the l-invariant. We will interpret these field invariants as the
supremum of the dimensions of certain types of anisotropic quadratic forms
defined over the ground field. Particular emphasis is laid on the question of
which values can be realized as invariants of a field, and on methods of how
to construct such fields “generically.”

1. Introduction

One of the central questions in the algebraic theory of quadratic forms is the
following : When is a given quadratic form ϕ over a field F isotropic, i.e. when
does the form ϕ represent zero nontrivially ?1

An answer to this question would automatically lead to an answer of another
central problem, namely, when are two forms ϕ and ψ of the same dimension
isometric (in which case we write ϕ ∼= ψ), i.e. when does there exist a linear
isomorphism t : V → W of the underlying vector spaces V of ϕ and W of ψ such
that ϕ(v) = ψ(tv) for all v ∈ V ? This can be seen as follows. The diagonal form
〈1,−1〉 is called a hyperbolic plane, which we shall also denote by H. A form is
called hyperbolic if it has a diagonalization of the form 〈1,−1, 1,−1, · · · , 1,−1〉, i.e.
if it is isometric to an orthogonal sum of hyperbolic planes, H ⊥ H ⊥ · · · ⊥ H.
Now ϕ being isotropic is equivalent to ϕ containing H as a subform.2 If two forms
ϕ and ψ are of the same dimension, then their isometry is equivalent to ϕ ⊥ −ψ

1991 Mathematics Subject Classification. 11E04, 11E10, 11E25, 11E81, 12D15, 12F20.
1Throughout this paper, we only consider fields of characteristic different from 2, and qua-

dratic forms are always assumed to be finite-dimensional and nondegenerate. We will often simply
write “form” by which we shall refer to quadratic forms in the above sense.

2We say that η is a subform of µ if there exists a form τ such that µ ∼= η ⊥ τ . In this
situation, we write η ⊂ µ for short.

c©0000 (copyright holder)
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being hyperbolic. So first we have to check whether ϕ ⊥ −ψ is isotropic, in which
case we can write ϕ ⊥ −ψ ∼= H ⊥ τ for some form τ . By the Witt cancellation
theorem, it then suffices to verify whether τ is hyperbolic in order to establish that
ϕ ⊥ −ψ is hyperbolic, and an induction argument on the dimension then yields
that an answer to the isotropy question would provide an answer to the isometry
question.

Rephrasing the initial isotropy question, suppose we have diagonalized the form
ϕ, say, ϕ ∼= 〈a1, · · · , an〉 with ai ∈ F ∗ = F \{0}. How can one tell, just by “looking”
at the coefficients ai, whether ϕ is isotropic, i.e. whether there exist x1, · · · , xn ∈ F ,
not all equal to 0, such that 0 =

∑n
i=1 aix

2
i ? Now 1-dimensional forms are obviously

anisotropic. A 2-dimensional form 〈a, b〉 is isotropic if and only if 〈a, b〉 ∼= 〈1,−1〉
if and only if the determinants ab of 〈a, b〉 and −1 of 〈1,−1〉 differ by a square if
and only if −ab ∈ F 2. This is a criterion which is quite explicit and which in many
cases can be readily verified. Are there criteria of that type for forms of dimension
≥ 3 ? To illustrate this question, let us look at some examples which will also serve
us later.

Example 1.1. If ϕ ∼= 〈a1, · · · , an〉 is a form over C, then since C is algebraically
closed, ϕ will be isotropic if and only if n ≥ 2. If the ground field is R, then ϕ will
be isotropic iff n ≥ 2 and ϕ is indefinite, i.e. the ai are not all of the same sign.
Again, the isotropy can easily be checked simply by looking at the signs of the ai.

Example 1.2. Let Fq be a finite field with q = pn elements, p an odd prime.
Then Fq has two nonzero square classes, say, 1 and a. An easy computation shows
that any form of dimension 2 will represent both square classes, hence every form
of dimension ≥ 3 will be isotropic over Fq, and up to isometry the only anisotropic
form over Fq will be 〈1,−a〉.

Example 1.3. The quadratic form theory over a p-adic field Qp, p a prime, is
well understood, and again it is easy to tell from the coefficients whether a form
over Qp is isotropic or not (cf. [S, Ch. 5,§ 6]). In fact, suppose that p is odd. Now
each square class of Qp can be represented by some element in Z, and if a ∈ Z
is prime to p, then a is a square in Qp if and only if a is a square modulo p by
Hensel’s Lemma. In particular, each form ϕ over Qp has a diagonalization of the
form 〈a1, · · · , am〉 ⊥ p〈b1, · · · , bn〉, with ai, bj integers prime to p. Suppose that
(after possibly scaling) m ≥ 3. By the previous example, we know that there exist
integers x, y such that a1x

2 + a2y
2 ≡ −a3 mod p. By what was said before, there

exists a z ∈ Q∗p such that −a−1
3 (a1x

2 +a2y
2) = z2, i.e. a1x

2 +a2y
2 +a3z

2 = 0, and
hence ϕ is anisotropic. Thus, if dim ϕ ≥ 5, then ϕ is isotropic. It is also not too
difficult to show (and we leave this to the reader) that up to isometry, there exists
exactly one anisotropic 4-dimensional form, namely 〈1,−a, p,−ap〉, where one can
choose for a any integer prime to p which is not a quadratic residue modulo p.

The case p = 2 is a little more technical but can also be treated in a rather
elementary way. Again, any form of dimension ≥ 5 over Q2 will be isotropic, and
up to isometry, there exists exactly one anisotropic 4-dimensional form, 〈1, 1, 1, 1〉.

Example 1.4. Over Q, the situation is already more complicated. Clearly, ϕ
would have to be indefinite in order to be isotropic. But this alone does not suffice
as, for example, 〈1, 1, 1,−7〉 is anisotropic as 7 is not a sum of three squares in Q.
The Hasse-Minkowski theorem tells us that a form ϕ over Q is isotropic if and only
if it is isotropic over Qp for each prime p, and over R (see, e.g. [L1, Ch. VI, 3.1],
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[S, Ch. 5, Theorem 7.2]). In particular, by the previous example, each indefinite
form of dimension ≥ 5 over Q will be isotropic.

Using the previous example, we see that 〈1, 1, 1,−7〉 is isotropic over each Qp,
p 6= 2, and over R. However, it is anisotropic over Q2 since 〈1, 1, 1,−7〉 ∼= 〈1, 1, 1, 1〉
over Q2.

Before we consider rational function fields in one variable over the above fields,
we shall mention a little lemma which we shall use quite often regarding forms over
purely transcendental extensions.

Lemma 1.5. (i) Let ϕ and ψ be forms over F and let K = F (T ), the rational
function field in one variable, or K = F ((T )), the power series field in one variable
over F . Then ϕ ⊥ Tψ is anisotropic over K if and only if ϕ and ψ are anisotropic
over F . In particular, anisotropic forms stay anisotropic over purely transcendental
extensions.

(ii) If γ is a form over K = F ((T )), then there exist forms ϕ and ψ over F such
that γ ∼= ϕ ⊥ Tψ.

The first part can easily be proved by a degree argument. As for the second
part, one may assume that γ is diagonalized and then use the fact that to each
x ∈ K∗ there exists a y ∈ F ∗ such that either x ≡ y mod K∗2 or x ≡ yT mod K∗2.
We leave the details to the reader.

Example 1.6. C is algebraically closed and therefore it is a so-called C0 field.3

Hence, C(T ) is a C1-field (cf. [S, Ch. 2, Th. 15.2]), which implies that every form
of dimension ≥ 3 over C(T ) will be isotropic.

Example 1.7. As for R(T ), the situation is more complicated. On R, there
exists exactly one ordering.4 On R(T ), there are many orderings which can be
described explicitly (cf. [KS, Kap. II, § 9]). Let XR(T ) be the space of orderings.
An obvious necessary condition for a form ϕ to be isotropic over R(T ) is that ϕ
be totally indefinite, i.e. if ϕ ∼= 〈a1, · · · , an〉 then for each ordering P ∈ XR(T )

there exist ai and aj depending on P such that ai <P 0 <P aj . Using the explicit
description of the orderings, the indefiniteness can in principal be checked using the
coefficients of a diagonalization. It can also be shown that totally indefinite forms
of dimension ≥ 3 over R(T ) are always isotropic, a result essentially due to Witt
[Wi1].

Example 1.8. Now consider the rational function field Q(T ) in one variable
X over the rationals. Again, the field is formally real, i.e. there exist orderings on
Q(T ), and a necessary condition for a form ϕ to be isotropic is that ϕ be indefinite
with respect to all orderings P in the space of orderings XQ(T ). However, this
knowledge alone won’t help us much as there exist anisotropic totally indefinite
forms of any dimension ≥ 2 over Q(T ). This can be seen as follows. Consider the
anisotropic forms 〈1,−2〉 and σn = n × 〈1〉 = 〈1, · · · , 1︸ ︷︷ ︸

n

〉 over Q. Then 2 is a sum

of squares and hence 2 ∈ P for all P ∈ XQ(T ). In particular, 〈1,−2〉 ⊥ Tσn is

3A field F is called a Ci-field if every homogeneous polynomial over F of degree d in at least
di + 1 variables has a nontrivial zero.

4An ordering on a field F is a subset P ⊂ F such that P + P ⊂ P , P · P ⊂ P , P ∪−P = F ,
P ∩−P = {0}. It induces the order relation “≥P ” defined by x ≥p y if and only if x− y ∈ P . Cf.

[S, Ch. 3, § 1].
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totally indefinite and anisotropic over Q(T ) for all n (the anisotropy follows from
Lemma 1.5).

One can justifiably say that we have no systematic method whatsoever to decide
whether an arbitrarily given form over Q(T ) is isotropic or not. One could say that
with respect to many questions regarding quadratic forms, the field Q(T ) is of a
complexity which is beyond our current reach.

Example 1.9. Although the quadratic form theory over Qp is in a certain sense
easier to handle than that over Q, not much was known about the isotropy of forms
over Qp(T ) until recently, when it was shown in [HVG2] that all ϕ of dimension
> 22 over Qp(T ), p 6= 2, are isotropic. Later on, this was improved by Parimala
and Suresh [PS], who proved that in fact all forms of dimension > 10 over Qp(T ),
p 6= 2, are isotropic. The case p = 2 is still open.

As we have already remarked above, there does exist an anisotropic 4-dimen-
sional form ϕp over Qp for all primes p. This will yield the anisotropic 8-dimensional
form ϕp ⊥ Tϕp over Qp(T ). It is conjectured that all forms of dimension > 8 over
Qp(T ) are isotropic.

All these examples give us already a glimpse of the difficulties which we en-
counter concerning the isotropy of forms. When dealing with forms over a particular
field, one normally develops and uses a set of tools and methods to which quadratic
forms over the field in question are amenable. These methods often come from num-
ber theory, algebraic and real algebraic geometry. For general fields, one approach
to derive information on the isotropy of forms is to consider certain invariants of
quadratic forms resp. of the underlying field and how these invariants influence the
isotropy behaviour.

In section 2, we shall introduce quadratic form invariants and show how they
can be used to classify forms resp. to tell us something about isotropy of forms.
First, in section 2.1, we introduce the classical invariants dimension, determinant
resp. signed discriminant, Clifford invariant and total signature. After saying a
little about the Witt ring of a field and how these invariants can be interpreted as
invariants of elements in this ring in section 2.2, we show in section 2.3 how the
classical invariants lead us inevitably to higher cohomological invariants and the
Milnor conjecture (see also Pfister’s survey article [P5]). In section 2.4, we explain
how these invariants lead to classification results on quadratic forms and mention
how the invariants of a form ϕ (resp. the “place” where the form finds itself in the
Witt ring) can provide information on isotropy.

In section 3, we introduce field invariants which can be defined as the suprema
of the dimensions of certain types of anisotropic forms over a field F and which
therefore, once these invariants have been determined for a certain field F , yield
information on the (an)isotropy of forms over F . The invariants we shall introduce
are the “old” and the “new” u-invariant (sections 3.1, 3.3), the Hasse number
(section 3.2), the level (section 3.4), the Pythagoras number (section 5.2), and the
length of a field, also called the l-invariant (section 3.6)

The main theme of this article will be to construct fields whose field invariants
take prescribed values. The method we shall introduce may be called Merkurjev’s
method since it was Merkurjev who brought the method we shall describe to full
fruition in his construction of fields with even u-invariant [M2], and the main idea
behind this method as well as some of the necessary tools will be introduced in
section 4. The basic method of construction will be sketched in section 4.1. The
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main tools will be function fields of quadrics and Pfister forms, and we shall collect
some of their basic properties in sections 4.2, 4.3.

We then apply this technique in section 5 to prove Pfister’s results on the level
(section 5.1), the author’s results on the Pythagoras number (section 5.2), and
Merkurjev’s results on the u-invariant (section 5.3).

Finally, in section 6, we add some remarks on the Hasse number and on how
some of these field invariants relate to each other (section 6.1), and give some
results on the l-invariant (section 6.2). We close by mentioning some further results
concerning field invariants pertaining to quadratic forms and where Merkurjev’s
method had some impact in their proofs.

As a good general reference, in particular on field invariants, we recommend
Pfister’s beautiful book [P4], where the examples of fields given above (plus many
more examples) and their invariants have been mentioned, and some of them have
been treated in detail.

2. Invariants of quadratic forms

2.1. The classical invariants. The classical invariants of quadratic forms
are the dimension, the determinant, and the Clifford invariant. The easiest to
determine is obviously the dimension. A little more difficult is the determinant, as
one has to know how to multiply in the field F . More precisely, let ϕ = 〈a1, · · · , an〉.
Since our invariants should be invariants of the isometry class of a form, we define
the determinant det(ϕ) to be the class of

∏n
i=1 ai in F ∗/F ∗2.

The Clifford invariant is defined via the Clifford algebra of a quadratic form.
Let T (V ) =

⊕∞
i=0 V ⊗n be the tensor algebra of the underlying vector space of the

form ϕ. Then the Clifford algebra C(ϕ) is defined to be the quotient T (V )/I where
I is the 2-sided ideal generated by {x⊗x−ϕ(x) |x ∈ V }. This can be shown to be a
Z/2Z-graded 2n-dimensional algebra over F (n = dim ϕ), and the even part will be
denoted by C0(ϕ). If dim ϕ is even (resp. odd) then C(ϕ) (resp. C0(ϕ)) is a central
simple algebra over F whose class in the Brauer group Br F can be represented by
a tensor product of quaternion algebras, its Brauer class is therefore an element
in the exponent-2-part Br2 F of the Brauer group. The Clifford invariant of ϕ,
denoted by c(ϕ), is defined to be the Brauer class of C(ϕ) if dimϕ is even (resp.
C0(ϕ) if dim ϕ is odd).

We can already notice that these invariants (if we consider dim mod 2 rather
than the dimension itself) take values in certain Galois cohomology groups. Con-
sider the Galois group G of a separable closure Fsep over F . Now let HnF =
Hn(G,Z/2Z) be the n-th Galois cohomology group with G acting trivially on Z/2Z.
Identifying H0F with Z/2Z, H1F with F ∗/F ∗2, and H2F with Br2 F , we see that
the classical invariants take their values in the first three of these groups. A natural
question is whether one can get invariants for quadratic forms also in the HnF for
n ≥ 3. This will be made more precise below and it will lead to the famous Milnor
conjecture, see also Pfister’s article [P5].

An invariant of a somewhat different type exists if the field F is formally real,
i.e. if there exist orderings on F . Let ϕ = 〈a1, · · · , an〉 and let P be an ordering
on F . We define the signature of ϕ with respect to P , sgnP ϕ, to be #{ai | ai >P

0} −#{ai | ai <P 0}. Note that it is Sylvester’s law of inertia which tells us that
this is indeed an invariant of ϕ independent of the chosen diagonalization. If X
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denotes the space of all orderings, then each form ϕ defines a map ϕ̂ : X → Z by
ϕ̂(P ) = sgnP ϕ. This map ϕ̂ is called the total signature of ϕ.

2.2. The Witt ring. The Witt cancellation theorem states that if ϕ, ψ and
η are forms over a field F and if ϕ ⊥ η ∼= ψ ⊥ η, then ϕ ∼= ψ. We call ϕ Witt
equivalent to ψ, and we write ϕ ∼ ψ, if ϕ ⊥ −ψ is hyperbolic. The Witt cancellation
theorem implies that this is indeed an equivalence relation. The class of a form ϕ
with respect to this equivalence relation will be called Witt class of ϕ and be
denoted for now by [ϕ]. These classes can be made into a ring as follows. The zero
element is given by the class of hyperbolic forms, addition by [ϕ]+[ψ] = [ϕ ⊥ ψ], and
multiplication is induced by the tensor product of quadratic forms, [ϕ]·[ψ] = [ϕ⊗ψ],
where for diagonal forms ϕ = 〈a1, · · · , an〉 and ψ = 〈b1, · · · , bm〉, this product is
given by ϕ ⊗ ψ = 〈a1b1, · · · , aibj , · · · , anbm〉. The ring thus obtained is called the
Witt ring of F and denoted by WF . The Witt decomposition theorem states that
each form ϕ decomposes into an orthogonal sum ϕan ⊥ iH where ϕan is anisotropic,
and that ϕan is determined uniquely up to isometry. It is called the anisotropic
part of ϕ. i is called the Witt index of ϕ denoted by iW (ϕ). We have that [ϕ] = [ψ]
iff ϕan

∼= ψan, so as a set the Witt ring may be identified with isometry classes of
anisotropic forms.

In the sequel, by abuse of notation, we shall simply write ϕ to denote the
class [ϕ] of a form ϕ over a field F . This does normally not cause any problems
and makes the notations less clumsy. One should, however, carefully distinguish
between isometry ϕ ∼= ψ and Witt equivalence ϕ ∼ ψ.

Note that the dimension will not be an invariant for a Witt class [ϕ], but we get
an invariant if we replace it by the dimension index dim mod 2 which takes values
in Z/2Z. The same problem arises when we consider the determinant if −1 is not
a square in F ∗ because [ϕ] = [ϕ ⊥ H], but det(ϕ) = − det(ϕ ⊥ H). Hence, one
introduces the signed discriminant d±ϕ = (−1)n(n−1)/2 det(ϕ), where n = dim ϕ.
This signed discriminant is then an invariant of the Witt class of ϕ. The Clifford
invariant is already an invariant of the Witt class of a form as a direct computation
shows.

The classes of forms of even dimension form the so-called fundamental ideal
IF of WF , which is maximal with WF/IF ' Z/2Z, the isomorphism being in fact
induced by the dimension index map dim mod 2 : WF → Z/2Z. The higher powers
InF of IF play a crucial role in the whole theory. InF is additively generated
by the so-called n-fold Pfister forms. An n-fold Pfister form is a form of type
〈1,−a1〉 ⊗ · · · ⊗ 〈1,−an〉, and we shall write 〈〈a1, · · · , an〉〉 for short (note the sign
convention which will become clearer later on). These Pfister forms and their many
nice properties are of fundamental importance and we shall say more about them
in section 4.3.

2.3. The Milnor conjecture. By a straightforward computation, the signed
discriminant (resp. the Clifford invariant) induces a homomorphism of groups d± :
IF → F ∗/F ∗2 (resp. c : I2F → Br2 F ). It is also not too difficult to show
that d± is surjective with kernel I2F . The Clifford invariant map is rather more
difficult to treat. That I3F is in the kernel can still be readily shown. It is a
deep theorem due to Merkurjev [M1] that the map c is surjective with kernel
I3F . Using the cohomology groups introduced above, we thus have isomorphisms
en : InF/In+1F → HnF for n = 0, 1, 2 induced by the classical invariants. These
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maps en send the class of an n-fold Pfister form 〈〈a1, · · · , an〉〉 modulo In+1F to
the n-fold cup product (a1) ∪ · · · ∪ (an) (this is one of the main reasons for the
sign convention for Pfister forms). The Milnor conjecture states that for each n
there exists a group isomorphism en : InF/In+1F → HnF sending the class of
an n-fold Pfister form to the corresponding n-fold cup product. This conjecture
would then lead to a natural generalization of the classical invariants and in a
certain sense to a complete set of invariants. Actually, in the introductory remarks,
Question 4.3 and §6 of his article [Mi], Milnor stated his conjecture in terms of
Milnor K-groups KnF/2KnF , and he asked whether the canonical homomorphisms
KnF/2KnF → HnF and KnF/2KnF → InF/In+1F are always isomorphisms.

For n = 3, the existence of such a homomorphism en : InF/In+1F → HnF
has been established by Arason [A], and for n = 4 by Jacob-Rost [JR] and, inde-
pendently, by Szyjewski [Sz]. The fact that e3 is an isomorphism was shown by
Merkurjev-Suslin [MSu] and, independently, by Rost [R1]. A proof of the Milnor
conjecture regarding the existence of isomorphisms KnF/2KnF → HnF was an-
nounced by Voevodsky [Vo], and in collaboration with Orlov and Vishik [OVV]
also the corresponding result on the maps en.

It should be noted that the classical invariants dim mod 2, d± and c are defined
for all elements of the Witt ring, and they are functorial with respect to field
extensions E/F , i.e. if rH

E/F : HnF → HnE and rW
E/F : WF → WE denote the

restriction maps by passing from F to E, then for example rH
E/F ◦ c = c ◦ rW

E/F .
Arason [A] showed that in general e3 cannot be extended to the whole Witt ring
and stay functorial with respect to field extensions. (His argument can be modified
to yield explicit counterexamples for all en, n ≥ 3 if one assumes the results of
Voevodsky [Vo].)

2.4. Quadratic form invariants and the classification and isotropy
problems. In a certain sense, one could say that the classification problem is
solved once we have the above invariants en for all n. Indeed, let ϕ and ψ be
forms over F . Classifying forms just means deciding whether ϕ is isometric to
ψ, i.e. whether ϕ ⊥ −ψ is hyperbolic. Now if this is the case, then clearly ϕ ⊥
−ψ ∈ InF for all n and en(ϕ ⊥ −ψ) = 0. Conversely, suppose we can show that
ϕ ⊥ −ψ ∈ InF and en(ϕ ⊥ −ψ) = 0. Then ϕ ⊥ −ψ ∈ In+1F and we can compute
en+1(ϕ ⊥ −ψ). If this equals 0, we can continue. If not, then ϕ 6∼= ψ. The Arason-
Pfister Hauptsatz shows that it suffices to compute the en up to the smallest n such
that 2n > dim(ϕ ⊥ −ψ) to decide whether ϕ ∼= ψ.

Theorem 2.1. (Arason-Pfister [AP, Hauptsatz and Kor. 3].) Let ϕ be a form
over F such that ϕ ∈ InF . If dim ϕ < 2n then F is hyperbolic. If dim ϕ = 2n then
ϕ is similar to an n-fold Pfister form.5

We will refer to this theorem simply by APH. Note that APH implies in par-
ticular that

⋂∞
n=0 InF = 0. It should be remarked that the only known proofs of

APH always use function field techniques as will be introduced in section 4.2.
Returning to our classification problem, it remains to compute the en. Now e0

and e1 are easily computed, and it is equally easy to check whether their values in
the target groups H0F = Z/2Z resp. H1F = F ∗/F ∗2 are trivial or not. Suppose

5Two forms ϕ and ψ are similar if there exists an a ∈ F ∗ such that ϕ ∼= aψ.
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ϕ ∈ I2F . Then c(ϕ) = e2(ϕ) ∈ H2F = Br2 F can also explicitly be computed as
the following lemma and its proof show.

Lemma 2.2. Let ϕ be a form in I2F of dimension 2n + 2, n ≥ 1. Then there
exist quaternion algebras Q1, · · · , Qn over F such that c(ϕ) = [Q1 ⊗ · · · ⊗ Qn] ∈
Br2 F .

Proof. Suppose first that n = 1, so that ϕ is a 4-dimensional form in I2F ,
i.e. with trivial signed discriminant. Then there are a, b, x ∈ F ∗ such that ϕ ∼=
x〈1,−a,−b, ab〉 ∼= x〈〈a, b〉〉. Now 〈〈x, a, b〉〉 ∼= 〈〈a, b〉〉 ⊥ −x〈〈a, b〉〉 ∈ I3F , hence
〈〈a, b〉〉 ≡ x〈〈a, b〉〉 mod I3F and thus c(〈〈a, b〉〉) = c(x〈〈a, b〉〉) ∈ Br2 F . We have
c(〈〈a, b〉〉) = [(a, b)F ] ∈ Br2 F , where (a, b)F denotes the quaternion algebra with F -
basis 1, i, j, ij = k and relations i2 = a, j2 = b, ij = −ji. (Under the identification
H2F = Br2 F , the cup product (a)∪ (b) corresponds to the Brauer class of (a, b)F .)

Now suppose that n ≥ 2 and let ϕ ∈ I2F , dim ϕ = 2n + 2. Then 〈1,−x〉ϕ ∈
I3F and thus ϕ ≡ xϕ mod I3F , so that we may assume after scaling that ϕ ∼=
〈1,−a,−b〉 ⊥ ϕ′. Then ϕ ∼ 〈〈a, b〉〉 ⊥ ψ in WF with ψ ∼= 〈−ab〉 ⊥ ϕ′. We have
dim ψ = 2n and ψ ∈ I2F . Thus, there exist by induction quaternion algebras
Q1, · · · , Qn−1 such that c(ψ) = [Q1 ⊗ · · · ⊗ Qn−1] ∈ Br2 F . The homomorphism
property of c on forms in I2 implies c(〈〈a, b〉〉 ⊥ ψ) = c(〈〈a, b〉〉)c(ψ) = [Q1⊗· · ·⊗Qn]
with Qn = (a, b)F . ¤

Although we can explicitly write down an element in Br2 F which represents
the Clifford invariant of ϕ, it is still quite a different matter (if not impossible) to
check whether this element is trivial in Br2 F . For the en, n ≥ 3, the situation is
even worse. Suppose we could show that ϕ ∈ InF and suppose we have given ϕ in
diagonal form 〈a1, · · · , an〉. There is no known formula for how to express en(ϕ)
as sum of n-fold cup products using the coefficients ai in a way similar to what we
did in the proof of the above lemma.

The following theorem of Elman-Lam tells us exactly for which fields the clas-
sical invariants (plus the signatures) are sufficient to classify quadratic forms.

Theorem 2.3. (Elman-Lam [EL3, Classification Theorems 3′, 3].) If F is
not formally real, then quadratic forms over F are classified by dimension, signed
discriminant, and Clifford invariant if and only if I3F = 0.

If F is formally real, then quadratic forms over F are classified by dimension,
signed discriminant, Clifford invariant, and total signature if and only if I3F is
torsion free.

An element ϕ in WF is called torsion if for some n ∈ N, n×ϕ = ϕ ⊥ · · · ⊥ ϕ︸ ︷︷ ︸
n times

∼ 0

in WF . Pfister [P3] has shown that a torsion element in WF has always (additive)
order a power of 2. If F is not formally real, i.e. if −1 is a sum of squares in F ,
then every element is torsion and its order will divide the level s of the field (see
section 5.1). If F is formally real, i.e. −1 cannot be written as a sum of squares
or, which is equivalent by the Artin-Schreier theorem, there exist orderings on F ,
then Pfister has also shown that the following sequence is exact :

0 −→ WtF −→ WF
(sgnP )−→

∏

P∈X

Z ,

where WtF denotes the torsion part of the Witt ring and X the space of orderings
of F . This is also referred to as Pfister’s local-global principle and it essentially
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says that a form in WF is torsion if and only if its total signature is identically
zero.

Fields to which the previous theorem by Elman-Lam can be applied include
local and global fields, fields of transcendence degree ≤ 2 over finite fields or over
the real numbers.

Let us conclude this section with a result which extends APH. Recall that APH
tells us that anisotropic forms in InF must be of dimension ≥ 2n. Furthermore, up
to similarity, the only anisotropic forms of dimension 2n in InF will be anisotropic
n-fold Pfister forms. But how about anisotropic forms of higher dimension in InF ?
Pfister [P3] has shown that there are no anisotropic forms of dimension 10 in I3F . It
is not difficult to construct fields for which there exist anisotropic forms of dimension
2n + 2n−1 in InF . So one might venture the following conjecture.

Conjecture 2.4. Let n ∈ N, n ≥ 2. Let ϕ be an anisotropic form in InF of
dimension > 2n. Then dim ϕ ≥ 2n + 2n−1.

For n = 2, this conjecture is trivially true. It is also true for n = 3 and 4.

Theorem 2.5. (Pfister [P3, Satz 14, Zusatz] for n = 3, Hoffmann [H4, Main
Theorem] for n = 4.) Conjecture 2.4 is true for n ≤ 4.

B. Kahn informed me that A. Vishik [Vi2] has shown that Conjecture 2.4 is
true for all n provided the field F is of characteristic 0. The proof is based on
techniques developed by Voevodsky in his proof of the Milnor conjecture and which
were further elaborated in Vishik’s thesis [Vi1]. However, Vishik’s proof does not
rely on the Milnor conjecture.

APH and Theorem 2.5 (resp. Conjecture 2.4) can be interpreted as (an)isotropy
results on forms whose invariants en are trivial up to a certain n (where we assume
of course the Milnor conjecture): Suppose that Conjecture 2.4 is true and let ϕ be
an anisotropic form over F such that ei(F ) = 0 for 0 ≤ i ≤ n. Then dimϕ = 2n+1

or dim ϕ ≥ 2n+1 + 2n.

3. Field invariants

In the previous section, we have seen how invariants of quadratic forms yield
information on the classification problem or on the isotropy problem. In this section,
we want to exhibit certain field invariants which by their very definition tell us
something about isotropy of quadratic forms (or certain types of quadratic forms).

Let F be a field and let C(F ) be a set of quadratic forms over F , for example
all forms which share a certain property. We define

supdim(C(F )) = sup{dim ϕ |ϕ anisotropic form over F, ϕ ∈ C(F )} .

If C(F ) is empty or if it only contains isotropic forms, we put supdim(C(F )) = 0.
Let us consider some examples.

3.1. The old u-invariant. If we consider all quadratic forms over F ,

Call(F ) = {quadratic forms over F} ,

the field invariant supdim(Call(F )) coincides with the “old” u-invariant of F as
originally defined by Kaplansky [Ka] (who calls it C(F )). It is just the supremum
of the dimensions of anisotropic forms over F .
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Example 3.1. Consider F = C(t1, · · · , tn), the function field in n variables
over the complex numbers. Then it can be shown by an inductive argument that
the form 〈〈t1, · · · , tn〉〉 is anisotropic (cf. Lemma 1.5). In particular, we have
supdim(Call(F )) ≥ dim 〈〈t1, · · · , tn〉〉 = 2n. On the other hand, F will be a Cn-
field by Tsen-Lang theory. Hence, all forms of dimension ≥ 2n +1 will be isotropic.
This yields supdim(Call(F )) = 2n.

3.2. The Hasse number. If F is formally real, then the form defined by a
sum of n squares, n × 〈1〉, will be anisotropic for all n ∈ N. Hence, for formally
real F the invariant supdim(Call(F )) contains no useful information. Therefore, it
seems reasonable to replace Call(F ) by another class of forms which for nonformally
real F coincides with Call(F ), but which for formally real F contains only forms
which satisfy some necessary conditions for isotropy. So suppose that F is formally
real and let P be an ordering on F . Let ϕ be a form over F . Let FP be a real
closure of F with respect to P and consider the form ϕFP

= ϕ ⊗ FP obtained by
passing from F to FP via scalar extension. Then ϕFP

is isotropic if and only if
ϕFP

is indefinite, i.e. | sgnP ϕ| < dim ϕ. Hence, for ϕ to be isotropic, a necessary
condition is that ϕ be indefinite at each ordering P of F , in which case we say that
ϕ is totally indefinite. If F is not formally real, there are no orderings and in this
case we define each form to be totally indefinite to avoid case distinctions. We now
put

Cti(F ) = {totally indefinite quadratic forms over F}.
The invariant supdim(Cti(F )) we thus obtain is referred to as the Hasse number and
denoted by ũ(F ). It coincides by definition with supdim(Call(F )) for nonformally
real F . For formally real F , it yields useful further information.

Example 3.2. For example, if F = R (or any real closed field), then ũ(F ) = 0
(see also Example 1.1).

Consider the form ϕ = 〈1,−(1 + T 2)〉 over R(T ). Then, since 1 + T 2 is not
a square in R(T ), the form ϕ is anisotropic. It is also totally indefinite as 1 is
totally positive (i.e. positive at each ordering P of R(T )) and −(1 + T 2) is totally
negative. In particular, ũ(R(T )) ≥ 2. By what we remarked in Example 1.7, we
thus get ũ(R(T )) = 2.

If we consider the function field R(T, X) in two variables, then 〈1,−(1 + T 2)〉
is still totally indefinite, hence the form 〈1,−(1 + T 2)〉 ⊥ X(n×〈1〉) will be totally
indefinite, and it will be anisotropic for all n ∈ N as 〈1,−(1 + T 2)〉 and 〈1, · · · , 1〉
are anisotropic over R(T ), cf. Lemma 1.5. It follows that ũ(R(T, X)) = ∞.

We have ũ(Q) = 4, cf. Example 1.4.

3.3. The generalized u-invariant. As already remarked, if F is not formally
real then all forms are torsion forms. If F is formally real, then torsion forms are
exactly the forms with total signature zero, which then are necessarily totally indef-
inite forms. This leads to another modification of Call(F ) which yields meaningful
information in the formally real case. We define

Ctor(F ) = {torsion quadratic forms over F} .

The invariant u(F ) = supdim(Ctor(F )) is called the (generalized) u-invariant as
defined by Elman-Lam [EL1]. Since Ctor(F ) ⊂ Cti(F ), we obviously get u(F ) ≤
ũ(F ). Since dim ϕ− sgnP ϕ ≡ 0 mod 2 for all orderings P of a formally real F , we
see that for formally real fields the u-invariant will always be even or infinite.
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Example 3.3. Clearly, u(Q) ≤ ũ(Q) = 4. On the other hand, the form
〈1, 1,−7,−7〉, for example, has signature zero and is anisotropic. Hence u(Q) = 4.
In fact, the Hasse-Minkowski theorem implies that for each global field K one has
ũ(K) = u(K) = 4, cf. [S, Ch. 6, §6].

We have u(R) = ũ(R) = 0. The form 〈1,−(1 + T 2)〉 over R(T ) is in fact
a torsion form and thus u(R(T )) = ũ(R(T )) = 2. The form 〈1,−(1 + T 2)〉 ⊥
X〈1,−(1 + T 2)〉 is a torsion form and anisotropic over R(T, X), hence u(R(T, X)) ≥
4. One can show that u(R(T, X)) ≤ 6, see, e.g., [P4, Ch. 8, Th. 2.12], so
u(R(T,X)) = 4 or 6. The precise value is not known at present.

3.4. The level. The level s(F ) (s for the German word “Stufe”) of a field F is
defined to be as follows. If −1 is not a sum of squares in F , i.e. if F is formally real,
then we put s(F ) = ∞. Otherwise, s(F ) is the smallest integer n ≥ 1 such that −1
can be written as a sum of n squares in F . This definition can be reformulated as
follows. Consider

Cs(F ) = {〈1, · · · , 1︸ ︷︷ ︸
n

〉; n ∈ N} .

Then s(F ) = supdim(Cs(F )), thus we have an interpretation of the level in terms
of the supremum of the dimensions of certain anisotropic forms.

Example 3.4. For finite fields Fp, p an odd prime, we have s(Fp) = 1 (resp.
2) if and only if −1 is a quadratic residue (resp. nonresidue) modp iff p ≡ 1 mod 4
(resp. p ≡ 3 mod 4).

For Qp we have s(Qp) = s(Fp) for p odd, and s(Q2) = 4. Note that by passing
to a rational function field, the level will not change, i.e. s(F ) = s(F (T )).

3.5. The Pythagoras number. Another invariant which has been studied
extensively is the so-called Pythagoras number p(F ) of a field. Define

∑
F 2 to be

the set of all elements in F ∗ which can be written as a sum of squares. Now let
p(F ) be the smallest n ∈ N (if such an integer exists) such that each element in∑

F 2 can be written as a sum of ≤ n squares. If such an integer does not exist,
i.e. if to each n there exists x ∈ ∑

F 2 which cannot be written as sum of ≤ n
squares, then we put p(F ) = ∞. If we want to interpret p(F ) as the supremum of
the dimensions of certain anisotropic forms, we have to consider

Cp(F ) = {〈1, · · · , 1︸ ︷︷ ︸
n

〉 ⊥ 〈−x〉; n ∈ N ∪ {0}, x ∈ ∑
F 2} ,

and we get p(F ) = supdim(Cp(F )).
If s(F ) = s < ∞, i.e. if F is not formally real, then the form (s + 1)× 〈1〉 will

be isotropic and it will therefore contain H = 〈1,−1〉 as a subform. Now 〈1,−1〉 is
universal, i.e. it represents every element in F ∗. This shows on the one hand that
F is not formally real if and only if F ∗ =

∑
F 2, on the other hand we get that

p(F ) ≤ s + 1. Since −1 is by definition of the level not a sum of s− 1 squares, we
have p(F ) ≥ s and hence, for nonformally real F , p(F ) ∈ {s(F ), s(F ) + 1}.

For formally real F , p(F ) can be finite or infinite.

Example 3.5. Fields with p(F ) = 1 are called pythagorean fields. Each field
F has a pythagorean closure Fpyth inside an algebraic closure Falg, i.e. Fpyth is
the smallest field inside Falg with Pythagoras number 1. It can be obtained by
taking the union of all fields K in Falg such that there exists a tower F = K0 ⊂
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K1 ⊂ · · · ⊂ Kn = K, n ∈ N, such that Ki+1 = Ki(
√

a2
i + b2

i ), ai, bi ∈ Ki (cf., for
example, [S, p. 52]). R and C are pythagorean.

For odd primes p , one has p(Fp) = 2, and p(Qp) = 2 (resp. 3) if p ≡ 1 mod 4
(resp. p ≡ 3 mod 4). Example 1.4 shows that p(Q) = 4.

3.6. The l-invariant. A form ϕ = 〈a1, · · · , an〉 is called totally positive defi-
nite if all ai are totally positive, i.e. all ai are positive with respect to each ordering
of F (if there are any), or, which is equivalent, all ai are in

∑
F 2. Note that by

this definition, forms over nonformally real fields are always totally positive def-
inite. The length l(F ) of a field F is defined to be the smallest n ∈ N (if such
an integer exists) such that each totally positive definite form over F of dimension
n represents all totally positive elements in F . This invariant is significant in the
study of another invariant gF (n) which denotes the smallest r ∈ N such that every
sum of squares of n-ary F -linear forms can be written as a sum of r squares of
n-ary F -linear forms. This invariant gF (n) has been introduced in [CDLR], but
it has implicitly already been studied by Mordell [Mo] for F = Q, who showed
that gQ(n) = n + 3. The invariant l(F ) has been introduced in [BLOP] where it
is shown among many other things that gF (n) = n + l(F )− 1 for all n ≥ l(F )− 1,
[BLOP, Th. 2.15].

Again, we want to interpret the invariant l(F ) as the supremum of the dimen-
sions of certain anisotropic forms. We define

Cl(F ) = {〈a1, · · · , an−1,−an〉; n ∈ N, ai ∈
∑

F 2, 1 ≤ i ≤ n} .

We thus get l(F ) = supdim(Cl(F )). Note that Cp(F ) ⊂ Cl(F ) ⊂ Cti(F ), hence
p(F ) ≤ l(F ) ≤ ũ(F ).

Example 3.6. If F is not formally real, then
∑

F 2 = F ∗ and we have ũ(F ) =
u(F ) = l(F ). We have p(Q) = 4 ≤ l(Q) ≤ ũ(F ) = 4, hence l(Q) = 4. Similarly,
l(R(T )) = ũ(R(T )) = 2.

4. Construction of fields with prescribed invariants : Basic ideas and
tools

Having introduced field invariants such as the level, the Pythagoras number,
the l- and u-invariants and the Hasse number, it becomes a natural question to
ask which values can appear for each of these invariants. Again, let us consider a
certain class of forms C as in the examples above. For a given n ∈ N, can there
exist a field F such that supdim(C(F )) = n, and if so, how can one construct such
a field ?

4.1. The basic idea of construction. We want to construct a field F such
that supdim(C(F )) = n for a certain n ∈ N, i.e. we want to have an anisotropic form
of dimension n in C(F ), say ϕ, and we have to verify that all forms of dimension > n
in C(F ) are anisotropic. The whole idea will be reminiscent of certain direct limit
constructions which the reader might have encountered in other contexts, such as
the construction of an algebraic closure of a field.

Step 1. Choose a field F0 such that there exists an anisotropic form ϕ of
dimension n in C(F0). If all forms in C(F0) of dimension > n are isotropic, F0 is
the desired field. In this case, we put Fi = F0 for all i ∈ N. If not, continue with
step 2.
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Step 2. Construct a field extension F1 of F0 in such a way such that ψF1 ∈
C(F1) for all ψ ∈ C(F0), such that ϕF1

is anisotropic, and such that ψF1 is isotropic
for all ψ ∈ C(F0) of dimension > n. If all forms in C(F1) of dimension > n are
isotropic, F1 is the desired field and we put Fi = F1 for all i ∈ N, i ≥ 2. If not,
repeat this construction.

Step 3. Repeating this construction, we get a tower of fields F0 ⊂ F1 ⊂ · · · ⊂
Fi ⊂ · · · which may or may not become stationary. We let F be the direct limit of
this tower of fields, i.e. F =

⋃∞
i=0 Fi. F is then again a field. We have to verify that

for a form γ over F we have γ ∈ C(F ) if and only if there exists some i ∈ N and some
ρ ∈ C(Fi) such that γ ∼= ρF . (For many types of C, such as Cs = sums of squares,
this is just a formality and often self-evident.)

Step 4. We claim that F is the desired field. First, consider ϕF . Then ϕF ∈
C(F ). Furthermore, ϕF is anisotropic. Indeed, if it were isotropic, there would be
an i ∈ N such that already ϕFi

were isotropic, which is not possible because of the
way the Fi were constructed. Hence, supdim(C(F )) ≥ n.

Now let γ ∈ C(F ) with dim γ > n. Then, for some i ∈ N there exists ρ ∈ C(Fi)
such that γ ∼= ρF . By construction, ρFi+1 is isotropic. Hence ρF

∼= γ is isotropic.
This shows that supdim(C(F )) ≤ n. Therefore, supdim(C(F )) = n.

Of course, it could a priori be impossible to have supdim(C(F )) = n for certain
n ∈ N. For example, we have already seen that for formally real F , u(F ) will always
be even. In section 5.1, we shall see that s(F ) will always be a 2-power or infinite.
In many cases, we still don’t know precisely which values can be realized.

Another obvious problem is how to control the (an)isotropy behaviour for many
forms simultaneously by passing from Fi to Fi+1. If we consider a field extension
L/K such that an anisotropic form µ over K becomes isotropic over L, then in
general many more anisotropic forms over K will also become isotropic over L. So
the aim is to choose L in such a way that as few anisotropic forms over K become
isotropic over L as possible, but that µ should be one of the forms which do become
isotropic. This can be achieved “generically” by passing to function fields as we
shall explain in the next section. We will refer to the above step by step procedure
using function field extensions as Merkurjev’s method, as it was Merkurjev who
demonstrated the power of this method most spectacularly by constructing fields
with prescribed even u-invariant. This result will be the theme of section 5.3.

4.2. Function fields of quadratic forms. Let ϕ be a form over F of dimen-
sion n ≥ 3. Then the function field of ϕ, denoted by F (ϕ), is the function field of
the projective quadric defined by the equation ϕ = 0.

More explicitly, consider ϕ = 〈a1, · · · , an〉 as a homogeneous polynomial in the
polynomial ring F [x1, · · · , xn], ϕ(x1, · · · , xn) =

∑n
i=1 aix

2
i . Then it can readily be

shown that the polynomial ϕ(x1, · · · , xn−1, 1) is irreducible, and if we denote by
I the ideal generated by ϕ(x1, · · · , xn−1, 1) in F [x1, · · · , xn−1], then F (ϕ) is the
quotient field of the integral domain F [x1, · · · , xn−1]/I.

If we put ϕ′ = 〈a2, · · · , an〉, then we have

F (ϕ) = F (x2, · · · , xn−1)(
√
−a−1

1 ϕ′(x2, · · · , xn−1, 1)) .

If ϕ = 〈a, b〉 is a binary form, we put F (ϕ) = F (
√−ab). This is consistent with

the previous expression and it gives a quadratic extension if 〈a, b〉 is anisotropic
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(i.e. −ab 6∈ F ∗2), and it is F itself if 〈a, b〉 is isotropic. To avoid case distinctions,
we put F (ϕ) = F for dim ϕ ≤ 1 (sometimes it is useful to consider 0-dimensional
quadratic forms). If dim ϕ ≥ 2, then ϕ will be isotropic over F (ϕ) by definition of
the function field.

One of the first systematic studies of function fields of quadratic forms and
the behaviour of quadratic forms over such function fields has been undertaken by
Knebusch [K1], [K2]. But these function fields have already appeared earlier, for
example in [P1] and [AP]. We collect some useful facts which we will use later.
We refer to [S, Ch. 4, §5] for details.

Let ϕ be a form over F with dim ϕ = n ≥ 2. Then F (ϕ) is of transcendence
degree n−2 over F , and F (ϕ)/F is purely transcendental if and only if ϕ is isotropic
(here, we consider F to be purely transcendental of transcendence degree 0 over
itself in order to include the case ϕ ∼= H). This shows in particular that if K/F is
an extension such that ϕK is isotropic, then K(ϕ)/K is purely transcendental. It
follows that if ψ is another form over F , then if ψ is anisotropic over K it will be
anisotropic over F (ϕ) (go up to K(ϕ) and then down to F (ϕ)).

F (ϕ) is also called a generic zero field for the form ϕ as it has the property
that if L is any field over F such that ϕL is isotropic, then there exists an F -place
λ : F (ϕ) → L ∪∞.6

Among the most important problems in the theory of function fields of quadrics
are the following questions :

Question 4.1. (i) Let ϕ be an anisotropic form over F . Which anisotropic
forms ψ become isotropic over F (ϕ) ?

(ii) Let ϕ be an anisotropic form over F . For which anisotropic forms ψ over
F is ϕF (ψ) isotropic ?

A complete answer to the first question is known for dim ϕ = 2. In fact, the
following is easy to show (cf. [S, Ch. 2, Lemma 5.1], [L1, Ch. VII, Lemma 3.1]) :

Lemma 4.2. Let ψ be a form over F such that dim ψ ≥ 3 or dim ψ = 2 and
anisotropic. Let d ∈ F ∗ \ F ∗2. Then ψF (

√
d) is isotropic if and only if there exists

a ∈ F ∗ such that a〈1,−d〉 ⊂ ψ.

The case of dim ϕ = 3 has been studied by various authors, among others by
Rost [R2], Hoffmann, Lewis and Van Geel [LVG], [HLVG], [HVG1]. In [HLVG],
a reasonably complete answer is given in terms of so-called splitting sequences and
minimal forms. The case of dim ϕ ≥ 4 is largely open and only some partial results
are known.

The second question has attracted a lot of attention over the last few years.
A complete answer is known if dim ϕ ≤ 5. An almost complete answer is also
known for dim ϕ = 6. Partial results have been obtained in dimensions 7 and 8
(e.g., a rather complete description is known if ϕ is an 8-dimensional form in I2F ).
Among the authors who contributed to these results on forms of small dimension
are Wadsworth [W], Leep [Le3], Hoffmann [H1], [H2], Laghribi [Lag1], [Lag2],
[Lag3], Izhboldin and Karpenko [IK1], [IK2], [IK3].

6A place λ : K → L∪∞ is a pseudo-homomorphism with the properties λ(a+b) = λ(a)+λ(b),
λ(ab) = λ(a)λ(b) whenever the right hand sides are defined, where one applies the obvious rules
a +∞ = ∞ for a ∈ L, a∞ = ∞ for a ∈ L∗ ∪∞, 1/∞ = 0, 1/0 = ∞, and where the expressions
∞+∞ and 0∞ are not defined.
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If in Question 4.1 we replace the word “isotropic” by “hyperbolic”, the problem
becomes somewhat easier but by no means trivial. Part (i) will then become the
problem of determining the kernel of the ring homomorphism WF → WF (ϕ). This
is known for Pfister forms as we shall see in the next section, but also for other
types of forms, so for example in the case dim ϕ ≤ 5 (cf. [F]).

One of the most general and most useful results on the “hyperbolic” question is
the following subform theorem due to Wadsworth [W, Th. 2] and, independently,
Knebusch [K1, Lemma 4.5]. See also [S, Ch. 4, Th. 5.4].

Theorem 4.3. Let ϕ and ψ be forms over F such that dim ϕ ≥ 2, ϕ 6∼= H,
and ψ nonhyperbolic. Suppose that ψF (ϕ) is hyperbolic. Then for each a ∈ F ∗

represented by ϕ and each b ∈ F ∗ represented by ψ, we have that abϕ ⊂ ψ. In
particular, dim ψ ≥ dim ϕ.

This theorem is often referred to (as we shall do) as the Cassels-Pfister subform
theorem, CPST for short, although the original theorem which goes by this name
(and which is the main ingredient in the proof of the theorem above) states the
following : Let ϕ be a form of dimension n over F and let ψ be another form over
F . Then ψ represents ϕ(x1, · · · , xn) over the rational function field in n variables
F (x1, · · · , xn) if and only if ϕ ⊂ ψ. Cf. [P2], see also [L1, Ch. IX, Th. 2.8], [S,
Ch. 4, Th. 3.7].

General results on the isotropy problem are even harder to obtain or so it seems,
although great progress has been made recently in the work of Vishik, Karpenko
and Izhboldin who invoke highly sophisticated machinery such as Chow groups and
Chow motives of quadrics, unramified cohomology and graded Grothendieck groups
of quadrics to tackle this and related problems. Further progress in the algebraic
theory of quadratic forms in general and on the isotropy problem in particular will
most likely necessitate more and more the use of such highly developed techniques
originating in algebraic geometry, K-theory and cohomology theory.

An important general result which nevertheless can be proved in a fairly elemen-
tary fashion using properties of Pfister forms (see section below) is the following :

Theorem 4.4. (Hoffmann [H3, Th. 1].) Let ϕ and ψ be anisotropic forms over
F such that dim ϕ ≤ 2n < dim ψ. Then ϕ stays anisotropic over F (ψ).

A somewhat different proof from the one in [H3] was given by Hurrelbrink-
Rehmann [HuR].

4.3. Pfister forms. An n-fold Pfister form over F is a form of type 〈1,−a〉⊗
· · · ⊗ 〈1,−an〉, ai ∈ F ∗, and we write 〈〈a1, · · · , an〉〉 for short. We have already
recognized them in section 2.2 as being the generators of InF . Pfister forms share
many nice and useful properties which make them into a powerful tool and place
them at the core of the whole algebraic theory of quadratic forms. They have
first been studied systematically by Pfister [P2] who proved their basic properties.
Many of these proofs have been simplified later by Witt [Wi2] (see also [S, Ch. 2,
§10]). We will denote the set of forms isometric (resp. similar) to n-fold Pfister
forms by PnF (resp. GPnF ).

We collect some of these properties which will be useful later on. First of
all, if ϕ ∈ PnF , then a ∈ F ∗ is represented by ϕ if and only if ϕ ∼= aϕ. If DF (ϕ)
denotes the elements in F ∗ represented by ϕ, and if GF (ϕ) represents the similarity
factors of ϕ over F , then the above just means GF (ϕ) = DF (ϕ) for ϕ ∈ PnF . In
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particular, DF (ϕ) is a group. A form ψ with the property GF (ψ) = DF (ψ) is called
round (this definition is due to Witt [Wi2] who also provided an elegant proof of the
roundness of Pfister forms). An n-dimensional form ψ over F is called multiplicative
if for the n-tuples of variables X = (x1, · · · , xn), Y = (y1, · · · , yn) there exist an
n-tuple of rational functions Z = (z1, · · · , zn), zk ∈ F (xi, yj ; 1 ≤ i, j ≤ n) such
that ψ(X)ψ(Y ) = ψ(Z).7 Since isotropic forms are universal, they are always
multiplicative. Pfister showed that an anisotropic form ϕ over F is a Pfister form if
and only if ϕ is multiplicative if and only if DL(ϕ) is a group for all field extensions
L/F iff ϕL is round for all field extensions L/F (cf. Pfister [P2, Satz 5, Th. 2],
see also Lam’s book [L1, Ch. X § 2] and Scharlau’s book [S, Ch. 2, § 10; Ch. 4,
Th. 4.4]).

If F is formally real and P is an ordering of F , then for ϕ = 〈〈a1, · · · , an〉〉 we
have sgnP ϕ = 2n = dim ϕ if all ai <P 0, otherwise sgnP ϕ = 0.

Pfister forms are either anisotropic or hyperbolic. This shows that if ϕ ∈ GPnF
is anisotropic, n ≥ 1, then ϕF (ϕ) is isotropic and therefore hyperbolic. The converse
of this statement is also true : Let ϕ be an anisotropic form over F of dimension
≥ 2 such that ϕF (ϕ) is hyperbolic, then ϕ ∈ GPnF for some n ≥ 1. This has been
shown by Wadsworth [W, Th. 5] and, independently, by Knebusch [K1, Th. 5.8]
(see also [S, Ch. 4, Th. 5.4]).

We have that if ϕ ∈ GPnF and ψ are anisotropic forms over F , and if ψF (ϕ)

is hyperbolic, then there exists a form τ over F such that ψ ∼= ϕ ⊗ τ . This can
easily be shown using the fact that Pfister forms become hyperbolic over their own
function field, invoking CPST and doing an induction on the dimension of ψ. We
leave the details as an exercise to the reader. This result also leads to a proof of
APH.

Proof of APH. Let ϕ be an anisotropic form in InF and write ϕ ∼ ∑r
i=1 πi

with anisotropic πi ∈ GPnF . If r = 0 then ϕ ∼ 0, i.e. dim ϕ = 0. If r = 1 then
ϕ ∼= π1 (as ϕ and π1 are anisotropic), and we have dim ϕ = 2n. If r ≥ 2, consider
K = F (πr). If ϕK is hyperbolic then ϕ ∼= τ ⊗ πr for a certain form τ over F
by the preceding paragraph. In particular dim ϕ = 2n dim τ ≥ 2n. If ϕK is not
hyperbolic, then (ϕK)an =

∑s
i=1(πi)K , where the (πi)K are anisotropic, 1 ≤ s < r

(after deleting all hyperbolic (πi)K and rearranging the remaining ones : s ≥ 1
because ϕK is not hyperbolic, s < r because (πr)K is hyperbolic). Induction on r
shows that dim ϕ ≥ dim(ϕK)an ≥ 2n.

If dim ϕ = 2n, then dim(ϕF (ϕ))an < 2n and (ϕF (ϕ))an ∈ InF (ϕ), which by
the above shows that ϕF (ϕ) is hyperbolic, and thus, by what we mentioned above,
ϕ ∈ GPnF . ¤

An important notion is that of a Pfister neighbor. ϕ is called a Pfister neighbor
if there exists a form π ∈ PnF for some n ≥ 0 and an a ∈ F ∗ such that aϕ ⊂ π
and dimϕ > 1

2 dim π = 2n−1. In this case, we say that ϕ is a Pfister neighbor of
the Pfister form π. In this situation, if ϕ is isotropic then π is isotropic and hence
hyperbolic. Conversely, if π is hyperbolic than ϕ is isotropic as follows readily
from the fact that dimϕ > 1

2 dim π and the following rather obvious but useful
observation (whose proof is left as an easy exercise to the reader) :

7Some authors call a form multiplicative if it is round. In Scharlau’s book [S, Ch. 2, Def. 10.1],
a form is called multiplicative if it is either hyperbolic, or anisotropic and round. With this
definition, Pfister forms are multiplicative.
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Lemma 4.5. Let ψ and τ be forms over F such that τ ⊂ ψ. If dim τ >
dim ψ − iW (ψ), then τ is isotropic.

If ϕ is a Pfister neighbor of the Pfister forms π1 and π2, then π1
∼= π2. Indeed,

for dimension reasons, there exists n ∈ N such that π1, π2 ∈ PnF . Let ai ∈ F ∗ and
τi such that aiϕ ⊥ τi

∼= πi, i = 1, 2. Note that dim τi < 1
2 dim πi = 2n−1. Then,

in WF , a2π1 − a1π2 ∼ a2τ1 − a1τ2. The left hand side is in InF , the right hand
side is of dimension < 2n, hence, by APH, a2π1 − a1π2 ∼ 0, i.e. a2π1

∼= a1π2.
Mutliplicativity of Pfister forms then readily implies that π1

∼= π2.

5. Construction of fields with prescribed invariants : Examples

5.1. The level. Recall that by definition the level s(F ) is the supremum of
the dimensions of anisotropic forms of type 〈1, · · · , 1〉. This is one of the first field
invariants pertaining to quadratic forms which has been studied, in the beginning
in the context of number fields, see the historical remarks in [P4, p. 42]. Let us
just mention that H. Kneser [Kn] proved in 1934 that the level of a field F , if finite
(i.e. if F is not formally real) is always of the form 1, 2, 4, 8 or a multiple of 16.
Obviously unaware of Kneser’s result, Kaplansky [Ka] proved in 1953 the weaker
result that the level for nonformally real F is 1, 2, 4 or a multiple of 8. (Kaplansky
does not use the word level and calls this invariant B(F ).) Back then, there were
no examples known of nonformally real F with s(F ) > 4.

The aim of this section is to prove Pfister’s famous results on the level, published
in [P1].

Theorem 5.1. (Pfister)
(i) Let F be a nonformally real field. Then there exists n ∈ N∪{0} such that

s(F ) = 2n.
(ii) For each n ∈ N ∪ {0} there exists a field F with s(F ) = 2n.

Proof. (i) Define σn = 2n × 〈1〉 = 〈〈−1, · · · ,−1〉〉 ∈ PnF . Let m ∈ N and
suppose that s(F ) ≥ m. Let ϕ = m × 〈1〉. Then by definition of the level as
supdim Cs(F ), where Cs(F ) = {n × 〈1〉; n ∈ N}, we have that ϕ is anisotropic.
Let n be such that 2n−1 < m ≤ 2n. Then ϕ is a Pfister neighbor of σn, and the
anisotropy of ϕ implies that of σn. Hence s(F ) ≥ 2n, which immediately yields the
desired result.

(ii) Let K be any formally real field and consider the n-fold Pfister form σn

defined as above, and ψ = (2n+1)×〈1〉. Let F = K(ψ). Then ψK is isotropic, hence
m×〈1〉 is isotropic for all m > 2n. On the other hand, σn will stay anisotropic over
F = K(ψ) as follows from Theorem 4.4. Of course, one can also invoke CPST : If
(σn)F were isotropic, it would be hyperbolic as it is a Pfister form. Hence ψ would
be similar to a subform of σn, which is impossible for dimension reasons. ¤

In the notations of section 4.1, K corresponds to the field F0, K(ψ) to F1, σn

to ϕ, and our construction stops after the second step.

5.2. The Pythagoras number. We have already seen that if F is not for-
mally real, then p(F ) ∈ {s(F ), s(F ) + 1}, and thus p(F ) ∈ {2n, 2n + 1} for some
integer n ≥ 0. If F is any field with s(F ) = 2n, then consider the rational function
field in one variable K = F (T ). Now for a ∈ F ∗, a + T 2 is a sum of m squares in
K if and only if −1 or a is a sum of m − 1 squares in F . This results has been
shown by Cassels [Ca] and has been generalized by Pfister [P2, Satz 2] (see also
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the “Second Representation Theorem” [L1, Ch. IX, Th. 2.1]). This readily implies
that −1+T 2 cannot be written as a sum of 2n squares and we have p(K) = 2n +1.

To get a field K ′ with p(K ′) = 2n, let Kalg be an algebraic closure of K and
consider all intermediate fields K ⊂ L ⊂ Kalg with the property that 2n × 〈1〉 is
anisotropic over L. These fields are inductively ordered by inclusion, so there exists
a intermediate field K ′ which is maximal with respect to this property. Then it is
not to difficult to show that 2n × 〈1〉 will be universal over K ′. In particular, each
element of K ′∗ will be a sum of ≤ 2n squares, but by construction −1 will not be
a sum of 2n − 1 squares. Hence, p(K ′) = 2n. For more details, cf. [P4, Ch. 7,
Prop. 1.5].

We can also construct such fields using our method. Indeed, let F0 be any field
of level 2n. We construct a tower of fields F0 ⊂ F1 ⊂ · · · as follows. Suppose
we have constructed Fi, i ≥ 0, such that 2n × 〈1〉 is isotropic over Fi (this is the
case for F0 as s(F0) = 2n). Then let Fi+1 be the free compositum over Fi of all
function fields Fi(ϕ), where ϕ runs over all forms of dimension 2n + 1 over Fi. Let
F =

⋃∞
i=0. Then, by construction, all forms over F of dimension 2n+1 are isotropic.

In particular, u(F ) ≤ 2n. On the other hand, since anisotropic forms of dimension
≤ 2n stay anisotropic over function fields of forms of dimension ≥ 2n+1, we see that
2n × 〈1〉 stays anisotropic over F . We immediately get p(F ) = s(F ) = u(F ) = 2n.

Let us summarize the above.

Theorem 5.2. Let F be a nonformally real field. Then there exists an integer
n ≥ 0 such that s(F ) = 2n and p(F ) ∈ {2n, 2n + 1}. Conversely, to each integer
n ≥ 0 there exist nonformally real fields F , F ′ such that s(F ) = p(F ) = s(F ′) = 2n

and p(F ′) = 2n + 1.

For formally real F , the situation is more complicated. Prestel [Pr2] showed
that to each integer n ≥ 0, there exist formally real fields F , F ′ such that p(F ) = 2n,
p(F ′) = 2n + 1, and fields F ′′ with p(F ′′) = ∞. In fact, he could construct such
fields inside R using a technique called “intersection of henselian fields”. In [H6],
it was finally shown that in fact all n ∈ N can appear as Pythagoras number of
formally real fields. Let us give the proof which is essentially the one to be found in
[H6], except that there some of the auxiliary results are proved in greater generality.
First, some notations.

Let n ∈ N and let m ∈ N ∪ {0} such that 2m−1 < n ≤ 2m. Let us define
n(0) = n and n(1) = 2m − n, and inductively, if n(i) ≥ 1 then n(i + 1) = n(i)(1).
Note that if n(i) > 1, then there exists k ∈ N∪ {0} such that n(i) > 2k > n(i + 1).
We put σn = n×〈1〉 and πn = σn ⊥ σn(1). In other words, with n and m as above,
πn = 〈〈−1, · · · ,−1〉〉 ∈ PmF , and σn is a Pfister neighbor of πn.

We begin with a lemma which is essentially due to Izhboldin [I1].

Lemma 5.3. Let m,n, r ∈ N such that n = 2m + r and 1 ≤ r ≤ 2m − 1, and let
x ∈ F ∗. Put ϕ = σn ⊥ 〈x〉 and ψ = σn(1) ⊥ 〈−x〉. Then the following holds :

(i) Let L/F be any field extension. Then ϕL is a Pfister neighbor if and only
if ϕL ⊂ (πn)L iff ψL is isotropic.

(ii) If ϕ is anisotropic, then ϕF (ψ) is an anisotropic Pfister neighbor. In
particular, ϕF (ψ) ⊂ (πn)F (ψ) and (πn)F (ψ) is anisotropic.

Proof. (i) We have πn = σn ⊥ σn(1) = 2m+1 × 〈1〉, hence ϕ contains the
Pfister neighbor (2m + 1)× 〈1〉 of πn. If ϕL is a Pfister neighbor, then it must be a
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neighbor of the same Pfister form as (2m + 1)×〈1〉, hence of (πn)L. Since both ϕL

and (πn)L represent 1, multiplicativity of Pfister forms implies ϕL ⊂ (πn)L. The
converse is obvious.

By Witt cancellation, we have (σn ⊥ 〈x〉)L ⊂ (πn)L = (σn ⊥ σn(1))L iff (σn(1))L

represents x if and only if (σn(1) ⊥ 〈−x〉)L = ψL is isotropic.
(ii) ψF (ψ) is isotropic and thus, by part (i), ϕF (ψ) is a Pfister neighbor of

(πn)F (ψ). If ϕ is anisotropic, then σn is anisotropic, and since σn is a Pfister
neighbor of πn, we have that πn is anisotropic. Suppose that ϕF (ψ) is isotropic.
Then (πn)F (ψ) is hyperbolic, and by CPST and because πn and ψ represent 1, we
have ψ ⊂ πn. By a similar argument as before, ψ = σn(1) ⊥ 〈−x〉 ⊂ πn implies
that σn represents −x and hence that ϕ is isotropic, a contradiction. ¤

Proposition 5.4. Let 1 ≤ n′ < n be integers, x, y ∈ F ∗, and let ϕ = σn′ ⊥ 〈x〉,
ψ = σn ⊥ 〈y〉. Let m ≥ 0 be an integer such that 2m + 1 ≤ dim ψ ≤ 2m+1. Suppose
that ϕ is anisotropic and that one of the following conditions holds :

(i) dim ϕ ≤ 2m, or
(ii) 2m + 1 ≤ dim ϕ < dim ψ ≤ 2m+1 and ψ is not a Pfister neighbor.

Then ϕF (ψ) is anisotropic.

Proof. The proof is by induction on m. In the situation of (i), in particular
if m = 0, the statement follows from Theorem 4.4.

So suppose that (ii) holds. If ψ is isotropic, then F (ψ)/F is purely transcen-
dental and ϕ stays therefore anisotropic over F (ψ). Hence we may assume that ψ
is anisotropic.

Suppose first that ϕ is a Pfister neighbor, say, of γ ∈ Pm+1F . Then γ is
anisotropic as ϕ is supposed to be anisotropic. Suppose ϕF (ψ) is isotropic. Then
γ becomes hyperbolic over F (ψ), which, by CPST implies that ψ is similar to a
subform of γ and hence, for dimension reasons, that ψ is a Pfister neighbor, contrary
to our assumption. Thus, if ϕ is a Pfister neighbor, ϕF (ψ) is anisotropic.

Note that if dim ϕ = 2m+1, then ϕ is a Pfister neighbor of 〈〈−1, · · · ,−1,−y〉〉 ∈
Pm+1F . Hence, what remains to check is the case 2m +2 ≤ dim ϕ < dim ψ ≤ 2m+1

with ϕ and ψ not being Pfister neighbors. In particular, this implies m ≥ 2.
In this situation, we have 1 ≤ dim σn(1) < dim σn′(1) ≤ 2m−1. Let ρ = σn′(1) ⊥

〈−x〉, τ = σn(1) ⊥ 〈−y〉. Recall that in this situation, πn = πn′ = 〈〈−1, · · · ,−1〉〉 ∈
Pm+1F .

Since ϕ and ψ are not Pfister neighbors, it follows from Lemma 5.3 that ρ and
τ are anisotropic and that ϕF (ρ) ⊂ (πn)F (ρ), and that (πn)F (ρ) is anisotropic.

Suppose that ϕF (ψ) is isotropic. Then ϕF (ψ)(ρ) is isotropic. Now F (ψ)(ρ)
and F (ρ)(ψ) are F -isomorphic. Hence, ϕF (ρ)(ψ) is isotropic and thus (πn)F (ρ)(ψ)

is hyperbolic. By CPST and since both ψ and πn represent 1, we have ψF (ρ) ⊂
(πn)F (ρ) and hence, ψF (ρ) is a Pfister neighbor which, by Lemma 5.3, implies that
τF (ρ) is isotropic.

Note that 2 ≤ dim τ < dim ρ ≤ 2m with m ≥ 2. Let k ≥ 1 such that 2k + 1 ≤
dim ρ ≤ 2k+1 ≤ 2m. Recall that τ = σn(1) ⊥ 〈−y〉 and ρ = σn′(1) ⊥ 〈−x〉
are anisotropic with dim τ < dim ρ. We will show that τF (ρ) is anisotropic, in
contradiction to what we have shown above under the assumption that ϕF (ψ) is
isotropic.

If dim τ ≤ 2k then we are in case (i) which by the above implies that τF (ρ) is
anisotropic. So suppose that dim τ ≥ 2k + 1. Then 2k + 2 ≤ dim ρ ≤ 2k+1, and
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if we can show that ρ is not a Pfister neighbor then we are in case (ii) and the
anisotropy of τF (ρ) follows by induction because k < m.

So suppose ρ = σn′(1) ⊥ 〈−x〉 is a Pfister neighbor. By Lemma 5.3, this implies
that σn′(2) ⊥ 〈x〉 is isotropic. But σn′(2) ⊥ 〈x〉 ⊂ σn′ ⊥ 〈x〉 = ϕ, contradicting the
anisotropy of ϕ. Hence ρ is not a Pfister neighbor and the proof is complete. ¤

Theorem 5.5. Let n ∈ N ∪ {∞}. Let E be a formally real field. Then there
exists a formally real field extension F of E such that p(F ) = n.

Proof. Let F0 = E(x1, x2, · · · ) be the rational function field in an infinite
number of variables xi over F0. Let an = 1 + x2

1 + · · · + x2
n. Then an is a sum of

n+1 squares, but it cannot be written as a sum of n squares in F0 (in E(x1, · · · , xn),
this follows by induction from the “Second Representation Theorem” [L1, Ch. IX,
Th. 2.1] which we already mentioned above, and for F0 this follows from the fact
that F0/E(x1, · · · , xn) is purely transcendental). In particular, this shows that
p(F0) = ∞.

Now let n ∈ N and let ϕ = (n − 1) × 〈1〉 ⊥ 〈−an−1〉, which is anisotropic by
the above. For a field K, let us define

P(K) = {n× 〈1〉 ⊥ 〈−b〉; b ∈ ∑
K2} .

We have P(K) ⊂ Cp(K). We construct a tower of fields F0 ⊂ F1 ⊂ F2 ⊂ · · · by
putting Fi+1 to be the free compositum of all function fields Fi(ψ) over Fi with
ψ ∈ P(Fi). Then we put F =

⋃∞
i=0 Fi. We claim that F is formally real and

p(F ) = n.
Suppose we have shown that Fi is formally real. Then all forms in P(Fi) are by

construction totally indefinite. By [ELW, Th. 3.5], this implies that all orderings
on Fi will extend to orderings on Fi+1, hence Fi+1 will be formally real. This shows
that all orderings on F0 extend to orderings on F and F is therefore formally real.

By construction, all forms of type n × 〈1〉 ⊥ 〈−b〉, b ∈ ∑
F 2, are isotropic.

Hence, p(F ) ≤ n. To show equality, it suffices to verify that ϕF is anisotropic. This
follows if we can show that if K is a formally real extension of F with ϕK anisotropic,
and if ψ ∈ P(K), then ϕK(ψ) is anisotropic. But this follows from the previous
proposition if we can show that if m ∈ N is such that 2m+1 < n+1 = dim ψ ≤ 2m+1,
then ψ is not a Pfister neighbor (note that this case can only occur if n + 1 ≥ 4
and thus m ≥ 1). With the notations as above and by Lemma 5.3, ψ = σn ⊥ 〈−b〉,
b ∈ ∑

K2, 2m + 1 ≤ n ≤ 2m+1 − 1, is a Pfister neighbor iff σn(1) ⊥ 〈b〉 is isotropic.
But σn(1) ⊥ 〈b〉 is positive definite at each ordering of K as b ∈ ∑

K2, hence
σn(1) ⊥ 〈b〉 is anisotropic and ψ is not a Pfister neighbor. ¤

5.3. The u-invariant. In this section, we want to describe the main ideas
behind Merkurjev’s construction of fields whose u-invariants have as value any
given even n ∈ N, cf. [M2]. This result was a major breakthrough in the algebraic
theory of quadratic forms and it triggered a renewed interest in the isotropy problem
for quadratic forms over function fields of quadrics. Up to then, the only known
values for the u-invariant were powers of 2, and Kaplansky [Ka] conjectured that
this would always be the case. However, up to Merkurjev’s results, the only values
which could be ruled out were 3, 5, 7 (note that if F is formally real, then u will
necessarily be even) :

Proposition 5.6. Let F be nonformally real and I3F = 0. If ∞ > u(F ) > 1
then u(F ) is even. In particular, u(F ) 6∈ {3, 5, 7}.
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Proof. If u(F ) < 8, then , by APH, I3F = 0, so the second part follows from
the first.

Now suppose that I3F = 0. Let n ∈ N and let ϕ be form over F of dimension
2n + 1. Let d ∈ F ∗ such that d±(ϕ ⊥ 〈d〉) = 1, i.e. ϕ ⊥ 〈d〉 ∈ I2F . If ϕ ⊥ 〈d〉
is anisotropic, then u(F ) ≥ 2n + 2. If ϕ ⊥ 〈d〉 is isotropic, then ϕ ∼= ψ ⊥ 〈−d〉,
and by comparing signed discriminants, we have ψ ∈ I2F . After scaling, we may
assume that ψ represents 1. Then ϕ ∼= ψ ⊥ 〈−d〉 ⊂ 〈1,−d〉 ⊗ ψ ∈ I3F = 0,
hence 〈1,−d〉 ⊗ ψ is hyperbolic and ϕ is therefore isotropic as ϕ ⊂ 〈1,−d〉 ⊗ ψ
and dim ϕ > 1

2 dim(〈1,−d〉 ⊗ ψ) (see Lemma 4.5). All this shows that either ϕ is
isotropic or u(F ) ≥ 2n + 2. Hence, u(F ) is even. ¤

We have already encountered examples of fields with u(F ) = 2n in Example 3.1.
Another possibility to construct such fields is as follows. Let F be a field with
u(F ) = m. Then u(F ((T )) ) = 2m by Lemma 1.5. Hence, starting with any field
with u = 1, we get all 2-powers by taking iterated power series extensions.

Let us now turn to Merkurjev’s construction. At the core lie the index reduction
formulas which tell us when a central division algebra D over F will have zero
divisors over F (ψ), the function field of a quadric ψ over F . Merkurjev’s original
proofs use Swan’s computation of the K-theory of quadrics. A more elementary
proof has been given by Tignol [T2]. In Tignol’s formulation, the result on index
reduction reads as follows.

Theorem 5.7. Let D be a central division algebra over F and let ψ be a form
over F of dimension ≥ 2. Then DF (ψ) = D⊗F F (ψ) is not a division algebra if and
only if D contains a homomorphic image of C0(ψ), the even part of the Clifford
algebra of ψ.

Corollary 5.8. Let n ≥ 1 and let D = Q1 ⊗ · · · ⊗ Qn be a central division
algebra over F , where the Qi’s are quaternion algebras over F .

(i) Let ψ be a form over F of dimension 2n + 3. Then DF (ψ) is a division
algebra.

(ii) Let ψ be a form over F in I3F . Then DF (ψ) is a division algebra.

Proof. (i) We have dimF D = 4n and dim C0(ψ) = 1
2 dim C(ψ) = 22n+2 =

4n+1. Since dim ψ is odd, C0(ψ) is a central simple F -algebra, and any homomor-
phic image of C0(ψ) is therefore isomorphic to C0(ψ). Thus, for dimension reasons,
D cannot contain a homomorphic image of C0(ψ). By the above theorem, DF (ψ)

is a division algebra.
(ii) If ψ is isotropic, then F (ψ)/F is purely transcendental, and since division

algebras stay division over purely transcendental extensions, DF (ψ) is a division
algebra.

So we may assume that ψ is anisotropic and thus, by APH, dimψ ≥ 8. Now ψ ∈
I3F implies that [C(ψ)] = 0 ∈ Br2 F . It is known that since ψ ∈ I2F , there exists a
central simple F -algebra A such that C0(ψ) ' A×A and C(ψ) ' A⊗F M2(F ) (see,
e.g., [L1, Ch. V, Th. 2,5]). Since dimF C(ψ) ≥ 28, and since C(ψ) is isomorphic to
a matrix algebra over F , it follows that A is a matrix algebra over F of rank ≥ 8.
In particular, A has zero divisors. On the other hand, in our situation, D contains
a homomorphic image of C0(ψ) iff D contains a subalgebra isomorphic to A. But
this is impossible if D is division as A has zero divisors. ¤
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For the construction of the fields themselves, we shall need the following lemma
which can be considered as some sort of converse of Lemma 2.2.

Lemma 5.9. Let n ∈ N. Let Qi = (ai, bi)F , 1 ≤ i ≤ n, be quaternion algebras
over F , and let A =

⊗n
i=1 Qi. Then there exist ri ∈ F ∗, 1 ≤ i ≤ n, and a form ϕ

over F such that dim ϕ = 2n + 2 and ϕ ∼ ∑n
i=1 ri〈〈ai, bi〉〉 in WF . In particular,

c(ϕ) = [A] ∈ Br2 F . Furthermore, if A is a division algebra, then ϕ is anisotropic.

Proof. The proof is by induction on n. If n = 1, we put ϕ = 〈〈ai, bi〉〉.
Suppose n ≥ 2 and we have constructed ri ∈ F ∗, 1 ≤ i ≤ n − 1, and ψ ∈ I2F ,
dim ψ = 2n, such that ψ ∼ ∑n−1

i=1 ri〈〈ai, bi〉〉 in WF . Write ψ ∼= 〈r〉 ⊥ ψ′ and
consider ϕ = ψ′ ⊥ −r〈−an,−bn, anbn〉. Then, in WF , ϕ ∼ ψ − r〈〈an, bn〉〉, in
particular, ϕ ∈ I2F . Also, dim ϕ = 2n + 2, and with rn = −r we have the desired
form.

c(ϕ) = [A] ∈ Br2 F follows from the fact that c yields an isomorphism from
I2F/I3F to Br2 F mapping r〈〈a, b〉〉 mod I3F to [(a, b)F ] ∈ Br2 F .

Suppose that ϕ is isotropic, say, ϕ ∼= ϕ0 ⊥ H. Then ϕ0 ∈ I2F , c(ϕ) = c(ϕ0),
and dim ϕ0 = 2n. By Lemma 2.2, there exist quaternion algebras B1, · · · , Bn−1

over F such that for B = B1 ⊗ · · · ⊗Bn−1 we have [B] = c(ϕ0) = c(ϕ) = [A]. Now
dimF B = 4n−1 < dimF A = 4n, hence A ∼= M2(B) is not division. ¤

In the situation of the above lemma, we call ϕ an Albert form associated with
A.

Theorem 5.10. (Merkurjev) Let m ∈ N be even. Let E be any field. Then
there exists a (nonformally real) field F over E with u(F ) = m and I3F = 0.

Proof. Let Ealg be an algebraic closure of E. Then we have u(Ealg) = 1 and
u(Ealg(T )) = 2 (cf. section 3.1).

Now let m = 2n + 2 with n ≥ 1, and let F0 = E(x1, y1, · · · , xn, yn) be the
rational function field in 2n variables over E. Let Qi = (xi, yi)F0 and A =

⊕n
i=1 Qi.

Then A is a division algebra (see, e.g., [T1, 2.12]). Let ϕ be an Albert form
associated with A as in Lemma 5.9, which is anisotropic as A is division.

We now construct a tower of fields F0 ⊂ F1 ⊂ · · · as follows. Let K be a field
extension of F0 such that AK is division, and define

U1(K) = {ψ form over K, dim ψ = 2n + 3},
U2(K) = {ψ form over K, ψ ∈ I3K}.

Then, by Corollary 5.8, AK(ψ) will be division if ψ ∈ U1(K) ∪ U2(K). Having
constructed Fi, let Fi+1 be the free compositum over Fi of all function fields Fi(ψ),
ψ ∈ U1(F1) ∪ U2(F2). Put F =

⋃∞
i=0 Fi.

By construction, all forms in I3F are isotropic, hence I3F = 0. Also, all forms
of dimension 2n + 3 are isotropic over F , hence u(F ) ≤ 2n + 2.

By Corollary 5.8, AF is a division algebra. Hence, ϕF is anisotropic by Lemma
5.9 and we have u(F ) ≥ 2n + 2. Thus, u(F ) = 2n + 2. ¤

In view of Proposition 5.6, we see that for m ∈ N, a necessary and sufficient
condition for a field F with I3F = 0 and u(F ) = m to exist is that m be even.

6. Some final examples and remarks

6.1. Values of ũ and u and relations between invariants. If F is non-
formally real, then ũ(F ) = u(F ). This equality no longer holds in general when F
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in formally real. We have the following result which gives the analogue of Proposi-
tion 5.6 and Theorem 5.10 for formally real fields. Recall that for formally real F ,
u(F ) is either even or infinite, and that u(F ) ≤ ũ(F ).

Theorem 6.1. Let F be a formally real field.

(i) If I3F is torsion free and ũ(F ) < ∞, then ũ(F ) is even. In particular,
ũ(F ) 6∈ {1, 3, 5, 7}.

(ii) Suppose that I3F is torsion free and u(F ) < ∞. If u(F ) ≤ 2 then ũ(F ) ∈
{u(F ),∞}. If u(F ) = 2n for an integer n ≥ 2, then ũ(F ) ∈ {u(F ), u(F )+
2,∞}.

(iii) There exist formally real fields F2n, F ′2n, n ∈ N∪ {0}, and F ′′2n for n ≥ 2,
such that for all these fields I3 is torsion free and such that for n ∈ N∪{0}
we have u(F2n) = u(F ′2n) = ũ(F2n) = 2n and ũ(F ′2n) = ∞, and for n ≥ 2
we have u(F ′′2n) = 2n and ũ(F ′′2n) = 2n + 2.

We will not prove this theorem but only give some relevant references. Part
(i) has been proved in [ELP, Th. H]. The fact that u(F ) ≤ 2 implies ũ(F ) ≤ 2
(provided ũ(F ) < ∞) was shown in [ELP, Ths. E,F]. Since binary totally indefinite
forms are torsion, this implies that if u(F ) ∈ {0, 2} and if ũ(F ) < ∞, then u(F ) =
ũ(F ). If u(F ) = 2n for some integer n ≥ 2, and if ũ(F ) < ∞, then it will be shown
in a forthcoming paper [H7] that I3F being torsion free implies ũ(F ) ∈ {2n, 2n+2}.

As for the existence, examples of fields F0, F ′0 with the desired properties
are given by F0 = R and F ′0 = R((X))((Y )). By applying Lemma 1.5 twice,
we see that u(F ′0) = 4u(R) = 0. Consider the form ϕm = m × 〈−1, X, Y, XY 〉.
Since m × 〈1〉 is anisotropic over R for all m ∈ N, we have again by Lemma 1.5
that ϕm is anisotropic. Also det 〈−1, X, Y,XY 〉 = −1, which shows that the 4-
dimensional form 〈−1, X, Y, XY 〉 is totally indefinite with respect to each order-
ing on R((X))((Y )). Hence, ϕm is totally indefinite. All this together yields that
ũ(R((X))((Y )) ) = ∞.

Examples of fields F2n and F ′′2n for n ≥ 2 have been constructed by Hornix
[Hor5] and by Lam [L3]. The methods of construction are a variation of Merkur-
jev’s method of constructing fields with even u-invariant. (Lam actually doesn’t
construct the above fields having the additional property of I3 being torsion free,
but this can readily be achieved by a slight generalization of his construction. He
shows for his F ′′2n only that u(F ′′2n) ≤ 2n, but it can be shown that also for his
example one gets u(F ′′2n) = 2n.) Finally, examples of the type F ′2n can be found in
[H7].

Using this result, we can conclude that if n ∈ N ∪ {0}, then there exists a
formally real field F with u(F ) = n if and only if n is even. The question remains
which values can occur for u in the nonformally real case (resp. for ũ in the
formally real case). Now 1 and all even n ∈ N can be realized as u(F ) for a suitable
nonformally real F . We also know that 3, 5, 7 are not possible. The first open case
was 9, until recently when Izhboldin announced the construction of a (necessarily
nonformally real) field F with u(F ) = 9, [I2]. The method of construction is
again of Merkurjev type, however, the techniques and auxiliary results needed to
show that a certain 9-dimensional form stays anisotropic after taking successively
function fields of 10-dimensional forms are highly sophisticated and go far beyond
the scope of this article (see also the remarks preceding Theorem 4.4). So one
might conjecture that there exists a nonformally real F with u(F ) = n if and only
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if n 6∈ {3, 5, 7}. But it should be noted that it seems that Izhboldin’s methods
cannot easily be generalized to yield odd values ≥ 11.

It should also be noted that Izhboldin’s results can readily be used to construct
formally real F with ũ(F ) = 9. We get a conjecture analogous to the u-invariant
case. Let us summarize these conjectures.

Conjecture 6.2. (i) Let n ∈ N. Then there exists a nonformally real
field F with u(F ) = n if and only if n 6∈ {3, 5, 7}.

(ii) Let n ∈ N ∪ {0}. Then there exists a formally real field F with ũ(F ) = n
if and only if n 6∈ {1, 3, 5, 7}.

A natural question to ask is how much ũ(F ) (if finite) can actually differ from
u(F ) for a formally real F . The above examples show that ũ(F ) − u(F ) = 2 is
possible. Using a result announced by Izhboldin [I3], one can construct a formally
real field F with u(F ) = 8 and ũ(F ) = 12.

Theorem 6.3. (Izhboldin, announced.) Let ϕ and ψ be forms over F such that
ϕ is anisotropic, dim ϕ = 12, ϕ ∈ I3F and dim ψ ≥ 9. Then ϕF (ψ) is isotropic if
and only if ψ is similar to a subform of ϕ.

Corollary 6.4. There exists a formally real field F with u(F ) = 8 and ũ(F ) =
12.

Proof. Let F0 = Q(T ). Then 〈1, 1〉 ⊗ 〈1, 1, 1, 7〉 and 〈1, 1,−7,−7〉 are aniso-
tropic over Q, hence, if we put α = 〈1, 1, 1, 7〉 ⊥ T 〈1,−7〉, then ϕ = 〈1, 1〉 ⊗ α is
anisotropic over F0 (cf. Lemma 1.5) and in I3F0 as α ∈ I2F0 and 〈1, 1〉 ∈ IF0. Now
〈1, 1〉⊗〈1, 1, 1, 7〉 is positive definite and 〈1, 1,−7,−7〉 is torsion. Hence, sgnP ϕ = 8
for all orderings P on F0.

Suppose that K is a field extension of F0 such that all orderings on F0 extend
to orderings on K, and such that ϕK is anisotropic. Define

U1(K) = {ψ torsion form over K, dim ψ ∈ {10, 12} },
U2(K) = {ψ totally indefinite form over K, dim ψ ≥ 13}.

Let ψ ∈ U1(K)∪U2(K). Since ψ is indefinite at each ordering on K, it follows that
each ordering on K extends to an ordering on K(ψ). Also, ψ is not similar to a
subform of ϕ. This is obvious for dimension reasons if ψ ∈ U2(K), and if ψ ∈ U1(K),
then by a simple signature argument it is clear that a 12-dimensional form with
signature 8 at each ordering cannot contain a 10- or 12-dimensional subform with
total signature 0. Hence, by Izhboldin’s result, ϕK(ψ) will be anisotropic.

Now we construct a tower of fields F0 ⊂ F1 ⊂ · · · with Fi+1 being the free
compositum over Fi of all function fields Fi(ψ) with ψ ∈ U1(Fi) ∪ U2(Fi), and we
put F =

⋃∞
i=0 Fi.

By construction, all orderings on Fi, i ≥ 0, extend to orderings on F . All
totally indefinite forms over F of dimension ≥ 13 are isotropic, hence ũ(F ) ≤ 12.
ϕF will be anisotropic. Note that sgnP ϕK = 8 < dim ϕ = 12 for all orderings on
F , hence ϕF is totally indefinite and thus ũ(F ) = 12. Clearly, u(F ) ≤ ũ(F ) = 12.
But all torsion forms of dimension 10 or 12 are isotropic, hence u(F ) ≤ 8. Now any
8-dimensional anisotropic form over F0 will stay anisotropic over F by Theorem 4.4,
in particular the anisotropic torsion form 〈1, 1,−7,−7〉 ⊥ T 〈1, 1,−7,−7〉. Hence,
u(F ) = 8 ¤
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An obvious question is when u(F ) < ∞ implies ũ(F ) < ∞. This can be
answered in terms of certain properties of the space of orderings of F (equipped
with a suitable topology), namely the properties SAP (for strong approximation
property) and S1. There are quadratic form characterizations of these properties.
A field is SAP if and only if for all x, y ∈ F ∗ there exists n ∈ N such that n ×
〈−1, x, y, xy〉 is isotropic (we then say that 〈−1, x, y, xy〉 is weakly isotropic), cf.
[Pr1, Satz 3.1], [ELP, Th. C]. A field has property S1 if and only if for each binary
torsion form β over F one has DF (β) ∩∑

F 2 6= ∅, cf. [EP]. The properties SAP
and S1 together are equivalent to the property ED (effective diagonalization), which
states that each form ϕ over F has a diagonalization 〈a1, · · · , an〉 such that for each
ordering P on F , ai >P 0 implies ai+1 >P 0 for 1 ≤ i < n. The equivalence has
been shown in [PrW, Th. 2].

The following was proved by Elman-Prestel [EP, Th. 2.5].

Theorem 6.5. Let F be formally real. Then ũ(F ) < ∞ if and only if F satisfies
u(F ) < ∞, SAP and S1.

In this situation, they also derive bounds on ũ in terms of u and the Pythagoras
number. These bounds are improved in [H7], where the following is shown.

Theorem 6.6. Let F be formally real and ED. Then

ũ(F ) ≤ p(F )
2

(u(F ) + 2) .

It should be noted that p(F ) ≤ u(F ). In fact, suppose that p(F ) ≥ 2m + 1.
Then there exists x ∈ ∑

F 2 such that 2m×〈1〉 ⊥ 〈−x〉 is anisotropic. But this is a
Pfister neighbor of 〈〈−1, · · · ,−1, x〉〉 ∈ Pm+1F , which is therefore also anisotropic,
and which is torsion as it is totally indefinite. Hence, u(F ) ≥ 2m+1 and it follows
immediately that p(F ) ≤ u(F ).

For some types of fields, equality of u and ũ could be established. One class of
such fields is the class of so-called linked fields. A field is called linked if the classes of
quaternion algebras form a subgroup of the Brauer group (by Merkurjev’s theorem,
this just means that the classes of quaternion algebras constitute the whole Br2 F ).
Finite, local and global fields belong into this class, as well as fields of transcendence
degree ≤ 1 (resp. ≤ 2) over R (resp. C), or the field C((X))((Y ))((Z)), the latter
being a field of u-invariant 8. It is not difficult to show that fields with ũ(F ) ≤ 4
are always linked. The following has been shown by Elman-Lam [EL2] and Elman
[E].

Theorem 6.7. Let F be a linked field. Then u(F ) = ũ(F ) ∈ {0, 1, 2, 4, 8}.
Each of these values can be realized.

The examples of linked fields we mentioned above show that all these values
can indeed be realized. Note that the value 0 (resp. 1) necessarily means that F is
formally real (resp. not formally real).

6.2. Some remarks on the l-invariant. Recall that for nonformally real F ,
we have l(F ) = u(F ), so the interesting case is the formally real one. The following
is known.

Theorem 6.8. Let F be formally real.
(i) Suppose that I3F is torsion free and 1 < l(F ) < ∞. Then l(F ) 6≡ 1 mod 4.
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(ii) To each integer n ≥ 1 with n 6≡ 1 mod 4 if n ≥ 2, there exists a formally
real F such that l(F ) = n and I3F is torsion free.

The first part has been proved in [BLOP, Lemma 4.11]. The second part was
shown by Hornix for n ≥ 4, cf. [Hor5, Remark 3.8]. Again, the construction is
a variation of Merkurjev’s method. Now l(R) = 1 and l(R(T ) ) = 2 as is rather
obvious, and in both cases I3 is clearly torsion free. Let us show how to get the
case l(F ) = 3.

Proposition 6.9. There exists a formally real F with l(F ) = 3 and I3F torsion
free.

Proof. Let F0 = Q and consider ϕ = 〈1, 1,−7,−7〉 which is torsion and
anisotropic. If K is any extension of F0 such that the unique ordering of F0 extends
to K and such that ϕK is anisotropic, let ψ ∼= 〈a1, a2, a3,−a4〉 with ai ∈

∑
K2.

Note that ψ has signature 2 at each ordering and that therefore ψ is not similar to
a subform of (and hence similar to) ϕK . Since ϕK(ψ) is a Pfister form and hence
anisotropic or hyperbolic, it follows from CPST that ϕK(ψ) is anisotropic. This is
still the case if ψ is a torsion form in I3K. For if ψ is isotropic then K(ψ)/K is
purely transcendental, and if ψ is anisotropic then dim ψ ≥ 8 by APH. Note that in
any case, ψ will be totally indefinite, hence all orderings on K will extend to K(ψ).

Having constructed Fi such that the ordering on F0 extends to Fi and such
that ϕFi

is anisotropic, let Fi+1 be the free compositum over Fi of all function
fields Fi(ψ) where ψ ∼= 〈a1, a2, a3,−a4〉 with ai ∈

∑
F 2

i , or ψ is a torsion form in
I3Fi. We put F =

⋃∞
i=0 Fi. By construction, the ordering on F0 extends to F .

Furthermore, forms 〈a1, a2, a3,−a4〉 with ai ∈
∑

F 2 are isotropic. By the definition
of l this yields l(F ) ≤ 3. On the other hand, ϕF is anisotropic, hence 〈1, 1,−7〉
is anisotropic over F , which shows that l(F ) = 3. Also, there are no anisotropic
torsion forms in I3F , hence I3F is torsion free. ¤

6.3. Related results. Merkurjev’s method has been used and modified in
many ways to yield examples of fields with prescribed invariants. For instance, in
[EL1], a certain filtration u(0) ≤ u(1) ≤ · · · ≤ u of the u-invariant has been defined
and the question was asked whether this sequence is actually always constant (cf.
also [P4, Ch. 8, §2]). A variation of Merkurjev’s method was used in [H5] to
construct various types of nonconstant such sequences.

There are many other field invariants pertaining to dimensions of anisotropic
quadratic forms with additional properties. We have only mentioned a few of them.
Several others have been defined and studied, most notably in the work of Hornix
[Hor1]–[Hor5], but some of these invariants are of a rather technical nature, so we
will not give the definitions here. Merkurjev’s method has been put to good use in
[Hor5] in the construction of fields where these invariants attain prescribed values.

Another important problem is the behaviour of field invariants under algebraic
extensions of the ground field, in particular under quadratic extensions. In other
words, if L/K is a field extension, then how do u(L) and u(K) relate to each
other ? For example, if K is not formally real, then Leep [Le1] proves that u(L) ≤
1
2 [L : K]u(K). Questions of this type have been studied for instance in [E], [EL1],
[EL4], [EP], [Hor3], [Le1], [Le2]. Also in this context, Merkurjev’s method could
be modified suitably to show that in Leep’s estimate above, equality can occur in
the cases [L : K] ∈ {2, 3}. This was done by Leep-Merkurjev [LeM], with further
generalizations by Mináč [Min], Mináč-Wadsworth [MinW].
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Quadratic forms with absolutely maximal splitting

Oleg Izhboldin and Alexander Vishik

Abstract. Let F be a field and φ be a quadratic form over F . The higher Witt
indices of φ are defined recursively by the rule ik+1(φ) = ik((φan)F (φan)),

where i0(φ) = iW (φ) is the usual Witt index of the form φ. We say that
anisotropic form φ has absolutely maximal splitting if i1(φ) > ik(φ) for all
k > 1.

One of the main results of this paper claims that for all anisotropic
forms φ satisfying the condition 2n−1 + 2n−3 < dim φ ≤ 2n, the following
three conditions are equivalent: (i) the kernel of the natural homomorphism
Hn(F,Z/2Z) → Hn(F (φ),Z/2Z) is nontrivial, (ii) φ has absolutely maximal
splitting, (iii) φ has maximal splitting (i.e., i1(φ) = dim φ− 2n−1). Moreover,
we show that if we assume additionally that dimφ ≥ 2n − 7, then these three
conditions hold if and only if φ is an anisotropic n-fold Pfister neighbor. In our
proof we use the technique developed by V. Voevodsky in his proof of Milnor’s
conjecture.

1. Introduction

Let F be a field of characteristic 6= 2 and let Hn(F ) be the Galois cohomol-
ogy group of F with Z/2Z-coefficients. For a given extension L/F , we denote by
Hn(L/F ) the kernel of the natural homomorphism Hn(F ) → Hn(L). Now, let φ
be a quadratic form over F . An important part of the algebraic theory of qua-
dratic forms deals with the behavior of the groups Hn(F ) under the field extension
F (φ)/F . Of particular interest is the group

Hn(F (φ)/F ) = ker(Hn(F ) → Hn(F (φ))).

The computation of this group is connected to Milnor’s conjecture and plays an
important role in K-theory and in the theory of quadratic forms.

The first nontrivial result in this direction is due to J. K. Arason. In [1], he
computed the group Hn(F (φ)/F ) for the case n ≤ 3. The case n = 4 was completely
studied by Kahn, Rost and Sujatha ([13]). In the cases where n ≥ 5, there are
only partial results depending on Milnor’s conjecture: the group Hn(F (φ)/F ) was
computed for all Pfister neighbors ([26]) and for all 4-dimensional forms ([33]). All
known results make natural the following conjecture.
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The first-named author died on 17th April, 2000.
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Conjecture 1.1. Let F be a field, n be a positive integer, and let φ be an
F -form of dimension > 2n−1. Then the following conditions are equivalent:

(1) the group Hn(F (φ)/F ) = ker(Hn(F ) → Hn(F (φ))) is nonzero,
(2) the form φ is an anisotropic n-fold Pfister neighbor.

Moreover, if these conditions hold, then the group Hn(F (φ)/F ) is isomorphic to
Z/2Z and is generated by en(π), where π is the n-fold Pfister form associated with
φ.

The proof of the implication (2)⇒(1) follows from the fact that the Pfister
quadric is isotropic if and only if the corresponding pure symbol α ∈ KM

n (k)/2 is
zero, and the fact that the norm-residue homomorphism is injective on α (see [36]).
The implication (1)⇒(2) seems much more difficult. In this paper, we give only a
partial answer to the conjecture.

1.1. Forms with maximal splitting. It turns out that Conjecture 1.1 is
closely related to a conjecture concerning so-called forms with maximal splitting.
Let us recall some basic definitions and results. By iW (φ) we denote the Witt
index of φ. For an anisotropic quadratic form φ, the first higher Witt index of φ is
defined as follows: i1(φ) = iW (φF (φ)). Since φF (φ) is isotropic, we obviously have
i1(φ) ≥ 1. In [4] Hoffmann proved the following

Theorem 1.2. Let φ be an anisotropic quadratic form. Let n be such that
2n−1 < dim φ ≤ 2n and m be such that dim φ = 2n−1 + m. Then

• i1(φ) ≤ m,
• if φ is a Pfister neighbor, then i1(φ) = m.

This theorem gives rise to the following

Definition 1.3 (see [4]). Let φ be an anisotropic quadratic form. Let us write
dim φ in the form dim φ = 2n−1 + m, where 0 < m ≤ 2n−1. We say that φ has
maximal splitting if i1(φ) = m.

Our interest in forms with maximal splitting is motivated (in particular) by the
following observation (which depends on the Milnor conjecture, see Proposition 7.5,
and requires char(F ) = 0): Let φ and n be as in Conjecture 1.1. If Hn(F (φ)/F ) 6=
0, then φ has maximal splitting and Hn(F (φ)/F ) ' Z/2Z. Therefore, the problem
of classification of forms with maximal splitting is closely related to Conjecture 1.1.
On the other hand, there are many other problems depending on the classification
of forms with maximal splitting.

Let us explain some known results concerning this classification. By Theorem
1.2, all Pfister neighbors and all forms of dimension 2n + 1 have maximal splitting.
By [5], these examples present an exhaustive list of forms with maximal splitting
of dimension ≤ 9. The case dim φ = 10 is much more complicated. In [9], it was
proved that a 10-dimensional form φ has maximal splitting only in the following
cases:

• φ is a Pfister neighbor,
• φ can be written in the form φ = 〈〈a〉〉 q, where q is a 5-dimensional form.

The structure of quadratic forms with maximal splitting of dimensions 11, 12, 13,
14, 15, and 16 is very simple: they are Pfister neighbors (see [5] or [7]). Since
17 = 24 + 1, it follows that any 17-dimensional form has maximal splitting. The
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previous discussion shows that we have a complete classification of forms with
maximal splitting of dimensions ≤ 17.

Conjecture 1.1 together with our previous discussion make the following prob-
lem natural:

Problem 1.4. Find the condition on the positive integer d such that each d-
dimensional form φ with maximal splitting is necessarily a Pfister neighbor.

The following example is due to Hoffmann. Let F be the field of rational
functions k(x1, . . . , xn−3, y1, . . . , y5) and let

q = 〈〈x1, . . . , xn−3〉〉 ⊗ 〈y1, y2, y3, y4, y5〉 .
Then q has maximal splitting and is not a Pfister neighbor. We obviously have
dim q = 2n−1 + 2n−3. This example gives rise to the following

Proposition 1.5. Let d be an integer satisfying 2n−1 ≤ d ≤ 2n−1 + 2n−3

for some n ≥ 4. Then there exists a field F and a d-dimensional F -from φ with
maximal splitting which is not a Pfister neighbor.

For the proof, we can define φ as an arbitrary d-dimensional subform of the
form q constructed above. We remind that if φ ⊂ q is a subform, where 2n−1 ≤
dim φ ≤ dim q ≤ 2n, and q has maximal splitting , then φ also has maximal splitting
(see [4], Prop.4).

Let us return to Problem 1.4. By Proposition 1.5, it suffices to study Problem
1.4 only in the case where 2n−1 + 2n−3 < d ≤ 2n. Here, we state the following

Conjecture 1.6. Let n ≥ 3 and F be an arbitrary field. For any anisotropic
quadratic F -form with maximal splitting the condition 2n−1 + 2n−3 < dim φ ≤ 2n

implies that φ is a Pfister neighbor.

This conjecture is true in the cases n = 3 and n = 4 (see [5], [7]). At the time
we cannot prove Conjecture 1.6 in the case n ≥ 5. However, we prove the following
partial case of the conjecture.

Theorem 1.7. Let n ≥ 5 and q be an anisotropic form such that 2n − 7 ≤
dim q ≤ 2n. Then the following conditions are equivalent:

(i) q has maximal splitting,
(ii) q is a Pfister neighbor.

Moreover, we show that for any form φ satisfying the condition 2n−1 + 2n−3 <
dim φ ≤ 2n, Conjectures 1.1 and 1.6 are equivalent for all fields of characteristic
zero (here we use the Milnor conjecture). The equivalence of the conjectures follows
readily from the following theorem.

Theorem 1.8. ((*M*), see the end of Section 1) Let n be an integer ≥ 4 and F
be a field of characteristic 0. Let φ be an anisotropic form such that 2n−1 +2n−3 <
dim φ ≤ 2n. Then the following conditions are equivalent:

(1) φ has maximal splitting,
(2) Hn(F (φ)/F ) 6= 0.

On the other hand, Theorems 1.7 and 1.8 give rise to the proof of the following
partial case of Conjecture 1.1.
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Corollary 1.9. ((*M*), see the end of Section 1) Let F be a field of char-
acteristic zero and let n ≥ 5. Then for any F -form φ satisfying the condition
dim φ ≥ 2n − 7, the following conditions are equivalent:

(1) the group Hn(F (φ)/F ) = ker(Hn(F ) → Hn(F (φ))) is nonzero,
(2) the form φ is an anisotropic n-fold Pfister neighbor.

1.2. Plan of works. In section 3, we prove Theorem 1.7. Our proof is based
on the following ideas of Bruno Kahn ([11]): First of all, we recall some result
of M. Knebusch: let q be an anisotropic F -form. If the F (q)-form (qF (q))an is
defined over F , then q is a Pfister neighbor. Now, let q be an F -form satisfying the
hypotheses of Theorem 1.7 (in particular, dim q > 16). Let us consider the F (q)-
form φ = (qF (q)))an. By the definition of forms with maximal splitting, we obviously
have dim φ ≤ 7. By the construction, the form φ belongs to the image of the
homomorphism W (F ) → W (F (q)). This implies that φ belongs to the unramified
part Wnr(F (q)) of the Witt group W (F (q)). Using some deep results concerning the
group Wnr(F (q)), we prove that all forms of dimension ≤ 7 belonging to Wnr(F (q))
are necessarily defined over F (provided that dim q > 16). In particular, this implies
that φ = (qF (q))an is defined over F . Then Knebusch’s theorem says that q is a
Pfister neighbor. This completes the proof of Theorem 1.7.

To prove Theorem 1.8, we need the Milnor conjecture. The implication (1)⇒(2)
is the most difficult part of the theorem. To explain the plan, we introduce the
notion of “forms with absolutely maximal splitting”. First, we recall that for any
F -form φ, we can define the higher Witt indices by the following recursive rule:
is+1(φ) = is((φan)F (φan)).

Definition 1.10. Let φ be an anisotropic quadratic form. We say that φ has
absolutely maximal splitting, or that φ is an AMS-form, if i1(φ) > ir(φ) for all
r > 1.

Such terminology is justified by the fact that at least in the case char(F ) = 0,
AMS implies maximal splitting (see Theorem 7.1). It is not difficult to show, that if
the form φ has maximal splitting and satisfies the condition 2n−1 +2n−3 < dim φ ≤
2n, then φ is an AMS-form (see Lemma 4.1). This shows, that the form φ satisfying
the condition (1) of Theorem 1.8, is necessarily an AMS-form. Therefore, it suffices
to prove the following theorem.

Theorem 1.11. ((*M*), see the end of Section 1) Let F be a field of charac-
teristic zero. Let φ be an AMS-form satisfying the condition 2n−1 < dim φ ≤ 2n.
Then Hn(F (φ)/F ) 6= 0.

To prove this theorem, we study the motive of the projective quadric Q cor-
responding to a subform q of φ of codimension i1(φ) − 1. It is well known that
the function fields of the forms φ and q are stably equivalent. Hence, it suffices to
prove that Hn(F (q)/F ) 6= 0. In §5, we show that the motive M(Q) of the quadric
Q has some specific endomorphism ω : M(Q) → M(Q) which we call the Rost
projector. Let us give the definition of the latter. First, we recall that the set of
endomorphisms M(Q) → M(Q) is defined as CHd(Q ×Q), where d = dimQ. We
say that ω ∈ End(M(Q)) is a Rost projector, if ω is an idempotent (ω ◦ ω = ω),
and the identity ωF̄ = pt × QF̄ + QF̄ × pt holds over the algebraic closure F̄ of
F . The existence of the Rost projector means that M(Q) contains a direct sum-
mand N such that Nk is isomorphic to the direct sum of two so-called Tate-motives
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Z ⊕ Z(d)[2d] (since the mutually orthogonal projectors QF̄ × pt and pt × QF̄ give
direct summands isomorphic to Z and Z(d)[2d], respectively). The final step in the
proof of theorem 1.8 is based on the following theorem.

Theorem 1.12. ((*M*), see the end of Section 1) Let F be a field of character-
istic zero. Let Q be the projective quadric corresponding to an anisotropic F -form
q. Assume that Q admits a Rost projector. Then dim q = 2m−1 + 1 for suitable m.
Moreover, Hm(F (q)/F ) 6= 0.

Now, it is very easy to complete the proof of the implication (1)⇒(2) of The-
orem 1.8. Since 2m−1 < dim q ≤ 2m, 2n−1 < dim φ ≤ 2n, and the extensions
F (φ)/F and F (q)/F are stably equivalent, it follows that n = m (this follows eas-
ily from Hoffmann’s theorem [4]). Therefore, Hn(F (φ)/F ) = Hm(F (q)/F ) 6= 0.
This completes the proof of the implication (1)⇒(2).

The proof of Theorem 1.12 is given in section 6. It is based on the technique
developed by V.Voevodsky for the proof of Milnor’s conjecture (see [36]). All
needed results of Voevodsky’s preprints are collected in Appendix A. Aside from
the Appendix we also use the main results of [26] (in Theorem 7.3). Here we should
point out that these results can be obtained from those of the Appendix in a rather
simple way (the recipe is given, for example, in [14, Remark 3.3.]). All the major
statements of the current paper which are using the abovementioned unpublished
results are marked with (*M*) with the reference to this page.
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2. Notation and background

In this article we use the standard quadratic form terminology from [19],[30].
We use the notation 〈〈a1, . . . , an〉〉 for the Pfister form 〈1,−a1〉 ⊗ · · · ⊗ 〈1,−an〉.
Under GPn(F ) we mean the set of forms over F which are similar to n-fold Pfis-
ter forms. The n-fold Pfister forms provide a system of generators for the abelian
group In(F ). We recall that the Arason–Pfister Hauptsatz (APH in what follows)
states that: every quadratic form over F of dimension < 2n which lies in In(F )
is necessarily hyperbolic; if φ ∈ In(F ) and dim φ = 2n, then the form φ is neces-
sarily similar to a Pfister form. We use the notation en for the generalized Arason
invariant 1

In(F )/In+1(F ) → Hn(F ), where 〈〈a1, . . . , an〉〉 7→ (a1, . . . , an).

The following statements describe the relationship between the Witt ring W (F )
and the cohomology Hn(F ). They will be used extensively in the next two sections.

1The existence of en was proven by Arason for n ≤ 3, and by Jacob-Rost/Szyjewski for
n = 4.
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Theorem 2.1. ([24],[1],[10],[32],[21],[23],[27],Rost-unpublished)
For n ≤ 4, we have canonical isomorphisms en : In(F )/In+1(F ) → Hn(F )

Theorem 2.2. (Arason[1], Kahn-Rost-Sujatha[13], Merkurjev[22])
Let 0 ≤ m ≤ n ≤ 4 and π be an m-fold Pfister form over F . Then Hn(F (π)/F ) =

em(π)Hn−m(F ).

Theorem 2.3. (Arason[1], Kahn-Rost-Sujatha[13])
Let n ≤ 4 and ρ be a form over F of dimension > 2n. Then Hn(F (ρ)/F ) = 0.

The following statement is an evident corollary of the theorems above.

Corollary 2.4. Let ρ be a form over F and n be a positive integer ≤ 5. Let
ξ be a form over F such that ξF (ρ) ∈ In(F (ρ)). Then

• if ρ is a Pfister neighbour of a Pfister form π, then ξ ∈ πW (F ) + In(F ),
• if dim ρ > 2n−1, then ξ ∈ In(F ).

Remark 2.5. Actually, the restriction on the integer n here is unnecessary (at
least in characteristic 0) - see Theorem 7.3.

In section 5 we use the notation Z for the trivial Tate-motive (which is just
the motive of a point M(Spec(k))), and Z(m)[2m] for the tensor power Z(1)[2]⊗m

of the Tate-motive Z(1)[2], where the latter is defined as a complementary direct
summand to Z in M(P1) (M(P1) = Z ⊕ Z(1)[2]). For this reason, we use the
notation Z for all groups and rings Z throughout the text. In section 5 we work
in the classical Chow-motivic category of Grothendieck (see [3],[20],[31],[29]). We
remind that in this category the group Hom(M(P ),M(Q)) is naturally identified
with CHdim(Q)(P ×Q), for any smooth connected projective varieties P and Q over
k.

In this connection we should mention that the motive of a completely split
quadric P (of dimension d) is a direct sum of Tate-motives:

M(P ) = ⊕0≤i≤dZ(i)[2i], if d is odd;
M(P ) = (⊕0≤i≤dZ(i)[2i])⊕ Z(d/2)[d], if d is even.

The corresponding mutually orthogonal projectors in End(M(P )) are given by hi×
li, and li × hi, where 0 ≤ i < d/2, and hi ⊂ P is a plane section of codimension i,
and li ⊂ P is a projective subspace of dimension i (in the case d even, we also have
l1d/2 × l2d/2 and l2d/2 × l1d/2, where l1d/2, l

2
d/2 ⊂ P are the projective subspaces of half

the dimension from the two different families).
In section 6 we work in the bigger triangulated category of motives DMeff

− (k)
constructed by V.Voevodsky (see [34]). This category contains the category of
Chow-motives as a full additive subcategory closed with respect to direct sum-
mands. All the necessary facts and references are given in the Appendix.

3. Descent problem and forms with maximal splitting

The main goal of this section is to prove Theorem 1.7. It should be noticed
that in all cases except for dim q = 2n − 7 this theorem was proved earlier:

• if dim q = 2n or 2n − 1, the theorem was proved by M. Knebusch and A.
Wadsworth (independently);

• if dim q = 2n − 2 or 2n − 3, the theorem was proved by D. Hoffmann [4];
• if dim q = 2n − 4 or 2n − 5, the theorem was proved by B. Kahn [11,

remark after Th.4] (see also more elementary proofs in [5] or [7]);
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• In the case dim q = 2n − 6, the theorem follow easily from a result of A.
Laghribi [18].

To prove the theorem in the case dim q = 2n − 7 we use the same method as in
the paper of Bruno Kahn [11]. Namely, we reduce Theorem 1.7 to the study of a
descent problem for quadratic forms (see Proposition 3.8 and Theorem 3.9). As in
the paper of B. Kahn, we work modulo a suitable power In(F ) of the fundamental
ideal I(F ).

We start with the following notation.

Definition 3.1. Let ψ be a form over F and n ≥ 0 be an integer. We define
dimn ψ as follows:

dimn ψ = min{dim φ |φ ≡ ψ (mod In(F ))}
Lemma 3.2. Let ψ be a form over F and L/F be some field extension. Then

dimn ψL ≤ dimn ψ. If L/F is unirational, then dimn ψL = dimn ψ.

Proof. The inequality dimn ψL ≤ dimn ψ is obvious. If L/F is unirational, the
identity dimn ψL = dimn ψ follows easily from standard specialization arguments.

¤

Corollary 3.3. Let ψ and q0 ⊂ q be forms over F . Then dimn ψF (q0) ≤
dimn ψF (q).

Proof. Since q0 ⊂ q, it follows that qF (q0) is isotropic and hence the extension
F (q, q0)/F (q0) is purely transcendental. By Lemma 3.2, we have dimn ψF (q0) =
dimn ψF (q,q0) ≤ dimn ψF (q). ¤

Now, we recall an evident consequence of Merkurjev’s index reduction formula:
if A is a central simple algebra of index 2n and q is a form of dimension > 2n + 2,
then indAF (q) = ind A. The following lemma is an obvious generalization of this
statement.

Lemma 3.4. Let A be a central simple F -algebra of index 2n and q be a quadratic
form over F . Let F0 = F, F1, . . . , Fh be the generic splitting tower of q. Let i ≥ 1
be an integer such that dim((qFi−1)an) > 2n + 2. Then ind AFi = ind A.

Lemma 3.5. Let A be a central simple F -algebra of index 2n and q be a quadratic
form of dimension > 2n + 4. Then there exists a unirational extension E/F and a
3-dimensional form q0 ⊂ qE such that ind(AE ⊗ C0(q0)) = 2n+1

Proof. Let F̃ = F (X, Y, Z), q̃ = qF̃ ⊥ −X 〈〈Y,Z〉〉, and Ã = AF̃ ⊗ (Y, Z).
Clearly, ind Ã = 2 ind A = 2n+1. Let F̃0 = F̃ , F̃1, . . . , F̃h be the generic splitting
tower for q̃. Let q̃i = (q̃F̃i

)an for i = 0, . . . , h. Let s be the minimal integer such
that dim q̃s ≤ dim q− 2. We have dim q̃s−1 ≥ dim q > 2(n + 1) + 2. By Lemma 3.4,
we have ind AF̃s

= ind Ã = 2n+1.
We set E = F̃s. Since q̃E = qE ⊥ −X 〈〈Y, Z〉〉, the forms qE and X 〈〈Y, Z〉〉

contain a common subform of dimension
1
2
(dim q + dim(X 〈〈Y,Z〉〉)− dim(q̃E)an) =

1
2
(dim q + 4− dim q̃s)

≥ 1
2
(dim q + 4− (dim q − 2)) = 3.
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Hence, there exists a 3-dimensional E-form q0 such that q0 ⊂ qE and q0⊂X〈〈Y, Z〉〉E .
Clearly, C0(q0) = (Y,Z). Hence, ind(AE ⊗E C0(q0)) = ind ÃE = 2n+1.

To complete the proof, it suffices to show that E/F is unirational. To prove
this, let us write q in the form q = x 〈1,−y,−z〉 ⊥ q0 with x, y, z ∈ F ∗. Let us
consider the field

K = F̃ (
√

X/x,
√

Y/y,
√

Z/z) = F (X, Y, Z)(
√

X/x,
√

Y/y,
√

Z/z).

Clearly, K/F is purely transcendental. In the Witt ring W (K), we have q̃K =
qK −X 〈〈Y, Z〉〉K = x 〈1,−y,−z〉K + q0−X 〈1,−Y,−Z, Y Z〉 = q0−〈XY Z〉. Hence
dim(q̃K)an ≤ dim q0 +1 = dim q− 3+1 = dim q− 2. Since s is the minimal integer
such that dim q̃s ≤ dim q − 2, it follows that the extension (K · F̃s)/K is purely
transcendental (see, e.g., [16, Cor. 3.9 and Prop. 5.13]), where K · F̃s is the free
composite of K and F̃s over F̃ . Since K/F is purely transcendental, it follows that
(K · F̃s)/F is also purely transcendental. Hence F̃s/F is unirational. Since E = F̃s,
we are done. ¤

Lemma 3.6. Let ρ be a Pfister neighbor of 〈〈a, b〉〉 and n be a positive integer.
Let ψ be a form such that dimn ψF (ρ) < 2n−1. Then there exists an F -form µ such
that dim µ = dimn ψF (ρ) and ψF (ρ) ≡ µF (ρ) (mod In(F )).

Proof. Let ξ be an F (ρ)-form such that dim ξ = dimn ψF (ρ) and ψF (ρ) ≡ ξ
(mod In(F (ρ))). By [18, Lemme 3.1], we have ξ ∈ Wnr(F (ρ)/F ). By the excellence
property of F (ρ)/F (see [2, Lemma 3.1]), there exists an F -form µ such that ξ =
µF (ρ). ¤

Corollary 3.7. Let ρ be a Pfister neighbor of 〈〈a, b〉〉 and n be a positive integer
such that n ≤ 5. Let ψ be a form such that dimn ψF (ρ) < 2n−1. Then there exist
F -forms µ and γ such that dim µ = dimn ψF (ρ) and ψ ≡ µ+ 〈〈a, b〉〉 γ (mod In(F )).

Proof. Let µ be a form as in Lemma 3.6. We have (ψ − µ)F (ρ) ∈ In(F (ρ)).
By Corollary 2.4, we have ψ−µ ∈ 〈〈a, b〉〉W (F )+In(F ). Hence, there exists γ such
that ψ − µ ∈ 〈〈a, b〉〉 γ + In(F ). ¤

Proposition 3.8. Let q be an F -form of dimension > 16 and ψ be a form over
F such that dim5 ψF (q) ≤ 7. Then dim5 ψ = dim5 ψF (q). In particular, dim5 ψ ≤ 7.

Proof. By Lemma 3.2, we have dim5 ψ ≥ dim5 ψF (q). Hence, it suffices to
verify that dim5 ψ ≤ dim5 ψF (q). As usually, we denote as C0(ψ) the even part
of the Clifford algebra and as c(ψ) the Clifford invariant of ψ. We start with the
following case:

Case 1. either dim5 ψF (q) ≤ 6 or dim5 ψF (q) = 7 and ind C0(ψ) 6= 8.
By the definition of dim5 ψF (q), there exists an F (q)-form φ such that dim φ =

dim5 ψF (q) ≤ 7 and φ ≡ ψF (q) (mod I5(F (q))). In particular, we have c(φ) =
c(ψF (q)). Since dim φ ≤ 7 and dim q > 16, the index reduction formula shows that
indC0(φ) = indC0(ψ). By the assumption of Case 1, we see that

• either dim φ ≤ 6,
• or dim φ = 7 and ind C0(φ) 6= 8.

Since φ ≡ ψF (q) (mod I5(F (q))), it follows that φ ∈ im(W (F ) → W (F (q))) +
I5(F (q)). The principal theorem of [18] shows that φ is defined over F . In other
words, there exists an F -form µ such that φ = µF (q). Therefore, ψF (q) ≡ φ ≡
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µF (q) (mod I5(F (q)). By Corollary 2.4, we see that ψ ≡ µ (mod I5(F )). Hence,
dim5(ψ) ≤ dim µ = dim φ = dim5(ψF (q)). This completes the proof in Case 1.

Case 2. dim5 ψF (q) = 7 and ind C0(ψ) = 8.
Lemma 3.2 shows that we can change the ground field by an arbitrary uni-

rational extension. After this, Lemma 3.5 (applied to A = C0(ψ), n = 3 and q)
shows, that we can assume that there exists a 3-dimensional subform q0 ⊂ q such
that ind(C0(ψ)⊗ C0(q0)) = 16.

Let a, b ∈ F ∗ be such that q0 is a Pfister neighbor of 〈〈a, b〉〉.
By Corollary 3.3, we have dim5 ψF (q0) ≤ 7. By Corollary 3.7, there exists a

form µ of dimension ≤ 7 and a form λ such that ψ ≡ µ + 〈〈a, b〉〉λ (mod I5(F )).
First, consider the case where dim λ is odd. Then c(ψ) = c(µ)+(a, b). Therefore

indC0(µ) = ind(C0(ψ) ⊗ (a, b)) = ind(C0(ψ) ⊗ C0(q0)) = 16. On the other hand,
dim µ ≤ 7 and hence ind C0(µ) ≤ 8. We get a contradiction.

Now, we can assume that dimλ is even. Then λ ≡ 〈〈c〉〉 (mod I2(F )), where
c = d±λ. Hence, 〈〈a, b〉〉λ ≡ 〈〈a, b, c〉〉 (mod I4(F )). Hence, ψ − µ ≡ 〈〈a, b〉〉λ ≡
〈〈a, b, c〉〉 (mod I4(F )). Let π = 〈〈a, b, c〉〉. We have ψ ≡ µ + π (mod I4(F )).

Since πF (π) is hyperbolic, it follows that ψF (q,π) ≡ µF (q,π) (mod I4(F (q, π)).
Since dim5 ψF (q) = 7, there exists a 7-dimensional F (q)-form ξ such that ψF (q) ≡ ξ

(mod I5(F (q))). This implies that µF (q,π) ≡ ψF (q,π) ≡ ξF (q,π) (mod I4(F (q, π))).
Since dimµ + dim ξ ≤ 7 + 7 = 14 < 24, APH shows that µF (q,π) = ξF (q,π). Hence,
ψF (q,π) ≡ ξF (q,π) ≡ µF (q,π) (mod I5(F (q, π))). Since dim q > 16, Corollary 2.4
shows that ψF (π) ≡ µF (π) (mod I5(F (π))). Hence (ψ − µ)F (π) ∈ I5(F (π)).

By Corollary 2.4, there exists an F -form γ such that ψ − µ ≡ πγ (mod I5(F )).
Since ψ − µ ≡ π (mod I4(F )), it follows that either π is hyperbolic or dim γ is
odd. In any case, we can assume that dim γ is odd. Then γ ≡ 〈k〉 (mod I2(F )),
where k = d±γ. Hence, ψ − µ ≡ πγ ≡ kπ (mod I5(F )). Therefore, ξ ≡ ψF (q) ≡
(µ + kπ)F (q) (mod I5(F (q))). Since dim ξ + dim µ + dim π = 7 + 7 + 8 < 25, APH
shows that ξ = (ζF (q))an, where ζ = (µ ⊥ kπ)an. Since dim ζ ≤ dim(µ ⊥ kπ) ≤
7 + 8 < 24 < dim q, Hoffmann’s theorem shows that ζF (q) is anisotropic. Hence,
ξ = ζF (q). In particular, dim ζ = 7. We have ψF (q) ≡ ξ ≡ ζF (q) (mod I5(F (q))).
Since dim q > 16, Corollary 2.4 shows that ψ ≡ ζ (mod I5(F )). Hence, dim5 ψ ≤
dim ζ = 7. On the other hand, dim5 ψ ≥ dim5 ψF (q) = 7. The proof is complete. ¤

The essential part of the following theorem was proved by Ahmed Laghribi in
[18].

Theorem 3.9. (cf. [18, Théorème principal]). Let q be a form of dimension
> 16. Let φ be a form of dimension ≤ 7 over the field F (q). Then the following
conditions are equivalent.

(1) φ is defined over F ,
(2) φ ∈ im(W (F ) → W (F (q))),
(3) φ ∈ im(W (F ) → W (F (q))) + I5(F (q)),
(4) φ ∈ Wnr(F (q)/F ).

Proof. This theorem is proved in [18] except for the case where dim φ = 7
and ind C0(φ) = 8. Implications (1)⇒(2)⇒(3) ⇐⇒ (4) are also proved in [18]. It
suffices to prove implication (3)⇒(1).

Condition (3) shows that there exists a form ψ over F such that ψF (q) ≡ φ

(mod I5(F (q))). Therefore dim5 ψF (q) ≤ dim φ ≤ 7. By Proposition 3.8, we have
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dim5 ψ ≤ 7. Hence there exists an anisotropic F -form µ of dimension ≤ 7 such
that ψ ≡ µ (mod I5(F )). Thus φ ≡ ψF (q) ≡ µF (q) (mod I5(F (q))). Since dim φ +
dim µ = 7 + 7 < 25, APH shows that φan = (µF (q))an. Since dim µ < 8 < dim q,
Hoffmann’s theorem shows that µF (q) is anisotropic. Hence φan = µF (q). Therefore
φan is defined over F . Hence, φ is defined over F . ¤

Proof of theorem 1.7. (i)⇒(ii). Let φ = (qF (q))an. By [17, Th. 7.13], it
suffices to prove that φ is defined over F . Since n ≥ 5, we have dim q ≥ 2n−7 > 16.
Clearly, φ ∈ im(W (F ) → W (F (q))). Since q has maximal splitting, it follows that
dim φ = 2n − dim q ≤ 7. By Theorem 3.9, we see that φ is defined over F .

(ii)⇒(i). Obvious. ¤

4. Elementary properties of AMS-forms

In this section we start studying forms with absolutely maximal splitting (AMS-
forms) defined in the introduction (Definition 1.10).

Lemma 4.1. Let φ be an anisotropic form and n be an integer such that 2n−1 +
2n−3 < dim φ ≤ 2n. Suppose that φ has maximal splitting. Then φ has absolutely
maximal splitting.

Proof. Let m = dim φ − 2n−1. Clearly, dim φ = 2n−1 + m and 2n−3 < m ≤
2n−1. Since φ has maximal splitting, we have i1(φ) = m. Let F = F0, F1, . . . , Fh

be the generic splitting tower of φ. Let φi = (φFi)an for i = 0, . . . , h. Let us fix
r > 1. To prove that φ has absolutely maximal splitting, we need to verify that
ir(φ) < m. Clearly, ir(φ) = i1(φr). Thus, we need to verify that i1(φr) < m. In
the case where dim φr ≤ 2n−2, we have i1(φr) ≤ 1

2 dim φr ≤ 1
22n−2 = 2n−3 < m.

Thus, we can suppose that dim φr > 2n−2. Since r ≥ 1, we have dim φr ≤
dim φ1 = dimφ − 2i1(φ) = 2n−1 + m − 2m = 2n−1 −m. Hence, 2n−2 < dim φr ≤
2n−2 + (2n−2−m). By Theorem 1.2, we have i1(φr) ≤ 2n−2−m. Since m > 2n−3,
we have 2n−2 −m < m. Hence i1(φr) ≤ 2n−2 −m < m. ¤

From the results proven in the next sections (see Theorem 7.1) it follows that
in the dimension range we are interested in (2n−1 + 2n−3 < dim φ ≤ 2n), the form
has maximal splitting if and only if it has absolutely maximal splitting.

Remark 4.2. We cannot change the strict inequality 2n−1 + 2n−3 < dim φ
by 2n−1 + 2n−3 ≤ dim φ in the formulation of the lemma. Indeed, for any n ≥ 3
there exists an example of (2n−1+2n−3)-dimensional form φ with maximal splitting
which is not an AMS-form. The simplest example is the following:

φ = 〈〈x1, x2, . . . , xn−3〉〉 ⊗ 〈1, 1, 1, 1, 1〉 over the field R(x1, . . . , xn−3).

In this case i1(φ) = i2(φ) = 2n−3.

5. Motivic decomposition of AMS-Quadrics

In this section we will produce some “binary” motive related to an AMS-
quadric.

Let X, Y and Z be smooth projective varieties over k of dimensions l, m and
n, respectively. Then we have a natural (associative) pairing:

◦ : CHn+b(Y × Z)⊗ CHm+a(X × Y ) → CHn+a+b(X × Z),
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where v ◦ u := (πX,Z)∗(π∗X,Y (u) ∩ π∗Y,Z(v)), and πX,Y : X × Y × Z → X × Y ,
πY,Z : X×Y ×Z → Y ×Z, πX,Z : X×Y ×Z → X×Z are the natural projections.
In particular, taking X = Spec(k), we get a pairing:

CHn+b(Y × Z)⊗ CHr(Y ) → CHr−b(Z).

In this case, we will denote v ◦ u as v(u).

Theorem 5.1. (cf. [33, Proof of Statement 6.1]) Let Q be an AMS-quadric.
Let P ⊂ Q be any subquadric of codimension = i1(q) − 1. Then P possesses
a Rost projector (in other words, M(P ) contains a direct summand N such that
N |k ' Z⊕ Z(dim(P ))[2 dim(P )]).

Proof. We say that “we are in the situation (∗)”, if we have the following
data:

Q - some quadric; P ⊂ Q - some subquadric of codimension d;
Φ ∈ CHm(Q×Q), where m := dim(P ).

In this case, let Ψ ∈ CHm+d(P × Q) denote the class of the graph of the natural
embedding P ⊂ Q, and let Ψ∨ ∈ CHm+d(Q× P ) denote the dual cycle. We define
ε := Ψ∨ ◦ Φ ◦Ψ ∈ CHm(P × P ).

The action on CH∗(Pk) identifies: CHm(Pk × Pk) =
∏

r End(CHr(Pk)) (see
[29, Lemma 7]), and we will denote as ε(r) ∈ End(CHr(Pk)) the corresponding
coordinate of εk.

• If 0 ≤ s < m/2, then CHs(Pk) = Z with the generator ls - the class of
projective subspace of dimension s on Pk ;

• if m/2 < s ≤ m, then CHs(Pk) = Z with the generator hm−s - the class
of plane section of codimension m− s on Pk ;

• if s = m/2, then CHs(Pk) = Z ⊕ Z with the generators l1m/2 and l2m/2

- the classes of m/2-dimensional projective subspaces from two different
families.

This permits to identify End(CHs(Pk)) with Z if 0 ≤ s ≤ m, s 6= m/2, and
with Mat2×2(Z), if s = m/2. We should mention, that since for an arbitrary
field extension E/k, the natural map CHs(P |k) → CHs(P |E) is an isomorphism
(preserving the generators above), we have an equality: (εE)(s) = ε(s) (in Z, resp.
Mat2×2(Z)).

We will need the following easy corollary of Springer’s theorem. Under the
degree of the cycle A ∈ CHs(Q) we will understand the degree of the 0-cycle A∩hs.

Lemma 5.2. Let 0 ≤ s ≤ dim(Q)/2. Then the following conditions are equiva-
lent:

(1) q = (s + 1) ·H ⊥ q′, for some form q′;
(2) Q contains (projective subspace) Ps as a subvariety;
(3) CHs(Q) contains cycle of odd degree.

Proof. (1) ⇒ (2) and (2) ⇒ (3) are evident. (3) ⇒ (1) Use induction on s.
For s = 0 the statement is equivalent to the Theorem of Springer. Now if s > 0,
then CH0(Q) also contains a cycle of odd degree (obtained via intersection with
hs). So, q = H ⊥ q′′. And we have the natural degree preserving isomorphism:
CHs(Q) = CHs−1(Q′′). By induction, q′′ = s ·H ⊥ q′. ¤
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Lemma 5.3. In the situation of (∗), suppose, for some 0 ≤ s < m/2, that
ε(s) ∈ Z is odd. Then for an arbitrary field extension E/k, if QE contains a
projective space of dimension s, then it contains a projective space of dimension
s + d.

Proof. Let E/k be such an extension that ls ∈ image(CHs(QE)→ CHs(QE)),
and suppose that ε(s) is odd. We have: Ψ ◦Ψ∨ ◦ Φ(ls) = λ · ls ⊂ CHs(QE), where
λ ∈ Z is odd (since Ψ : CHs(PE) → CHs(QE) is an isomorphism). On the other
hand, the composition Ψ ◦ Ψ∨ : CHs+d(QE) → CHs(QE) is given by the intersec-
tion with the plane section of codimension d, so it preserves the degree of the cycle.
This implies that Φ(ls) ∈ image(CHs+d(QE) → CHs+d(QE)) has odd degree. By
Lemma 5.2, QE contains a projective space of dimension s + d. ¤

Lemma 5.4. In the situation of (∗), suppose, for some m/2 < s ≤ m, that ε(s) ∈
Z is odd. Then for an arbitrary field extension E/k, if QE contains a projective
space of dimension (m− s), then it contains a projective space of dimension (m−
s + d).

Proof. Consider the cycle ε∨ ∈ CHm(P × P ) dual to ε. Since (A ◦ B)∨ =
B∨ ◦ A∨, we have: ε∨ = Ψ∨ ◦ Φ∨ ◦Ψ. On the other hand, (ε∨)(s) = ε(m−s). Now,
the statement follows from Lemma 5.3. ¤

Lemma 5.5. In the situation of (∗), if d > 0, then εk(l1m/2) = εk(l2m/2) =
c · hm/2, where c ∈ Z.

Proof. Clearly, Ψ(lim/2) = lm/2 ∈ CHm/2(Qk). On the other hand, Φ ◦
Ψ(lim/2) ∈ CHm/2+d(Qk), the later group is generated by hm/2 (since (m/2)+ d>

(m + d)/2), and Ψ∨(hm/2) = hm/2. ¤
Let now Q be an AMS-quadric, and P ⊂ Q be a subquadric of codimension

i1(q)− 1. By the definition of AMS-quadrics, either dim(Q) = 0, or i1(q) > 1 and
P is a proper subform of Q. Clearly, it is enough to consider the second possibility.

By the definition of i1(q), we have: qk(Q) = i1(q) · H ⊥ q1. So, the quadric
Qk(Q) contains an (i1(q) − 1)-dimensional projective subspace l(i1(q)−1). Denote:
d := i1(q)− 1, and m := dim(P ). Let Φ ∈ CHm(Q×Q) be the class of the closure
of ld ⊂ Spec(k(Q))×Q ⊂ Q×Q. Let us denote this particular case of (∗) as (∗∗).

Lemma 5.6. In the situation of (∗∗), εk = Pk × l0 +
∑

0<i<m bi · (hm−i× hi) +
a · l0 × Pk, where b1, . . . , bm−1, a ∈ Z.

Proof. If for some 0 ≤ i < m/2, the coordinate ε(i) is odd, then by Lemma
5.3, in the generalized splitting tower k = F0 ⊂ F1 ⊂ · · · ⊂ Fh for the quadric Q
(see [16]), there exists 0 ≤ t < h such that iW (qFt) ≤ i < i+ i1(q)− 1 < iW (qFt+1).
Since q is an AMS-form, this can happen only if i = 0. In the same way, using
Lemma 5.4, we get that for all m/2 < i < m, the coordinates ε(i) are even.

This implies that on the group CHi(Pk), where 0 < i < m, i 6= m/2, the map
εk acts as some (integral) multiple of hm−i × hi (notice also that hm−i × hi acts
trivially on all CHj(Pk), j 6= i). The same holds for i = m/2 by Lemma 5.5.

Clearly, Pk×l0 (resp. l0×Pk) acts on CH0(Pk) (resp. CHm(Pk)) as a generator
of End(CH0(Pk)) = Z (resp. End(CHm(Pk)) = Z), and acts trivially on CHj(Pk),
j 6= 0 (resp. j 6= m). So, we need only to observe that ε(0) = 1 (since Ψ∨◦Φ◦Ψ(l0) =
Ψ∨◦Φ(l0) = Ψ∨(ld) = l0)(this is the only place where we use the specifics of Φ). ¤
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Now we can use ε to construct the desired projector in End(M(P )), where
M(P ) is a motive of the quadric P , considered as an object of the classical Chow-
motivic category of Grothendieck Choweff (k) (see [3],[20],[31],[29]). We remind
that End(M(P )) is naturally identified with CHm(P × P ) with the composition
given by the pairing ◦.

Take ω := ε−∑
0<i<m bi · (hi × hm−i)− [a/2] · (hm × P ) ∈ End(M(P )). Then

ωk is a projector equal to either (Pk × l0 + l0 × Pk), or to Pk × l0 (depending on
the parity of a).

We have the following easy consequence of the Rost Nilpotence Theorem ([29,
Corollary 10]):

Lemma 5.7. ([33, Lemma 3.12]) If for some ω ∈ End(M(P )), ωk is an idem-
potent, then for some r, ω2r

is an idempotent.

The mutually orthogonal idempotents Pk × l0 and l0 ×Pk give the direct sum-
mands Z and Z(m)[2m] in M(Pk). By lemma 5.7, we get a direct summand L in
M(P ) such that either Lk = Z ⊕ Z(m)[2m], or Lk = Z. The latter possibility is
excluded by the following lemma.

Lemma 5.8. Let L be a direct summand of M(P ) such that Lk ' Z. Then P
is isotropic.

Proof. Let w ∈ CHdim(P )(P × P ) be the projector, corresponding to L. We
have: End(M(Pk)) =

∏
r End(CHr(Pk)). So, if dim(P ) > 0, then the restriction

wk of our projector to k has no choice but to be Pk × l0 ∈ CHdim(P )(Pk × Pk).
Then, evidently, degree(w ∩∆P ) = 1, and on P × P , and therefore also on P , we
get a point of odd degree. By Springer’s Theorem, P is isotropic. If dim(P ) = 0,
then End(M(P )) has a nontrivial projector if and only if det±(p) = 1 (⇔ p is
isotropic). ¤

From Lemma 5.7 it follows that ω2r

is an idempotent, and by Lemma 5.8,
ω2r |k = Pk × l0 + l0 × Pk. Theorem 5.1 is proven. ¤

6. Binary direct summands in the motives of quadrics

The following result was proven (but not formulated) by the second author in
his thesis (see the proof of Statement 6.1 in [33]). We will reproduce its proof here
for the reader’s convenience.

Theorem 6.1. ([33]) ((*M*), see the end of Section 1) Let k be a field of
characteristic 0, and P be smooth anisotropic projective quadric of dimension n
whose Chow-motive M(P ) contains a direct summand N such that N |k = Z ⊕
Z(n)[2n]. Then n = 2s − 1 for some s.

Proof of Theorem 6.1. The construction we use here is very close to that
used by V.Voevodsky in [36].

The category of Chow-motives Choweff (k) which we used in the previous sec-
tion is a full additive subcategory (closed under taking direct summands) in the
triangulated category DMeff

− (k) - see [34]. The category DMeff
− (k) contains the

“motives” of all smooth simplicial schemes over k. If P is a smooth projective
variety over k, we denote as Č(P )• the standard simplicial scheme corresponding
to the pair P → Spec(k) (see Definition A.8). We will denote its motive by XP .
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From the natural projection: Č(P )•
pr→ Spec(k), we get a map: XP

M(pr)−→ Z. By
Theorem A.9, M(pr)k is an isomorphism. From this point, we will denote M(pr)
simply as pr (since we will not use simplicial schemes themselves anymore).

By Theorem A.11, we get that in DMeff
− (k),

N := Cone[−1](XP
µ′−−−−→ XP (n)[2n + 1]),

where µ′ is some (actually, the only) nontrivial 2 element from

Hom(XP ,XP (n)[2n + 1]).

By Theorem A.15, pr : XP → Z induces the natural isomorphism for all a, b:

pr∗ : Hom(XP ,XP (a)[b]) → Hom(XP ,Z(a)[b]).

Denote: µ := pr∗(µ′) ∈ Hom(XP ,Z(n)[2n + 1]).

Sublemma 6.2. The map

(µ′)∗ : Hom(XP ,Z(c)[d]) → Hom(XP ,Z(c + n)[d + 2n + 1])

coincides with the multiplication by µ ∈ Hom(XP ,Z(n)[2n + 1]).

Proof. The maps ∆XP : XP → XP ⊗ XP , and πi : XP ⊗ XP → XP are
mutually inverse isomorphisms (by Theorem A.13). Clearly, µ · u = ∆XP (µ⊗ u).

The map µ⊗ u : XP ⊗XP → Z(n)[2n + 1]⊗ Z(c)[d] coincides with the compo-
sition:

XP
µ′−−−−→ XP (n)[2n + 1]

pr(n)[2n+1]−−−−−−−−→ Z(n)[2n + 1]

⊗ ⊗ ⊗
XP

id−−−−→ XP
u−−−−→ Z(c)[d]

which can be identified with the composition:

XP
µ′→ XP (n)[2n + 1] u→ Z(n + c)[2n + 1 + d],

which is equal to (µ′)∗(u). ¤
Sublemma 6.3. Multiplication by µ induces a homomorphism

Hom(XP ,Z(c)[d]) → Hom(XP ,Z(c + n)[d + 2n + 1])

which is an isomorphism if d − c > 0, and which is surjective if d = c. The same
holds for cohomology with Z/2-coefficients.

Proof. Since N is a direct summand in M(P ), Hom(N,Z(a)[b]) = 0, for
b− a > n = dim(P ), by Theorem A.2(1).

Consider Hom’s from the exact triangle N → XP
µ′→ XP (n)[2n + 1] → N [1] to

Z(n + c)[2n + d + 1]. We have: Hom(N,Z(n + c)[2n + d + 1]) = 0, if d− c ≥ 0, and
Hom(N,Z(n + c)[2n + d]) = 0, if d − c > 0. This, combined with Sublemma 6.2,
implies the statement for Z-coefficients. The case of Z/2-coefficients follows from
the five-lemma. ¤

We can also consider X̃P := Cone[−1](XP
pr→ Z).

Sublemma 6.4. Let a and b be integers such that b > a. Then

2Since, otherwise, XP would be a direct summand of N and hence also of M(P ), and by
Lemma 5.8, P would be isotropic
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• Hom(XP ,Z(a)[b]) is a 2-torsion group,
• Hom(XP ,Z(a)[b]) embeds into Hom(XP ,Z/2(a)[b]),
• the natural map X̃P

δ→ XP induces an isomorphism

Hom(XP ,Z/2(a)[b]) =→ Hom(X̃P ,Z/2(a)[b]).

Proof. For a finite field extension E/k we have the action of transfers on
motivic cohomology:

Tr : Hom(X|E ,Z(a)[b]) → Hom(X,Z(a)[b]),

which is induced by the natural map Z→ M(Spec(E)) (given by the generic cycle
on Spec(k)× Spec(E) = Spec(E)). The main property of the transfer is that Tr ◦j
acts as multiplication by the degree [E : k], where

j : Hom(X,Z(a)[b]) → Hom(X|E ,Z(a)[b])

is the natural restriction.
A quadric P has a point E of degree 2, and over E, XP becomes Z (by Theorem

A.9), so we have that Hom(XP |E ,Z(a)[b]) = 0 for b− a > 0 (by Theorem A.2(1)).
Considering the composition Tr ◦j = ·[E : k] we get that Hom(XP ,Z(a)[b]) is

a 2-torsion group for b > a. In particular, the natural map Hom(XP ,Z(a)[b]) →
Hom(XP ,Z/2(a)[b]) is injective for b > a.

Since Hom(Z,Z/2(a)[b]) = 0 for any b > a (see Theorem A.2(1)), we also have
that for b > a, δ∗ : Hom(XP ,Z/2(a)[b]) → Hom(X̃P ,Z/2(a)[b]) is an isomorphism.

¤

We have the action of motivic cohomological operations Qi on
Hom(XP ,Z(∗)[∗′]) and Hom(X̃P ,Z(∗)[∗′]) (see Theorems A.5 and A.6). The differ-
ential Qi acts without cohomology on Hom(X̃P ,Z/2(∗)[∗′]) for any i ≤ [log2(n+1)]
(see Theorem A.16).

Denote η := µ(mod2), i.e. the image of µ in the cohomology with Z/2 coeffi-
cients. From Sublemma 6.4 it follows that η 6= 0.

Denote r = [log2(n)].

Sublemma 6.5. Qi(η) = 0, for all i ≤ r.

Proof. In fact, Qi(η) ∈ Hom(XP ,Z/2(n + 2i − 1)[2n + 2i+1]), and the latter
group is an extension of 2-cotorsion in Hom(XP ,Z(n + 2i − 1)[2n + 2i+1]), and
2-torsion in Hom(XP ,Z(n + 2i − 1)[2n + 2i+1 + 1]).

But, by Sublemma 6.3, the multiplication by µ induces surjections
Hom(XP ,Z(2i − 1)[2i+1 − 1]) → Hom(XP ,Z(n + 2i − 1)[2n + 2i+1]) and
Hom(XP ,Z(2i − 1)[2i+1]) → Hom(XP ,Z(n + 2i − 1)[2n + 2i+1 + 1]). Furthermore,
the groups: Hom(XP ,Z(2i − 1)[2i+1 − 1]), Hom(XP ,Z(2i − 1)[2i+1]) are zero.

In fact, from the exact triangle N → XP → XP (n)[2n + 1] → N [1], we get an
exact sequence: Hom(N,Z(2i − 1)[2i+1 − 1]) ← Hom(XP ,Z(2i − 1)[2i+1 − 1]) ←
Hom(XP (n)[2n + 1],Z(2i − 1)[2i+1 − 1]). The first group is zero since N is a
direct summand in the motive of a smooth projective variety, and (consequently)
Hom(N,Z(a)[b]) = 0 for b > 2a (see Theorem A.2(2)). The third group is zero,
since n > 2i − 1 (see Theorem A.1). Hence the second is zero as well. The case of
Hom(XP ,Z(2i − 1)[2i+1]) follows in an analogous manner.

Thus, Qi(η) = 0. ¤
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Sublemma 6.6. Let 0 ≤ j ≤ r. Then Qj is injective on Hom(X̃P ,Z/2(c)[d]),
if d− c = n + 1 + 2j.

Proof. Let ṽ ∈ Hom(X̃P ,Z/2(c)[d]), where d− c = n + 1 + 2j . If Qj(ṽ) = 0,
then ṽ = Qj(w̃), for some w̃ ∈ Hom(X̃P ,Z/2(c − 2j + 1)[d − 2j+1 + 1]) (since
Qj acts without cohomology on Hom(X̃P ,Z/2(∗)[∗′]), by Theorem A.16). Since
(d− 2j+1 + 1)− (c− 2j + 1) = n + 1 > 0, we have that δ∗ : Hom(XP ,Z/2(c− 2j +
1)[d− 2j+1 + 1]) → Hom(X̃P ,Z/2(c− 2j + 1)[d− 2j+1 + 1]) is an isomorphism, and
there exists w ∈ Hom(XP ,Z/2(c− 2j + 1)[d− 2j+1 + 1]) such that w̃ = δ∗(w).

By Sublemma 6.3, w = η ·u, for some u ∈ Hom(XP ,Z/2(c−2j +1−n)[d−2j+1−
2n]). By Theorem A.6(2), Qj(η · u) = Qj(η) · u + η ·Qj(u) +

∑{−1}xiφi(η) ·ψi(u),
where xi > 0, and φi, ψi are cohomological operations of some bidegree (∗)[∗′],
where ∗′ > 2∗ ≥ 0.

Note that c− 2j + 1− n = d− 2j+1 − 2n =: s. But by Theorem A.18, we have

that Hom(Z,Z/2(a)[b])
pr∗→ Hom(XP ,Z/2(a)[b]) is an isomorphism for a ≥ b. Hence,

u = pr∗(u0), where u0 ∈ Hom(Z,Z/2(s)[s]) = KM
s (k)/2. We have: Qj(u0) = 0 and

ψi(u0) = 0 (since Hom(Z,Z/2(a)[b]) = 0 for b > a).
But pr∗ commutes with Qj and ψi. So, Qj(u) = 0 and ψi(u) = 0. That means:

Qj(w) = Qj(η · u) = Qj(η) · u = 0, by Sublemma 6.5.
We get: ṽ = Qj(w̃) = Qj ◦ δ∗(w) = δ∗ ◦ Qj(w) = 0. I.e., Qj is injective on

Hom(X̃P ,Z/2(c)[d]). ¤

Denote η̃ := δ∗(η) ∈ Hom(X̃P ,Z/2(n)[2n + 1]). Since η 6= 0, we have η̃ 6= 0 (by
Sublemma 6.4).

Sublemma 6.7. Let 0 ≤ m < r, and η̃ = Qm ◦ · · · ◦ Q1 ◦ Q0(η̃m) for some
η̃m ∈ Hom(X̃P ,Z/2(n−2m+1 +m+2)[2n−2m+2 +m+4]). Then there exists η̃m+1

such that η̃m = Qm+1(η̃m+1).

Proof. Since Qm+1 acts without cohomology on Hom(X̃P ,Z/2(∗)[∗′]), it is
enough to show that Qm+1(η̃m) = 0.

Denote ṽ := Qm+1(η̃m). We have ṽ ∈ Hom(X̃P ,Z/2(n + m + 1)[2n + m + 3]).
Since Qi commutes with Qj (by Theorem A.6(1)), we have: Qm◦Qm−1◦· · ·◦Q0(ṽ) =
Qm◦Qm−1◦· · ·◦Q0◦Qm+1(η̃m) = Qm+1◦Qm◦Qm−1◦· · ·◦Q0(η̃m) = Qm+1(η̃) = 0,
by Sublemma 6.5.

But, for any 0 ≤ t ≤ m, Qt−1 ◦ · · · ◦Q0(ṽ) ∈ Hom(X̃P ,Z(c)[d]), where d− c =
n+1+2t, and Qt is injective on Hom(X̃P ,Z(c)[d]), by Sublemma 6.6. So, from the
equality Qm ◦Qm−1 ◦ · · · ◦Q0(ṽ) = 0, we get ṽ = 0. ¤

From Sublemma 6.7 it follows that η̃ = Qr ◦ · · · ◦Q1 ◦Q0(η̃r). Denote γ̃ := η̃r.
We have γ̃ ∈ Hom(X̃P ,Z/2(n− 2r+1 + 2 + r)[2n− 2r+2 + 4 + r]).

But (2n− 2r+2 + 4 + r)− (n− 2r+1 + 2 + r) = n− 2r+1 + 2, and r = [log2(n)],
hence 2r ≤ n < 2r+1. Since we know that Hom(X̃P ,Z/2(a)[b]) = 0 for a ≥ b (by
Theorem A.18), and η̃ 6= 0, the only possible choice for n is n = 2r+1 − 1.

Theorem 6.1 is proven. ¤

Lemma 6.8. Let 0 ≤ j ≤ r. Then Qj is injective on Hom(X̃P ,Z/2(c)[d])
provided d− c = 2j.

Proof. Let ṽ ∈ Hom(X̃P ,Z/2(c)[d]), where d − c = 2j . If Qj(ṽ) = 0, then
ṽ = Qj(w̃) for some w̃ ∈ Hom(X̃P ,Z/2(c − 2j + 1)[d − 2j+1 + 1]) (since Qj acts
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without cohomology on Hom(X̃P ,Z/2(∗)[∗′]), by Theorem A.16). But (c−2j +1) =
(d−2j+1+1), and Hom(X̃P ,Z/2(c−2j +1)[d−2j+1+1]) = 0, by Theorem A.18. ¤

Theorem 6.9. (compare with [8, Theorem 3.1]) ((*M*), see the end of Section
1) Let k be a field of characteristic 0, P be a smooth n-dimensional anisotropic
projective quadric over k, and N be a direct summand in M(P ) such that N |k =
Z⊕ Z(n)[2n]. Then n = 2s−1 − 1, and there exists α ∈ KM

s (k)/2 such that for any
field extension E/k, the following conditions are equivalent:
1) α|E = 0; 2) P |E is isotropic.

In particular, α ∈ Ker(KM
s (k)/2 → KM

s (k(P ))/2) 6= 0.

Proof. It follows from Theorem 6.1 that n = 2r+1 − 1 for some r, and there
exists γ̃ ∈ Hom(X̃P ,Z/2(r + 1)[r + 2]) such that η̃ = Qr ◦ · · · ◦ Q1 ◦ Q0(γ̃). By
Sublemma 6.4, the map δ∗ : Hom(XP ,Z/2(r+1)[r+2]) → Hom(X̃P ,Z/2(r+1)[r+
2]) is an isomorphism, and γ̃ = δ∗(γ) for some γ ∈ Hom(XP ,Z/2(r+1)[r+2]). Let τ
be the only nontrivial element of Hom(Z/2,Z/2(1)) = Z/2. Denote as α the element
corresponding to τ ◦γ via identification (by Theorem A.18) Hom(XP ,Z/2(r+2)[r+
2]) = Hom(Z,Z/2(r + 2)[r + 2]) = KM

r+2(k)/2. Then, by Theorem A.20, for any
field extension E/k, α|E = 0 if and only if γ|E = 0. But γ|E = 0 ⇔ γ̃|E = 0. By
Lemma 6.8, γ̃|E = 0 ⇔ η̃|E = 0. By Sublemma 6.4, η̃|E = 0 ⇔ η|E = 0 ⇔ µ|E = 0.
Finally, µ|E = 0 if and only if XP |E is a direct summand in N and, consequently,
in M(P ), which by Lemma 5.8, is equivalent to P |E being isotropic. ¤

Remark 6.10. 1) Theorem 6.9 basically says that under the mentioned
conditions, the quadric P is a norm-variety for α ∈ KM

s (k)/2.
2) Taking into account the Milnor conjecture ([36]) and the definition of the

Rost projector, we see that Theorem 6.9 implies Theorem 1.12.
3) It should be mentioned that in small-dimensional cases it is possible to

prove the result (in arbitrary characteristic 6= 2) without the use of Vo-
evodsky’s technique. For example, the case n = 7 was considered in [15].

7. Properties of forms with absolutely maximal splitting

In this section we work with fields satisfying the condition charF = 0. We
begin with the following modification of Theorem 1.11.

Theorem 7.1. ((*M*), see the end of Section 1) Let φ be an anisotropic qua-
dratic form over a field F of characteristic 0. Suppose that φ is an AMS-form.
Then

(1) φ has maximal splitting,
(2) the group Hs(F (φ)/F ) is nontrivial, where s is the integer such that

2s−1 < dim φ ≤ 2s.

Proof. (1) Let ψ be subform of φ of codimension i1(q)−1. Let X be the pro-
jective quadric corresponding to ψ. By Theorem 5.1, X possesses a Rost projector.
Theorem 6.1 shows that dim(X) = 2s−1−1 for suitable s. Hence dim ψ = 2s−1 +1.
By the definition of ψ, we have dim φ−i1(φ) = dim ψ−1 = 2s−1. Therefore dim φ =
2s−1 + m, where m = i1(φ). To prove that φ has maximal splitting, it suffices to
verify that m ≤ 2s−1. This is obvious because 2s−1 + m = dim φ ≥ 2i1(φ) = 2m.

(2) Obvious in view of Theorem 6.9 and the isomorphism ks(F ) ' Hs(F ). ¤
Theorem 7.1 and Conjecture 1.1 make natural the following



120 OLEG IZHBOLDIN AND ALEXANDER VISHIK

Conjecture 7.2. If an anisotropic quadratic form has absolutely maximal
splitting, then it is a Pfister neighbor.

In the proof of Theorem 1.8 we will need some deep results related to the Milnor
conjecture.

Theorem 7.3. (see [36],[26]). ((*M*), see the end of Section 1) Let F be a
field of characteristic 0. Then for any n ≥ 0

(1) there exists an isomorphism en : In(F )/In+1(F ) '→ Hn(F ) such that

en(〈〈a1, . . . , an〉〉) = (a1, . . . , an).

(2) If φ is a Pfister neighbor of π ∈ GPn(F ). Then Hn(F (φ)/F ) is generated
by en(π).

(3) If dim τ > 2n, then Hn(F (τ)/F ) = 0.
(4) The ideal In(F ) coincides with Knebusch’s ideal Jn(F ). In other words,

for any τ ∈ In(F )\In+1(F ), we have deg τ = n.

We need also the following easy consequence of a result by Hoffmann.

Lemma 7.4. Let φ be an anisotropic form such that dimφ ≤ 2n. Let τ be an
anisotropic quadratic form and F0 = F, F1, . . . , Fh be the generic splitting tower of
τ . Let j be such that dim(τFj−1)an > 2n. Suppose that φFj has maximal splitting.
Then φ has maximal splitting.

Proof. Obvious in view of [4, Lemma 5]. ¤

Proposition 7.5. ((*M*), see the end of Section 1) Let F be a field of charac-
teristic 0. Let φ be a quadratic form over F and n be such that 2n−1< dim φ≤ 2n.
Suppose that Hn(F (φ)/F ) 6= 0. Then Hn(F (φ)/F ) ' Z/2Z and φ has maximal
splitting.

Proof. Let u be an arbitrary nonzero element of the group Hn(F (φ)/F ).
Since the homomorphism en : In(F )/In+1(F ) → Hn(F ) is an isomorphism, there
exists an anisotropic τ ∈ In(F ) such that τ /∈ In+1(F ) and en(τ) = u ∈ Hn(F (φ)/F ).
Let F0 = F, F1, . . . , Fh be the generic splitting tower of τ . Let τi = (τFi)an. Since
τ ∈ In(F )\In+1(F ), Item (4) of Theorem 7.3 shows that deg τ = n. Therefore,
τh−1 is a nonhyperbolic form in GPn(Fh−1). Since en(τ) ∈ Hn(F (φ)/F ), we have
en((τh−1)Fh−1(φ)) = 0. Hence, τh−1 is hyperbolic over the function field of φFh−1 .
Since τh−1 is an anisotropic form in GPn(Fh−1), the Cassels–Pfister subform the-
orem shows that φFh−1 is a Pfister neighbor of τFh−1 . Hence φFh−1 has maximal
splitting. Lemma 7.4 shows that φ has maximal splitting.

Since φFh−1 is a Pfister neighbor of τFh−1 , Item (2) of Theorem 7.3 shows that
|Hn(Fh−1(φ)/Fh−1)| ≤ 2. By Item (3) of Theorem 7.3, we have Hn(Fh−1/F ) =
0. Hence |Hn(Fh−1(φ)/F )| ≤ 2. Since Hn(F (φ)/F ) ⊂ Hn(Fh−1(φ)/F ), we get
|Hn(F (φ)/F )| ≤ 2. Now, since Hn(F (φ)/F ) 6= 0, we have Hn(F (φ)/F ) ' Z/2Z.

¤

Corollary 7.6. ((*M*), see the end of Section 1) Let n ≥ 5 and φ be an
anisotropic form such that 2n − 7 ≤ dim φ ≤ 2n Then the following conditions are
equivalent:

(a) φ has maximal splitting,
(b) φ is a Pfister neighbor,
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(c) Hn(F (φ)/F ) ' Z/2Z.
(d) Hn(F (φ)/F ) 6= 0.

Proof. (a)⇒(b) follows from Theorem 1.7. (b)⇒(c) follows from Theorem
7.3; (c)⇒(d) is obvious; (d)⇒(a) is proved in Proposition 7.5. ¤

Proof of Theorem 1.8. Let φ and n be as in Theorem 1.8. If φ has max-
imal splitting, then Lemma 4.1 shows that φ has absolutely maximal splitting.
Then Theorem 7.1 shows that Hn(F (φ)/F ) 6= 0. Conversely, if we suppose that
Hn(F (φ)/F ) 6= 0, then Proposition 7.5 shows that φ has maximal splitting. ¤

Appendix A

In this section we will list some results of V.Voevodsky, which we use in the
proof of Theorems 6.1 and 6.9.

We will assume everywhere that char(k) = 0.
First of all, we need some facts about triviality of motivic cohomology of smooth

simplicial schemes. If not specified otherwise, under Hom(−,−) we will mean
HomDMeff

− (k)(−,−). We remind that HomDMeff
− (k)(M(X),Z(a)[b]) is naturally

identified with Hb,a
B (X,Z) (see [36]).

Theorem A.1. ([36, Corollary 2.2(1)]) Let X be smooth simplicial scheme over
k. Then Hom(M(X)(a)[b],Z(c)[d]) = 0, for any a > c.

In the case of a smooth variety we have further restrictions on motivic coho-
mology:

Theorem A.2. ([36, Corollary 2.3]) Let N be a direct summand in M(X),
where X is a smooth scheme over k. Then Hom(N,Z(a)[b]) = 0 in the following
cases:

1 If b− a > dim(X);
2 If b > 2a.

The same is true about cohomology with Z/2-coefficients.

In [36] the Stable homotopy category of schemes over Spec(k), SH(k) was
defined (see also [25]). SH(k) is a triangulated category, and there is a functor
S : SmSimpl/k → SH(k), and a triangulated functor G : SH(k) → DMeff

− (k)
such that the composition G◦S : SmSimpl/k → DMeff

− (k) coincides with the usual
motivic functor: X 7→ M(X) (here SmSimpl/k is the category of smooth simplicial
schemes over Spec(k)). In [36], Section 3.3, the Eilenberg-MacLane spectrum HZ/2

(as an object of SH(k)) is defined, together with its shifts HZ/2(a)[b], for a, b ∈ Z.

Theorem A.3. ([36, Theorem 3.12]) If X is a smooth simplicial scheme, then
there exist canonical isomorphisms

HomSH(k)(S(X),HZ/2(a)[b]) = HomDMeff
− (k)(M(X),Z/2(a)[b]).

Definition A.4. ([36, p.31]) The motivic Steenrod algebra is the algebra of
endomorphisms of HZ/2 in SH(k), i.e.:

Ab,a(k,Z/2) = HomSH(k)(HZ/2,HZ/2(a)[b]).
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The composition gives a pairing:

HomSH(k)(U,HZ/2(c)[d])⊗Ab,a(k,Z/2) → HomSH(k)(U,HZ/2(c + a)[d + b]),

which is natural on U .
Let now f : X → Y be a morphism in SmSimpl/k. In SH(k) we have an exact

triangle: cone(S(f))[−1] δ′→ S(X)
S(f)→ S(Y ) → cone(f).

Theorem A.3 implies:

Theorem A.5. We have an action of the motivic Steenrod algebra A∗,∗(k,Z/2)
on ⊕a,b HomDMeff

− (k)(M(X),Z/2(a)[b]), ⊕a,b HomDMeff
− (k)(M(Y ),Z/2(a)[b]), and

⊕a,b Hom(cone(M(f))[−1],Z/2(a)[b]), which is compatible with M(f)∗ and δ∗.

We have some special elements Qi ∈ A2i+1−1,2i−1(k,Z/2) (see [36, p.32]).

Theorem A.6. ([36, Theorems 3.17 and 3.14])
1) Q2

i = 0, and QiQj + QjQi = 0.
2) Let u, v ∈ HomDMeff

− (k)(M(X),Z(∗)[∗′]), for a smooth simplicial scheme
X. Then Qi(u · v) = Qi(u) · v + u ·Qi(v) +

∑{−1}nj φj(u) · ψj(v), where
nj > 0, and φj , ψj ∈ A(k,Z/2) are some (homogeneous) elements of
bidegree (b, a), where b > 2a ≥ 0.

3) Qi = [β, qi], where β is Bockstein, and qi ∈ A(k,Z/2).

Following [36], we define:

Definition A.7. ([36, p.32]) Margolis motivic cohomology H̃M b,a
i (U) are co-

homology groups of the complex: HomSH(k)(U,HZ/2(a − 2i + 1)[b − 2i+1 + 1])
Qi→

HomSH(k)(U,HZ/2(a)[b])
Qi→ HomSH(k)(U,HZ/2(a + 2i − 1)[b + 2i+1 − 1]), for any

U ∈ Ob(SH(k)).

If U is Cone[−1](S(f)), for some morphism f : X → Y of simplicial schemes,
then by Theorems A.3 and A.5, H̃M b,a

i (U) coincides with the cohomology of the
complex

Hb−2i+1+1,a−2i+1
M (M(U),Z/2)

Qi→ Hb,a
M (M(U),Z/2)

Qi→ Hb+2i+1−1,a+2i−1
M (M(U),Z/2),

where Hd,c
M (∗,Z/2) := Hom

DM
eff
− (k)

(∗,Z/2(c)[d]), and M(U) = Cone[−1](M(f)).

Since H̃M b,a
i (Cone[−1](S(f))) depends only on M(f), we can denote it simply as

H̃M b,a
i (Cone[−1](M(f))).
Let P be some smooth projective variety over Spec(k).

Definition A.8. The standard simplicial scheme Č(P )•, corresponding to the
pair P → Spec(k) is the simplicial scheme such that Č(P )n = P × · · · × P (n + 1-
times), with faces and degeneration maps given by partial projections and diagonals.

In SmSimpl/k we have a natural projection: pr : Č(P )• → Spec(k). Let us
denote XP := M(Č(P )•). We get the natural map M(pr) : XP → Z.

Theorem A.9. ([36, Lemma 3.8]) If P has a k-rational point, then M(pr) :
XP → Z is an isomorphism.

Remark A.10. 1) In the notations of [36, Lemma 3.8], one should take X = P ,
Y = Spec(k), and observe that the simplicial weak equivalence gives an isomorphism
on the level of motives. 2) Actually, M(pr) is an isomorphism if and only if P has
a 0-cycle of degree 1 (see [33, Theorem 2.3.4]).
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Theorem A.9 shows that XP |k = Z, which means that XP is a form of the
Tate-motive.

Theorem A.11. ([36, Theorem 4.4]) Let P be an anisotropic projective quadric
of dimension n. Let N be a direct summand in M(P ) such that N |k = Z⊕Z(n)[2n].
Then in DMeff

− (k) there exists a distinguished triangle of the form:

XP (n)[2n] → N → XP
µ′→ XP (n)[2n + 1].

Remark A.12. Actually, Theorem 4.4 of [36] is formulated only for the case
of the Rost motive (as a direct summand in the motive of the minimal Pfister
neighbour). But the proof does not use any specifics of the Pfister form case, and
works with any “binary” direct summand of dimension = dim(P ). At the same
time, Theorem A.11 is a very particular case of [33, Lemma 3.23].

Theorem A.13. ([36, Lemma 3.8]) The natural diagonal map ∆XP : XP →
XP ⊗XP is an isomorphism.

Remark A.14. One should observe that the same proof as in [36, Lemma 3.8]
gives the simplicial weak equivalence Č(P )• × Č(P )•

pr1→ Č(P )• with the diagonal
map as inverse.

Theorem A.15. ([36, Lemma 4.7])
M(pr)∗ : Hom(XP ,XP (a)[b]) → Hom(XP ,Z(a)[b]) is an isomorphism, for any a, b.

Let us denote: X̃P := Cone[−1](M(pr)). Since X̃P comes from SH(k), it makes
sense to speak of the Margolis cohomology H̃M b,a

i (X̃P ) of X̃P .
Suppose now that P be a smooth projective quadric of dimension ≥ 2i − 1.
The following result of V.Voevodsky is the main tool in studying motivic co-

homology of quadrics:

Theorem A.16. ([36, Theorem 3.25 and Lemma 4.11]) Let P be a smooth
projective quadric of dimension ≥ 2i − 1, then H̃M b,a

i (X̃P ) = 0, for any a, b.

Remark A.17. In [36, Lemma 4.11], the result is formulated only for the case
of a (2i − 1)-dimensional Pfister quadric (corresponding to the form 〈〈a1, . . . , ai〉〉⊥
− 〈ai+1〉). But the proof does not use any specifics of the Pfister case (the only
thing which is used is: for any j ≤ i, P has a plane section of dimension 2j − 1,
which is again a quadric). Thus, for any quadric P of dimension ≥ 2i− 1, the ideal
IP contains a (vi, 2)-element (notations from [36, Lemma 4.11]).

The following statement is a consequence of the Beilinson-Lichtenbaum Con-
jecture for Z/2-coefficients.

Theorem A.18. ([36, Proposition 2.7, Corollary 2.13(2) and Theorem 4.1])
The map M(pr)∗ : Hom(Z,Z/2(a)[b]) → Hom(XP ,Z/2(a)[b]) is an isomorphism
for any b ≤ a.

Remark A.19. We should add that in [36, Theorem 4.1] it is proven that the
condition H90(n, 2) is satisfied for all n and all fields of characteristic 0 - see p.11
of [36]. Also, Hom(M(X),Z/2(a)[b]) can be identified with Hb,a

B (X,Z/2).

Motivic cohomology of XP can be used to compute the kernel on Milnor’s
K-theory ( mod 2):
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Theorem A.20. ([35, Lemma 6.4], [36, Theorem 4.1] ; or [12, Theorem A.1])
Let τ ∈ HomDMeff

− (k)(Z/2,Z/2(1)) = Z/2 be the only nontrivial element. Let P be
a smooth projective quadric over k. Then the composition

Hom(XP ,Z/2(m− 1)[m])
τ◦→Hom(XP ,Z/2(m)[m]) = Hom(Z,Z/2(m)[m])= KM

m (k)/2

identifies the first group with the ker(KM
m (k)/2 → KM

m (k(P ))/2).
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2-Regularity and Reversibility of Quadratic Mappings

Alexey F. Izmailov

Abstract. Some particular answers to the following question are presented:
does a surjective quadratic mapping between Banach spaces have a bounded
right inverse or not?

These notes are concerned with some particular answers to one question con-
nected with quadratic mappings. Let X and Y be linear spaces. We refer to a
mapping Q : X → Y as quadratic if there exists a bilinear mapping B : X×X → Y
such that

Q(x) = B(x, x) ∀x ∈ X.

To say it in other words, a quadratic mapping is a homogeneous of degree 2 poly-
nomial mapping. In the case of a finite-dimensional Y , a quadratic mapping is
a mapping whose components are quadratic forms. Recall that for any quadratic
mapping Q, there exists a unique symmetric bilinear mapping B related to Q in the
sense mentioned above. Hence in the sequel, we shall denote quadratic mapping
and associated symmetric bilinear mapping by the same symbol. Several mathe-
maticians, e.g. R. Aron, B. Cole, S. Dineen, T. Gamelin, R. Gonzalo, J. Jaramillo,
R. Ryan, have studied polynomials in Banach spaces. See the book of Dineen [D],
especially chapters 1 and 2, for more information including a comprehensive list of
references.

When studying singular points of smooth nonlinear mappings, quadratic map-
pings analysis is of great importance. Let us mention two different and rather
productive approaches to the study of irregular problems which have been actively
developed for the last two decades. The first approach is based on the so-called
2-normality concept [Ar1], the other one is based on the 2-regularity construction
(see [IT] and the bibliography there). But for any approach of such a kind it is typi-
cal that second derivatives are taken into account. When the first derivative is onto
(that is the regular case), the first derivative is a good local approximation to the
mapping under consideration. Applying the highly developed theory of linear oper-
ators to linear approximation one can obtain the most important facts of nonlinear
analysis, such as the implicit function theorem and its numerous corollaries.

1991 Mathematics Subject Classification. Primary 47H60; Secondary 58C15.
The author was supported by the Russian Foundation for Basic Research Grant #97-01-

00188. The author also thanks IMPA, where he was a visiting professor during the completion of
this paper.

c©0000 (copyright holder)

127



128 ALEXEY F. IZMAILOV

Naturally, when the first derivative is not onto (that is the singular case),
linear approximation is not enough for a description of the nonlinear mapping local
structure, and one has to take into account the quadratic term of the Taylor formula.

On the other hand, quadratic mappings are of great interest by themselves
because a quadratic mapping is the most simple model of a substantially nonlinear
mapping. When we are to construct an example for some theorem on singular
points, we consider quadratic mappings first of all.

But in contrast with the theory of linear operators, quadratic mappings theory
is not really developed so far. There are no answers to some basic questions, and
here we would like to discuss one such question connected with the existence of a
bounded right inverse to a quadratic mapping. For linear operators, a complete
answer to this question is given by the classical Banach open mapping theorem.
Let us recall this result.

Suppose now that X and Y are Banach spaces, and A : X → Y is a continuous
linear operator. The right inverse to A is the mapping

A−1 : Y → 2X , A−1(y) = {x ∈ X|Ax = y}.
Hence for any y ∈ Y , A−1y is the complete pre-image of y with respect to A. Let
us define the “norm”

‖A−1‖ = sup
y∈Y,
‖y‖=1

inf
x∈A−1y

‖x‖

(if A is a one-to-one operator, then this “norm” is a classical operator norm of its
classical inverse). Let us refer to the right inverse as bounded if ‖A−1‖ is finite. By
the open mapping theorem, A−1 is bounded if and only if A is onto, i.e.

Im A = Y.

Now let us replace here the continuous linear operator A by a continuous qua-
dratic mapping Q and consider the same question (all the notions and notations
remain without any modification). In topological terms the question is: determine
the conditions under which the image of a neighborhood of zero element in X is a
neighborhood of zero element in Y ?

First, let us mention that in contrast with theory of linear operators, in the
general case the right inverse to Q can be unbounded when Q is onto, as illustrated
by the following example.

Example 1. Consider the mapping

Q : l2 → l2, Q(x) =

( ∞∑

i=2

x2
i

i
− x2

1, x1x2, x1x3, . . .

)
.

One can show (by means of some fairly straightforward computations) that this
mapping is onto, but its right inverse is not bounded.

We next consider some sufficient conditions for boundedness of a right inverse,
but for that purpose we need some more terminology. For any element h ∈ X let
us define the linear operator

Qh : X → Y, Qhx = Q(h, x).

Recall that Q here is the symmetric bilinear mapping associated with the quadratic
mapping under consideration. Note that 2Qh is exactly the Fréchet derivative of Q
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at the point h:
Q′(h) = 2Qh, h ∈ X.

By N(Q) let us denote the null-set of Q:

N(Q) = {x ∈ X|Q(x) = 0}.
Note that N(Q) is always a closed cone but normally this cone is not convex.

A quadratic mapping Q is referred to as:
• 2-regular with respect to an element h ∈ X if Im Qh = Y (to say it in

other words, if Q is regular, or normal, at the point h);
• 2-regular if it is 2-regular with respect to every element h ∈ N(Q) \ {0};
• strongly 2-regular if there exists a number α > 0 such that

sup
h∈Nα(Q),
‖h‖=1

‖Q−1
h ‖ < ∞,

where
Nα(Q) = {x ∈ X| ‖Q(x)‖ ≤ α}

is the α-extension of the null-set of Q.
It is easy to see that for the finite-dimensional case, strong 2-regularity is equiva-

lent to 2-regularity, but for the general case strong 2-regularity is somewhat stronger
(for instance, it is possible that N(Q) = {0}, and the 2-regularity condition is triv-
ially satisfied, but at the same time Nα(Q) 6= {0} ∀α > 0). Note also that all this
terminology can be applied to a general nonlinear mapping at a fixed point, and
this results in the basic notions of 2-regularity theory (for that purpose one has to
consider the invariant second differential of the mapping at the point under consid-
eration as Q). Some necessary and sufficient conditions for strong 2-regularity of
quadratic mappings were proposed in [Ar2].

Theorem 1. Let X and Y be Banach spaces. Assume that Q : X → Y is a
continuous quadratic mapping, and one of the following conditions is satisfied:

(1) N(Q) = {0}, Q is strongly 2-regular, and Q(X) = Y ;
(2) Q is 2-regular with respect to some h ∈ N(Q).

Then Q−1 is bounded.

Certainly, conditions 1) and 2) cannot be satisfied simultaneously. If the condi-
tion 2) holds, the assertion of Theorem 1 is fairly standard as it follows immediately
from the standard implicit function theorem (note that in this case Q is surjective
automatically, so one does not have to assume that Q is surjective). The assertion
corresponding to condition 1) is not so standard as it follows from a special theo-
rem on distance estimates for strongly 2-regular mappings. This theorem can be
considered as the generalization of the classical Lyusternik’s theorem on a tangent
subspace. This generalization was proposed in the concurrent papers [BT], [Av2]
(see also [T], [Av1], [IT], [Ar1]).

Now let us consider the finite-dimensional case. Clearly, in this case the strong
2-regularity condition in Theorem 1 can be omitted. Note that Example 1 has
a strong infinite-dimensional specificity. For the mapping Q from Example 1 the
conditions N(Q) = {0} and Q(X) = Y hold, and the assertion of Theorem 1 is
not valid only for one reason: Q is not strongly 2-regular. We do not know any
finite-dimensional example of a surjective quadratic mapping with unbounded right
inverse, and we have to admit that we do not know so far if such an example is
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possible or not. However, we would like to discuss some particular answers to this
question. We are in an algebraic situation now, and it seems reasonable that in
order to find to find such answers, one has to take into account both analytical and
algebraic arguments.

To begin with, note that for the finite-dimensional case Theorem 1 (without
the strong 2-regularity assumption) provides a complete description for a typical
quadratic mapping.

Proposition 1. For any positive integers n and m, the set of 2-regular qua-
dratic mappings is open and dense in the set of all quadratic mappings from Rn to
Rm.

The set of all quadratic mappings from Rn to Rm is considered here with the
standard norm topology. It is well known that this set has a natural linear structure
and can be normed in a natural way.

Proposition 1 follows from Thom’s transversality theorem. It was stated in
[Ag] in a different form.

We see now that for almost any finite-dimensional quadratic mapping, the
following alternative is true: the null-set is trivial, or the mapping is 2-regular with
respect to any nonzero element from the null-set. Hence by Theorem 1, for almost
any finite-dimensional quadratic mapping the following implication holds: if it is
surjective then its right inverse is bounded. The question is: can one replace here
the words “for almost any” by “for any” or not? It is clear that the answer is
positive for m = 1 (i.e. for the case of one quadratic form, and this case is fairly
trivial). The answer turns out to be positive for two forms as well, but this case is
already not trivial at all.

Proposition 2. For any positive integer n and any quadratic mapping Q :
Rn → R2 condition Q(X) = R2 is equivalent to the boundedness of Q−1.

Proof. If the conclusion fails to hold, then there exists a sequence {yk} ⊂ R2

such that

(1) inf
x∈Q−1(yk)

‖x‖ → ∞ as k →∞,

‖yk‖ = 1 ∀ k = 1, 2, . . .

It is possible to assume that {yk} → η as (k →∞), ‖η‖ = 1. Then taking into
account that Q is surjective, we can claim the existence of an element x(η) ∈ Rn

such that Q(x(η)) = η. Obviously, the case Qx(η) = 0 can be omitted as η ∈
ImQx(η). Hence, we have to consider two cases:

• Im Qx(η) = R2, then a contradiction can be obtained immediately by
taking advantage of the implicit function theorem;

• Im Qx(η) = span{η} is a straight line.

Obviously, one of the open half-planes defined in R2 by this straight line con-
tains infinitely many elements of the sequence {yk}. Hence, we can assume that

〈ζ, yk〉 > 0 ∀ k = 1, 2, . . .

where ζ ∈ R2 is a fixed element such that

〈η, ζ〉 = 0, ‖ζ‖ = 1.
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Again we take into account that Q is surjective; this implies that there exists
x(ζ) ∈ Rn such that Q(x(ζ)) = ζ.

Without loss of generality, we can assume that

〈η, Q(x(η), x(ζ))〉 ≥ 0

(if this inequality does not hold, one should replace x(η) by −x(η)).
Any element y ∈ R2 can be uniquely represented as y = y1η + y2ζ, with

y1, y2 ∈ R. Assume that
〈ζ, y〉 > 0, ‖y‖ = 1

(the inequality means that y2 > 0) and consider the equation

Q(x(η) + tx(ζ)) = τy

with respect to (t, τ) ∈ R × R. Under our assumptions, this equation can be
reformulated as the system of equations

1 + 2t‖Q(x(η), x(ζ))‖ = τy1,

t2 = τy2.

It is easy to verify that if y1 > 0 then this system has two solutions, and both
tend to (0, 1) as y1 → 1, y2 → 0. Hence for any sufficiently large k, one can find
tk, τk ∈ R such that

yk = Q

(
x(η) + tkx(ζ)√

τk

)
,

and {
x(η) + tkx(ζ)√

τk

}
→ x(η) as k →∞.

But this is in contradiction with (1). ¤

We are not aware so far whether or not a similar result holds for m > 2. Note
that two cases are of most importance in applications: n À m and n = m. The
first case is important in view of constrained optimization problems. Some special
results for this case were obtained by Agrachyov in [Ag]. Let us discuss here the
second case.

Proposition 3. For n = 2 or 3 and for any quadratic mapping Q : Rn → Rn

condition Q(X) = Rn is sufficient for the equality N(Q) = {0}.
Proof. Assume that N(Q) 6= {0}. Let us take advantage of the following

procedure which is sometimes useful for a reduction to lower dimension.
Let h ∈ N(Q)\{0}. Then the space Rn can be represented as the direct sum of

the straight line span{h} and some linear subspace X̃ in Rn, dim X̃ = n− 1. This
means that any vector x ∈ X can be uniquely represented as x = th + x̃, where
t = t(x) ∈ R, x̃ = x̃(x) ∈ X̃. Then

(2) Q(x) = 2t(x)Q(h, x̃(x)) + Q(x̃(x)), x ∈ Rn.

Let Y1 = Im Qh, Y2 be an algebraic complement of Y1 in Rn, and P be the
projector onto Y2 parallel to Y1 in Rn. Note that h ∈ KerQh \ {0}, hence

(3) dimY2 = corank Qh ≥ 1.

Note also that the case n = 1 is trivial as a quadratic mapping from R to R
(and hence to Rm for any m) cannot be surjective.
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Let n = 2. Then according to (2), (3), PQ(R2) 6= Y2, as PQ is the quadratic
mapping which actually depends on one scalar variable x̃ ∈ X̃. But it means that
Q cannot be surjective (the subspace Y2 contains elements which do not belong to
Q(R2)).

Let us now turn our attention to the case n = 3, and let us consider the
possible values of corank Qh separately (recall that the case corank Qh = 0 cannot
occur because of (3)).

If corank Qh = 3 (i.e. Qh = 0), then according to (2) we have

Q(x) = Q(x̃(x)), x ∈ R3.

Then Q has to be surjective as a mapping from X̃ (dim X̃ = 2) to R3, but this is
obviously impossible (for instance, because of the proven fact for n = 2, or because
of some general facts of differential topology).

Let corank Qh = 2. Since Q is surjective and (2) holds, PQ is surjective as a
mapping from X̃ to Y2, and dim X̃ = dim Y2 = 2. It means that N(PQ)∩ X̃ = {0}
(here again we take into account the proven fact for n = 2). But then according to
(2), the nonempty set Y1 \ {0} has an empty intersection with Q(R3), and this is
in contradiction with the condition that Q is surjective.

Finally, let corank Qh = 1. Recall again that Q is surjective and (2) holds,
hence the mapping PQ on X̃ can be considered as a quadratic form which is not
semi-definite. Taking into account the equality dim X̃ = 2, we see now that the set
N(PQ)∩X̃ consists of two straight lines spanned by some elements h1, h2 ∈ X̃\{0}
(as a matter of fact, the vectors h1 and h2 are linearly independent by necessity,
but this is not important here).

Now in (2) we take x̃ = τhi, τ ∈ R. Taking into account that Q(hi) ∈ Y1,
i = 1, 2, let us define the quadratic mappings

Qi : R2 → Y1, Qi(θ) =

= 2tτQ(h, hi) + τ2Q(hi), θ = (t, τ), i = 1, 2.

According to the argument above, the condition that Q is surjective implies the
equality

(4) Q1(R2) ∪Q2(R2) = Y1,

because in the other case the subspace Y1 contains some elements which do not
belong to Q(R3).

Now we have only to prove that the equality (4) is contradictory. There are
several ways to do it, but the most simple is a straightforward analysis of the
structure of Qi(R2), i = 1, 2.

For any i = 1, 2, the appearance of the mapping Qi allows us to state the
following:

• if the vectors Q(h, hi) and Q(hi) are linearly independent then Qi(R2) is
an open half-plane with the additional point 0 in the plain Y1;

• if the vectors Q(h, hi) and Q(hi) are linearly dependent then Qi(R2) is
either a straight line, or a ray, or Qi(R2) = {0}.

Clearly, in any case the sets Q1(R2) and Q2(R2) together do not cover the
entire plane Y1. ¤
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According to Theorem 1 we have that, under the assumptions of Proposition
3, if Q is surjective then its right inverse is bounded. But again, we have to admit
that we do not know whether or not a similar result holds for n > 3.

It is interesting that Propositions 2 and 3 hold true only for quadratic map-
pings. For polynomial mappings which are homogeneous of degree greater than two,
similar results are not obtained. Moreover, we provide an example of a mapping of
degree 5 which is onto, but its right inverse is not bounded.

Example 2. Consider the mapping

Q : R2 → R2, Q(x) = (x5
1 − x2

1x
3
2, x3

1x
2
2).

One can show that the image of a neighborhood of zero element in the original
space is not a neighborhood of zero element in the image space here; at the same
time, Q is onto. The easiest (but of course, not accurate) way to see this is to draw
the image of the unit square (e.g., using a computer).

Clearly, these notes contain more questions than answers. A closely related
question is: under what assumptions is it the case that not only is a given quadratic
mapping surjective but any quadratic mapping close to it is surjective? In [Ag], a
quadratic mapping with such a property was referred to as substantially surjective.
There is a good reason to think that a complete answer to one of the questions in
these notes will result in a complete answer to another, and perhaps, to numerous
important questions about the topology and algebra of quadratic mappings.

The author would like to thank the organizers of QF99 for their hospitality and
for financial aid they provided for his participation. The author is also grateful to
two referees for their helpful comments.
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Quadratic Forms in Knot Theory

C. Kearton

Abstract. The purpose of this survey article is to show how quadratic
and hermitian forms can give us geometric results in knot theory. In par-
ticular, we shall look at the knot cobordism groups, at questions of fac-
torisation and cancellation of high-dimensional knots, and at branched
cyclic covers.
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1. The Seifert Matrix

By an n-knot k we mean a smooth or locally-flat PL pair
(
Sn+2, Sn

)
, both

spheres being oriented. In the smooth case the embedded sphere Sn may
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have an exotic smooth structure. Two such pairs are to be regarded as equiv-
alent if there is an orientation preserving (smooth or PL) homeomorphism
between them.

As shown in [33, 48], a regular neighbourhood of Sn has the form Sn×B2;
we set K = Sn+2 − int

(
Sn ×B2

)
. Then K is the exterior of the knot k,

and since a regular neighbourhood of Sn is unique up to ambient isotopy it
follows that K is essentially unique.

Proposition 1.1. Sn is the boundary of an orientable (n + 1)-manifold in
Sn+2.

This is proved in [31, 33, 48], but in the case n = 1 there is a construction
due to Seifert [41] which we now give.

Proposition 1.2. Every classical knot k is the boundary of some compact
orientable surface embedded in S3.

Proof. Consider a diagram of k. Starting at any point of k, move
along the knot in the positive direction. At each crossing point, jump to the
other piece of the knot and follow that in the positive direction. Eventually

........... ...........

...................... ....

...
.

Figure 1.1

we return to the starting point, having traced out a Seifert circuit. Now
start somewhere else, and continue until the knot is exhausted. The Seifert
circuits are disjoint circles, which can be capped off by disjoint discs, and
joined by half-twists at the crossing points. Hence we get a surface V with

........... ...........

......................




Figure 1.2
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........... .................................

+ve

-ve





....................................................
...........
.........
........
........
........
.........
...........

...................................................

Figure 1.3

∂V = k. To see that V is orientable, attach a normal to each disc using
a right hand screw along the knot. Note that in passing from one disc to
another the normal is preserved. Thus there are no closed paths on V which
reverse the sense of the normal: hence V is orientable. ¤
Corollary 1.3. If there are c crossing points and s Seifert circuits, then
the genus of V is 1

2 (c− s + 1).

Proof. The genus of V is g where H1(V ) =
⊕2g

1 Z. We have a handle
decomposition of V with s 0-handles and c 1-handles, which is equivalent to
one with a single 0-handle and c−(s−1) 1-handles (by cancelling 0-handles).
Thus 2g = c− s + 1. ¤

.............................................................................................................................................. .............................................................................................................................................. ..............................................................................................................................................

.............................................................
..........................................................................................................................
..........................................................................................................................
.............................................................

........... ........... ........... ...........
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Figure 1.4. Trefoil knot

As an example we have a genus one Seifert surface of the trefoil knot in
Figure 1.4.

Definition 1.4. Let u, v be two oriented disjoint copies of S1 in S3 and
assign a linking number as follows. Span v by a Seifert surface V and move
u slightly so that it intersects V transversely. To each point of intersection
we assign +1 or −1 according as u is crossing in the positive or negative
direction, and taking the sum of these integers gives us L(u, v). Two simple
examples are indicated in Figure 1.5.
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L(u, v) = +1

................

................

u

v

...............................................................................................................................................
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Figure 1.5. The linking number

The two copies of S1 do not have to be embedded: the general definition is
in terms of cycles and bounding chains.

Definition 1.5. Let u, v ∈ H1(V ) for some Seifert surface V . Let i+u be
the result of pushing u a small distance along the positive normal to V .
Then set θ(u, v) = L (i+u, v).

Lemma 1.6. θ : H1(V )×H1(V ) → Z is bilinear.

Definition 1.7. Let x1, . . . , x2g be a basis for H1(V ) =
⊕2g

1 Z, and set
aij = θ(xi, xj). The matrix A = (aij) is a Seifert matrix of k.

Note that if we choose another basis for H1(V ), then A is replaced by PAP ′,
where detP = ±1, since P is a matrix over Z which is invertible over Z.
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Figure 1.6

(i) a11 = θ (x1, x1) = L (i+x1, x1) −1
(ii) a12 = θ (x1, x2) = L (i+x1, x2) 0
(iii) a21 = θ (x2, x1) = L (i+x2, x1) 1
(iv) a22 = θ (x2, x2) = L (i+x2, x2) −1

Table 1.1

Example 1.8. We see from Table 1.1 that the Seifert matrix of the trefoil
knot in Figure 1.6 is

A =
(−1 0

1 −1

)
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Given a knot k, there will be infinitely many Seifert surfaces of k; for exam-
ple, we can excise the interiors of two disjoint closed discs from any given
Seifert surface V and glue a tube S1 × B1 to what remains of V by the
boundary circles, as illustrated in Figure 1.7

Definition 1.9. A Seifert surface U is obtained from a Seifert surface V
by ambient surgery if U and V are related as in Figure 1.7 or Figure 1.8.
In the first case, the interiors of two disjoint closed discs in the interior of
V are excised and a tube S1 × B1 is attached, the two attachments being
made on the same side of V . In symbols, S0 × B2 is replaced by S1 × B1.
In the second case, the procedure is reversed.

V
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U

Figure 1.7. Ambient surgery (i)
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Figure 1.8. Ambient surgery (ii)

Note that the “hollow handle” may be knotted, and that these are inverse
operations.

Proposition 1.10. For a given knot k, any two Seifert surfaces are related
by a sequence of ambient surgeries.

Definition 1.11. Let A be a Seifert matrix. An elementary S-equivalence
on A is one of the following, or its inverse.

(i) A 7→ PAP ′ for P a unimodular integer matrix.
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(ii)

A 7→



A 0 0
α 0 0
0 1 0




(iii)

A 7→



A β 0
0 0 1
0 0 0




where α is a row vector of integers and β is a column vector of integers.

Two matrices are S-equivalent if they are related by a finite sequence of such
moves.

Theorem 1.12. Any two Seifert matrices of a given knot k are S-equivalent.

Proof. Let A be the matrix obtained from a Seifert surface U , B from
V . After Proposition 1.10, it is enough to assume that V is obtained by an
ambient surgery on U . Consider the diagram in Figure 1.9, and choose gen-
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............................................................................
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........................................................................................................ ........
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x2g+1x2g+2

V

Figure 1.9

erators x1, . . . , x2g of H1(U), and x1, . . . , x2g, x2g+1, x2g+2 of H1(V ). Then

θ (x2g+1, x2g+1) = 0 if we choose the right number of twists around the

handle (see Figure 1.10 for a different choice)

θ (x2g+1, x2g+2) = 0

θ (x2g+2, x2g+1) = 1

θ (x2g+2, x2g+2) = 0

θ (xi, x2g+2) = 0

θ (x2g+2, xi) = 0 for 1 ≤ i ≤ 2g.

Thus

B =




A γ 0
α 0 0
0 1 0
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Figure 1.10

By a change of basis we can subtract multiples of the last row from the first
2g rows to eliminate γ; and the same multiples of the last column from the
first 2g columns. Whence

P ′BP =




A 0 0
α 0 0
0 1 0




Adding the handle on the other side of U gives the other kind of S-equivalence.
¤

Lemma 1.13. If A is a Seifert matrix and A′ is its transpose, then A − A′
is unimodular.

Proof. Recall that if x1, . . . , x2g is a basis for H1(V ) =
⊕2g

1 Z, and
aij = θ(xi, xj), then the matrix A = (aij) is a Seifert matrix of k. Let i−u
be the result of pushing u a small distance along the negative normal to V .
Then

aij = θ(xi, xj)

= L (i+xi, xj)

= L (xi, i−xj)

= L (i−xj , xi)

and so

aij − aji = L (i+xi, xj)− L (i−xi, xj) = L (i+xi − i−xi, xj)

Now i+xi− i−xi is the boundary of a chain S1× I normal to V which meets
V in xi, and so L (i+xi − i−xi, xj) is the algebraic intersection of this chain
with xj , i.e. the algebraic intersection of xi and xj in V . Hence A − A′
represents the intersection pairing on H1(V ), whence the result. ¤

Now let us state what happens in higher dimensions.
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Definition 1.14. A (2q − 1)-knot k is simple if its exterior K satisfies
πi (K) ∼= πi

(
S1

)
for 1 ≤ i < q.

The following result is proved in [33, Theorem 2].

Theorem 1.15. A (2q−1)-knot k is simple if and only if it bounds a (q−1)-
connected Seifert submanifold.

Now suppose that k is a simple (2q−1)-knot bounding an (q−1)-connected
submanifold V . We can repeat the construction above, using Hq(V ), to
obtain a Seifert matrix A of k satisfying the following.

Theorem 1.16. If A is a Seifert matrix of a simple (2q − 1)-knot k and A′
is its transpose, then A + (−1)qA′ is unimodular. Moreover, if q = 2, then
the signature of A + A′ is a multiple of 16.

Theorem 1.12 remains true for simple knots. The following result is proved
in [41] for q = 1, in [36, Theorem 2] for q = 2, and in [31, Théorème II.3]
for q > 2.

Theorem 1.17. Let q be a positive integer and A a square integral matrix
such that A + (−1)qA′ is unimodular and, if q = 2, A + A′ has signature a
multiple of 16. If q 6= 2, there is a simple (2q−1)-knot k with Seifert matrix
A. If q = 2, there is a simple 3-knot k with Seifert matrix S-equivalent to
A.

In [36, Theorem 3] the classification of simple knots is completed.

Theorem 1.18. A simple (2q−1)-knot k, q > 1, is determined up to ambient
isotopy by the S-equivalence class of its Seifert matrix.

2. Blanchfield Duality

Let us set Λ = Z
[
t, t−1

]
, the ring of Laurent polynomials in a variable t

with integer coefficients.

Theorem 2.1. If A is a Seifert matrix of a simple (2q − 1)-knot k, then
the Λ-module MA presented by the matrix tA+(−1)qA′ depends only on the
S-equivalence class of A, and so is an invariant of k. Moreover, there is a
non-singular (−1)q+1-hermitian pairing

〈 , 〉A : MA ×MA → Λ0/Λ

given by the matrix (1− t) (tA + (−1)qA′)−1 which is also an invariant of k.
Conjugation is the linear extension of t 7→ t−1, Λ0 is the field of fractions of
Λ, and non-singular means that the adjoint map MA → Hom(MA, Λ0/Λ) is
an isomorphism.
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Definition 2.2. The Λ-module in Theorem 2.1 is called the knot module of
k, and has a geometric significance which is explained in §6. The determi-
nant of tA + (−1)qA′ is the Alexander polynomial of k, and is defined up to
multiplication by a unit of Λ. The hermitian pairing is due to R.C. Blanch-
field [9]. The formula given here was discovered independently in [22, 44].

The following two results are proved in [22, 23, 44, 45].

Theorem 2.3. If A is a Seifert matrix of a simple (2q− 1)-knot k, then the
module and pairing (MA, 〈 , 〉A) satisfy:

(i) MA is a finitely-generated Λ-torsion-module;
(ii) (t− 1) : MA → MA is an isomorphism;
(iii) 〈 , 〉A : MA ×MA → Λ0/Λ is a non-singular (−1)q+1-hermitian pair-

ing.

For q = 2 the signature is divisible by 16. Moreover, for q > 1, the module
and pairing determine the knot k up to ambient isotopy.

Theorem 2.4. Suppose that (M, 〈 , 〉) satisfies

(i) M is a finitely-generated Λ-torsion-module;
(ii) (t− 1) : M → M is an isomorphism;
(iii) 〈 , 〉 : M ×M → Λ0/Λ is a non-singular (−1)q+1-hermitian pairing.

and that, for q = 2, the signature is divisible by 16. Then for q ≥ 1,
(M, 〈 , 〉) arises from some simple (2q − 1)-knot as (MA, 〈 , 〉A).

In [43, pp 485-489] Trotter proves the following.

Proposition 2.5. If A is a Seifert matrix, then A is S-equivalent to a matrix
which is non-degenerate; that is, to a matrix with non-zero determinant.

Proposition 2.6. If A and B are non-degenerate Seifert matrices of a
simple (2q − 1)-knot k, then A and B are congruent over any subring of Q
in which detA is a unit. (Of course, det A is the leading coefficient of the
Alexander polynomial of k.)

Definition 2.7. Let ε = (−1)q and let A be a non-degenerate Seifert matrix
of a simple (2q − 1)-knot k. Set S = (A + εA′)−1 and T = −εA′A−1.

Proposition 2.8. The pair (S, T ) have the following properties:

(i) S is integral, unimodular, ε-symmetric;
(ii) (I − T )−1 exists and is integral;
(iii) T ′ST = S;
(iv) A = (I − T )−1S−1.

The following result is proved in [44, p179]

Theorem 2.9. The matrix S gives a (−1)q-symmetric bilinear pairing ( , )
on MA on which T (i.e. t) acts as an isometry. The pair (MA, ( , ))
determines and is determined by the S-equivalence class of A.
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3. Factorisation of Knots

If we have two classical knots, there is a natural way to take their sum:
just tie one after another in the same piece of string. Alternatively, we can
think of each knot as a knotted ball-pair and identify the boundaries so
that the orientations match up. The latter procedure generalises to higher
dimensions.

Definition 3.1. Let k1, k2 be two n-knots, say ki =
(
Sn+2

i , Sn
i

)
. Choose

a point on each Sn
i and excise a tubular neighbourhood, i.e. an unknotted

ball-pair, leaving a knotted ball-pair
(
Bn+2

i , Bn
i

)
. Identify the boundaries

so that the orientations match up, giving a sphere-pair k1 + k2.

If k1, k2 are simple knots with Seifert matrices A1, A2, then clearly k1 + k2

is also simple and has a Seifert matrix(
A1 0
0 A2

)

and the pairings in §2 are given by the orthogonal direct sum.

For the case n = 1, H. Schubert showed in [40] that every knot factorises
uniquely as a sum of irreducible knots. In [25] it is shown that unique
factorisation fails for n = 3, and in [1] E. Bayer showed that it fails for
n = 5 and for n ≥ 7. The following example is contained in [1], although
presented here in a slightly different way.

Let Φ15(t) denote the 15th cyclotomic polynomial, which we normalise so
that Φ15(t) = Φ15

(
t−1

)
, and let ζ = e

2πi
15 . Then Z[ζ] ∼= Z

[
t, t−1

]
/ (Φ15(t))

is the ring of integers, and conjugation in Z
[
t, t−1

]
corresponds to complex

conjugation in Z[ζ]. Moreover, ζ − 1 is a unit in Z[ζ], and so we can think
of Z[ζ] as a Λ-module satisfying properties (i) and (ii) of Theorem 2.3. If
u ∈ U0, the set of units of Z[ζ + ζ], then we can define a hermitian pairing
on Z[ζ] by (x, y) = uxy. This corresponds to a hermitian pairing as in
Theorem 2.3(iii) by

〈x(t), y(t)〉 =
u(t)x(t)y

(
t−1

)

Φ15(t)
←→ (x(ζ), y(ζ)) = ux(ζ)y(ζ).

The case of skew-hermitian pairings is dealt with by using
(
ζ − ζ

)
u in place

of u. Note that ζ − ζ is a unit:

(3.1)
(
ζ − ζ

)2 (
ζ + ζ

) (
1− ζ − ζ

)
= 1.

Lemma 3.2. Let ur = ζr + ζ−r − 1 for r = 0, 1, 2, 7. Then ur ∈ U0 and(
ur 0
0 −ur

)
and

(
1 0
0 −1

)

represent isometric pairings on Z[ζ]× Z[ζ].
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Proof. Since ζ2, ζ7 are also primitive 15th roots of unity, (3.1) shows
that ur ∈ U0 for r = 1, 2, 7. Of course, u0 = 1. Now consider

(
a b
b a

)(
1 0
0 −1

) (
a b
b a

)
=

(
aa− bb 0

0 bb− aa

)
=

(
ur 0
0 −ur

)

For each r, we can write

ur = ζr + ζ−r − 1 = 1− (ζr − 1)
(
ζ−r − 1

)

and so we can take a = 1, b = (ζr − 1). ¤

Lemma 3.3. The hermitian forms on Z[ζ] given by ±ur for r = 0, 1, 2, 7 are
distinct.

Proof. Two such forms represented by u, v ∈ U0 are equivalent if and
only if uv−1 ∈ N(U), where N(c) = cc; write u ∼ v to denote this equiv-
alence. Then u1 > 0 but u1 is conjugate to u7 < 0, so ±u1 /∈ N(U) and
hence the forms represented by ±1,±u1 are distinct. Similarly u2/u1 > 0
but u2/u1 is conjugate to u4/u2 < 0, so ±u2/u1 /∈ N(U). Similar arguments
apply in the other cases. ¤

Corollary 3.4. For each q > 2 there exist eight distinct irreducible simple
(2q − 1)-knots kr, k

−
r , r = 0, 1, 2, 7, such that kr + k−r = ks + k−s for all

r, s ∈ {0, 1, 2, 7}.

Proof. By Theorem 2.3 there exist unique simple (2q−1)-knots kr, k
−
r

corresponding to ur,−ur respectively. These are irreducible because in each
case the Alexander polynomial is Φ15(t). ¤

Remark 3.5. It is shown in [1] that U0/N(U) has exactly eight elements,
so that these are all the forms there are in this case.

There is another method, due to J.A. Hillman, depending upon the module
structure, and this can be used to show that unique factorisation fails for
n ≥ 3 (see [5]). There are further results on this topic in [18, 17, 19]. It
is known from [10] that every n-knot, n ≥ 3, factorises into finitely many
irreducibles, and that a large class of knots factorise into irreducibles in at
most finitely many different ways (see [6, 8]).

I should mention that the method of [25] relies on the signature of a smooth
3-knot being divisible by 16, and hence does not generalise to higher dimen-
sions. The work of Hillman in [20] shows that the classification theorems
1.16, 1.17, 1.18, and 2.3 hold for locally-flat topological 3-knots without any
restriction on the signature.



146 C. KEARTON

4. Cancellation of Knots

In [3] Eva Bayer proves a stronger result, that cancellation fails for simple
(2q − 1)-knots, q > 1.

Example 4.1. Let A be the ring of integers associated with Φ12, and define
Γ4n to be the following lattice given in [39]. We take R4n to denote the
euclidean space, and let e1, . . . , e4n be an orthonormal basis with respect
to the usual innerproduct. Then Γ4n is the lattice spanned by the vectors
ei + ej and 1

2 (e1 + · · ·+ e4n). Let AΓ4n be the corresponding hermitian
lattice. It is shown in [3] that the hermitian form AΓ4n is irreducible if
n > 1. Moreover

(4.1) AΓ8 ⊥ AΓ8 ⊥< −1 >∼= AΓ16 ⊥< −1 >;

indeed, this holds already over Z by [39, Chap. II, Proposition 6.5]. But
AΓ8 ⊥ AΓ8 6∼= AΓ16 because the latter is irreducible. By Theorem 2.1 this
shows that cancellation fails for q odd, q 6= 1. For q even, just multiply 4.1
by the unit τ − τ−1 where τ is a root of Φ12.

In [4], examples are given where the failure of cancellation depends on the
structure of the knot module, and by the device known as spinning this
result is extended to even dimensional knots. (See §7 for the definition of
spinning.)

5. Knot Cobordism

There is an equivalence relation defined on the set of n-knots as follows.

Definition 5.1. Two n-knots ki =
(
Sn+2

i , Sn
i

)
are cobordant if there is a

manifold pair
(
Sn+2 × I, V

)
such that

V ∩ (
Sn+2 × {i}) = ∂V ∩ (

Sn+2 × {i}) = Sn
i

(with the orientations reversed for i = 0) and Sn
i ↪→ V is a homotopy

equivalence for i = 0, 1.

Remark 5.2. For n ≥ 6 the manifold V is a product, i.e. it is homeomorphic
to Sn × I, by the h-cobordism theorem.

This equivalence relation respects the operation of knot sum, and the equiva-
lence classes form an abelian group Cn under this operation, with the trivial
knot as the zero. In [31] M.A. Kervaire shows that C2q = 0 for all q.

To tackle the odd-dimensional case, we begin by quoting a result of Levine:
[35, Lemma 4].

Lemma 5.3. Every (2q − 1)-knot is cobordant to a simple knot.
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Definition 5.4. Let A0, A1 be two Seifert matrices of simple (2q−1)-knots.

If
(−A0 0

0 A1

)
is congruent to one of the form

(
0 N1

N2 N3

)
where each of the

Ni are square of the same size then A0, A1 are said to be cobordant. This
is an equivalence relation for Seifert matrices, and the set of equivalence
classes forms a group under the operation induced by taking the block sum:

(A0, A1) 7→
(

A0 0
0 A1

)
.

Lemma 5.5. Let k0, k1 be simple (2q − 1)-knots which are cobordant, with
Seifert matrices A0, A1 respectively. Then A0, A1 are cobordant.

From Proposition 2.5 we deduce:

Corollary 5.6. Every Seifert matrix is cobordant to a non-degenerate ma-
trix.

Definition 5.7. Setting εq = sign (−1)q, the group obtained from the
Seifert matrices of simple (2q − 1)-knots is denoted by Gεq . The subgroup
of G+ given by matrices A such that the signature of A + A′ is divisible by
16 is denoted G0

+. The map ϕq : C2q−1 → Gεq is induced by taking a simple
knot to one of its Seifert matrices, and is a homomorphism.

The definition above appears in [35], where the following result is proved.

Theorem 5.8. The map ϕq is

(a) an isomorphism onto Gεq for q ≥ 3;
(b) an isomorphism onto G0

+ for q = 2;
(c) an epimorphism onto G− for q = 1.

The proof of [34, Lemma 8] shows that two Seifert matrices are cobordant
if and only if they are cobordant over the rationals. This leads to the idea of
Witt classes for the (−1)q-symmetric forms and isometries in Theorem 2.9,
and this is the strategy that Levine uses to investigate Gε, and to prove
Theorem 5.9 below (see [35, p 108]).

Theorem 5.9. Gε is the direct sum of cyclic groups of orders 2, 4 and ∞,
and there are an infinite number of summands of each of these orders.

Both Levine’s treatment and that of Kervaire in [32] rely on Milnor’s clas-
sification of isometries of innerproduct spaces in terms of hermitian forms
in [38].

I shall not attempt to prove any of these results, but it is easy to give
Milnor’s proof in [37] of infinitely many summands of infinite order for q
odd, and at the same time to suggest an alternative way of looking at Gεq .
First make the following definition, taken from [24].
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Definition 5.10. A module and pairing (MA, < , >A) as in Theorem 2.1
is null-cobordant if there is a submodule of half the dimension of MA which
is self-annihilating under < , >A. And (MA, < , >A), (MB, < , >B) are
cobordant if the orthogonal direct sum A ⊥ (−B) is null-cobordant. The
dimension of MA is the dimension over Q of MA after passing to rational
coefficients.

It is shown in [24] that (MA, < , >A) is null-cobordant if and only if A is
null-cobordant. If we use rational coefficients, which we may as well do in
light of [34, Lemma 8], the proof is even easier. We shall treat (MA, < , >A)
in this way for the rest of this section, and set Γ = Q

[
t, t−1

]
.

Definition 5.11. Given p(t) ∈ Λ, define p∗(t) = tdeg(p(t))p
(
t−1

)
. And for

an irreducible p(t) ∈ Λ define MA(p(t)) to be the p-primary component of
MA, i.e. the submodule annihilated by powers of p(t).

The following result is essentially Cases 1 and 3 of [38, p93, Theorem 3.2]:
note that Case 2 does not arise here since we are dealing with knot modules,
i.e. p(t) 6= t± 1.

Proposition 5.12. (MA, < , >A) splits as the orthogonal direct sum of
MA(p(t)) where p(t) = p∗(t), and of MA(p(t)) ⊕ MA(p∗(t)) where p(t) 6=
p∗(t). Furthermore, for p(t) = p∗(t) the space MA(p(t)) splits as an orthog-
onal direct sum M1 ⊕M2 ⊕ . . . where M i is annihilated by p(t)i but is free
over the quotient ring Γ/p(t)iΓ.

It is slightly easier to prove [38, Theorem 3.3] here.

Theorem 5.13. When p(t) = p∗(t), for each i, the vector space

H i = M i/p(t)M i

over the field E = Γ/p(t)Γ admits one and only one hermitian inner product
((x), (y)) such that

(5.1)
〈
p(t)i−1x, y

〉
=

a(t)
p(t)

←→ ((x), (y)) = a(ζ)

where (x) denotes the image of x ∈ M i in H i. The sequence of these her-
mitian inner product spaces determines (MA(p(t)), < , >) up to isometry.

The following is easy to prove, where we think of the hermitian form on H i

as taking values in Γ0/Γ.

Lemma 5.14. For i even, M i is null-cobordant. For i odd, M i is cobordant
to H i.

This enables us to make the following definition of the Milnor signatures
(compare [38]).
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Definition 5.15. For each p(t) = p∗(t), define

σp =
∑

i odd

σi,

where σi is the signature of H i.

Lemma 5.16. The signature σp is additive over knot composition and zero
when k is null-cobordant, and so is a cobordism invariant.

Example 5.17 (Milnor, [37]). For each positive integer m, let pm(x) =
mt+(1−2m)+mt−1. Then pm is irreducible and is the Alexander polynomial

of a simple (4q + 1)-knot km for each q ≥ 1 having
(

m 1
0 1

)
as a Seifert

matrix. Then σpm = ±2 for each m, and so for each q ≥ 1 we have infinitely
many independent knots of infinite order in C4q+1.

6. Branched Cyclic Covers

Recall that if k is an n-knot
(
Sn+2, Sn

)
, then a regular neighbourhood of Sn

has the form Sn ×B2, and the exterior of k is K = Sn+2 − int
(
Sn ×B2

)
.

Choose a base-point ∗ ∈ K. By Alexander-Poincaré duality, K has the
homology of a circle, and so the Hurewicz theorem gives a map π1(K, ∗) ³
H1(K) whose kernel is the commutator subgroup [π1(K, ∗), π1(K, ∗)] of the
group π1(K, ∗). We write the infinite cyclic group H1(K) multiplicatively,
as (t : ); the generator t is represented by {a}×S1 ⊂ Sn×S1 = ∂K for some
point a ∈ Sn, and is chosen so that the oriented circle has linking number
+1 with Sn.

Let K̃ → K be the infinite cyclic cover corresponding to the kernel of the
Hurewicz map. A triangulation of K lifts to a triangulation of K̃ on which
(t : ) acts as the group of covering transformations. This induces an action
of (t : ) on the chain complex C∗(K̃), which extends by linearity to make
C∗(K̃) a Λ = Z[t, t−1]-module. The Λ-module C∗(K̃) is finitely-generated
because the original triangulation of K is finite. Passing to homology we
obtain H∗(K̃) as a finitely-generated, indeed finitely-presented, Λ-module.
For a simple (2q−1)-knot, the only non-trivial module is Hq(K̃), and this is
in fact the same as the Λ-module MA presented by the matrix tA+(−1)qA′
in Theorem 2.1.

To recover K from K̃ all we do is identify x with tx, for each x ∈ K̃.

Compose the Hurewicz map with the map sending (t : ) onto the finite
cyclic group of order r, and denote the r-fold cover of K corresponding to
the kernel of this map by K̃r. Since ∂K̃r ∼= Sn × S1, being an r-fold cover
of Sn × S1, we may set Kr = K̃r ∪∂

(
Sn ×B2

)
to obtain the r-fold cover

of Sn+2 branched over Sn. It may happen that Kr ∼= Sn+2, in which case
we have another n-knot kr, which we refer to as the r-fold branched cyclic
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cover of k. In this case H∗(K̃) is a Z [tr, t−r]-module when K̃ is regarded as
the infinite cyclic cover of K̃r. Note that kr is the fixed point set of the Zr

action on Sn+2 = Kr given by the covering transformations.

Let k be a simple (2q− 1)-knot giving rise to a pair of matrices (S, T ) as in
Proposition 2.8, and define U, V by

U =




0 . . . 0 T

I
. . . 0
. . . . . .

...
0 I 0


 V =




S 0 . . . 0

0
. . .

...
...

. . . 0
0 . . . 0 S




there being r × r blocks in each case. It is not hard to show that the pair
(V, U) satisfies the conditions of Proposition 2.8, and so corresponds to a
unique simple (2q − 1)-knot kr if q ≥ 2 (see Theorem 2.9). Moreover,

U r =




T 0 . . . 0

0
. . .

...
...

. . . 0
0 . . . 0 T




from which it follows without much difficulty that the r-fold branched cyclic
cover of kr is #r

1k, the sum of r copies of k.

The topological construction of kr may be described as follows. Take a
Seifert surface W of k which meets a tubular neighbourhood N of k in a
collar neighbourhood of k = ∂W . Take r close parallel copies W1, . . . , Wr of
W , so that the space between Wi and Wi+1 is diffeomorphic to W × [0, 1]
for i = 1, . . . , r − 1, and that between Wr and W1 is diffeomorphic to the
exterior of k split open along W . We can join ∂Wi to ∂Wi+1 for 1 ≤ i ≤ r−1
by bands within N to get the the boundary connected sum of the Wi. Then
it is not hard to see that the Seifert surface we have constructed has V, U
as above. Moreover, for q > 1, the resulting knot kr is independent of the
bands used, since the bands unknot in these dimensions.

In [29] examples are given of simple (2q − 1)-knots k, l, q ≥ 2, for which
#r

1k = #r
1l but kr 6= lr. It is known that there are examples for any odd r.

The argument runs as follows.

Let Φm(t) denote the mth cyclotomic polynomial, where m is divisible by
at least two distinct odd primes, and let ζ be a primitive mth root of unity.
We write K = Q(ζ) and F = Q

(
ζ + ζ−1

)
. Let hK denote the class number

of K, hF that of F, and h− = hK/hF. According to the work of Eva Bayer
in [2], the number of distinct simple (2q − 1)-knots, q ≥ 3, with Alexander
polynomial Φm(t) is h−2d−1 where 2d = ϕ(m) = [K : Q]. The factor h−
represents the number of isomorphism classes of Λ-modules supporting a
Blanchfield pairing [2, Corollary 1.3], and the factor 2d−1 represents the
number of pairings (up to isometry) which a given module supports. The
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latter is in one-one correspondence with U0/N(U) where U is the group of
units in (the ring of integers of) K, U0 the group of units of F, and N : K→ F
is the norm.

If h− has an odd factor r > 1 coprime to m, then there exists an ideal a
of Q(ζ) which has order r in the class group and supports a unimodular
hermitian pairing h, i.e. as a Λ-module it supports a Blanchfield pairing.
Then ⊥r

1 (a, h) has determinant (I, u) for some u ∈ U0/N(U), where I
denotes a principal ideal. Since r is odd and |U0/N(U)| = 2d−1, there exists
v ∈ U0/N(U) such that vr = u.

Let k, l be the simple (2q − 1)-knots, q ≥ 2, corresponding to κ = (a, h) ⊥
(a,−h), λ = (I, v) ⊥ (I,−v) respectively. Then ⊥r

1 κ, ⊥r
1 λ are indefinite

and have the same rank, signatures and determinant. Hence by [2, Corollary
4.10] they are isometric, and so #r

1k = #r
1l. But κ is not isometric to λ,

for the determinant of κ is
(
a2, α

)
for some α, and a2 is non-zero in the

ideal class group since r is odd. Hence k 6= l. A similar, but more involved,
argument shows that kr 6= lr.

Many examples may be obtained from the tables in [46] or [47].

7. Spinning and Branched Cyclic Covers

First we recall a definition of spinning. Let k be the n-knot
(
Sn+2, Sn

)
and

let B be a regular neighbourhood of a point on Sn such that (B,B ∩ Sn) is
an unknotted ball pair. Then the closure of the complement of B in Sn+2 is
a knotted ball pair

(
Bn+2, Bn

)
, and σ(k) is the pair ∂

[(
Bn+2, Bn

)×B2
]
.

The following is proved in [28, Theorem 3].

Theorem 7.1. Let k, l be simple (2q − 1)-knots, q ≥ 3; then σ(k) = σ(l) if
and only if Hq(K̃) ∼= Hq(L̃).

Note that [28] only covers the case q ≥ 5; the theorem is extended to q ≥ 3
by the results of [21].

In [7] it is shown that the following holds.

Proposition 7.2. If q ≥ 4, then the map σ acting on simple (2q− 1)-knots
is finite-to-one.

The following is easy to prove (see [30, Lemma 3.1]).

Lemma 7.3. Let k be an n-knot and r an integer such that the r-fold cyclic
cover of Sn+2 branched over k is a sphere. Then the r-fold cyclic cover of
Sn+3 branched over σ(k) is also a sphere, and σ (kr) = σ(k)r.

In [42], Strickland proves the following result.
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Theorem 7.4. Let k be a simple (2q − 1)-knot, q ≥ 2. Then k is the r-fold
branched cyclic cover of a knot if and only if there exists an isometry u of(
Hq(K̃), < , >

)
such that ur = t.

A careful reading of [42] shows that the same proofs apply, almost verbatim,
to yield the following result (see [30, Theorem 2.5]).

Theorem 7.5. Let k be a simple (2q − 1)-knot, q ≥ 5. Then σ(k) is the
r-fold branched cyclic cover of a knot if and only if there is a Λ-module
isomorphism u : Hq(K̃) → Hq(K̃) such that ur = t.

Thus if we can find a simple (2q − 1)-knot k, q ≥ 5, such that there is a Λ-
module isomorphism u : Hq(K̃) → Hq(K̃) with ur = t, but no such isometry
of Hq(K̃), then σ(k) will be the r-fold branched cyclic cover of a knot but k
will not. Examples of such knots are given in [30] for all q ≥ 5 and all even
r. Here is an example, due to S.M.J. Wilson, much simpler than the ones
in [30] but not capable of generalising to the 2r-fold case.

Example 7.6. Let f(t) = t2 − 3t + 1, which has roots 3±√5
2 . Set τ = 3+

√
5

2 ,
ξ = 1+

√
5

2 , and note that ξ2 = τ . Put R = Z [ξ] = Z
[
τ, τ−1

]
and define

conjugation in the obvious way by ξ̃ = 1−√5
2 . Think of R as an R-module,

and put a hermitian form on it by setting (x, y) = xỹ. Since ξξ̃ = −1, ξ is an
isomorphism on R but not an isometry. Since τ only has two square roots,
±ξ, there are no isometries whose square is τ . In the usual way, (R, ( , ))
corresponds to a knot module and pairing for a simple (4q + 1)-knot, q > 1.

8. Concluding Remarks

So far we have only dealt with odd dimensional knots, but much of what has
been said can be extended to even dimensions. By Proposition 1.1, every 2q-
knot k bounds an orientable (2q+1)-manifold V in S2q+2. A simple 2q-knot
k is one for which there is a (q−1)-connected V , so that Hq(V ) and Hq+1(V )

are the only non-trivial homology groups. Then Hq

(
K̃

)
, Hq+1

(
K̃

)
are the

only non-trivial homology modules. There is a sesquilinear duality pairing
on Hq

(
K̃

)
×Hq+1

(
K̃

)
, and this, together with some more algebraic struc-

ture connecting them, can be used to classify the simple 2q-knots in high
dimensions. See [13, 14, 15, 26, 27] for details.

Classification results have also been obtained for more general classes of
knots; see [11, 12, 16].

References

[1] E. Bayer, Factorisation in not unique for higher dimensional knots, Comm. Math.
Helv. 55 (1980), 583–592.



QUADRATIC FORMS IN KNOT THEORY 153

[2] , Unimodular hermitian and skew-hermitian forms, Jour. of Algebra 74 (1982),
341–373.

[3] , Definite hermitian forms and the cancellation of simple knots, Archiv der
Math. 40 (1983), 182–185.

[4] , Cancellation of hyperbolic ε-hermitian forms and of simple knots, Math.
Proc. Camb. Phil. Soc. 98 (1985), 111–115.

[5] E. Bayer, J.A. Hillman, and C. Kearton, The factorization of simple knots, Math.
Proc. Camb. Phil. Soc. 90 (1981), 495–506.

[6] E. Bayer-Fluckiger, C. Kearton, and S.M.J. Wilson, Decomposition of modules, forms
and simple knots, Journal für die reine und angewandte Mathematik 375/376 (1987),
167–183.

[7] , Finiteness theorems for conjugacy classes and branched cyclic covers of knots,
Mathematische Zeitschrift 201 (1989), 485–493.

[8] , Hermitian forms in additive categories: finiteness results, Journal of Algebra
123 (1989), 336–350.

[9] R.C. Blanchfield, Intersection theory of manifolds with operators with applications to
knot theory, Annals of Maths (2) 65 (1957), 340–356.

[10] M.J. Dunwoody and R.R. Fenn, On the finiteness of higher knot sums, Topology 26
(1986), 337–343.

[11] M.Sh. Farber, Duality in an infinite cyclic covering and even-dimensional knots,
Math. USSR Izvestija 11 (1977), no. 4, 749–781.

[12] , Isotopy types of knots of codimension two, Trans. Amer. Math. Soc. 261
(1980), 185–209.

[13] , The classification of simple knots, Russian Math. Surveys 38 (1983), 63–117.
[14] , An algebraic classification of some even-dimensional spherical knots. I,

Trans. Amer. Math. Soc. 281 (1984), no. 2, 507–527.
[15] , An algebraic classification of some even-dimensional spherical knots. II,

Trans. Amer. Math. Soc. 281 (1984), no. 2, 529–570.
[16] , Minimal Seifert manifolds and the knot finiteness theorem, Israel Journal of

Mathematics 66 (1989), no. 1–3, 179–215.
[17] J.A. Hillman, Blanchfield pairings with squarefree Alexander polynomials, Math. Zeit.

176 (1981), 551–563.
[18] , Finite knot modules and the factorization of certain simple knots, Math.

Annalen 257 (1981), 261–274.
[19] , Factorization of Kojima knots and hyperbolic concordance of Levine pairings,

Houston Journal of Mathematics 10 (1984), 187–194.
[20] , Simple locally flat 3-knots, Bull. Lond. Math. Soc. 16 (1984), 599–602.
[21] J.A. Hillman and C. Kearton, Seifert matrices and 6-knots, Transactions of the Amer-

ican Mathematical Society 309 (1988), 843–855.
[22] C. Kearton, Classification of simple knots by Blanchfield duality, Bulletin of the Amer-

ican Mathematical Society 79 (1973), 952–955.
[23] , Blanchfield duality and simple knots, Transactions of the American Mathe-

matical Society 202 (1975), 141–160.
[24] , Cobordism of knots and Blanchfield duality, Journal of the London Mathe-

matical Society 10 (1975), 406–408.
[25] , Factorisation is not unique for 3-knots, Indiana University Mathematics

Journal 28 (1979), 451–452.
[26] , An algebraic classification of certain simple knots, Archiv der Mathematik

35 (1980), 391–393.
[27] , An algebraic classification of certain simple even-dimensional knots, Trans-

actions of the American Mathematical Society 276 (1983), 1–53.
[28] , Simple spun knots, Topology 23 (1984), 91–95.



154 C. KEARTON

[29] C. Kearton and S.M.J. Wilson, Cyclic group actions on odd-dimensional spheres,
Comm. Math. Helv. 56 (1981), 615–626.

[30] , Spinning and branched cyclic covers of knots, Royal Society of London Pro-
ceedings A 455 (1999), 2235–2244.

[31] M.A. Kervaire, Les noeuds de dimensions supérieures, Bull. Soc. math. France 93
(1965), 225–271.

[32] , Knot cobordism in codimension 2, Manifolds Amsterdam 1970, Lecture Notes
in Mathematics, vol. 197, Springer Verlag, Berlin-Heidelberg-New York, 1971, pp. 83–
105.

[33] J. Levine, Unknotting spheres in codimension two, Topology 4 (1965), 9–16.
[34] , Invariants of knot cobordism, Invent. math. 8 (1969), 98–110.
[35] , Knot cobordism groups in codimension two, Comm. Math. Helv. 44 (1969),

229–244.
[36] , An algebraic classification of some knots of codimension two, Comm. Math.

Helv. 45 (1970), 185–198.
[37] J.W. Milnor, Infinite cyclic coverings, Conference on the Topology of Manifolds (ed.

J.G. Hocking), Complementary Series in Mathematics, vol. 13, Prindle, Weber &
Schmidt, 1968, pp. 115–133.

[38] , On isometries of inner product spaces, Invent. math. 8 (1969), 83–97.
[39] J.W. Milnor and D. Husemoller, Symmetric bilinear forms, Springer-Verlag, Berlin-

Heidelberg-New York, 1973.
[40] H. Schubert, Die eindeutige Zerlegbarkeit eines Knotens in Primknoten, S.-B. Hei-

delberger Akad. Wiss. Math.-Natur. Kl. 1 3 (1949), 57–104.
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Contemporary Mathematics

Biography of Ernst Witt (1911-1991)

Ina Kersten

Abstract. Ernst Witt (1911–1991) was one of the most important influences
on the development of quadratic forms in the 20th century. His collected papers
[CP] were published in 1998, but for copyright reasons without a biography.
This article repairs the omission.

1. Childhood and youth

The grandfather of Ernst Witt, Heinrich Witt (1830–1893) worked as school
teacher, author and lay preacher. He made his name as the author of three volumes
of biblical commentary1. Many years later, his grandchildren were educated from
these books. Heinrich Witt became widely known for his engagement in religious
education, including seminars for adults and Bible classes, held in the spirit of
the widespread religious revivalist movement of the 19th century. He sacrificed
everything for his faith, expecting the same from his family. His children had to
take second place to his great task.

1Die biblischen Geschichten Alten und Neuen Testaments mit Bibelwort und freier Zwi-
schenrede anschaulich dargestellt (Biblical Histories From the Old and the New Testament, Illus-
trated by Quotations from the Bible and Devotional Commentaries), published by Bertelsmann
Gütersloh, 8 Marks.

c©0000 (copyright holder)
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This was the spiritual atmosphere into which Ernst Witt’s father Heinrich
(1871–1959) was born, the seventh of thirteen children. Like nearly all of his broth-
ers and sisters, he decided to join the Christian Movement. He studied theology
in Halle (Saale) with the intention of becoming a missionary. In 1893 a personal
meeting with Hudson Taylor (1832–1905), the founder of the China Home Mission,
became a crucial aspect of his future life. In 1896, Heinrich Witt was appointed as
the travelling secretary of the German Christian Student Association, of which he
was a co-founder.

In 1900, the mission of Liebenzell, a German branch of the China Home Mission,
sent him to China. There he adopted Chinese customs wearing Chinese clothes
and plaiting his hair in order to gain the confidence of the local people. He totally
submitted himself to the principles of Taylor and always did as he was instructed,
distributing tracts, selling books and brochures and holding street meetings. In
1906, he married Charlotte Jepsen from Sonderburg (which is now in Denmark)
where he had done his voluntary military service eleven years before. The couple
moved to a small, moderately furnished rice farmer’s hut in Yüanchow. In spite
of the primitive conditions, they were content. As the mission of Liebenzell was
very poor, the missionaries did not receive a fixed salary and had to get by on bare
necessities.

In 1911, they were granted their first home leave. With their three-year-old
daughter they went back to Germany, where Heinrich Witt worked again as a
travelling secretary until 1913. Their son Ernst was born on June 26, 1911 on
Alsen, a Baltic Sea island, which was German at that time.

As a child of missionaries, an unusual fate awaited him. At the age of two he
came to China, where his father became superintendent and head of the Liebenzell
Mission in Changsha. A high wall closed off the mission station, Ernst’s home for
the following years, from the hostile outside world. Heinrich Witt often went for
long journeys and did not have much time for his children – there were to be six in
all. They were educated strictly; above all, the father attached great importance
to honesty. His eldest son Ernst, being without any playmates of the same age,
was mostly left to himself. He had a passion for any kind of machine, and learnt
Chinese from his Chinese nannies. His received his first lessons from his father, who
realized and promoted his son’s great talent for arithmetic. The father neglected
almost all other subjects, for lack of time. However, he studied with his sons, Ernst
and Otto, all of the biblical histories by Heinrich Witt mentioned at the beginning
of this article.

When Ernst Witt was nearly nine years old, he and his younger brother Otto
were sent to Germany for their schooling. A brother of their father was to take care
of their further education. They were sent to their uncle’s house at Müllheim, in
the south of Baden, where their elder sister had already been living for some time.
The uncle was a preacher with eight children of his own. In due course he became
the housemaster of a children’s home which had at times from 20–25 children of
missionaries. His pedagogical work overwhelmed him and he ran a strict regimen.
But he could not break the individualistic spirit of the young Ernst. In later years
Ernst Witt still used to stand by his convictions determinedly and consistently.
Besides, he had a dry sense of humour which he retained his whole life. He always
took a keen pleasure in making other people laugh.
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Ernst Witt visited the Realschule (grammar school) at Müllheim, where he was
mainly interested in mathematics and chemistry. After his mittlere Reife he went
to the Oberrealschule (high school) leading to the Abitur, the university entrance
qualification – in Freiburg. There his class teacher was Karl Öttinger, an excellent
mathematician, who discerned the extraordinary mathematical talent of his pupil
and advanced him wherever he could. Ernst Witt maintained contact with this
teacher after his schooldays, and decades later he remembered him with gratitude.

During his school years in Freiburg, Ernst’s parents came to Germany for a
second leave from 1927–29. When they went back to China, they left all of their
children in Germany. Again they could communicate only by letter. In the course
of the following years, Heinrich Witt endeavoured to stay in touch with his son. He
tried to convince his son of his way of religious thinking, without success. Ernst
rejected the biblical faith represented by his father. But his early education had
shaped his character. He detested lying – honesty and straightforwardness were
his characteristic feature. He always said what he thought, without any diplomacy,
often causing misunderstandings and even hostility, which later worried him a lot.

2. University studies

After having passed his final exams, the Abitur, in 1929, Ernst Witt started to
study mathematics and physics. For the first two terms he stayed in Freiburg, where
he attended lectures by Loewy, Bolza and Mie. From the summer term of 1930 to
the winter term of 1933/34 he studied in Göttingen, mainly under Herglotz, Emmy
Noether, Weyl, and Franck and astronomy under Meyermann. He particularly
liked the lectures of Gustav Herglotz (1881–1953), who had an extremely broad
knowledge and whose talks stood out because of their special clarity. Herglotz, for
his part, always followed the mathematical development of his student with interest
and sympathy, and they maintained contact until Herglotz’s death.

Seminar Excursion, Göttingen: Bernays, Scherk, Schilling, Schwerdtfeger, Taussky,

Bannow, Noether, –, W. Weber. Sitting: Witt, Ulm, –, –, Wichmann, Tsen, –.
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At the age of nineteen, Ernst Witt published his first paper including a new
proof of Wedderburn’s theorem that every finite skew field is commutative [1931].
Herglotz later remembered this ([6], 1946):

After one lecture, a young lad showed me a torn off piece of paper and said:
‘This is a proof of Dickson’s theorem.’ In fact, it contained a proof of an extraordi-
nary simplicity, not achieved up to then by any of the well-known mathematicians.
When I got to know him closer, he showed an eminent mathematical gift, with
which he, after a first approach, observed a thing in his own way and independently
followed it to its furthest development.

In the summer of 1932, Emil Artin (1898–1962) came to Göttingen and held
his famous lectures on class field theory, which strongly influenced Witt’s further
scientific development. In the same year, Artin invited him to Hamburg, where
Witt intensively studied class field theory of number fields. In the course of the
following years, he carried the theory over to function fields [1934–36].

Witt had to study under extremely harsh economic conditions. He tried hard
to keep his expenses to a minimum, taking special examinations for grants or the
remission of tuition fees. He completed his Ph.D. after only four years, in the
summer of 1933. The title of his thesis was: Riemann-Rochscher Satz und Zeta-
Funktion im Hyperkomplexen. The idea for it came to him through a problem set
by Emmy Noether. She asked him whether the thesis by Artin’s student Käte Hey
Analytische Zahlentheorie in Systemen hyperkomplexer Zahlen could be transferred
to algebraic function fields to find the hypercomplex analogue of the Riemann-Roch
theorem. Witt could answer Noether’s question in the affirmative by first proving,
however, a Riemann-Roch theorem for central simple algebras over algebraic func-
tion fields with perfect field of constants and then using this theorem to transfer
Hey’s thesis.

As Witt liked to relate in later years, he wrote down his thesis within one week.
In a letter of August 1933, his sister told her parents [2]:

He did not have a thesis topic until July 1, and the thesis was to be submitted
by July 7. He did not want to have a topic assigned to him, and when he finally had
the idea, [. . . ] he started working day and night, and eventually managed to finish
in time. [. . . ] Artin also liked Ernst’s paper and has told him to go over it again,
so that others might understand it as well.

The examiner of his thesis was Herglotz since Emmy Noether had been sus-
pended from her duties by the Nazi regime. The oral examination held by Herglotz,
Weyl, and Pohl was at the end of July 1933.

3. The time between 1933 and 1945

On 1st May, 1933 Ernst Witt joined the Nazi party and the SA, a step which
provoked disappointment and bewilderment in the Göttingen mathematics insti-
tute. By that time Emmy Noether was already suspended. Her seminar now took
place at her home, where Witt turned up one day dressed in his SA uniform. Ap-
parently, she did not take it amiss.

Herglotz later wrote in a report [6] of 22nd November, 1946:
And then one day he had joined the S.A., urged by the simple wish – as I was

convinced in those days, and as I am still today – not to stand apart, where others



BIOGRAPHY OF ERNST WITT (1911-1991) 159

carried their burden. I asked him about his impression of his comrades, whose
ideas, as I suspected, would often come into conflict with his devotion to science.
His answer was: ‘I don’t know much about them. During our night marches I never
talk to them, and in the morning I go home immediately, to continue my studies
where I left them the evening before.’ In those days we had much trouble with certain
‘activists’, also among the younger lecturers. I would like to particularly emphasize
the fact that Witt always stood away from this group and its troublemaking. He was
completely absorbed in his mathematical work, which he only interrupted for night
and pack marches. The way he looked at the time caused quite a bit of worry.

One of the Nazi students at the mathematical institute in Göttingen was Oswald
Teichmüller (1913–1943). He took part in vicious acts leading the boycott against
Landau’s first year course in November 1933. Decades later, when Witt was asked
by his students in Hamburg on his relationship to Teichmüller, he emphasized that
Teichmüller was his friend. He related, that Teichmüller had asked him whether
one could refer to Albert, a Jewish mathematician who had obtained similar results
on p-algebras. Because of Witt’s answer, Teichmüller (cf. his Collected Papers, pp.
121, 122, 138) made the reference. There is a handwritten note by Witt on a
conversation with Teichmüller who had investigated algebraic function fields in the
beginning of the fortieth (cf. Collected Papers, pp. 611–621):

Note by Witt

Teichmüller. (Railway conversation 1942)

function field, 1 variable,
functions α
differentials ω
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I.) To find α with prescribed initial expansions.

α = ci−hπi−h + · · ·+ ci−1π
i−1 + remainder α2 = α1 + α2. Divisor a2 .

Proposition. α exists if and only if
∑

res α1 ω = 0 , {ω | a2 ω integral}.

II.) To find ω with prescribed initial parts.

Proposition. ω exists if and only if
∑

res α ω1 = 0 , {α | α w2 integral}.

Witt did not take part in the political discussions during the years of 1933/34.
But when in 1934 the university of Göttingen looked for a new head of the math-
ematical institute and the students suggested a scientifically insignificant Nazi, he
openly expressed his indignation, despite threats by the SA.

In 1934, Witt became an assistant of Helmut Hasse (1898–1979) in Göttingen,
where he qualified as a university lecturer in 1936. The oral exam took place in
February, his ‘habilitation lecture’ on convex bodies in June 1936. His ‘habilitation’
on the theory of quadratic forms in arbitrary fields ranks as one of his most famous
works. In it he introduced what was later named the Witt ring of quadratic forms.
Shortly after that, Witt introduced the ring of Witt vectors, which had a great
influence on the development of modern algebraic geometry (cf. G. Harder: “An
essay on Witt vectors” in [CP]).

Since Witt wanted to work as a lecturer, he had to attend and pass a compulsory
National Socialist course for lecturers, which took place from August 2 to 28, 1937
in Thüringen. At its end Witt received the following assessment [6]:
National Socialist thinking: Mediocre
Independent propagandist in any situation: No
National Socialist disposition: Limited
Physical capabilities: weakly-built, cannot be established because of a sporting injury.
General enthusiasm for his duty: shirker
Behaviour towards people around him: quiet, restrained, his manners are somewhat
insecure.
Description of his character: W. has shown himself to be quiet, modest and re-
strained, with a tendency to keep to himself; characteristic features are a certain
naivety and eccentricity. He is honest and straightforward. He dedicates himself to
his work with dogged tenacity, continuously brooding and thinking and thus repre-
sents the typical, politically indifferent researcher and scientist, who will probably
be successful in his subject, but who, at least for the time being, is lacking any of
the qualities of a leader or educator.

This certificate just about allowed him to become a lecturer. It is striking how
accurate the ‘description of his character’ is. Some years later, Herglotz stressed
(in his report of November 22, 1946), apart from Witt’s significant mathematical
talent his striking unworldliness.

From 1933 until 1938 when he left Göttingen, Witt founded and organized a
study group on higher algebra and number theory. It produced seven important
papers, all published in the celebrated volume 176 of the Crelle Journal.
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In 1938, Ernst Witt became a lecturer at the mathematics department in Ham-
burg, where, in 1939, he was appointed as an associate professor. He got the down-
graded position of Emil Artin, who was forced to emigrate to the United States in
1937. Witt’s move to Hamburg enabled him to break off his service in the SA.

In Hamburg, Witt met a fellow student, Erna Bannow, from Göttingen, who
had earlier gone to Hamburg to work with Artin. She continued her studies with
Witt and finished her doctorate in 1939. A brief report on her thesis “Die Auto-
morphismengruppen der Cayleyzahlen” (cf. Hamb. Abh. 13) was given by Witt in
Crelles Journal. They married in 1940 and had two daughters.

In February 1940, Witt was called up by the Wehrmacht. He submitted his
paper on modular forms of degree two at the end of January 1940, thereby cutting
short some of his investigations. In February 1940, with Blaschke’s help, he suc-
ceeded in deferring his military service for one year. This enabled him to finish his
paper on reflection groups and the enumeration of semisimple rings, cf. [1941].

In February 1941, Witt came to Lübeck to be trained as a radio operator. From
there, in June 1941, he was sent to the Russian front. Later he said, that he had the
worst time of his life there, and that he was surprised to survive it. In November
1941, he fell ill and was sent back in several stages, until finally he arrived at a
hospital in Lübeck. This illness probably saved his life, because shortly afterwards
his company was almost completely wiped out.

After his recovery, Witt did not have to go back to the front, because the
headquarters of the Wehrmacht in Berlin needed him for decoding work. Some
information on Witt’s work as a mathematician at the army is given in the book
[3], pp. 340 and 357, for example, that he built special equipment which functioned
on an optical basis. In a two-page letter of 31st January 1943 Witt wrote to
Herglotz:

Witt Berlin SW 61

Wartenburgstr. 11IIr Berlin, 31st January 43

Dear Professor Herglotz!

I would like to cordially congratulate you on your birthday!
Many thanks for the invitation to give a talk in Göttingen. My civilian in-

stitution would immediately grant the corresponding leave, but unfortunately, my
company is only interested in military things. According to some rumour circu-
lating since half a year I will “soon” be dismissed from military service in order
to continue my present occupation as a civilian. But one can hardly figure out to
which (presumably complicated) chronology the word “soon” refers. In this sense, I
am looking forward to seeing Göttingen again “soon”.2

My wife and I often think of the beautiful days we had in Göttingen. The time
of mathematical expeditions is over for the time being, and I can just make some
short walks in an already familiar mathematical territory. Occasionally, however, I
succeed in finding an unknown plant there as well. So I realized that the Klein bottle
can always be coloured with six colours, whereas the torus needs seven colours, as

2Witt gave the talk in Göttingen on 17th June 1944. He talked about his investigation of
subrings of free Lie rings which is described on the second page of his letter to Herglotz.
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is well-known, although the topological “connectivity number” 3 is the same in both
cases and only the possibility of orientation is responsible for the difference.

Two-page letter by Witt to Herglotz [4]

3i.e. the maximal number of linearly independent non-separating closed curves, which is 2
for both the Klein bottle and the torus, this being the rank of mod 2 homology in dimension 1
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I have some results on “subrings of free Lie rings”, dating from the time before
my conscription. (A free Lie ring has generators xν without defining relations – an
analogue of a free group). All subrings are again free (for suitable generators). The
corresponding theorem for commutative or associative rings is false! The programme
“to carry over the theorem of Schreier to Lie rings” yields results on free groups as
well. Unfortunately, I have not yet found time to write this down.4

Though at present there is very little time for me to do mathematics I am
content with my fate for allowing me to stay in Germany. Last year I was in
Russia and I have no desire to go there again. I am allowed to live in a private

4This was done in 1955, cf. [1956].
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house, shall get permission, in a few days, to wear civilian clothes, and am allowed
to travel to Hamburg on two Sundays a month. [. . . ]

And Papa is looking forward to each holiday Sunday.
Many cordial greetings

Yours Ernst Witt

4. Dismissal and rehabilitation

At the end of the war, Ernst Witt was in the south of Germany, where his
section had fled to during the last days of the war. After a short time as a prisoner
of war, he returned to Hamburg in 1945. Three months later, the British military
government dismissed him from his position as a professor at the mathematics de-
partment of Hamburg University. Witt immediately appealed this measure, writing
on September 15, 1945 among other things [6]:

As an expatriate German – my father was a missionary in China – when I was
young, I felt particularly obliged to the concepts of ‘Heimat’ and ‘Vaterland’. Thus,
when in May 1933, following the general mood of my fellow students, I joined the
SA and the National Socialist Party, I thought I served a good cause. However, I
never went along with the attitude of the party towards Jews, as I highly regarded
my teachers, many of whom were either Jewish themselves or had Jewish wives.
I continued to work under them, finishing my doctorate. Realizing very soon that
science was no issue of importance in the party, – at the time, in an address to
the students, Rust underlined that marching was more important than studying –
my interest in the party quickly decreased. I refused to join the Studentenbund
(National Socialist Student Organization) and later the Dozentenbund (National
Socialist Lecturer Organization) and avoided all other factions of the party. [. . . ].
The best proof that I did not bother about party matters is the fact that nobody in
our house knew that I was a party member.

Along with his dismissal, Witt’s accounts were blocked, he was forbidden to
enter the university and his food ration-cards were withdrawn.

In the summer of 1946, Witt was requested to testify that he had never been
more than a nominal member of the National Socialist Party and not a convinced
militarist. He could easily furnish proof of this, as he had never held any position
within the party, and his military rank had only been that of a lance-corporal.

The requested testimonies were furnished by Herglotz, Magnus, Rellich and
F. K. Schmidt. In their reports of winter 1946/47, each of Witt’s colleagues inde-
pendently stressed his total commitment to science and his lack of political expe-
rience [6]. F. K. Schmidt added: “when I was in trouble, Witt stayed in contact
with me despite pressure on him to do otherwise.”

Speiser wrote in a letter July 5, 1946, to Blaschke [6]:
I hope that Witt will be rehabilitated. He really is completely innocent. At

that time, I think in 1936, I very much liked him as a mathematician, who had
no other interests, who did not know anything of politics and other public matters,
a character, which probably can be found only in Germany. Why then are they
making troubles for him now.
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His former student Ho-Jui Chang gave the following statement [6] on 8th Feb-
ruary 1946:

Dr. Ernst Witt was my teacher and I have had personal contacts with him as
well. During all these years I never had the impression that he was a national
socialist, though as a Chinese I usually noticed this without difficulties. On the
contrary, after the outbreak of the war I often heard him criticising the German
government. As a scientist Dr. Witt is very qualified.

Witt also wanted a statement from Richard Courant (1888-1972), because in
Göttingen the latter had always been very friendly to him. So Blaschke asked him,
on Witt’s behalf, for a report. Courant, who had been forced to leave Göttingen
in 1934, wrote in a letter of 23rd December 1946 to Blaschke, obviously under the
erroneous assumption that it was only a question of an educational task [6]:

A few days ago I received your letter of November 16 asking for a statement on
behalf of Dr. Witt, who, as I understand, has been reappointed to a research position
at Hamburg University but is seeking reinstatement as a teacher. I am answering
in English for easier use, but I am afraid that my statement may not be exactly
what you desire.

When I was Director of the Mathematics Institute in Göttingen, I discovered
Mr. Witt, then a young student, in poor material circumstances, inarticulate, but
obviously a budding mathematical talent. I immediately took steps to secure finan-
cial help for him, so that he could leisurely finish his studies, which he continued
under the scientific and personal guidance of his Jewish teacher, Emmy Noether.
It was for all of us a painful disappointment, when in spring 1933 Mr. Witt, still
a student, revealed himself firmly entrenched in the Nazi camp as an old party
member. A somewhat mitigating fact was that he did not seem to be one of those
opportunists of the Nazi era, whose motives were to remain on top or to improve
their chances for a career; he probably was governed by a sort of romantic confu-
sion. To my recollection, he did not take a personal part in vicious acts of violence
at the university, as some of his Nazi fellow-students did. To what extent he actu-
ally dissociated himself from the spirit of deconstruction is not known to me, and I
suppose that as to further development after 1933, unbiased observers such as Artin
and Hecke will be most competent witnesses.

Courant also send a copy directly to the military government adding the fol-
lowing remark:

I personally would very much hesitate to entrust a man like Witt with an edu-
cational task unless during the Nazi regime he has proved himself basically opposed
to his masters – this is a matter of which I have no knowledge.

In contrast, Erich Hecke (1887–1947), who enjoyed considerable respect for his
courageous and upright behaviour in the Nazi years, stood up for Witt and testified
that Witt was “very soon convinced that methods and aims of the Nazi-Party were
incompatible with his attitude as a scientifically minded person. Accordingly he
was in opposition and did not join either the NSDSTB or the Dozentenbund and
in 1938 he resigned from the SA. As a lecturer he avoided all political topics in
his official relations to his students.” He recommended Witt’s reinstatement as a
Professor as early as in October 1945 ([6]).
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In April 1947, Witt was taken on again, and later, after a second screening, he
was fully rehabilitated.

5. After 1947

His first lectures after his reinstatement were on Lie groups. The reason for
these lectures was that F. K. Schmidt had suggested him to write a book on Lie
groups for the yellow Springer series. But as Witt could not receive the latest
American publications, and still the lack of food was reducing his capacity for
work, the book project drew out longer and longer. After several attempts and in
spite of Schmidt’s repeated appeals, he eventually gave it up in 1961.

In 1947, a ray of hope appeared with an invitation from his former student Ho-
Jui Chang, to stay with his family as a guest professor at the National University
of Peking for at least one year. (In the Hamburger Abhandlungen 14, Chang had
introduced the phrase: “Witt’s Lie ring”, which today is generally used.) Because
of the uncertain political situation in China, however, Witt declined the invitation
after all.

At the end of the forties, Witt started to deal with the foundations of math-
ematics and especially intuitionism. He wanted to know how far he could carry
this and even gave ‘finitistic’ lectures on differential and integral calculus. He was
invited to give talks about it and was temporarily considered to be an intuitionist,
which he declined saying that a person who works on non-euclidean geometry is
not necessarily a “non-euclidean”.

At that time, there were a number of available chairs in the zone occupied by
the Soviets, and some people tried to bring Witt over there. As early as in July
1948, the university of Jena was interested in him. In 1949, he was offered a chair
at the Humboldt University in East Berlin. He was invited to give three talks and
set out for the adventurous journey from Hamburg to Berlin, across two borders
with their controls, which was a whole day’s journey at the time. Though they had
better working conditions he decided after mature reflection to decline the offer.

Foreign mathematical institutes now also opened up for him. Wilhelm Blaschke
(1885–1962) had reestablished his international contacts, inviting speakers to Ham-
burg and making sure that mathematicians from Hamburg were invited to foreign
countries. In fact, Witt was invited to Spain, where he gave twelve talks on in-
tuitionism, complex analysis and algebra. To learn Spanish, he hired a waiter in
Madrid, whom he paid by the hour. He wrote two papers in Spanish, cf. [1950]
and [1951].

In the early fifties, he studied the books of Bourbaki in seminars with his
students, out of which in 1954 emerged the thesis of his student Banaschewski on
filter spaces.

From December 1952 to April 1953, Severi, at the request of Blaschke, invited
Witt to Rome. There he lectured on the algebraic theory of quadratic forms in
Italian. In the fall of 1953, Witt travelled again, this time to Barcelona at the
invitation of his friend Teixidor. He then lectured on Lie rings, cf. [1956], footnote
6.

In 1954, Witt’s position in Hamburg was changed into a personal chair (with-
out financial consequences). At that time his colleagues in Halle would have liked
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him to become the successor of Brandt. Witt declined this offer. However, from
September to the middle of November 1955, he gave a four-hour lecture on differ-
ential geometry. In addition, he presented the general result on quadratic forms
and inner product spaces there, which reached its final form in a joint paper with
Lenz, cf. [1957].

In the following spring in Jena, he held two two-hour lectures on Lie groups
and Algebra III for two months.

In 1957 Witt’s personal chair was changed into a regular full professorship.
“That was about time”, one colleague congratulated him.

In April 1957, Emil Artin came to visit Hamburg, his former university. When
he entered Witt’s office, Witt spontaneously said “Mr. Artin, this is your place.”
Witt wanted to give back the chair he had got because of Artin’s emigration. Artin
was touched by this unworldly gesture. In spring 1958, Hamburg University created
a new chair for Artin, which he held until his sudden death in 1962.

In spring 1958, Čahit Arf, Witt’s Turkish friend since his time in Göttingen,
invited him and his family to his house in Istanbul. Witt was to lecture on “non-
commutative algebra, in particular Galois theory”. He insisted on travelling in
his small Ford, though travelling right across four countries, with lots of snow, a
crammed car and his family was a real adventure in those days. When he came
back to Turkey later, in 1962, 1963, and 1964, being invited to Ankara by Ulucay,
he chose the more comfortable way by plane.

In 1959, Blaschke suggested to Witt to apply for a Fulbright travel grant, to get
to know leading mathematicians in the United States. André Weil proposed him
to the Institute for Advanced Study at Princeton for the academic year of 1960/61,
and Witt received an official invitation from the director Robert Oppenheimer.
He was very pleased to be invited to the “hub of mathematics”, and travelled to
Princeton with high hopes. There, one day, during a discussion about a member
of the National Socialist Party, he felt obliged to declare that he had also been a
member of that party. To behave otherwise would have seemed insincere to him.
He found, to his utter astonishment, that his contacts with his colleagues were
suddenly severed.

In the course of the following years, Witt accepted many invitations to univer-
sities in the United States and in Canada, e.g. in the spring of 1963 to St. John’s
University in Newfoundland. At the winter term of 1963/64, Banaschewski invited
him to McMaster University in Hamilton in Ontario, from where he visited sev-
eral Canadian universities and received offers for temporary as well as permanent
positions. He did not accept since this would mean less financial security concern-
ing retirement and surviving dependents’ pension. The following winter terms of
1964/65 and 1965/66, he spent at Stony Brook, where again people would have
liked him to stay. He declined the offer for similar reasons. Thus he remained
faithful to Hamburg University until he retired in 1979.

As early as in 1959, Ernst Witt realized the advantages of the use of computers
in almost all branches of mathematics, and thus was – as so often before – ahead
of his time. At that time, programs still had to be punched into punch cards at
the computer center and one had to wait for them to be processed. For more than
twenty years, Witt spent most of his time programming, until in 1982 the center
got a new computer, and he did not want to learn how to use. Among other things,
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he calculated twin primes and coefficients of cyclotomic polynomials and drew up
programs for the classification of Steiner systems. He customized the programming
language Algol into what his students called “Wittgol”.

In Hamburg, Witt and Deuring organized a seminar which in 1951, after Deur-
ing had left became the Hasse-Witt seminar. In 1955, Witt founded his seminar
on topology, in which, until 1981, many subsequently famous mathematicians and
often also physicists gave talks as students and assistants. During his long years of
teaching at Hamburg, his students always enjoyed a lot of freedom in their work,
but on the other hand Witt also expected them to think for themselves. Thus he
did not propose the topics for diplomas or Ph.D.’s, but wanted the students to
find their own topics. Topics were allowed from any field of mathematics. Among
others, his students were: Sigrid Böge, née Becken, Walter Borho, Günter Harder,
Manfred Knebusch, Horst Leptin and Jürgen Rohlfs. The following assessment of
the teacher Ernst Witt, from a report written as early as 1937 always held good
for him [5]:

Witt’s lectures are models of clarity and concision. He has a beautiful gift for
creating in his audience, with the help of comparatively brief hints, the exact image
fundamental for a deeper understanding, which goes beyond the formal thread. How-
ever, he will have to learn to adapt his assumptions to the level of an audience which
does not consist of scientists but of students. Witt’s personality is straightforward
and sincere. He can be relied on in every respect.

In the sixties Witt gave several colloquium talks in which he significantly sim-
plified the algebraic theory of quadratic forms by means of his notion of a round
form.
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Colloquium talk in Hamburg. Tuesday, 28th Nov. 1967
On quadratic forms in fields.5

Characterization of the ring W of quadratic forms ϕ over the field K = {a, b, c, . . . }
(char. 6= 2) by (Wab) ab = c if ab = cd2 in K, d 6= 0, and (Wa+b) a + b = c + abc
if a +K b = c. Let Dϕ := {a represented by ϕ}, Gϕ := {a | aϕ = ϕ in W}. We
have GϕDϕ = Dϕ, in addition (∗) Gϕ + d ·Gϕ ⊂ Gϕ+dϕ (proof by ϕ · (Wa+bd) for
a, b ∈ Gϕ). ϕ is said to be round if Dϕ = Gϕ . If ϕ is round then ϕ

∏
(1 + ci) is

round, in particular 2n. If ϕ is round and isotropic then ϕ = 0 by definition.
(∗∗) If ϕ 6= 0 and round then the annihilator of ϕ is binary generated. –
The order of ϕ ∈ W+ is ∞ or a power of 2 (Pfister). New proof: let ϕa be a
polynomial in ai 6= 0 (i = 1, . . . , n), εi = ±1, πεa =

∏
(1 + εiai) =⇒

(i) ϕaπεa = ϕεπεa , (ii) 2nϕa =
∑

ϕεπεa. Assume that mϕa = 0, (m > 0),
|mϕε| ≤ M then mϕεπεa = 0 by (i), and if ϕε 6= 0 then 2Mπεa (round and
isotropic) = 0, thus (ii) yields 2M+nϕ = 0. Similarly: If ϕ =

∑n
1 ai = 0 in Wα for

each real closed Kα ⊃ K then ϕ ∈ torsion part of W+ (Pfister). New proof: let Cεa

be the cone K2(+, ·, εi · ai). If Cεa ⊂ K∃
α then ϕε = 0, otherwise −1 ∈ K = Cεa,

hence, explicitly, 2mπεa (round and isotropic if m large) = 0; summarizing, we get
2m+nϕ = 0 by (ii). – For number fields and function fields in one variable over a

5Published with kind permission of the coordinator of the colloquium on pure mathematics
at Hamburg University. See [CP] for a detailed version.
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Galois field, (∗) holds with =, in addition, (∗∗) always holds as well as some further
theorems.

Also in his written work, Witt always points out exactly the things which are
fundamental for a true understanding. His lectures were unconventional both for
the choice of topics as for their style. From 1954 on, his lectures on Calculus I
and II for students in their first and second semester were based on the notion of
filters. Even the students who had difficulties in understanding his lectures did not
get bored, as he always wove in humorous remarks and witty comparisons. Local
coordinates, for example, he illustrated as follows: “If the mayor of a little town in
the middle-of-nowhere has to draw a map, his little town will become the center of
it”. He also taught a lot of things from his own works, as, for example, the theory
of quadratic forms, the Mathieu groups and Steiner systems or the Riemann-Roch
theorem for skew fields. The reader is referred to P. M. Neumann: “An essay on
Witt’s work on the Mathieu groups and on Steiner systems” in [CP].

In 1978, Witt became an ordinary member of the Akademie der Wissenschaften
zu Göttingen.

Though he had always been interested in the latest findings, Witt no longer
actively followed the development of modern algebraic geometry by Grothendieck
and others. One reason for this might have been that he was not very healthy. Since
1969, he suffered from allergies to various detergents and adhesives for wallpapers
and carpets. He complained about dizziness and a diminishing ability to concen-
trate. Because of these troubles, he had to decline several invitations for talks at
home and abroad, and in 1975, he experienced a slight stroke. Moreover, because
of his allergies, he could not join the move of the mathematics department to a
modern highrise building, in which, because of some kind of air conditioning, the
windows could not be opened. Thus he got more and more isolated, and his general
reputation to be an eccentric was strengthened. On his account the colloquia of the
mathematics department were held in another building, and he could attend them
until shortly before his death. He died after a short illness on July 3, 1991 at an
age of 80 years.

Acknowledgement. I would like to thank Bärbel Deninger, Samuel Patterson
and Andrew Ranicki very much for help with the English version.

Author’s remark. I was a student of Ernst Witt at the University of Ham-
burg. After my examination in Mathematics, Witt asked me if I would like to
become his assistant. Due to rationalization, Hamburg University offered me a
contract for only five months. Since Witt, however, had promised me a three year
contract, his reaction to the university administration was the serious threat to
resign, and in consequence of that, the contract was extended. So I became his
assistant until his retirement in 1979. The above descriptions refer to [1] and [2],
some are from my personal recollection.
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and
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of

Quadratic Forms

Manfred Knebusch and Ulf Rehmann

Abstract. This manuscript describes how a generic splitting tower of a regu-
lar anisotropic quadratic form digests the form down to a form which is totally
split.

Introduction

We work with quadratic forms on finite dimensional vector spaces over an arbitrary
field k. We call such a form q: V → k regular if the radical V ⊥ of the associated
bilinear form Bq has dimension ≤ 1 and the quasilinear part q|V ⊥ of q is anisotropic.
If k has characteristic char k 6= 2 this means that V ⊥ = {0}. If char k = 2 it means
that either V ⊥ = {0} or V ⊥ = kv with q(v) 6= 0.
In the present article a “form” always means a regular quadratic form. Our first
goal is to develop a generic splitting theory of forms. Such a theory has been given
in [K2] for the case of char k 6= 2. Without any restriction on the characteristic,
a generic splitting theory for complete quotients of reductive groups was given in
[KR], which is closely related to our topic.
In §1 we present a generic splitting theory of forms in a somewhat different manner
than in [K2]. We start with a key result from [KR] (cf. Theorem 1.3 below),
then develop the notion of a generic splitting tower of a given form q over k with
associated higher indices and kernel forms, and finally explain how such a tower
(Kr | 0 ≤ r ≤ h) together with the sequence of higher kernel forms (qr | 0 ≤ r ≤ h)
of q controls the splitting of q⊗L into a sum of hyperbolic planes and an anisotropic
form (called the anisotropic part or kernel form of q ⊗ L), cf. 1.19 below. More
generally we explain how the generic splitting tower (Kr | 0 ≤ r ≤ h) together with
(qr | 0 ≤ r ≤ h) controls the splitting of the specialization γ∗(q) of q by a place
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γ: k → L∪∞, if q has good reduction under q, cf. Theorem 1.18 below. Then in §2
we study how a generic splitting tower of q ⊗ L can be constructed from a generic
splitting tower of q for any field extension L/k. All these results are an expansion
of the corresponding results in [K2] to fields of any characteristic.
We mention that a reasonable generic splitting theory holds more generally for a
quadratic form q:V → k such that the quasilinear part q|V ⊥ is anisotropic, without
the additional assumption dim V ⊥ ≤ 1. This needs more work. It will be contained
in the forthcoming book [K5].
In §3 we prove that for any form q over k there exists a generic splitting tower
(Kr | 0 ≤ r ≤ h) of q which contains a subtower (K ′

r | 0 ≤ r ≤ h) of field extensions
of k such that K ′

r/K ′
r−1 is purely transcendental, and such that the anisotropic

part of q⊗Kr can be defined over K ′
r for every r ∈ [1, h]. {We have K ′

0 = K0 = k.}
This result, which may be surprising at first glance, leads us in §4 to the second
theme of this article, namely generic splitting preparations (Def. 4.3) and the closely
related generic splitting decompositions (Def. 4.8) of a form q. We focus now on
the second notion, since its meaning can slightly more easily be grasped than that
of the first (more general) notion.
A generic splitting decomposition of a form q over k consists of a purely transcen-
dental field extension K ′/k and an orthogonal decomposition

q ⊗K ′ ∼= η0 ⊥ η1 ⊥ · · · ⊥ ηh ⊥ ϕh (∗)
with certain properties. In particular, dim ϕh ≤ 1, all ηi have even dimension,
and η0 is the hyperbolic part of q ⊗ K ′ (which comes from the hyperbolic part
of q by going up from k to K ′). The generic splitting decomposition in a certain
sense controls the splitting behavior of q ⊗ L for any field extension L of k, more
generally of γ∗(q), for any place γ: k → L ∪ ∞ such that q has good reduction
under γ. This control can be made explicit in much the same way as the control by
generic splitting towers, using “quadratic places” (or “Q-places” for short) instead
of ordinary places, cf. §6.
Quadratic places have been introduced in the recent article [K4] and used there for
another purpose. We recapitulate here what is necessary in §5. We are sorry to
say that our theory in §6 demands that the occurring fields have characteristic 6= 2.
This is forced by the article [K4], where the specialization theory of forms under
quadratic places is only done in the case of characteristics 6= 2. It seems that major
new work and probably also new concepts are needed to establish a specialization
theory of forms under quadratic places in all characteristics.
An overall idea behind generic splitting decompositions is the following. If we
allow for the form q over k a suitable linear change of coordinates with coefficients
in a purely transcendental field extension K ′ ⊃ k, then the form – now called
q ⊗ K ′ – decomposes orthogonally into subforms η0, η1, . . . , ηh, ϕh such that the
forms ηk ⊥ · · · ⊥ ηh ⊥ ϕh with 1 ≤ k ≤ h give the higher kernel forms of q, when
we go up further from K ′ to suitable field extensions of K ′. Thus, after the change
of coordinates, the form q is “well prepared” for an investigation of its splitting
behavior. This reminds a little of the Weierstrass preparation theorem, where an
analytic function germ becomes well prepared after a linear change of coordinates.
In contrast to Weierstrass preparation we allow a purely transcendental field ex-
tension for the coefficients of the linear change of coordinates. But no essential
information about the form q is lost by passing from q to q ⊗ K ′, since q is the
specialization λ∗(q ⊗K ′) of q ⊗K ′ under any place λ:K ′ → k ∪∞ over k.
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The idea behind generic splitting preparations is similar. {Generic splitting decom-
positions form a special class of generic splitting preparations.} Now the forms ηi

are defined over fields K ′
i such that K ′

0 = k and every K ′
i is a purely transcendental

extension of K ′
i−1.

Generic splitting decompositions and, more generally, generic splitting preparations
give new possibilities for manipulations with forms. For example, if q ⊗K ′ ∼= η0 ⊥
· · · ⊥ ηh ⊥ ϕh is a generic splitting decomposition of q, then we may look how many
hyperbolic planes split off in q⊗Er for Er the total generic splitting field of one of
the summands ηr. We do not enter these matters here, leaving all experiments to
the future and to the interested reader.

§1. Generic splitting in all characteristics

1.0. Notations. For a, b elements of a field k we denote the form aξ2 + ξη + bη2

over k by [a, b]. Since we only allow regular forms, we demand 1 − 4ab 6= 0. By
H: = [0, 0] we denote the hyperbolic plane.
If q is a (regular quadratic) form over k then we have the Witt decomposition ([W],
[A]) q ∼= r ×H ⊥ ϕ with an anisotropic form ϕ and r ∈ N0. We call r the index of
q and write r = ind (q). We further call ϕ the kernel form 1) or anisotropic part of
q and use both notations ϕ = ker(q), ϕ = qan.
If L ⊃ k is a field extension then q ⊗ L or qL denotes the form over L obtained
from q by extension of the base field k to L. Thus, if q lives on the k-vector space
V , then q ⊗ L lives on the L-vector space L⊗k V . A major theme of this article is
the study of ind (q ⊗ L) and ker(q ⊗ L) for varying extensions L/k.
dim q denotes the dimension of the vector space V on which q lives, i.e., the number
of variables occurring in the form q. We have dim q = dim(q ⊗ L). The zero form
q = 0 is not excluded. Then V = {0} and dim q = 0.
We say that q splits totally if dim(qan) ≤ 1. This is equivalent to ind (q) = [dim q/2].
For another form ϕ over k we write ϕ < q if ϕ is isometric to a subform of q
(including the case ϕ ∼= q).

1.1. Definition/Further notations. If q 6= 0 and dim q is even, let

δq: =
{

(discriminant of q) ∈ k∗/k∗2 if char k 6= 2
(Arf invariant of q) ∈ k+/℘k if char k = 2,

pδq(X):=
{

X2 − δq if char k 6= 2
X2 + X + δq if char k = 2.

The separable polynomial pδq(X) splits over k if and only if δq is trivial. If dim q
is odd or if δq is trivial we say that q is of inner type, otherwise we say that q is of
outer type.
These notions are adjusted to the corresponding notions in the theory of reductive
groups. q is inner (resp. outer) if and only if SO(q) is inner (resp. outer). {N.B.
SO(q) is almost simple for dim q ≥ 3 since the form q is regular.}
We define

kδq: =
{

k if q is of inner type
k[X]/pδq(X) if q is of outer type.

For i = 1, . . . , [dim q/2], we denote by Vi(q) the projective variety of totally isotropic
subspaces of dimension i in the underlying space of q, and by ki(q) we denote the

1) = “Kernform” in [W]
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function field of Vi(q), unless dim q = 2. In the latter case V1 consists of two
irreducible components defined over kδq. We then set k1(q) = kδq.
In general, we will also write k(q) = k1(q), which is, with the above interpretation,
the function field of the quadric V1(q) associated to q by the equation q = 0. ¤

1.2. Lemma. Let q be a (regular quadratic) form over k.
i) If K/k is any field extension such that qK is of inner type, then K contains

a subfield isomorphic to kδq.
ii) Let i ∈ {1, . . . , [dim q/2]}. If q is of inner type or if i ≤ dim q/2 − 1, then

Vi(q) is defined over k. If q is of outer type, then Vdim q/2(q) is defined over
kδq.

iii) Vi(q) is geometrically irreducible unless q is of outer type and i = dim q/2−1,
in which case it decomposes, over kδq, into two geometrically irreducible
components isomorphic to Vdim q/2(q).

Proof. i): Let dim q be even. Clearly qK is inner if and only if the polynomial
pδq has a zero in K, hence i) follows.
ii), iii): Since the stabilizer of an i-dimensional totally isotropic subspace of the
underlying space of q is a parabolic subgroup of SO(q), the statements follow from
[KR, 3.7, p. 44f]. ¤

A key observation for the generic splitting theory of quadratic forms is the following
theorem, which has a generalization for arbitrary homogeneous projective varieties
[KR, 3.16, p. 47]:

1.3. Theorem. Let q be a form over k, let Fi denote the function field of Vi(q)
as a regular extension of k resp. kδq according to 1.2.ii, and let L/k be a field
extension. The following statements are equivalent.

i) ind (q ⊗ L) ≥ i.
ii) The projective variety Vi(q) has an L-rational point.
iii) There is a k-place Fi → L ∪∞.
iv) L contains a subfield isomorphic to the algebraic closure F 0

i of k in Fi, and
the free composite LFi over F 0

i is a purely transcendental extension of L.

Remark. Only in the case of an outer q and i = dim q/2, we have F 0
i = kδq 6= k;

in all other cases, i.e., if q is inner or i ≤ dim q/2− 1, we have F 0
i = k in iv).

Proof of 1.3. The equivalence of i) and ii) is obvious. The other equivalences
follow from [KR, 3.16, p.47], again after observing that the stabilizer of an i-
dimensional totally isotropic subspace is a parabolic subgroup of SO(q). ¤

1.4. Definition. We call two field extensions K ⊃ k and L ⊃ k specialization
equivalent over k, and we write K ∼k L, if there exists a place from K to L over k
and also a place from L to K over k. ¤

1.5. Corollary. If q′ = l ×H ⊥ q, and if F ′i is the function field of Vi(q′), then
F ′l+i and Fi are specialization equivalent over k. 2) .

2) We will denote the hyperbolic plane [0, 0] over any field by H
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Proof. This is obvious by the equivalence of i) and iii) in 1.3. ¤

In the following q is a (regular quadratic) form over k. We want to associate to q
partial generic splitting fields and partial generic splitting towers as has been done
in [K2] for char k 6= 2. We will proceed in a different way than in [K2], starting
with a formal consequence of Theorem 1.3.

1.6. Corollary. Let L and L′ be field extensions of k. Assume there exists a
place λ: L → L′ ∪∞ over k. Then ind (q ⊗ L′) ≥ ind (q ⊗ L).

Proof. Let i: = ind (q⊗L). By the theorem there exists a place ρ: Fi → L∪∞ over
k. Then λ◦ρ is a place from Fi to L′∪∞. Again by the theorem, ind (q⊗L′) ≥ i.¤

1.7. Definition. (Cf. [HR1]). The splitting pattern SP(q) is the (naturally or-
dered) sequence of Witt indices ind (q⊗L) with L running through all field exten-
sions of k. ¤
Notice that the sequence SP(q) is finite, consisting of at most [dim q/2]+1 elements
j0 < j1 < · · · < jh. Of course, j0 = ind (q) and jh = [dim q/2]. We call h the height
of q, and we write h = h(q). Notice also that SP(q) is the sequence of all numbers
i ≤ [dim q/2] with ind (q ⊗ Fi) = i.

1.8. Definition. Let r ∈ {0, 1, . . . , h} = [0, h]. A generic splitting field of q of
level r is a field extension F/k with the following properties:

a) ind (q ⊗ F ) = jr.
b) For every field L ⊃ k with ind (q⊗L) ≥ jr there exists a place λ: F → L∪∞

over k.
Such a field extension F/k, for any level r, is also called a partial generic splitting
field of q, and, in the case r = h, a total generic splitting field of k. ¤
It is evident from the definitions and from Corollary 1.6 that, if K is a generic
splitting field of q of some level r and L is a field extension of k, then L is a generic
splitting field of q of level r if and only if K and L are specialization equivalent
over k.

1.9. Proposition. Let r ∈ [0, h]. All the fields Fi from Theorem 1.3 with jr−1 <
i ≤ jr are generic splitting fields of q of level r. {Read j−1 = −1.} In particular,
the fields k(qan), Fj0+1, . . . , Fj1 are generic splitting fields of q of level 1.

Proof. By Theorem 1.3, we certainly have ind (q⊗Fi) ≥ i, hence ind (q⊗Fi) ≥ jr.
If L/k is any field extension with ind (q ⊗ L) ≥ jr, then, again by Theorem 1.3,
there exists a place λ: Fi → L ∪ ∞ over k. Thus condition b) in Definition 1.8 is
fulfilled. We can choose L as an extension of k with ind (q⊗L) = jr. By Corollary
1.6 we have ind (q ⊗ Fi) ≤ ind (q ⊗ L). Thus ind (q ⊗ Fi) = jr.
Moreover, since k(qan) is the function field of V1(qan), it follows from 1.5 that this
field is specialization equivalent over k to Fj0+1. ¤

1.10. Corollary. If F is a generic splitting field of q (of some level r), then the
algebraic closure of k in F is always k, except if q is outer and ind (qF ) = dim q/2,
in which case it is kδq.

Proof. Clearly F ∼k Fi for i = ind qF , hence we have k-places from F to Fi and
vice versa, which are of course injective on the algebraic closure of k in F resp. Fi.
Our claim now follows from 1.3 and the remark after 1.3. ¤
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1.11. Scholium. Let (Kr | 0 ≤ r ≤ h) be a sequence of field extensions of k such
that for each r ∈ [0, h] the field Kr is a generic splitting field of q of level r. Let
L/k be a field extension of k. We choose s ∈ [0, h] maximal such that there exists
a place from Ks to L over k. Then ind (q ⊗ L) = js.

Proof. By Corollary 1.6 we have ind (q⊗L) ≥ js. Suppose that ind (q⊗L) > js.
Then ind (q ⊗ L) = jr for some r ∈ [0, h] with r > s. Thus there exists a place
from Kr to L over k. This contradicts the maximality of s. We conclude that
ind (q ⊗ L) = js. ¤

If q is anisotropic and dim q ≥ 2, then a generic splitting field of q of level 1 is
called a generic zero field of q. Proposition 1.9 tells us that, in general, Fj0+1 and
k(qan) are generic zero fields of qan. {N.B. The notion of generic zero field has also
been established if q is isotropic, cf. [K2, p. 69]. Then it still is true that k(q) is a
generic zero field of q.}
1.12. Definition. A generic splitting tower of q is a sequence of field extensions
K0 ⊂ · · · ⊂ Kh of k such that K0 is specialization equivalent over k with k, and such
that Kr+1 is specialization equivalent over Kr with Kr(qKr,an). 3) In particular, the
inductively defined sequence K0 = k,Kr+1 = Kr(qKr,an) is the standard generic
splitting tower of q (cf. [K2, p. 78]). We call qr: = (qKr )an the r-th higher kernel
form of q (with respect to the tower). We define i0: = ind q and ir: = ind qr−1⊗Kr

for 1 ≤ r ≤ h, and we call ir the r-th higher index of q (0 ≤ r ≤ h).

1.13. Theorem. If K0 ⊂ · · · ⊂ Kh is a generic splitting tower of q, then, for
every r ∈ [0, h], the field Kr is a generic splitting field of q of level r.

Proof. We denote the function fields of the varieties Vi(q) by Fi, as in 1.3. By
1.9, it suffices to show Kr ∼k Fjr , for every r ≥ 0. For r = 0 this is obvious, since
Fj0 is a purely transcendental extension of k. For r = 1 we have, by 1.5, applied to
qK0 = j0 ×H ⊥ qK0,an,

K1 ∼K0 K0(qK0,an) ∼K0 Fj0+1K0 ∼k Fj0+1,

hence K1 ∼k Fj0+1 ∼k Fj1 , by 1.9.
We proceed by induction on dim qan. By induction assumption, our claim is true
for q1 := qK1,an over K1, and hence for qK1 = (j0 + j1) ×H ⊥ q1 by 1.5. That is,
for r ≥ 1, the field Kr is a generic splitting field of qK1 of level r− 1, and, as such,
specialization equivalent over K1 with the function field of Vjr (qK1) ∼= Vjr (q)×k K1

resp. ∼= Vjr (q)×kδq
K1kδq, which is Fjr ·K1 (free product over k resp. kδq). Hence

it remains to show that Fjr ·K1 is specialization equivalent to Fjr over k. We have
a trivial k-place Fjr → Fjr ·K1 ∪∞. On the other hand, since r ≥ 1, we also have
a k-place K1 → Fjr ∪∞, which gives us a k-place Fjr ·K1 → Fjr ∪∞. ¤

The rest of this paragraph will be used in paragraphs 5 and 6 only. For the next
statements we need the notion of “good reduction” of a quadratic form.

3) This definition of generic splitting towers is slightly broader than the definition
in [K2, p.78]. There it is demanded that K0 = k.
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1.14. Definition/Remark. Let q: Kn → K be a quadratic form over a field K
and λ: K → L ∪∞ be a place to a second field L. Let o = oλ denote the valuation
ring of λ.

a) We say that q has good reduction (abbreviated: GR) under the place λ, if
there exists a linear change of coordinates T ∈ GL(n,K) such that (x: =
(x1, . . . , xn))

q(Tx) =
∑

i≤j

aijxixj

with coefficients aij ∈ o, and such that the form
∑
i≤j

λ(aij)xixj over L is

regular.
b) In this situation it can be proved that, up to isometry, the form

∑

i≤j

λ(aij)xixj

does not depend on the choice of T (cf. [K1, Lemma 2.8], [K5, §8]). Ab-
usively we denote this form by λ∗(q), and we call λ∗(q) “the” specialization
of q under λ.

c) Let q be a regular form over k, let K, L be field extensions of k and let
λ : K → L ∪∞ be a k-place with valuation ring o. Then qK has GR under
λ and λ∗(qK) = qL. By Lemma 1.14.b below it follows that also qK,an has
GR under λ. ¤

If q has GR under λ then certainly q itself is regular. Moreover it can be proved
that

(∗) q ∼= [a1, b1] ⊥ · · · ⊥ [am, bm] (⊥ [ε] )

with elements ai, bi ∈ o and ε ∈ o∗ (cf. [K1], [K5, §6]). Here the last summand [ε]
denotes the form εX2 in one variable X. It appears if and only if n = dim q is odd.
Of course, (∗) implies

λ∗(q) ∼= [λ(a1), λ(b1)] ⊥ · · · ⊥ [λ(am), λ(bm)] (⊥ [λ(ε)] ).

1.15. Lemma. Let q and q′ be forms over K, and assume that dim q is even.
a) If q and q′ have GR under λ then q ⊥ q′ has GR under λ, and

λ∗(q ⊥ q′) ∼= λ∗(q) ⊥ λ∗(q′).

b) If q and q ⊥ q′ have GR under λ, then q′ has GR under λ.

Proof. Part a) of this lemma is trivial, but b) needs a proof. A proof can be
found in [K1, §2] in the case that also q′ has even dimension, and in [K5, §8] in
general. ¤

Part b) will be crucial for the arguments to follow.

1.16. Proposition. Let λ: K → L ∪ ∞ be a place and ϕ a form over K with
GR under λ. Then ϕ0: = ker(ϕ) has again GR under λ and λ∗(ϕ) ∼ λ∗(ϕ0),
ind (λ∗(ϕ)) ≥ ind (ϕ). If ind (λ∗(ϕ)) = ind (ϕ), then kerλ∗(ϕ) = λ∗(ϕ0).
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Proof. Let ϕ0: = ker ϕ. We have ϕ ∼= j × H ⊥ ϕ0 with j = ind (ϕ). The form
j × H has GR under λ. By Lemma 1.15 it follows that ϕ0 has GR under λ and
λ∗(ϕ) ∼= j ×H ⊥ λ∗(ϕ0). Now all the claims are evident. ¤

1.17. Proposition. Let ϕ be an anisotropic form over K of dimension ≥ 2 which
has GR under a place λ: K → L ∪ ∞. Let K1 ⊃ K be a generic zero field of ϕ.
Then λ∗(ϕ) is isotropic if and only if λ extends to a place µ: K1 → L ∪∞.

Sketch of Proof. a) If λ extends to a place µ: K1 → L ∪∞ then it is obvious
that ϕ ⊗K1 has GR under µ and µ∗(ϕ ⊗K1) = λ∗(ϕ). Since ϕ ⊗K1 is isotropic
we conclude by Proposition 1.16 that λ∗(ϕ) is isotropic.
b) Assume now that λ∗(ϕ) is isotropic. We denote this form by ϕ for short. By use
of elementary valuation theory it is rather easy to extend λ to a place λ̃: K(ϕ) →
L(ϕ)∪∞ (cf. [K5, §9]; here we do not need that ϕ is isotropic). Since ϕ is isotropic
the field extension L(ϕ)/L is purely transcendental (cf. Th. 1.3). Thus there exists
a place ρ: L(ϕ) → L∪∞ over L. Now ρ ◦ λ̃:K(ϕ) → L∪∞ is a place extending λ.
Since K(ϕ) ∼K K1, there exists also a place µ: K1 → L ∪∞ extending λ. ¤

We return to our form q over k.

1.18. Theorem. Let (Kr | 0 ≤ r ≤ h) be a generic splitting tower of q with higher
indices ir and higher kernel forms qr (0 ≤ r ≤ h). Let γ: k → L ∪∞ be a place
such that q has GR under γ. Moreover let m ∈ [0, h] and λ: Km → L ∪ ∞ be a
place extending γ. Assume in the case m < h that λ does not extend to a place
from Km+1 to L. Then ind (γ∗(q)) = i0 + · · · + im = jm. The form qm has GR
under λ and ker(γ∗(q)) ∼= λ∗(qm).

Proof. We have i0 + · · ·+ im = jm and q ⊗Km
∼= jm ×H ⊥ qm. This implies,

that qm has GR under λ and

γ∗(q) = λ∗(q ⊗Km) ∼= jm×H ⊥ λ∗(qm)

(cf. Proof of Prop. 1.16.) It remains to prove that λ∗(qm) is anisotropic. This
is trivial if m = h. Assume now that m < h. If λ∗(qm) would be isotropic
then Proposition 1.17 would imply that λ extends to a place from Km+1 to L,
contradicting our assumptions in the theorem. Thus λ∗(qm) is anisotropic. ¤

Applying the theorem to the special case that L is a field extension of k and γ is
the trivial place k ↪→ L, we obtain a result on the Witt decomposition of q ⊗ L
which is much stronger than 1.11.

1.19. Corollary. Let (Kr | 0 ≤ r ≤ h) be a generic splitting tower of q. If L/k
is a field extension and ind (q⊗L) = jm, and if ρ: Kr → L∪∞ is a place over k for
some r ∈ [0, h], then r ≤ m and ρ extends to a place λ: Km → L∪∞. For every such
place λ the kernel form qm of q ⊗Km has GR under λ and λ∗(qm) ∼= ker(q ⊗L).¤
An easy consequence is the following statement.

1.20. Scholium. (“Uniqueness” of generic splitting towers and higher kernel
forms). Let (Kr | 0 ≤ r ≤ h) and (K ′

r | 0 ≤ r ≤ h) be generic splitting tow-
ers of q with associated sequences of higher indices (ir | 0 ≤ r ≤ h), (i′r | 0 ≤ r ≤ h)
and sequences of kernel forms (qr | 0 ≤ r ≤ h), (q′r | 0 ≤ r ≤ h). Then ir = i′r for
every r ∈ [0, h]. There exists a place λ: Kh → K ′

h ∪∞ over k which restricts to a
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place λr: Kr → K ′
r∪∞ for every r ∈ [0, h]. If there is given a place µ: Kr → K ′

r∪∞
over k for some r ∈ [0, h] then qr has good reduction under µ and µ∗(qr) ∼= q′r. ¤

§2. Behavior of generic splitting fields and generic
splitting towers under base field extension

2.1. Definition/Remark. If K/k is a partial generic splitting field of q of some
level r, then we denote the algebraic closure of k in K by K◦. The extension K◦/k
is k or kδq (cf. 1.10).

For systematic reasons we retain the notation K◦ for later use, although most often
K◦ = k.

2.2. Definition. We call a generic splitting field K of q of some level r ∈ [0, h]
regular, if K is regular over the algebraic closure K◦ of k in K. We then denote by
L ·K, or more precisely by L ·k K, the free composite of L ·K◦ and K over K◦.
Explanation. Here we have to read K◦ = k, L ·K◦ = L if r < h or if r = h and q is
inner. If r = h and q is outer we have two cases. Either L splits the discriminant
of q. In this case K◦ = kδq embeds into L and we read L ·K◦ = L. Or L does not
split δq. In this case L ·K◦ = L⊗k K◦ = Lδ(q⊗L). ¤

2.3. Definition. We call a generic splitting tower (Kr | 0 ≤ r ≤ h) of q regular if
Kr/Kr−1 is a regular field extension for every r with 1 ≤ r < h, and also for r = h,
if the form q is inner. If r = h and q is outer, we demand that Kh is regular over
the composite Kh−1 ·K◦

h = Kh−1 · kδq = Kh−1 ⊗k kδq over k. ¤

Let L/k be any field extension. We want to construct partial generic splitting fields
and generic splitting towers for q ⊗ L from corresponding data for q.
Assume that (Kr | 0 ≤ r ≤ h) is a regular generic splitting tower of q. For every
r ∈ [0, h] we have the free composite L · Kr = L ·k Kr as explained in 2.2. (The
existence of the free products L ·Kr is the only assumption needed for the following
theorem. This is generally true if either L or Kr is regular over k resp. K0. Thus,
instead of the regularity of the generic splitting tower, we could also assume that
the field L is separable over k.)

2.4. Theorem. Let J = (r0, . . . re) denote the sequence of increasing numbers
r ∈ {0, . . . , h} such that ind (q ⊗Kr) = ind (q ⊗ L ·Kr).

a) Then the sequence

L ·Kr0 ⊂ L ·Kr1 ⊂ · · · ⊂ L ·Kre

is a regular generic splitting tower of q ⊗ L·K0, and hence of q ⊗ L.
b) For every r ∈ [0, h] \ J we have an L ·Kr-place L ·Kr+1 → L ·Kr ∪∞.

Proof. The claim is obvious if dim qan ≤ 1. We proceed by induction on dim qan.
Let r′ := min J \ {0}. The induction hypothesis, applied to qK1 , gives a regular
generic splitting tower L ·Kr′ ⊂ · · · ⊂ L ·Kre for qL·K1 , as well as b) for r ≥ 1.
In particular, the latter implies that L ·Kr′ ∼L·K1 L ·K1 ∼L·K0 L ·K0(qL·K0,an),
and this proves a).
It remains to show b) for r = 0. But 0 6∈ J means ind qL > ind q, hence ind qL·K0 >
ind qK0 . Therefore there is a K0-place K1 → L·K0∪∞, which yields an L·K0-place
L ·K1 → L ·K0 ∪∞. ¤
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In [K2, p. 85] another proof of Theorem 2.4 and its corollary has been given, which
clearly remains valid if char k = 2. We believe that the present proof albeit shorter
gives more insight than the proof in [K2].

The sequence SP(q ⊗ L) is a subsequence of SP(q) = (j0, . . . , jh), say SP(q ⊗ L) =
(jt(0), . . . , jt(e)), with

0 ≤ t(0) < t(1) < · · · < t(e) = h.

{ It is evident, that jt(e) = jh = [dim q/2] ∈ SP(q ⊗ L.}
It follows from Theorem 2.4 that the t(i) coincide with the numbers ri there. Thus
we have the following corollary.

2.5. Corollary. a) For every s ∈ [0, e] the anisotropic part of q ⊗ L · Kt(s) is
qt(s) ⊗ L ·Kt(s).
b) SP(q ⊗ L) is the sequence of all r ∈ [0, h] such that the form qr ⊗ L · Kr is
anisotropic. ¤
2.6. Proposition. Let K be a regular generic splitting field of q of some level
r ∈ [0, h]. Then L ·K is a generic splitting field of q ⊗L of level s, where s ∈ [0, e]
is the number with t(s− 1) < r ≤ t(s). {Read t(−1) = −1.}
Proof. We return to the fields Fi in Theorem 1.3. Let i: = jr. We have K ∼k Fi

by Proposition 1.9. This implies K · L ∼L Fi · L. Thus it suffices to prove the
claim for Fi instead of K. Now L · Fi is the function field of the variety Vi(q ⊗ L).
Proposition 1.9 gives the claim. ¤

For later use, it is convenient to insert a digression about “inessential” field exten-
sions.

2.7. Definition. We call a field extension E/k inessential, if there exists a place
α:E → k ∪∞ over k, i.e., E ∼k k. ¤
The idea behind this definition is that, if E/k is inessential, then q⊗E has essentially
the same splitting behavior as q. This will now be verified.
We know already from Corollary 1.6 that ind (q⊗E) = ind (q), hence ker(q⊗E) =
ker(q)⊗ E.

2.8. Corollary. Assume again that E/k is an inessential field extension.
i) If (Er | 0 ≤ r ≤ h′) is a generic splitting tower of q ⊗ E, then it is also

a generic splitting tower of q. In particular h′ = h, i.e., h(q ⊗ E) = h(q).
Moreover SP(q ⊗ E) = SP(q).

ii) If K/E is a generic splitting field of q⊗E of some level r ∈ [0, h], then K/k
is a generic splitting field of q of the same level r.

Proof. i): This follows from the definition 1.12 of the notion of a generic splitting
tower, together with 2.4.
ii): We have K ∼E Er. This implies K ∼k Er, and we are done. ¤

2.9. Remark. Theorem 2.4 tells us that the splitting pattern of a quadratic form
becomes coarser under base field extension. This may even happen with anisotropic
k-forms, which stay anisotropic over the extension field L. The classical example
is a quadratic form ψ of dimension 4 and with a non trivial discriminant (or Arf
invariant) δψ. The form ψ remains anisotropic over the quadratic discriminant
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extension L = kδψ. Of course the height of ψL is one, which means, that, over L,
the form ψ is ‘simpler’ than over k. Such a transition ψ 7→ ψL is called an anisotropic
splitting, since it reduces the complexity of the quadratic form ψ without disturbing
its anisotropy.
This phenomenon can be more subtle than in the example just given. For the rest
of this remark we assume that char k 6= 2.
i) For an an anisotropic r-Pfister form ϕ with pure part ϕ′, and ψ as above, we
study the form q := ϕ′⊗ψ. As mentioned above, ψL is anisotropic for L = k(

√
δq).

We also assume that ϕ and hence ϕ′ as well as q stay anisotropic over L: For
example, we can start with some ground field k0, and let k = k0(X1, X2, Y1, . . . Yr)
be the function field of r + 2 indeterminates over k0, and then take

ψ = 〈1, X1, X2, δX1X2〉 with δ ∈ k∗0 \ k∗20 , ϕ = 〈〈Y1, . . . , Yr〉〉.
Then (ϕ⊗ ψ)L is an anisotropic r + 2-Pfister form, and qL is a Pfister neighbor of
that form with complement ψL.
Hence qL is an excellent form of height 2 with splitting pattern

SP(qL) = (2r+1 − 4, 2r+1 − 2).

On the other hand, if E = k(
√−X1), then ψE = H ⊥ ψE,an, and hence qE =

(ϕ′ ⊗ ψ)E = ϕ′E ⊗H ⊥ ϕ′E ⊗ ψE,an. Using, e.g., [HR2, 1.2, p. 165] one sees easily
that ϕ′E ⊗ψE,an is anisotropic. It is similar to a Pfister neighbor with complement
ψE,an, hence of height two with splitting pattern (2r − 1, 2r+1 − 3).
The splitting pattern of q therefore contains the numbers

2r − 1, 2r+1 − 4, 2r+1 − 3, 2r+1 − 2,

and possibly more, but only two of them survive for qL.
ii) The following example may be even more instructive. We refer to [HR2, 2.5–
2.10, p. 167ff.]. Assume n ≥ r > 0, and let k = k0(X1, . . . , Xn, Y1, . . . , Yr, Z be the
function field over some field k0 in n + r + 1 indeterminates. We let k′ denote the
subfield k0(X1, . . . , Xn, Y1, . . . , Yr) of k, hence k = k′(Z) is an inessential extension
of k′.
We consider the anisotropic forms

q := 〈〈X1, . . . , Xn〉〉 ⊥ Z〈〈Y1, . . . , Yr〉〉 over k

and
ψ := 〈〈X1, . . . , Xn〉〉 ⊥ 〈〈Y1, . . . , Yr〉〉 over k′.

According to [l.c., 2.6], their splitting pattern is given by

(∗)
(0, 20, 21, . . . , 2r, 2n−1, 2n−1 + 2r−1)

(0, 20, 21, . . . , 2n−1, 2n−1 + 2n−2)

(0, 20, 21, . . . , 2n)

if 1 ≤ r ≤ n− 2

if r = n− 1

if r = n

(The proof is given in [l.c.] for q, but works, mutatis mutandis, for ψ as well.) We
consider the standard generic splitting tower K0 = k, K1, . . . , Kh of ψk, which is
a generic splitting tower of ψ as well, since k is inessential over k′, and note that
h = r + 3, r + 2, r + 1 respectively in the three cases distinguished above.
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The forms σ := 〈〈X1, . . . , Xn〉〉Ki
and τ := 〈〈Y1, . . . , Yr〉〉Ki

are anisotropic for r =
0, . . . , r. Hence, using [l.c., Thm. 1.2, p. 165], we conclude that qKi

is anisotropic
for i = 0, . . . , r.
In [l.c., 2.5, p. 167] the following well known linkage result is stated: If a linear
combination of two anisotropic Pfister forms σ, τ over a given field is isotropic, then
its index is the dimension of a Pfister form of maximal dimension dividing both σ
and τ .
Since ψKi

is isotropic, it follows that its index is a power of two, since it is the
dimension of the common maximal Pfister divisor of σ and τ . Hence, by the same
result, the first higher index of qKi is exactly the dimension of this Pfister divisor.
Therefore, for i ≤ r, the splitting pattern of qKi

consists of 0, followed by the suffix
starting with 2i of the appropriate sequence (∗).
This shows that the gaps occurring in a splitting pattern by base field extension
can be arbitrarily large, even for a form which stays anisotropic over the extension.

§3. Defining higher kernel forms over
purely transcendental field extensions

3.1. Definition. Let L/K be a field extension and ϕ a form over L. If we have
ϕ ∼= ϕ′L = ϕ′ ⊗ L with some form ϕ′ over K, then we say that ϕ is definable over
K (by ϕ′). We say that ϕ is defined over K (by ϕ′) if ϕ′ is unique up to isometry
over K.

It is known for a field k of characteristic 6= 2, that all higher kernels of a form q
over k are defined over k if and only the form q is excellent [K3, 7.14,p. 6], which
is a very strong condition on that form: q is excellent if either dim q ≤ 3, or if q is
a Pfister neighbor with excellent complement. E.g.,

∑n
i=1 X2

i is excellent over any
field of characteristic 6= 2.
In this section, as before, q is a (regular quadratic) form over a field k. We want
to prove the surprising fact, that, for a suitable generic splitting tower of q, every
higher kernel form of q is definable over some finitely generated purely transcen-
dental extension of k.
The following lemma is well known, but we will need its precise statement as given
here later on.

3.2. Lemma. Assume that q is anisotropic. Let L be a separable quadratic field
extension of k, such that qL is isotropic. Then

q ∼= α ⊥ β

for some regular quadratic forms α, β over k, such that αL is hyperbolic and βL is
anisotropic. Let L = k[X]/(aX2 + X + b) with a 6= 0, b 6= 0 (which can always be
achieved). Then α is divisible by [a, b]. More precisely, if i = ind (qL), then there
are pairwise orthogonal vectors y1, . . . , yi over k such that

α = [a, b]⊗ 〈q(y1), . . . , q(yi)〉.
In case char k 6= 2, we may assume that L = k(

√
δ). Then, α is divisible by 〈1,−δ〉.

Proof. Let e 6= 0 be an isotropic vector for qL. We denote the image of X in L by
θ. Then, for e = x+yθ, where x, y have coordinates in k, we obtain 4) 0 = aqL(e) =

4) We briefly write (x, y): = Bq(x, y) with Bq the bilinear form associated to q
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aq(x) + aq(y)θ2 + a(x, y)θ = aq(x)− bq(y) + (a(x, y)− q(y))θ, hence aq(x) = bq(y)
and a(x, y) = q(y). Therefore (x, y) 6= 0 and q(ξy + ηx) = (aξ2 + ξη + bη2)(x, y) for
arbitrary ξ, η ∈ k, which gives a binary orthogonal summand of q of the requested
type. If its complement is anisotropic over L we are done. Otherwise, an induction
on dim q gives the general result, and the special result for char k 6= 2 is obtained
as usual by the substitution X = X ′ − 1/(2a), δ = b/a− 1/(4a2). ¤

3.3. Corollary. Let k(q) denote the function field of the quadric given by q = 0,
let k′ ⊂ k(q) be a subfield containing k such that k(q)/k′ is separable quadratic and
k′/k is purely transcendental. Then there is a decomposition

qk′ = α ⊥ q′,

over k′, such that α 6= 0, αk(q) is hyperbolic and q′k(q) is anisotropic. Hence the first
higher kernel form of q is definable by q′ over the purely transcendental extension
k′ of k.

Proof. This follows immediately from 3.2. ¤

As before h = h(q) denotes the height of q.

3.4. Theorem. There exists a regular (cf. 2.3) generic splitting tower (Kr | 0 ≤
r ≤ h) of q, a tower of fields (K ′

r | 0 ≤ r ≤ h) with k ⊂ K ′
r ⊂ Kr for every r,

k = K ′
0 = K0, and a sequence (ϕr | 0 ≤ r ≤ h) of forms ϕr over K ′

r, such that the
following holds. {N.B. All the fields Kr,K

′
r are subfields of Kh.}

(1) ϕr ⊗Kr = ker(q ⊗Kr) for every r ∈ [0, h].
(2) ϕr+1 < ϕr ⊗K ′

r+1 (0 ≤ r < h). 5)

(3) K ′
r+1/K ′

r is purely transcendental of finite transcendence degree (0 ≤ r < h).
(4) Kr/K ′

r is a finite multiquadratic extension (0 ≤ r ≤ h).

Proof. We proceed by induction on dim q. We may assume that q is anisotropic.
If dim q ≤ 1 nothing has to be done. Assume now that dim q > 1. Let K1 = k(q),
the function field of the projective quadric q = 0. We choose for K ′

1 a subfield of
K1 containing k such that K ′

1/k is purely transcendental and K1/K ′
1 is quadratic,

which is possible. By 3.3 we have a (not unique) decomposition q ⊗K ′
1 = η1 ⊥ ϕ1

with dim ϕ1 < dim q, ϕ1⊗K1 anisotropic, η1⊗K1 hyperbolic. If the height h = 1,
we have finished with K1, K

′
1, ϕ1.

Assume now that h > 1. We apply the induction hypothesis to ϕ1. Let h(ϕ1) = e.
There exists a regular generic splitting tower (Lj | 0 ≤ j ≤ e) of ϕ1, a tower of fields
(L′j | 0 ≤ j ≤ e), and forms ψj over L′j (0 ≤ j ≤ e), such that K ′

1 ⊂ L′j ⊂ Lj ,
ψj+1 < ψj ⊗ L′j+1, ψj ⊗ Lj = ker(ϕ1 ⊗ Lj), L′j+1/L′j is purely transcendental of
finite degree, and Lj/L′j is finite multiquadratic. Certainly e ≥ h − 1 ≥ 1 since
h(ϕ1 ⊗K1) = h− 1.
We form the field composites K1 ·Lj = K1 ·K′

1
Lj as explained in 2.2. Let J denote

the set of indices j ∈ [0, e] with ψj ⊗ K1 · Lj anisotropic, and let µ(0) < µ(1) <
· · · < µ(t) be a list of these indices. (N.B. µ(0) = 0, µ(t) = e.) By 2.4 and 2.9
the sequence of fields (K1 · Lµ(r) | 0 ≤ r ≤ t) is a regular generic splitting tower of
ϕ1⊗K1, hence of ϕ⊗K1, and ϕ⊗(K1 ·Lµ(r)) has the kernel form ψµ(r)⊗(K1 ·Lµ(r)).
Clearly the tower (K1 · Lµ(r) | 0 ≤ r ≤ t) is regular, and t = h− 1.

5) cf. Notations 1.0
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For 2 ≤ i ≤ h we put K ′
i: = L′µ(i−1), Ki = K1 · Lµ(i−1), ϕi: = ψµ(i−1). Adding to

these fields and forms the fields K ′
1,K1, K0 = K ′

0 = k, and the forms ϕ1, ϕ0: = q,
we have towers (Kr | 0 ≤ r ≤ h), (K ′

r | 0 ≤ r ≤ h) and a sequence (ϕr | 0 ≤ r ≤ h)
of anisotropic forms with all the properties listed in the theorem. ¤

We add to this theorem a further observation.

3.5. Proposition. We stay in the situation of Theorem 3.4. Assume that h ≥ 1,
i.e., q is not split. By property (2) we have a sequence (ηr | 1 ≤ r ≤ h) of forms ηr

over K ′
r such that

ϕr−1 ⊗K ′
r
∼= ηr ⊥ ϕr (1 ≤ r ≤ h).

We choose for each r ∈ [1, h] a total generic splitting field Er of ηr. Let qr denote
the kernel form of q ⊗Kr, 0 ≤ r ≤ h.
Claim. The field composite Kr−1 ·K′

r−1
Er =: Lr is specialization equivalent to Kr

over Kr−1. Thus Lr is a generic zero field of qr−1 and a generic splitting field of
q of level r.

Proof. qr−1 ⊗ Lr is isotropic. Thus there exists a place λ:Kr → Lr ∪ ∞ over
Kr−1. On the other hand ηr ⊗Kr ∼ 0. Thus there exists a place ρ: Er → Kr ∪∞
over K ′

r. The field extension Kr−1/K ′
r−1 is finite multiquadratic. By standard

valuation theoretic arguments ρ extends to a place µ: Kr−1 ·K′
r−1

Er → Kr ∪∞
over Kr−1 ·K ′

r, hence over Kr−1. ¤

Explanations of the diagram. The tower on the left consists of purely tran-
scendental extensions (labeled by “p.t.”), the tower on the right is a generic split-
ting tower of q. The “horizontal” extensions labeled by “m.q.” are multiquadratic,

splitting the direct sums εr =
r−1

|
i=1

ηi,K′
i
⊥ ηr (for which we simply have written

η1 ⊥ · · · ⊥ ηr) totally and leaving ϕr anisotropic, making it isometric to the r-th
higher kernel form qr of q. The field Er = K ′

r(ηr → 0) is a generic total splitting
field of the form ηr over K ′

r.
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A Generic Splitting Tower According To 3.4 and 3.5

K ′
h

m.q.
η1⊥···⊥ηh →0

ϕh→(qKh
)an

Kh

Er = K ′
r(ηr → 0) Er ∗K′

r−1
Kr−1

K ′
r

m.q.
η1⊥···⊥ηr → 0

ϕr→ (qKr )an

p.t.

ηr→0

|||||||||||||||||
Kr

Kr−1-equivalence

<|
<|

<|
<|

<|
<|

<|
<|

<|
<|

<|

<|
<|

<|
<|

<|
<|

<|
<|
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<|

<|

K ′
r−1

m.q.
η1⊥···⊥ηr−1 → 0

ϕr−1→ (qKr−1 )an

p.t.

Kr−1

K ′
1

m.q.
ϕ1 → (qK1 )an

η1 → 0

p.t.

K1 = K(q)

k

p.t.

K0

§4. Generic splitting preparation

In 3.4 and 3.5 we have associated to the form q over k – among other things – a
tower (K ′

r | 0 ≤ r ≤ h) of purely transcendental field extensions of k together with
a sequence (ηr | 1 ≤ r ≤ h) of anisotropic subforms ηr of q ⊗ K ′

r. We want to
understand in which way these data control the splitting behavior of q under field
extensions, forgetting the generic splitting tower (Kr | 0 ≤ r ≤ h) in 3.4. (We will
have only partial success, cf. §6 below.) In addition we strive for an abstraction of
the situation established in 3.4 and 3.5.
As before q is any regular quadratic form over a field k and h denotes the height
h(q).

4.1. Definition. Let r ∈ [0, h] and let K/k be an inessential field extension (cf.
2.7). A form η over K is called a generic splitting form of q of level r, if dim η is
even and there exists an orthogonal decomposition q ⊗K ∼= η ⊥ ψ such that the
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following holds: If E/K is a total generic splitting field of η, then E/k is a partial
generic splitting field of q of level r, while ψ ⊗ E is anisotropic. We further call ψ
the complement (or complementary form) of η. ¤

N.B. This property does not depend on the choice of the total generic splitting field
of E.
Generic splitting forms occur whenever a higher kernel form of q is definable over
an inessential field extension of k.

4.2. Proposition. Let K/k be a partial generic splitting tower of q of level r.
Assume there is given an inessential subextension K ′/k of K/k and a subform ψ of
q⊗K ′ such that ψ⊗K = ker(q⊗K). Let η denote the complement of ψ in q⊗K ′,
i.e., q ⊗K ′ ∼= η ⊥ ψ. (N.B. η is uniquely determined up to isometry.) Then η is a
generic splitting form of q of level r.

Proof. dim q ≡ dim ψ mod 2. Thus dim η is even. Let E/K ′ be a total generic
splitting field of η. Then q ⊗E ∼ ψ ⊗E. Thus there exists a place λ:K → E ∪∞
over k. On the other hand, η⊗K ∼ 0. Thus there exists a place µ:E → K∪∞ over
K ′. Since µ is also a place over k, the fields E and K are specialization equivalent
over k. We conclude that also E is a generic splitting field of q of level r. Now it
is evident that dimker(q ⊗ E) = dim ψ. Thus ψ ⊗ E is anisotropic. ¤

4.3. Definition. A generic splitting preparation of q is a tower of fields (K ′
r | 0 ≤

r ≤ h) together with a sequence (ηr | 0 ≤ r ≤ h) of forms ηr over K ′
r such that the

following holds:
(1) K ′

0 = k, and η0 is the hyperbolic part of ϕ.
(2) K ′

r+1/K ′
r is purely transcendental for every r, 0 ≤ r < h. 6)

(3) There exist orthogonal decompositions

q ∼= η0 ⊥ ϕ0, ϕr ⊗K ′
r+1

∼= ηr+1 ⊥ ϕr+1, (0 ≤ r < h).

(4) For every r ∈ [0, h] the form
r
|

j=0

ηj ⊗K ′
r is a generic splitting form of q of

level r. ¤

The forms ϕr (0 ≤ r ≤ h) are uniquely determined (up to isometry, as always)
by condition (3). We call ϕr the r-th residual form and ηr the r-th splitting form
of the given generic splitting preparation. Clearly ir: = dim ηr/2 is the r-th higher
index (cf. 1.1) of q, and dim ϕh ≤ 1. If q is anisotropic then we sometimes denote
the generic splitting preparation by (K ′

r | 0 ≤ r ≤ h), (ηr | 1 ≤ r ≤ h), omitting
the trivial form η0 = 0. ¤

4.4. Scholium. Generic splitting preparations of q exist in abundance. Indeed, in
the situation described in 3.4 and 3.5, the tower of fields (K ′

r | 0 ≤ r ≤ h) together
with the sequence (ηr | 0 ≤ r ≤ h) of forms ηr over K ′

r, where ηr for r ≥ 1 has
been introduced in 3.5 and η0 denotes the hyperbolic part of q, is a generic splitting
preparation of q.

6) Things below would not change much if we merely demanded that the exten-
sions K ′

r+1/K ′
r are inessential.
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Proof. Let r ∈ [1, h] be fixed and εr: =
r
|

j=0

ηj ⊗K ′
r. Then q ⊗K ′

r
∼= εr ⊥ ϕr and

ker(ϕ⊗Kr) = ϕr ⊗Kr. Proposition 4.2 tells us that εr is a generic splitting form
of q of level r. ¤

Notice that in this argument property (4) of Theorem 3.4 has not been used.

In the following, we study a fixed generic splitting preparation (K ′
r | 0 ≤ r ≤ h),

(0 ≤ ηr ≤ h) of q with associated residual forms ϕr (0 ≤ r ≤ h). For every

r ∈ {1, . . . , h} let εr denote the form
r
|

j=0

ηj ⊗ K ′
r. We do not assume that the

preparation arises in the way described in the scholium.
Our next goal is to derive a generic splitting preparation of q ⊗ L from these data
for a given field extension L/k.

4.5. Lemma. Assume that K/k is an inessential field extension. Let η be a form
over K which is a generic splitting form of q, and let ψ be the complementary form,
ϕ ⊗K ∼= η ⊥ ψ. Let E/K be a regular total generic splitting field of η (cf. 2.2).
Finally, let K · L = K ·k L denote the free field composite of K and L over k, and
E ·L = E ·k L the composite of E and L as explained in 2.2. Assume that ψ⊗E ·L
remains anisotropic. Then K · L/L is again inessential and η ⊗K · L is a generic
splitting form of q ⊗ L with complementary form ψ ⊗K · L.

Proof. Any place α: K → L ∪∞ over k extends to a place from L ·K to L over
L. Thus K ·L/L is inessential. By Proposition 2.6 the field E ·k L = E ·K (K ·k L)
is a total generic splitting field of η ⊗K ·L and also a partial generic splitting field
of ϕ⊗ L. Now the claim is obvious from Definition 4.1. ¤

As in §1 and §2 we enumerate the splitting pattern SP(q) = {jr | 0 ≤ r ≤ h} by

0 ≤ j0 < j1 < · · · < jh = [
dim q

2
]

and write SP(q ⊗ L) = {jr | r ∈ J} with J = {t(s) | 0 ≤ s ≤ e},
0 ≤ t(0) < t(1) < · · · < t(e) = h.

We have e = h(q ⊗ L).

4.6. Proposition. For 0 < s ≤ e we define L′s = L ·K ′
t(s) as the free composite

of the fields L and K ′
t(s) over k, and we put

ζs: = ηt(s−1)+1 ⊗ L′s ⊥ · · · ⊥ ηt(s)−1 ⊗ L′s ⊥ ηt(s).

We further define L′0 = L and ζ0 as the hyperbolic part of ϕ ⊗ L. Then (L′s | 0 ≤
s ≤ e), (ζs | 0 ≤ s ≤ e) is a generic splitting preparation of q ⊗ L.

Proof. For every r with 0 < r ≤ h we choose a regular total generic splitting field
Fr/K ′

r of the form εr.∗) 7) Then Fr/k is a partial generic splitting field of q of level
r. Let L · Fr = L ·k Fr denote the composite of L with Fr over k as explained in

7) The fields Fi from 1.3 will not be used in the following.
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2.2. If 0 < s ≤ e, then the field L · Ft(s) is a generic splitting field of ϕ ⊗ L and
ker(ϕ⊗ L · Ft(s)) = ϕt(s) ⊗ L · Ft(s) by Proposition 2.6. We have

ϕ⊗ L′s ∼= εt(s) ⊗ L′s ⊥ ϕt(s) ⊗ L′s.

Again by 2.6, the field

L ·k Ft(s) = (L ·k K ′
t(s)) ·K′

t(s)
Ft(s) = L′s ·K′

t(s)
Ft(s)

is a total generic splitting field of εt(s)⊗L′s. The form ϕt(s)⊗L′s remains anisotropic
over L ·k Ft(s). Now Proposition 4.2 tells us that εt(s) ⊗ L′s is a generic splitting
form of ϕ⊗ L′s, and we are done. ¤

4.7. Corollary. Let m ∈ [1, h] be fixed, and let F be a regular total generic
splitting field of εm. For every r with m < r ≤ h let F ·K ′

r denote the free composite
of F and K ′

r over k. Then the tower F ⊂ F ·K ′
m+1 ⊂ · · · ⊂ F ·K ′

h together with
the sequence (ηr ⊗ F · K ′

r | m < r ≤ h) is a generic splitting preparation of the
anisotropic form ϕm ⊗ F .

Proof. We apply Proposition 4.6 with L = F . Now J = {m,m + 1, . . . h}. Thus
e = h−m and t(s) = s+m (0 ≤ s ≤ h−m). The form q⊗F has the kernel form
ϕm ⊗ F . ¤

We now look for generic splitting preparations with K ′
1 = · · · = K ′

h. These are the
“generic decompositions” according to the following definition.

4.8. Definition. Let K ′ ⊃ k be a purely transcendental field extension. A generic
splitting decomposition of q over K ′ is a sequence (α0, α1, . . . , αh) of forms over K ′

of even dimensions such that the following holds.
i) q ⊗K ′ ∼= α0 ⊥ α1 ⊥ · · · ⊥ αh ⊥ ϕh with dimϕh ≤ 1.
ii) α0 is the hyperbolic part of q ⊗K ′. For every r with 1 ≤ r ≤ h the form

α0 ⊥ · · · ⊥ αr is a generic splitting form of q of level r. ¤
The next proposition tells us that we can always pass from a generic splitting
preparation of q to a generic splitting decomposition of q.

4.9. Proposition. As before, let (K ′
r | 0 ≤ r ≤ h), (ηr | 0 ≤ r ≤ h) be a

generic splitting preparation of q. Then (ηr ⊗K ′
h | 0 ≤ r ≤ h) is a generic splitting

decomposition of q over K ′
h.

Proof. Let K ′: = K ′
h and αr: = ηr ⊗K ′

h (0 ≤ r ≤ h). Since η0 is the hyperbolic
part of q and K ′/k is purely transcendental, the form α′0 is the hyperbolic part
of q ⊗ K ′. For 1 ≤ r ≤ h we have – with the notations from above – εr ⊗ K ′ =
α0 ⊥ · · · ⊥ αr. Let Fr be a regular total generic splitting field of εr (over K ′

r),
hence a partial generic splitting field of q (over k) of level r. The free composite
Fr ·K ′ = Fr ·K′

r
K ′ is a total generic splitting field of εr ⊗K ′ = αr by Proposition

2.6. Now Fr · K ′ is purely transcendental over Fr. Thus Fr · K ′ is also a partial
generic splitting field of q of level r. We have q ⊗K ′ ∼= αr ⊥ (ϕr ⊗K ′). The form
ϕr ⊗ Fr is anisotropic. Since Fr · K ′/Fr is purely transcendental, it follows that
(ϕr⊗K ′)⊗Fr ·K ′ = (ϕr⊗Fr)⊗Fr ·K ′ is anisotropic. Thus αr is a generic splitting
form of q of level r. ¤

Although generic splitting decompositions look simpler than generic splitting prepa-
rations, it is up to now not clear to us which of the two concepts is better to work
with. See also our discussion below at the end of §6.
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§5. A brief look at quadratic places

We need some more terminology.
If K is a field, we denote the group of square classes K∗/K∗2 by Q(K) and a single
square class aK∗2 by 〈a〉, identifying this class with the bilinear form 〈a〉 over K.
If λ:K → L ∪ ∞ is a place with associated valuation ring o = oλ, we denote the
image of the unit group o∗ in Q(K) by Q(o). Notice that Q(o) ∼= o∗/o∗2, and that
λ gives us a homomorphism λ∗: Q(o) → Q(L), λ∗(〈ε〉) = 〈λ(ε)〉. (The bilinear
form 〈ε〉 has good reduction under λ and λ∗(〈ε〉) is the specialization of this form
under λ.)

5.1. Definition. A quadratic place, or Q-place for short, from a field K to a field
L is a triple (λ,H, χ) consisting of a place λ: K → L ∪∞, a subgroup H of Q(K)
containing Q(oλ), and a homomorphism χ: H → Q(L) (called a “character” in the
following) extending the homomorphism λ∗: Q(oλ) → Q(L). ¤
We often denote such a triple (λ,H, χ) by a capital Greek letter Λ and symbolically
write Λ: K → L ∪∞ for the Q-place Λ.
Every place λ: K → L ∪ ∞ gives us a Q-place λ̂ = (λ, Q(oλ), λ∗): K → L ∪ ∞,
where λ∗: Q(oλ) → Q(L) is defined as above. We regard λ and λ̂ essentially as the
same object. In this sense Q-places are a generalization of the usual places.

5.2. Definition. If Λ = (λ,H, χ): K → L ∪∞ is a Q-place then an expansion of
Λ is a Q-place Λ′ = (λ,H ′, χ′): K → L ∪∞ with the same first component λ as Λ,
a subgroup H ′ of Q(K) containing H, and a character χ′: H ′ → Q(L) extending
χ. ¤
Usually Λ allows many expansions, and Λ itself is an expansion of λ̂.
In the following Λ = (λ,H, χ): K → L ∪∞ a Q-place and o: = oλ.

5.3. Definitions. Let k be a subfield of K.
a) The restriction Λ|k of the Q-place Λ to k is the Q-place (ρ,E, σ) where

ρ = λ|k: k → L∪∞ denotes the restriction of the place λ:K → L∪∞ in the
usual sense, E denotes the preimage of H in Q(k) under the natural map
j: Q(k) → Q(K), and σ denotes the character χ ◦ (j|D) from D to Q(L).

b) If Γ: k → L ∪∞ is any Q-place from k to L then we say that Λ extends Γ
(or, that Λ is an extension of Γ), if Λ|k is an expansion of Γ. ¤

At the first glance one might think that this notion of extension is not strong
enough. One should demand Λ|k = Γ, in which case we say that Λ is a strict
extension of Γ. But it will become clear below (cf. 5.8.ii, 5.12, 6.1) that the weaker
notion of extension as above is the one needed most often.
As before, we stay with a Q-place Λ = (λ,H, χ): K → L ∪∞.

5.4. Definition. Let ϕ be a regular quadratic form over K. We say that ϕ has
good reduction (abbreviated: GR) under Λ, if there exists an orthogonal decompo-
sition

(∗) ϕ = |
h∈H

hψh

with forms ψh over K which all have GR under λ. Here hψh denotes the product
〈h〉 ⊗ ψh of the bilinear form 〈h〉 with ψh. {This amounts to scaling ψh by a
representative of the square class 〈h〉.} Of course, ψh 6= 0 for only finitely many
h ∈ H.
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Alternatively we say in this situation that ϕ is Λ-unimodular. In harmony with
this speaking we call a form ψ over K, which has GR under λ, also a λ-unimodular
form. ¤
5.5. Remark. We may choose a subgroup U of H such that H = U ×Q(o). If ϕ
has GR under Λ then we can simplify the decomposition (∗) to a decomposition

ϕ ∼= |
u∈U

uϕu

with λ-unimodular forms ϕu. ¤
5.6. Proposition. If ϕ has GR under Λ, and a decomposition (∗) is given, then
the form |

h∈H

χ(h)λ∗(ψh) is up to isometry independent of the choice of the decom-

position (∗).
This has been proved in [K4] if charL 6= 2. A proof in general (which is rather
different) will be contained in [K5].

5.7. Definition. If ϕ has GR under Λ then we denote the form |
h∈H

χ(h)λ∗(ψh)

(cf. 5.6) by Λ∗(ϕ), and we call Λ∗(ϕ) the specialization of ϕ under λ. ¤
5.8. Remarks.

i) If ψ is a second form over K such that ϕ ⊥ ψ is regular, and if both ϕ and
ψ have GR under Λ then ϕ ⊥ ψ has GR under Λ and

Λ∗(ϕ ⊥ ψ) ∼= Λ∗(ϕ) ⊥ Λ∗(ψ).

ii) Assume that k is a subfield of K and Γ: k → L ∪∞ is a Q-place such that
Λ extends Γ (cf.5.3.b). Let q be a regular form over k which has GR under
Γ. Then q ⊗K has GR under Λ and Λ∗(q ⊗K) ∼= Γ∗(q).

We omit the easy proofs. ¤
It seems that quadratic places come up in connection with generic splitting forms
(cf. 4.1) in a natural way. We illustrate this by a little proposition, which will also
serve us to indicate some of the difficulties we have to face if we want to make good
use of quadratic places in generic splitting business.

5.9. Proposition. Let q be an anisotropic regular form over a field k, dim q > 2.
Let k(q) denote the function field of the projective quadric q = 0. Let L ⊃ k
be a field extension such that qL = q ⊗ L is isotropic. Then there is a purely
transcendental subextension k′/k of k(q)/k, such that k(q)/k′ is separable quadratic,
and a quadratic place Λ: k′ → L ∪∞ over k, such that the form α described in 3.3
{qk′ ∼= α ⊥ q′, αk(q) ∼ 0, q′k(q) anisotropic} has GR under Λ and Λ∗(α) ∼ 0.

Proof. Since qL is isotropic we have a place λ: k(q) → L∪∞ over k. Let o denote
the valuation ring of λ, let V denote the underlying k-vector space of q. We take a

decomposition V ∼=
r

|
i=1

(kei ⊕ kfi) ⊥ V ′ with kei ⊕ kfi = [ai, bi], and V ′ = 〈a0〉 or

V ′ = 0, and ai, bi, a0 ∈ k∗.
We choose a primitive isotropic vector x ∈ Vo = o ⊗k V with (x, Vo) = o. By
rearranging coordinates over k we may assume that x = Xe1 + Y f1 + z, and

X ∈ o \ 0, Y ∈ o∗, z ∈
r

|
i=2

(oei ⊕ kofi) ⊥ oV ′, and after dividing by Y , we
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may assume that Y = 1. We take the coordinates of
r

|
i=2

(oei ⊕ ofi) ⊥ oV ′ as

independent variables over k, which generate a purely transcendental subfield k′ of
k(q). The equation 0 = qo(x) = a1X

2 +X + b with b = b1 + qk(q)(z) ∈ o∩k′ defines
the field k(q) as a separable quadratic extension of k′.
By construction we have λ(b) 6= ∞. Hence the quadratic form [a1, b] has good
reduction under this place. We write α = [a1, b] ⊗ 〈c1, . . . , ci〉 with cν ∈ =(qk′) \ 0
according to 3.2. We denote the restriction of λ to k′ by λ′, and the associated
valuation ring by o′(= o ∩ k′).
Let H denote the subgroup of Q(k′) which is generated by Q(o′) and the classes
〈c1〉, . . . , 〈ci〉. We choose some extension χ:H → Q(L) of the character λ′∗: Q(o′) →
Q(L). The quadratic place Λ = (λ′,H, χ) has the desired properties. Alternatively
we may choose for Λ the restriction of λ̂ to k′. ¤

This proposition leaves at least two things to be desired. Firstly, it would be nice
and much more useful, to have the subextension k′/k to be chosen in advance,
independently of the place λ in the proof. Secondly it would be pleasant if also
the form q′ has GR under Λ. This is by no means guaranteed by our proof. We
see no reason, why the analogue of Lemma 1.15.b for quadratic places instead of
ordinary places should be true. The main crux here is the case char k = 2. Then
usually many forms over k′ do not admit λ′-modular decompositions for a given
place λ′: k′ → L ∪ ∞ over k. {It is easy to give counterexamples in a sufficiently
general situation, cf. [K5]}. On the other hand, if we can achieve in Proposition
5.9 in addition that q′ has GR under Λ, then the equation

q ⊗ L = Λ∗(α) ⊥ Λ∗(q′),

which follows from the remarks 5.8 above, together with Λ∗(α) ∼ 0 would “explain”
that q⊗L is isotropic, and how the anisotropic part of q⊗L is connected with the
generic splitting form α of q of level 1.
If char k 6= 2 it is still not evident that the analogue of 1.15.b holds for the quadratic
place Λ′ but now at least every form over k′ has a λ′-modular decomposition.
Indeed, this trivially holds for forms of dimension 1, hence for all forms. In [K4] a
way has been found, to force an analogue of 1.15.b for quadratic places to be true,
by relaxing the notion “good reduction” to a slightly weaker – but still useful –
notion “almost good reduction”.
We can define “almost good reduction” without restriction to characteristic 6= 2 as
follows.

5.10. Definition. Let Λ = (λ,H, χ): K → L ∪∞ be a Q-place, o: = oλ, and let
S be a subgroup of Q(K) such that Q(K) = S ×H. A form ϕ over K has almost
good reduction (abbreviated AGR) under Λ if ϕ has a decomposition

(∗∗) ϕ ∼= |
s∈S

sϕs

with Λ-unimodular forms ϕs and Λ∗(ϕs) ∼ 0 for every s ∈ S, s 6= 1. In this case
we call the form

Λ∗(ϕ):= Λ∗(ϕ1) ⊥ (dimϕ− dim ϕ1)/2×H

the specialization of ϕ under Λ. ¤
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The point here is that Λ∗(ϕ) is independent of the choice of the decomposition (∗∗)
and also of the choice of S. This has been proved in [K4] in the case char L 6= 2.
It also holds if char L = 2, cf. [K5].
It now is almost trivial that the analogue of 1.15. holds for Q-places with AGR
instead of GR, provided char L 6= 2, cf. [K4, §2].

5.11. Proposition. Let Λ: K → L ∪∞ be a Q-place and let ϕ and ψ be regular
forms over K. Assume that char L 6= 2.

a) If ϕ and ψ have AGR under Λ, then ϕ ⊥ ψ has AGR under Λ and

Λ∗(ϕ ⊥ ψ) ∼= Λ∗(ϕ) ⊥ Λ∗(ψ).

b) If ϕ and ϕ ⊥ ψ have AGR under Λ, then ψ has AGR under Λ. ¤
5.12. Proposition. Let k ⊂ K be a field extension. Let Γ: k → L ∪ ∞ and
Λ:K → L ∪ ∞ be Q-places with Λ extending Γ. Assume finally that q is a form
over k with AGR under Γ. Then q⊗K has AGR under Λ and Λ∗(q⊗K) ∼= Γ∗(q).

The proof has been given in [K4, §3] for char L 6= 2. The arguments are merely
book keeping. They remain true if char L = 2. ¤
Now we can repeat the arguments in the proof of Proposition 1.16 for quadratic
places and AGR instead of usual places and GR, provided char L 6= 2. We obtain
the following.

5.13. Proposition. Let Λ: K → L ∪∞ be a Q-place and ϕ a form over K with
AGR under Λ. Assume that char L 6= 2. Then ϕ0: = ker(ϕ) has again AGR under
Λ and Λ∗(ϕ) ∼ Λ∗(ϕ0), ind Λ∗(ϕ) ≥ ind (ϕ). If ind Λ∗(ϕ) = ind (ϕ), then
ker Λ∗(ϕ) = Λ∗(ϕ0). ¤
We finally state an important fact, proved in [K4, §3], which has no counterpart on
the level of ordinary places.

5.14. Proposition. Let again Λ:K → L∪∞ be a Q-place with char L 6= 2. Let k
be a subfield of K and Γ:= Λ|k. Let q be a regular form over k. Then q⊗L has AGR
under Λ if and only if q has AGR under Γ, and in this case Λ∗(q ⊗ L) ∼= Γ∗(q). ¤

§6. Control of the splitting behavior by use of quadratic places

If we stay with fields of characteristic 6= 2 then the propositions 5.11 – 5.13 indicate
that it should be possible to obtain a complete analogue of the generic splitting
theory displayed in §1 using quadratic places instead of ordinary places. Indeed
such a theory has been developed in [K4, §3]. We quote here the main result
obtained there.
Let q be a form over a field k. We return to some notations from §1: (Kr | 0 ≤ r ≤ h)
is a generic splitting tower of q with higher indices (ir | 0 ≤ r ≤ h) and higher kernel
forms (ϕr | 0 ≤ r ≤ h). Further (jr | 0 ≤ r ≤ h), with jr = i0 + · · · + ir, is the
splitting pattern SP(q) of q.

6.1. Theorem. [K4, Th. 3.7]. Let Γ: k → L ∪ ∞ be a Q-place into a field L
of characteristic 6= 2. Assume that q has AGR under Γ. We choose a Q-place
Λ:Km → L ∪ ∞ extending Γ such that either m = h or m < h and Λ does not
extend to a Q-place from Km+1 to L. Then ind (Γ∗(q)) = jm, the form ϕm has GR
under Λ and ker(Γ∗(q)) ∼= Λ∗(ϕm). ¤
A small point here – which we will not really need below – is that ϕm has GR under
Λ, not just AGR.
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6.2. Remark.
The theorem shows that the generic splitting tower (Kr | 0 ≤ r ≤ h) “controls” the
splitting behavior of Γ∗(q). Indeed, if L′/L is any field extension then we obtain
from Γ a Q-place j ◦Γ: k → L′ ∪∞ in a rather obvious way (cf. 6.4.iii below). The
form q has also AGR under j ◦ Γ, and (j ◦ Γ)∗(q) = Γ∗(q)⊗ L′. We can apply the
theorem to j◦Γ and q instead of Γ and q. In particular we see that ind (Γ∗(q)⊗L′) is
one of the numbers jr. Thus the splitting pattern SP(Γ∗(q)) is a subset of SP(q).¤
We now aim at a result similar to Theorem 6.1, where the field Km is replaced by
an arbitrary partial generic splitting field for q. (This is not covered by [K4].) For
that reason we briefly discuss the “composition” of Q-places.

6.3. Definition. Let Λ = (λ,H, χ): K → L ∪∞ and M = (µ,D, ψ): L → F ∪∞
be Q-places. The composition M ◦ Λ of M and Λ is the Q-place

(M ◦ Λ) = (µ ◦ λ, H0, ψ ◦ (χ|H0))

with H0: = {α ∈ H | χ(α) ∈ D}. ¤
6.4. Remarks.

i) If N :F → E ∪∞ is a third Q-place then N ◦ (M ◦ Λ) = (N ◦M) ◦ Λ, as is
easily checked.

ii) Let i: k ↪→ K be a field extension, regarded as a trivial place. This gives
us a “trivial” Q-place î = (i, Q(k), i∗:Q(k) → Q(K)) from k to K. If
Λ = (K, H, χ): K → L ∪∞ is any Q-places starting at K, then Λ ◦ î is the
restriction Λ|k: k → L ∪∞.

iii) The Q-place j ◦ Γ alluded to in 6.2 is ĵ ◦ Γ. ¤
In all the following Γ: k → L∪∞ is a Q-place into a field of characteristic 6= 2 such
that q has AGR under Γ.

6.5. Proposition. Let F/k be a generic splitting field of the form q of some level
r ∈ [0, h]. Assume that ind Γ∗(q) ≥ jr. Then there exists a Q-place Λ:F → L ∪∞
extending Γ. For any such Q-place Λ the anisotropic part ϕ = ker(q⊗F ) of q⊗F has
AGR under Λ and Λ∗(ϕ) ∼ ker Γ∗(q). if ind Γ∗(q) = jr, then Λ∗(ϕ) = ker Γ∗(q).

Proof. We only need to prove the existence of a Q-place Λ: F → L∪∞ extending
Γ. The other statements are clear from §5 (cf. 5.12, 5.13). By Theorem 6.1 we
have a Q-place Λ′: Kr → L ∪∞ extending Γ. We further have a place ρ: F → Kr

over k. It now can be checked in a straightforward way that the Q-place Λ = Λ′ ◦ ρ̂
from F to L extends Γ. ¤

6.6. Theorem. Let K/k be an inessential field extension and q⊗K ∼= η ⊥ ϕ with
η a generic splitting form of q of some level r ∈ [0, h]. Assume that ind Γ∗(q) ≥ jr.
Then there exists a Q-place Λ:K → L∪∞ extending Γ such that η has AGR under
Λ and Λ∗(η) ∼ 0. For every such Q-place Λ the form ϕ has AGR under Λ and
Λ∗(ϕ) ∼ Γ∗(q). If ind Γ∗(q) = jr, then Λ∗(ϕ) = ker Γ∗(q).

Proof. Again it suffices to prove the existence of a Q-place Λ extending Γ such
that η has AGR under Λ and Λ∗(η) ∼ 0, the other statements being covered by §5
(cf. 5.11, 5.12).
Let E be a total generic splitting field of η. Then E is a partial generic splitting field
of q (cf. 4.1). By the preceding proposition 6.5 there exists a Q-place M : E → L∪∞
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extending Γ. Let Λ: K → L ∪ ∞ denote the restriction of M to K (cf. 5.3). Of
course, also Λ extends Γ. The form η ⊗ E is hyperbolic, hence certainly has AGR
under M and M∗(η⊗E) ∼ 0. Now Proposition 5.14 tells us that η has AGR under
Λ and Λ∗(η) ∼ 0. ¤

6.7. Remark. Suppose that Γ = γ̂ with γ: k → L ∪ ∞ a place and that q has
GR under γ. Then Theorem 6.1 and Proposition 6.5 give us nothing more than we
know from the generic splitting theory in §1. Indeed, if Λ = (λ,H, χ) is a Q-place
as stated there, then the form ϕm in 6.1, resp. ϕ in 6.5, automatically has GR
under λ.
This is different with Theorem 6.6. Even in the case Γ = ĵ for j: k ↪→ L the
inclusion map into an overfield L of k (actually the case which is perhaps the most
urgent at present), the Q-place Λ will be different from λ̂. Thus, in 6.6, Q-places
instead of usual places are needed even in the case Γ = ĵ. ¤
We now choose again a generic splitting preparation (K ′

r | 0 ≤ r ≤ h), (ηr | 0 ≤ r ≤
h) of q with residual forms ϕr and generic splitting forms εr =

r

|
j=0

ηj ⊗K ′
j (0 ≤

r ≤ h), cf. 4.3.

6.8. Discussion. Assume that ind Γ∗(q) ≥ jm for some m ∈ [0, h]. Theorem 6.6
tells us that there exists a Q-place Λ: K ′

m → L ∪∞ extending Γ such that εm has
AGR under Λ and Λ∗(εm) ∼ 0. Moreover, for every such Q-place λ the form ϕm

has AGR under Λ and Λ∗(ϕm) ∼ Γ∗(q). If ind Γ∗(q) = jm, it follows that Λ∗(ϕm)
is the anisotropic part of Γ∗(q).
Assume now that ind Γ∗(q) > jm and Λ: K ′

m → L∪∞ is a Q-place as just described.
Then by analogy with 1.18 one might suspect at first glance that Λ extends to a
place M :K ′

m+1 → L ∪∞ such that εm+1 has AGR under M and M∗(εm+1) ∼ 0.
{N.B. Since Λ∗(εm) ∼ 0, this is equivalent to the property that ηm+1 has AGR
under M and M∗(ηm+1) ∼ 0.} But this is too much to be hoped for. Indeed, let
us consider the special case that K ′

1 = · · · = K ′
h =:K ′, i.e., we are given a generic

splitting preparation (η0, η1, . . . , ηh) over K ′. If Λ: K ′ = K ′
m → L∪∞ is as above,

then we can expand Λ = (λ,H, χ) to a Q-place Λ′ = (λ,Q(K ′), ψ′): K ′ → L ∪∞.
Also Λ′ extends Γ, further εm has AGR under Λ′ and Λ′∗(εm) = Λ∗(εm) ∼ 0 (cf.
5.12). But since K ′

m+1 = K ′, the only extension of Λ′ to K ′
m+1 is Λ′ itself, and

there is no reason why ηm+1 should have AGR under Λ′ and Λ′∗(ηm+1) ∼ 0. ¤
Nevertheless, if ind Γ∗(q) > jm+1, there exists a somewhat natural procedure to
obtain from a Q-place Λ: K ′

m → L ∪ ∞ as above a Q-place M : K ′
m+1 → L ∪ ∞

extending Γ such that both εm⊗K ′
m+1 and εm+1 have AGR under M and we have

M∗(εm ⊗K ′
m+1) ∼ 0 as well as M∗(εm+1) ∼ 0. This runs as follows.

6.9. Procedure. Assume that ind Γ∗(q) > jm. Let Λ: K ′
m → L∪∞ be a Q-place

extending Γ such that εm has AGR under Λ and Λ∗(εm) ∼ 0. We choose a regular
total generic splitting field F of εm. By Proposition 6.5 the Q-place Λ extends to a
Q-place Λ̃:F → L∪∞. The form ϕm⊗F is anisotropic. We now invoke Corollary
4.7, which tells us that the tower F ⊂ F ·K ′

m+1 ⊂ · · · ⊂ F ·K ′
h together with the

sequence of forms (ηr ⊗ F · K ′
r | m < r ≤ h) is a generic splitting preparation of

ϕm ⊗ F . Here F · K ′
r denotes the free composite of the fields F and K ′

r over k.
In particular ηm+1 ⊗ F · K ′

r is a generic splitting form of ϕm ⊗ F over F · K ′
r of

level 1. We have Λ̃∗(ϕm ⊗ F ) ∼ Λ̃∗(q ⊗ F ) = Γ∗(q). Since ind Γ∗(q) > jm, we
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conclude that Λ̃∗(ϕm ⊗ F ) is isotropic. Thus, again by Proposition 6.5, Λ̃ extends
to a Q-place M̃ : F ·K ′

m+1 → L∪∞ such that ηm+1⊗F ·K ′
m+1 has AGR under M̃

and M̃∗(ηm+1 ⊗ F ·K ′
m+1) ∼ 0. Let M : K ′

m+1 → L ∪∞ denote the restriction of
M̃ to K ′

m+1. By 5.14, the form ηm+1 has AGR under M and M∗(ηm+1) ∼ 0.
Now we need a delicate argument to prove that also εm ⊗K ′

m+1 has AGR under
M and M∗(εm⊗K ′

m+1) ∼ 0. The problem is that the diagram of field embeddings

F // F ·K ′
m+1

K ′
m

OO

// K ′
m+1

OO

does not commute, since the field composite F · K ′
m+1 is built over k instead of

K ′
m. Thus M probably does not extend the Q-place Λ.

The argument runs as follows. Also ϕm+1 ⊗ F ·K ′
m+1 has AGR under M̃ , hence

ϕm+1 has AGR under M , and

M∗(ϕm+1) ∼= M̃∗(ϕm+1 ⊗ F ·K ′
m+1) ∼ Λ̃∗(ϕm ⊗ F ) ∼ Λ̃∗(q ⊗ F ) ∼= Γ∗(q).

Since q ⊗K ′
m+1

∼= εm ⊗K ′
m+1 ⊥ ηm+1 ⊥ ϕm+1 and both, ηm+1 and ϕm+1, have

AGR under M , also εm ⊗K ′
m+1 has AGR under M , cf. 5.11, and

Γ∗(q) ∼= M∗(q ⊗K ′
m+1) ∼= M∗(εm ⊗K ′

m+1) ⊥ M∗(ηm+1) ⊥ M∗(ϕm+1).

Since M∗(ηm+1) ∼ 0 and M∗(ϕm+1) ∼ Γ∗(q), we conclude that M∗(εm ⊗ K ′
m+1)

∼ 0. ¤

We have ind Γ∗(q) = jr for some r ∈ [0, h] (cf. 6.2). Iterating the procedure with
m = 0, 1, . . . , r − 1, we obtain the following theorem.

6.10. Theorem. Let ind Γ∗(q) = jr. Then there exists a Q-place Λ:K ′
r → L∪∞

extending Γ such that ηm ⊗K ′
r has AGR under Λ and Λ∗(ηm ⊗K ′

r) ∼ 0 for every
m ∈ [0, r]. If Λ is any such Q-place then ϕr has AGR under Λ and Λ∗(ϕr) =
ker Γ∗(q).

We briefly discuss the case that L is a field extension of k and Γ = ĵ with j: k ↪→ L
the inclusion map.

6.11. Definition/Remark. Let K and L be field extensions of k. A Q-place from
K to L over k is a Q-place Λ = (λ,H, χ): K → L∪∞ such that the first component
λ is a place over k. It is evident from Definitions 5.3 that this condition just means
that Λ extends the quadratic place ĵ: k → L ∪∞, and also that Λ|k = ĵ. ¤

6.12. Scholium. Let L/k be a field extension, ind (q ⊗ L) = jr. Then there
exists a Q-place Λ:K ′

r → L ∪∞ over k such that ηm ⊗K ′
r has AGR under Λ and

Λ∗(ηm ⊗ K ′
r) ∼ 0 for every m ∈ [0, r]. For any such Q-place Λ the form ϕr has

AGR under Λ and Λ∗(ϕr) = ker(q ⊗ L). ¤

We return to an arbitrary Q-place Γ: k → L ∪∞ such that q has AGR under Γ.

6.13. Definition. We call the generic splitting preparation (K ′
r | 0 ≤ r ≤ h),

(ηr | 0 ≤ r ≤ h) of q tame, if there exists a generic splitting tower (Kr | 0 ≤ r ≤ h)
of q such that K ′

r is a subfield of Kr and ηr ⊗Kr ∼ 0 for every r ∈ [0, h]. ¤
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Notice that a generic splitting preparation (K ′
r | 0 ≤ r ≤ h), (ηr | 0 ≤ r ≤ h)

as described by 3.4 and 3.5 is tame. Thus every form admits tame generic split-
ting preparations. On the other hand we suspect that there exist generic splitting
preparations which are wild (= not tame), although we did not look for examples.
If our given generic splitting preparation of q is tame then there exists a much
simpler procedure than the one described above, to obtain a Q-place Λ: K ′

r → L∪∞
with the properties stated in Theorem 6.10.

6.14. Procedure. Assume that ind Γ∗(q) = jr, and that (Ki | 0 ≤ i ≤ h) is a
generic splitting tower of q such that K ′

i is a subfield of Ki and εi ⊗ Ki ∼ 0 for
every i ∈ [0, h]. By 6.1 there exists a Q-place Λ̃:Kr → L ∪ ∞ extending Γ. Let
Λ denote the restriction of Λ̃ to K ′

r. Then Λ again extends Γ. For every i ∈ [0, r]
we have (εi ⊗K ′

r) ⊗Kr = εi ⊗Kr ∼ 0. Certainly εi ⊗Kr has AGR under Λ̃ and
Λ̃∗(εi⊗Kr) ∼ 0. By 5.14 the form εi⊗K ′

r has AGR under Λ and Λ∗(εi⊗K ′
r) ∼ 0.

Since this holds for every i ∈ [0, r] we conclude (using 5.11) that ηi ⊗K ′
r has AGR

under Λ and Λ∗(ηi ⊗K ′
r) ∼ 0 for every i ∈ [0, r].

Thus it seems that life is easier if we have a tame generic splitting preparation
at our disposal than an arbitrary one. Up to now this is an argument in favor
of working with generic splitting preparations instead of the more special generic
splitting decompositions (cf. 4.8), in spite of Proposition 4.9, for we do not know
whether every form admits a tame generic splitting decomposition.
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Local densities of hermitian forms

Maurice Mischler

Abstract. Local densities are used in the calculation of mass formulae. The
aim of this paper is to describe how to compute the local density of a given
hermitian form, knowing its usual invariants such as the Jordan decomposition
or invariant factors. Note that explicit formulae have been already obtained
by Y. Hironaka in [5] and [6] but only in the case of inert primes.

1. Introduction

Let E be a totally complex number field with complex multiplication, and K
the fixed field under complex conjugation. Let B be the ring of integers of E, and
A be the ring of integers of K.

We say that (M, h) is a hermitian B-lattice if M is a projective module of finite
rank over B equipped with a nondegenerate hermitian form h, the involution being
defined by complex conjugation. Two hermitian B-lattices (M, h) and (N, k) are
said to be in the same genus if

Mp := (M,h)⊗B (B ⊗A Ap) is isometric to (N, k)⊗B (B ⊗A Ap) =: Np

for every spot p of K and where Ap is the completion of A at p. We suppose that
(M, h) is totally definite. This means that h is positive at every infinite spot. The
following theorem gives an example of the application of local densities when E is
a cyclotomic field.

Theorem 1.1. Suppose that E = Q(ζd) is a cyclotomic field. Let (M, h) be a
totally definite hermitian B-lattice of rank n. Denote by GM the genus of M (up to
isometry). The mass of GM is the following sum:

ω(M, h) :=
∑

L∈GM

1
|U(L)|
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where |U(L)| is the cardinality of the unitary group of any representative of the
class L. Then we have

ω(M, h) = 2 · |d(E)|n(n+1)
4 · |d(K)|−n

2 ·



n∏

j=1

(j − 1)!
(2π)j




ϕ(d)
2

·det(M)
n
2 ·

∏

p∈P
Bp(Mp)−1

where det(M) = [M# : M ] with M# = {x ∈ M ⊗ E | h(x,M) ⊂ B}, d(E) and
d(K) are the discriminants of the fields E and K respectively, P is the set of all
finite spots of K and Bp(Mp) is the local density of Mp.

We will give the precise definition of local density in the next part.
The proof of this theorem is very long and technical. See ([9], formula (4.5),

p. 20), ([2], p. 112]), and ([3], Satz VI). For more general formulae, see the won-
derful book of Shimura [11]. The usefulness of this theorem is evident (for classifi-
cations for instance), so we have to be able to precisely compute local densities.

2. Definitions

Let E,K, B, A be as in the introduction and p a finite spot of K. Suppose that
2 6∈ p. Three cases are possible:

pB =





P inert case
P2 ramified case
P1 ·P2 decomposed case

for some prime ideals P, P1,P2 of B. Write R = B ⊗A Ap. The classical theory of
localisation shows that

R =
{

BP in the inert and ramified case
BP1 ×BP2 ' Ap ×Ap in the decomposed case.

Finally, if π is a uniformizing parameter of Ap such that pAp = πAp, we can suppose
that

pR =





p ·R in the inert case, with p = π

p 2 ·R in the ramified case, with p 2 = π

p ·R ' πAp × πAp in the decomposed case, with p = (π, π).

In any case, let P denote the ideal p ·R.

Definition 2.1. Let (M, h) be a hermitian R-lattice. Suppose that p does
not decompose. A vector x of M is said to be primitive if there exists an R-
basis (x1, . . . , xn) of M such that x = x1. Let a be an ideal of R. We say that
(M, h) is a-modular if h(x, M) = a for every primitive vector of M . If there exists
m1 < · · · < ml such that the following orthogonal sum holds:

M = M1 ¢ · · ·¢ Ml

where Mi is Pmi-modular for every i, we say that M1 ¢ · · · ¢ Ml is a Jordan
decomposition of (M, h). It is possible to prove that Jordan decomposition exists
and that l, dim(Mi), and mi do not depend on the decomposition. In this case,
Pm1 ⊃ · · · ⊃ Pml are called the invariant factors of (M, h). (See ([4], p. 33) and
([7], p. 449) for proofs.)
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Definition 2.2. Let (M, h) be a hermitian R-lattice. Suppose that p decom-
poses. There exist x1, . . . , xn ∈ M such that

M = (Ap × πm1Ap)x1 ⊕ · · · ⊕ (Ap × πmnAp)xn

and such that h(xi, xj) = δij · (1, 1) for all 1 ≤ i, j ≤ n and m1 ≤ · · · ≤ mn. In this
case

πm1Ap ⊃ · · · ⊃ πmnAp

are called the invariant factors of (M,h), because

M# = (π−m1Ap ×Ap)x1 ⊕ · · · ⊕ (π−mnAp ×Ap)xn.

(See ([4], p. 25) or ([10], Proposition 3.2) for proofs.) In addition, (M, h) is said
to be Pm-modular if

m1 = · · · = mn = m.

Definition 2.3. Let (M,h) and (N, k) be two hermitian R-lattices of rank
r ≥ s respectively. Let m ∈ N. We define Apm(M, N) to be the set of R-linear
maps u : N → M which are distinct modulo pmRM and satisfy

h(u(x), u(y)) ≡ k(x, y) (mod pmR) for all x, y ∈ N.

We write Apm(M,N) the cardinality of Apm(M, N).

Proposition 2.4. Let (M, h) and (N, k) be two hermitian R-lattices of rank
r ≥ s respectively. Suppose that p ∩ Z = pZ and write q = pf = |A/p|. Then we
have:

Apm+1(M, N) = qs(2r−s)Apm(M, N)

for any m ≥ 2 · vp(al) + 1. Here a1 ⊃ · · · ⊃ al are the invariant factors of (N, k),
and vp is the discrete valuation over Ap.

Proof. See ([9], Hilfssatz 5.3) for the proof. ¤

Definition 2.5 (definition of local densities). Let (M,h) be a hermit-
ian R-lattice of rank r. We write

Bp(M) = lim
m→∞

q−r2mApm(M, M).

The last proposition shows that this limit exists. This limit is called the local
density of (M,h).

Now, the natural question is the following: if we know the invariant factors of
a given hermitian R-lattice, is it possible to calculate its local density ? We will
show that the answer is yes!
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3. Results

Let E, K, B, A, p, R, p, and q be as in the last part.

Proposition 3.1. Let (M, h) be a hermitian R-lattice of rank n.
(a) Suppose that p does not decompose. If h = πmh′ with M ⊂ M#

h′ and m ≥
1, write M ′ for (M,h′). Let l be a strictly positive integer . Then we have
Apl+m(M, M) = q2mn2

Apl(M ′,M ′). This implies that

Bp(M) = qmn2
Bp(M ′).

(b) Suppose that p decomposes. We have seen that we can suppose that M =
(Ap×πm1Ap)x1⊕· · ·⊕ (Ap×πmnAp)xn with h(xi, xj) = δij · (1, 1). Now define
h′ such that h′(xi, xj) = (1, π−m1)h(xi, xj) for all 1 ≤ i, j ≤ n. Then we have
the same results with m1 instead of m.

Proof. In each case, let

Ψ : Apm+l(M, M) −→ Apl(M ′, M ′)

u (mod pl+mR) 7−→ u (mod plR)

The function Ψ is surjective. More precisely, if u ∈ Apl(M ′,M ′), it is easy to verify
that the set of u + πlv, where v is any endomorphism modulo pmR, is the set of u′

such that Ψ(u′) = u. Since |R/pmR| = |Ap/pm|2 = q2m, the number of v which is
the number of u′ is equal to q2mn2

. Hence Apl+m(M, M) = q2mn2
Apl(M ′,M ′). So

we have proved the proposition. Indeed, for l big enough, we have:

Bp(M) =
Apl+m(M,M)

q(l+m)n2 =
q2mn2

Apl(M ′,M ′)
qmn2qln2 = qmn2

Bp(M ′). ¤

Proposition 3.2. Let (M, h) be a hermitian R-lattice of rank n. Suppose that
(M, h) is Pm modular. Let (N, k) be another hermitian R-lattice of rank n.

Suppose there exist R-bases (e1, . . . , en) and (f1, . . . , fn) of M and N respec-
tively such that

h(ei, ej) ≡ k(fi, fj) (mod pm+1R) in the non-ramified cases

and such that

h(ei, ej) ≡ k(fi, fj) (mod p[ m
2 ]+1R) in the ramified case

where [x] is the integer part of x. Then (M,h) is isometric to (N, k) over R.

Proof. In each case, it is easy to prove that (N, k) is Pm-modular. If p
ramifies and m is odd, or if p does not ramify, all Pm-modular forms are isometric.
See [4,5] for proofs. The proposition is hence proved in these cases. Suppose
now that p ramifies and that m is even. We only have to prove that det(M, h) =
det(N, k). We need Hensel’s lemma. It is easy to prove that det(M,h) = λπ

mn
2

for a given unit λ of Ap. Without loss of generality, we can suppose that for all
i = 1, . . . , n−1, we have k(fi, fi) = π

m
2 +π

m
2 +1αi, and k(fn, fn) = λπ

m
2 +π

m
2 +1αn,

with αi, αn ∈ Ap. If i 6= j, then k(fi, fj) is a multiple of π
m
2 +1. Hence det(N, k) =

λπ
mn
2 + π

mn
2 +1α = π

mn
2 (λ + πα) for some α in Ap. Let η = λ+πα

λ = 1 + π α
λ ≡ 1

(mod p). Then Hensel’s lemma shows that η is a square of a unit of Ap. Hence,
det(M,h) = det(N, k). ¤
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Proposition 3.3. Let (M, h) and (N, k) be hermitian R-lattices of rank n1 and
n2 respectively such that n1 ≥ n2. Suppose that (N, k) and m ≥ 1 have the property
that (N ′, k′) ' (N, k) (mod pmR) implies that (N, k) is isometric to (N ′, k′) over
R. Then we have:

Apm+1(M,N) = qn2(2n1−n2)Apm(M, N).

Proof. This is the Proposition 5.4 of [1], in the ramified case. The proof in
the other cases is similar. ¤

Proposition 3.4. Let (M, h) be a hermitian R-lattice of rank n. Suppose that
M = M1 ¢ · · · ¢ Ml is a Jordan decomposition of M , that is, every Mi is Pmi-
modular for all i, and m1 < · · · < ml. Assume that the rank of M1 is n1 and that
m1 = 0 if p does not ramify and that m1 = 0 or 1 in the ramified case. Then we
have

Apm(M, M) = qm1n1(n−n1) Apm(M,M1)Apm(N,N) for all m ≥ 1

where N = M2 ¢ · · ·¢ Ml.

Proof. Let v ∈ Apm(M,M1). By Proposition 3.2, M1 is isometric to v(M1).
Then, v(M1) splits M (see ([1], proposition 5.3) or ([4], p. 32) for proof in the inert
and ramified cases, in the decomposed case use the same arguments). It follows that
there exists u ∈ Apm(M,M) such that u|M1 ≡ v (mod pmR). Let u′ be another
element of Apm(M, M) such that u′|M1 ≡ v (mod pmR). Then (u−1 ◦ u′)|M1 ≡
IdM1 (mod pmR) and (u−1 ◦ u′)|N ∈ Apm((u−1 ◦ u′)(N), N) ' Apm(N, N). Let
x1, . . . , xn1 be a basis of M1 and xn1+1, . . . , xn a basis of N . Let l ≥ n1 +1. Write
(u−1 ◦ u′)(xl) =

∑n
i=1 λi,lxi.

(a) Suppose that p does not ramify. Using a classification given in [4,7,10], we can
suppose that h(xi, xi) ≡ 1R (mod pmR) for all i ≤ n1 and that h(xi, xj) ≡ 0
(mod pmR) for all i 6= j. Then we have

0 ≡ h((u−1 ◦ u′)(xl), xi) ≡ λi,lh(xi, xi) ≡ λi,l (mod pmR).

So we have no choice for the λi,l. This completes the proof in the non-ramified
case.

(b) The ramified case is Proposition 5.5 of [1]. ¤

Theorem 3.5. Let (M,h) be a hermitian R-lattice of rank n. Consider M =
M1 ¢ · · · ¢ Ml, a Jordan decomposition of (M, h), such that Mi is Pmi-modular,
m1 < · · · < ml, and the rank of Mi is ni for all i. Thanks to Proposition 3.1, we
can suppose that m1 = 0 or 1 in the ramified case, and that m1 = 0 in the inert
and decomposed cases.
(a) Suppose that p is ramified. Let m2 = 2m′

2 + ε(m2), with ε(m2) = 1 if m2 is odd
and ε(m2) = 0 otherwise. If we define M ′

2¢ · · ·¢M ′
l = (M2, h

′
2)¢ · · ·¢(Ml, h

′
l),

with hi = πm′
2h′i, we have Mi ⊂ (Mi)

#
h′i

for all i = 2, . . . , l, and M ′
2 is Pε(m′

2)-
modular. Under these hypothesis, we have:
(i) if (m1,m2) 6= (0, 1), then

Bp(M) = qm′
2(n−n1)

2+m1n1(n−n1) Bp(M1) Bp(M ′
2 ¢ · · ·¢ M ′

l ).
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(ii) if (m1,m2) = (0, 1), then

Bp(M) = Bp(M2)−1 Bp(M1 ¢ M2)Bp(M2 ¢ · · ·¢ Ml).

(b) Suppose that p is inert. Define M ′
2 ¢ · · ·¢ M ′

l := (M2, h
′
2) ¢ · · ·¢ (Ml, h

′
l),with

hi = πm2h′i. In this case, M ′
2 is unimodular, and Mi ⊂ (Mi)

#
h′i

for all i =
2, . . . , l. Then we have:

Bp(M) = qm2(n−n1)
2
Bp(M1)Bp(M ′

2 ¢ · · ·¢ M ′
l ).

(c) Suppose that p decomposes. Define M ′
2 ¢ · · ·¢ M ′

l := (M2, h
′
2) ¢ · · ·¢ (Ml, h

′
l),

with hi = (1, πm2)h′i. In this case, M ′
2 is unimodular, and Mi ⊂ (Mi)

#
h′i

for all
i = 2, . . . , l. Then again:

Bp(M) = qm2(n−n1)
2
Bp(M1)Bp(M ′

2 ¢ · · ·¢ M ′
l ).

Proof. Let µ = 2ml. In any case, thanks to Proposition 2.4, we have

Bp(M) =
Apµ+1(M, M)

q(µ+1)n2 .

On the other hand, Proposition 3.4 says that

Apm(M, M) = qm1n1(n−n1) Apm(M,M1)Apm(N,N) for all m ≥ 1,

where N = M2 ¢ · · ·¢ Ml. Finally, Propositions 3.2 and 3.3 show that

Apµ+1(M, M1) = qµn1(2n−n1)Ap(M,M1).

Proof of part (i) of (a): in this case, we know that m2 ≥ 2. We claim that
Ap(M, M1) = q2n1(n−n1)Ap(M1,M1). Indeed, let u ∈ Ap(M, M1). We represent u

by a matrix U =
( n1︷︸︸︷

U1

U2

)}n1

}n−n1
∈ Mn×n1(R) such that U

t
HMU ≡ HM1 (mod pR),

where HM and HM1 are the matrices of h and h|M1 respectively. In this case, we

know that pR = P2. Hence, HM = HM1 ⊕ HM2 ⊕ · · · ⊕ HMl
≡

(
HM1 0

0 0

)

(mod P2), since m2 ≥ 2. It follows that U
t
HMU ≡ U1

t
HM1U1 ≡ HM1 (mod P2),

and hence U1 ∈ Ap(M1,M1). That is, Ap(M, M1) = q2n1(n−n1)Ap(M1,M1).
We also verify, thanks to Proposition 3.1, that

A
p

k+m′2 (N, N) = q2m′
2(n−n1)

2
Apk(N ′, N ′) for all positive k

where N = M2 ¢ · · ·¢ Ml and N ′ = M ′
2 ¢ · · ·¢ M ′

l .
Now, we are able to compute Bp(M).

Bp(M) = q−(µ+1)n2+m1n1(n−n1)+µn1(2n−n1)+2n1(n−n1)+2m′
2(n−n1)

2

· qn2
1+(n−n1)

2(µ+1−m′
2) · Ap(M1,M1)

qn2
1

·
A

p
µ+1−m′2 (N ′, N ′)

q(n−n1)2(µ+1−m′
2)

= qm′
2(n−n1)

2+m1n1(n−n1) Bp(M1)Bp(M ′
2 ¢ · · ·¢ M ′

l ).
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Proof of part (ii) of (a):
Proposition 3.4 tells us that Ap3(M1 ¢ M2,M1) =

Ap3 (M1¢M2,M1¢M2)

Ap3 (M2,M2)
. On the

other hand, by Proposition 3.3 we have Ap3(M1 ¢ M2,M1) = q2n1(2(n1+n2)−n1)·
Ap(M1 ¢ M2, M1). It follows that,

Ap(M1 ¢ M2,M1) = p−2n1(2(n1+n2)−n1)
Ap3(M1 ¢ M2, M1 ¢ M2)

Ap3(M2, M2)
.

Using the same arguments as for part (i), we can easily see that

Ap(M,M1) = p2(n−(n1+n2))n1Ap(M1 ¢ M2,M1).

Again, we are able to compute:

Bp(M) = qµn1(2n−n1)−(µ+1)n2+2n1(n−(n1+n2))−2n1(2n2+n1)

· q3(n1+n2)
2−3n2

2+(µ+1)(n−n1)
2 ·Bp(M2)−1 Bp(M1 ¢ M2)Bp(N)

= Bp(M2)−1 Bp(M1 ¢ M2) Bp(M2 ¢ · · ·¢ Ml).

The proofs of parts (b) and (c) are similar to that of part (i) of (a), except that in
these cases, m1 = 0. ¤

With these results, we have to compute local densities only in four cases:
(a) when M is unimodular and p ramifies,
(b) when M is P-modular and p ramifies,
(c) when M = M1 ¢ M2 with M1 unimodular, M2 P-modular, and p ramifies,
(d) when M is unimodular and p does not ramify.

But these local densities are already calculated in the literature. We recall
these computations in the next theorem.

Theorem 3.6. Let (M, h) be a hermitian R-lattice of rank n.
(a) Suppose that p is ramified.

(i) Suppose that M is unimodular, that U(Ap)/NR/Ap
(U(R)) = {1, ε} and that

the determinant of (M, h) is λ ∈ {1, ε}. If n is even, then

Bp(M) = 2(1−
(

(−1)
n
2 λ

p

)
q−

n
2 )

n−2
2∏

i=1

(1− q−2i)

where
(

x

p

)
=

{
1 if x is a square (mod p)
−1 otherwise.

(ii) If M is unimodular and n is odd, then

Bp(M) = 2

n−1
2∏

i=1

(1− q−2i).

(iii) If M is P-modular. Then n must be even, and we have:

Bp(M) = q
n(n+1)

2

n
2∏

i=1

(1− q−2i).
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(iv) Suppose that M1 ¢ M2 is a Jordan decomposition of M with M1 unimod-
ular of dimension n1 even and of determinant λ ∈ {1, ε}, and with M2

P-modular, of dimension n2 = n− n1 necessarily even. Then we have:

Bp(M) =

2q
n2(n2+1)

2

n1
2∏

i=1

(1− q−2i)

n2
2∏

i=1

(1− q−2i)

1 +
(

(−1)
n1
2 λ

p

)
q−

n1
2

.

(v) Suppose that we are in the same situation as (iv), but the dimension of M1

is odd. Then we have:

Bp(M) = 2 q
n2(n2+1)

2

n1−1
2∏

i=1

(1− q−2i)

n2
2∏

i=1

(1− q−2i).

(b) Suppose that p is inert and M is unimodular. Then:

Bp(M) =
n∏

i=1

(1− (−1)i q−i).

(c) If p decomposes, and M is unimodular. Then:

Bp(M) =
n∏

i=1

(1− q−i).

Proof. See ([1], p. 24-28) for part (a) and ([9], Hilfssatz 5.3) for parts (b)
and (c). ¤
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Contemporary Mathematics

Notes towards a constructive proof of Hilbert’s Theorem on
ternary quartics

Victoria Powers and Bruce Reznick

1. Introduction

In 1888, Hilbert [5] proved that a real ternary quartic which is positive semi-
definite (psd) must have a representation as a sum of three squares of quadratic
forms. Hilbert’s proof is short, but difficult; a high point of 19th century algebraic
geometry. There have been two modern expositions of the proof – one by Cassels
in the 1993 book [6] by Rajwade, and one by Swan [8] in these Proceedings – but
there are apparently no other proofs of this theorem in the literature. In 1977, Choi
and Lam [2] gave a short elementary proof that a psd ternary quartic must be a
sum of (five) squares of quadratic forms, but as we shall see, the number “three”
is critical.

Hilbert’s approach does not address two interesting computational issues:
(1) Given a psd ternary quartic, how can one find three such quadratics?
(2) How many “fundamentally different” ways can this be done?

In this paper, we describe some methods for finding and counting representa-
tions of a psd ternary quartic as a sum of three squares. In certain special cases,
we can answer these questions completely, describing all representations in detail.
For example, if p(x, y, z) = x4 + F (y, z), where F is a psd quartic, then we give an
algorithm for constructing all representations of p as a sum of three squares. We
show that if F is not the fourth power of a linear form, then there are at most 8
such representations. The key idea to our work is the simple observation that if
p = f2 + g2 + h2, then p− f2 is a sum of two squares. We also give an equivalent
form of Hilbert’s Theorem which involves only binary forms.

2. Preliminaries

Suppose

(1) p(x, y, z) =
∑

i+j+k=4

αi,j,kxiyjzk

is a ternary quartic. How can we tell whether p is psd? The general answer, by the
theory of quantifier elimination (see, e.g., [1]) tells us that this is the case if and
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only if the coefficients of p belong to a particular semi-algebraic set. This general
set is likely to be rather unedifying to look at in detail, so it will be convenient to
make a few harmless assumptions about p.

Suppose that p(x1, . . . , xn) is a homogeneous polynomial. By an invertible
change taking p to p′, we will mean a formal identity:

p(x′1. . . . , x
′
n) = p′(x1, . . . , xn),




x′1
...

x′n


 =




m11 · · · m1n

...
. . .

...
mn1 · · · mnn







x1

...
xn


 ,

where the matrix M = [mij ] above is in GL(n,R). Note that p is psd if and
only if p′ is psd, and representations of p as a sum of m squares are immediately
transformed into similar representations of p′ and vice versa.

For example, if p(x1, . . . , xn) is a psd quadratic form of rank r, then after
an invertible change, p = x2

1 + · · · + x2
r. If deg p = d and M = cI, then p′ =

cdp. Thus, multiplying p by a positive constant is an invertible change. A non-
trivial application of invertible changes is given in Theorem 6 below. When making
invertible changes, we will customarily drop the primes as soon as no confusion
would result.

Suppose now that p is a non-zero psd ternary quartic. Then there exists a point
(a, b, c) for which p(a, b, c) > 0. By an (invertible) rotation, we may assume that
p(t, 0, 0) = t4p(1, 0, 0) = u > 0, and so we may assume that p(1, 0, 0) = 1; hence
α4,0,0 = 1. Writing p in decreasing powers of x, we have

p(x, y, z) = x4 + α3,1,0x
3y + α3,0,1x

3z + . . . .

If we now let x′ = x+ 1
4 (α3,1,0y +α3,0,1z), y′ = y, z′ = z, then x = x′− 1

4 (α3,1,0y
′+

α3,0,1z
′), y = y′, z = z′, and it’s easy to see that p′(x, y, z) = x4+0·x3y+0·x3z+· · · .

We may thus assume without loss of generality that

(2) p(x, y, z) = x4 + 2F2(y, z)x2 + 2F3(y, z)x + F4(y, z),

where Fj is a binary form of degree j in (y, z). Henceforth, we shall restrict our
attention to ternary quartics of this shape.

We present a condition for p to be psd. No novelty is claimed for this result,
which has surely been known in various guises for centuries. Note that p is psd if
and only if, for all (y, z) ∈ R2 and all real t,

Φ(y,z)(t) := t4 + 2F2(y, z)t2 + 2F3(y, z)t + F4(y, z) ≥ 0.

Theorem 1. The quartic Φ(t) = t4 + 2at2 + 2bt + c satisfies Φ(t) ≥ 0 for all t
if and only if c ≥ 0 and

(3) |b| ≤ 2
3
√

3

(
−a +

√
a2 + 3c

)1/2 (
2a +

√
a2 + 3c

)
:= K(a, c).

Proof. A necessary condition for Φ(t) ≥ 0 for all t is that Φ(0) = c ≥ 0. If
Φ(0) = 0, then Φ′(0) = 2b = 0 as well, and clearly t4 +2at2 ≥ 0 if and only if a ≥ 0.
Thus, one possibility is that c = 0, b = 0, and a ≥ 0.

We may henceforth assume that Φ(0) = c > 0, and so, dividing by |t|, Φ(t) ≥ 0
for all |t| if and only if |t|3 +2a|t|+2b ·Sign(t)+ c|t|−1 ≥ 0, which holds if and only
if

min
u>0

(
u3 + 2au +

c

u

)
≥ 2|b|.
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The minimum occurs when 3u4
0 + 2au2

0 − c = 0. The only positive solution to this
equation is

u0 =

(
−a +

√
a2 + 3c

3

)1/2

.

Thus, using c = 3u4
0 + 2au2

0 to simplify the computation, we see that Φ(t) ≥ 0 if
and only if

2|b| ≤ u3
0 + 2au0 + cu−1

0 = 4u3
0 + 4au0 = 4u0(u2

0 + a)(4)

= 4
(

1
3

(
−a +

√
a2 + 3c

))1/2 (
1
3

(
−a +

√
a2 + 3c

)
+ a

)
= 2K(a, c).(5)

We are nearly done, because this case assumes that c > 0. But note that if c = 0,
we have K(a, 0) = 0 if a ≥ 0 and K(a, 0) < 0 if a < 0, so |b| ≤ K(a, 0) implies
b = 0 and a ≥ 0 when c = 0, subsuming the first case. ¤

Note that if (a, b, c) satisfies (3), then K(a, c) ≥ 0, and it’s easy to check that
this implies that a ≥ −√c. However, it is not necessary to write this as a separate
condition.

Corollary 2. Suppose p is given by (2). Then p is psd if and only if F4 is
psd, and for all (r, s) ∈ R2,

(6) |F3(r, s)| ≤ K(F2(r, s), F4(r, s)).

We remark, that, even after squaring, (6) is not a “true” illustration of quan-
tifier elimination, because there will still be square roots on the right-hand side.

3. The Gram matrix method

Observe that for polynomials in f, g ∈ R[X] := R[x1, . . . , xn] and for all θ,

(7) f2 + g2 = (cos θf + sin θg)2 + (± sin θf ∓ cos θg)2.

More generally, if M = [mij ] is a real t× t orthogonal matrix, then

(8)
t∑

i=1




t∑

j=1

mijfj




2

=
t∑

j=1

t∑

k=1

(
t∑

i=1

mijmik

)
fjfk =

t∑

j=1

f2
j .

(Note that (7) includes all real 2 × 2 orthogonal matrices.) Thus, any attempt to
count the number of representations of a form as a sum of squares must mod out
the action of the orthogonal group.

Choi, Lam and Reznick [4] have developed a method for studying representa-
tions of a form p ∈ R[X] as a sum of squares, called the Gram matrix method. For
α = (α1, . . . , αn) ∈ Nn, we write |α| to denote

∑
αi and Xα to denote xα1

1 ·· · ··xαn
n .

Suppose p is a form in R[X] which is a sum of squares of forms. Then p must have
even degree 2d and thus can be written

p =
∑

|α|=2d

aαXα.

Suppose now that p has a representation
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(9) p = h2
1 + · · ·+ h2

t

where hi =
∑
|β|=d b

(i)
β Xβ . For each β ∈ Nn of degree d, set Uβ = (b(1)

β , . . . , b
(t)
β ).

Then (9) becomes p =
∑

β,β′ Uβ · Uβ′X
β+β′ . Hence, for each α,

(10) aα =
∑

β+β′=α

Uβ · Uβ′ .

The matrix V := [Uβ · Uβ′ ] (indexed by β ∈ Nn with |β| = d) is the Gram matrix
of p associated to (9). Note that V = (vβ,β′) is symmetric, positive semidefinite,
and the entries satisfy the equations

(11) aα =
∑

β+β′=α

vβ,β′ .

The following result is proven in [4, Thm. 2.4, Prop. 2.10]:

Theorem 3. Suppose p =
∑
|α|=2d aαXα and V = [vβ,β′ ] is a real symmetric

matrix indexed by all β ∈ Nn such that |β| = d.
(1) The following are equivalent: (a) p is a sum of squares of forms and V

is the Gram matrix associated to a representation p =
∑

h2
i , (b) V is

positive semidefinite and the entries of V satisfy the equations (11).
(2) If V is the Gram matrix of a representation of p as a sum of squares, then

the minimum number of squares needed in a representation corresponding
to V is the rank of V .

(3) Two representations of p as a sum of t squares are orthogonally equivalent,
as in (8), if and only if they have the same Gram matrix.

We now form the (general) Gram matrix of p by solving the linear system
corresponding to the equations (11), where the vβ,β′ are variables, with vβ,β′ =
vβ′,β . This gives the vβ,β′ ’s as linear polynomials in some parameters. Then V =
[vβ,β′ ] is the Gram matrix of p. By Theorem 3, values of the parameters for which
V is psd correspond to representations of p as a sum of squares, with the minimum
number of squares needed equal to the rank of V .

If we consider the two sets of vectors of coefficients from the two representations
given in (8), we see that one set is the image of the other upon by the action of
M , and since M is orthogonal, the dot products of the vectors are unaltered. If p
happens to be a quadratic form, then upon arranging the monomials in the usual
order, it’s easy to see that the (unique) Gram matrix for p is simply the usual
matrix representation for p. It follows that a psd quadratic form has, in effect, only
one representation as a sum of squares.

Henceforth, when we say that p ∈ R[X] is a sum of t real squares in m ways,
we shall mean that the sums of t squares comprise m distinct orbits under the
action of the orthogonal group, or, equivalently, that there are exactly m different
psd matrices of rank t which satisfy (11).

Finally, we remark that a real Gram matrix for p of rank t which is not psd
corresponds to a representation of p as a sum or difference of t squares over R
and that a complex Gram matrix of rank t corresponds to a sum of t squares over
C. These facts require relatively simple proofs, but we defer these to a future
publication.
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4. Hilbert’s Theorem and Gram matrices – an introduction

We describe how the Gram matrix method works for ternary quartics. There
are 6 monomials in a quadratic form in three variables, and 15 coefficients in the
ternary quartic. This means that there are 21 distinct entries in the Gram matrix
and 15 equations in (11), and hence the solution to the linear system will have 6 =
21−15 parameters. Thus the Gram matrix of a ternary quartic is 6×6 with entries
linear in 6 parameters. If we recall (1), denote the parameters by {a, b, c, d, e, f},
and write the monomials of degree 2 in the order x2, y2, z2, xy, xz, yz, then we find
the general form of a Gram matrix of a ternary quartic p:




α4,0,0 a b 1
2α3,1,0

1
2α3,0,1 d

a α0,4,0 c 1
2α1,3,0 e 1

2α0,3,1

b c α0,0,4 f 1
2α1,0,3

1
2α0,1,3

1
2α3,1,0

1
2α1,3,0 f α2,2,0 − 2a 1

2α2,1,1 − d 1
2α1,2,1 − e

1
2α3,0,1 e 1

2α1,0,3
1
2α2,1,1 − d α2,0,2 − 2b 1

2α1,1,2 − f

d 1
2α0,3,1

1
2α0,1,3

1
2α1,2,1 − e 1

2α1,1,2 − f α0,2,2 − 2c




Hilbert’s Theorem together with Theorem 3 says that if p is psd, then for some
choice of the parameters {a, b, c, d, e, f}, this matrix will be psd and have rank 3.

We ignore the psd requirement for the moment and consider the problem of
finding choices of parameter for which this Gram matrix has rank 3. For any such
matrix, all 4 × 4 minors will equal zero. There are 225 such minors, although by
symmetry there are at most 120 different minors. Each minor is the determinant
of a 4 × 4 matrix with entries linear in the parameters, and hence its vanishing is
an equation of degree at most 4 in the 6 parameters.

Thus for a specific ternary quartic p we can form a system of 120 equations of
degree at most 4 in 6 variables so that the solutions correspond to rank 3 Gram
matrices for p. We can attempt to solve this system, however in almost all cases,
the system is much too complicated to solve “by hand”. We have made use of a
computational tool called RealSolving, which can count the number of solutions,
both complex and real, in the case where there are only finitely many complex
solutions. For details on RealSolving, see [7] and the RealSolving webpage
www.loria.fr/~rouillie

Example. We consider p(x, y, z) = x4 + y4 + z4. The Gram matrix of p is

V = V (a, b, c, d, e, f) :=




1 a b 0 0 d
a 1 c 0 e 0
b c 1 f 0 0
0 0 f −2a −d −e
0 e 0 −d −2b −f
d 0 0 −e −f −2c




.

Since p is psd, Hilbert’s Theorem states that it is a sum of three squares; indeed,
one such representation is evident. In terms of the Gram matrix, this means that
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there is a choice of values for the parameters so that V (a, b, c, d, e, f) is psd with
rank 3. The obvious representation

x4 + y4 + z4 = (x2)2 + (y2)2 + (z2)2

corresponds to V (0, 0, 0, 0, 0, 0). But p has other representations. In fact, it’s easy
to see that V (−1, 0, 0, 0, 0, 0) is also psd with rank 3. If we seek vectors whose dot
products are given by this matrix, we are easily led to the following representation:

x4 + y4 + z4 = (x2 − y2)2 + 2(xy)2 + (z2)2.

Clearly two other such representations can be found by cycling the variables:
V (0,−1, 0, 0, 0, 0) and V (0, 0,−1, 0, 0, 0). It turns out that there are four others.
One of them is V (r, r, r, s, s, s), with r = 1−√2 and s =

√
2− 2; the three others

correspond to the symmetry of p under the sign changes y → −y and z → −z.
(See (15), (16) below.) We will later show how these representations can be derived
without using a Gram matrix.

Using RealSolving, for p = x4 +y4 +z4 we have found that there are 15 choices
of parameter in which V is a real matrix of rank 3, and 63 choices of parameter
in which V is a complex matrix of rank 3. As noted above, the non-psd cases
correspond to the representations of p as a sum or difference of three real squares
or as a sum of three complex squares. Thus we know that there are exactly 63
(orthogonally inequivalent) ways to write p as a sum of three squares of forms over
C, of which 15 are a sum or difference of three squares over R.

In this case, after “by hand” manipulation of the 120 equations, we can find
the following 15 representations of p as a sum or difference of three squares of real
quadratic forms:

(12) (x2)2 + (y2)2 + (z2)2

(13) (x2 − y2)2 + 2(xy)2 + (z2)2

(14) (x2 + y2)2 − 2(xy)2 + (z2)2

(x2 + (1−
√

2)(y2 +
√

2yz + z2))2 + (
√

2− 1)(x(
√

2y + z) + yz − z2)2(15)

+(
√

2− 1)(xz − (y − z)(
√

2y + z))2

(x2 + (1 +
√

2)(y2 −
√

2yz + z2))2 − (
√

2 + 1)(x(−
√

2y + z) + yz − z2)2(16)

−(
√

2 + 1)(xz − (y − z)(−
√

2y + z))2.

These five equations correspond to 15 different representations, because p is
both symmetric under permutation of the variables and even in each of the variables.
Thus, p =

∑
fi(x, y, z)2 implies that p =

∑
fi(x,±y,±z)2 =

∑
fi(x,±z,±y)2 =

etc. The “obvious” representation (12) is unaffected by these symmetries. The
equations (13) and (14) correspond to three psd and three non-psd representations
each, after the cyclic permutation of the variables. It is not obvious, but (15) and
(16) are already symmetric in the variables (this shows up in their Gram matrices);
however, the substitutions (y, z) → (±1y,±2z) make them correspond to four psd
and four non-psd representations respectively.

If we consider p as a sum of three complex quadratic forms, we need to allow
the entries of the Gram matrix to be complex. There are 48 non-real Gram matrices
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of rank 3. We find, for example, that V (1, i, i, 0, 0, 2i) has rank 3, and this gives us
a representation of p as a sum of three squares:

(17) (x2 + y2 + iz2)2 + 2(ixy + z2)2 − 2i(xz + yz)2.

Since p(x, y, z) = p(x, imy, inz), a cyclic permutation of the variables gives poten-
tially 3 × 42 = 48 different sums of squares. However, (17) is symmetric under
z → −z, so that it corresponds to only 24 non-real representations. We turn to
the real representations of the previous paragraph, and note that (13) and (14)
are now equivalent under y → iy. There are also 42 − 22 = 12 ways to take
(y, z) → (imy, inz), with 0 ≤ m,n ≤ 3, where at least one of (m,n) is odd, and 12
non-real representations which correspond to such a substitution into each of (15)
and (16), completing the inventory.

Finally, we note that by [4, Cor. 2.12], given a psd Gram matrix for p with
rank 3, we may assume that x2 appears only in the first square and xy appears only
in the first two squares. Thus, we can view the totality of sums of three squares as
inducing a polynomial map from R15 → R15:

(b1x
2 + b2xy + b3xz + b4y

2 + b5yz + b6z
2)2+

(b7xy + b8xz + b9y
2 + b10yz + b11z

2)2 + (b12xz + b13y
2 + b14yz + b15z

2)2

=
∑

i+j+k=4 αi,j,k(b1, . . . , b15)xiyjzk.

Hilbert’s Theorem, in these terms, is that {αi,j,k(R15)} is precisely the set
of coefficients of psd ternary quartics. It is not unreasonable to expect that the
degree of this mapping would (usually) be finite, but we have not seen this issue
discussed in detail in the other proofs of Hilbert’s Theorem. We know of no studies
of Hilbert’s Theorem over C.

We have applied the method of the example to a number of different real
ternary quartics. In all cases, we have obtained the values (63, 15) for the number
of complex and real solutions, apart from a couple of “degenerate” cases where the
numbers are less. Our experiments suggest that the values (63, 15) are generic. We
hope to have much more to say about this in a future publication.

5. Some preparatory results on binary forms

We now show how the representations of certain psd ternary quartics as a sum
of three squares can be analyzed without using Gram matrices explicitly. This is
done by reducing the analysis to certain questions about binary forms.

Suppose p(t, u) is a psd binary form of degree 2d. An invertible change is now
defined by

p′(t, u) = p(at + bu, ct + du), ad 6= bc.

By the same reasoning applied to ternary quartics, we may assume that, after an
invertible change, p(1, 0) = 1, so p(t, u) = t2d + · · · . In any given representation
p = f2

1 +f2
2 , we have f1(t, u) = atd + . . . and f2(t, u) = btd + . . . . Then a2 + b2 = 1,

hence there exists α such that a = cos α and b = sinα, and we have from (7),

p(t, u) = (cos θf1 + sin θf2)2 + (± sin θf1 ∓ cos θf2)2

= (cos(θ − α)td + . . . )2 + (±(
sin(θ − α)td + . . .

)
)2

:= f2
1,θ,±(t, u) + f2

2,θ,±(t, u).



216 VICTORIA POWERS AND BRUCE REZNICK

We see that, for exactly one value of θ (namely α) and one choice of sign in ±, the
coefficients of td in f1,θ,± and f2,θ,± are 1 and 0 respectively, and the highest power
of t in f2,θ,± has a non-negative coefficient. We will call this a standard form for
writing p as a sum of two squares; in our terminology, p is a sum of two squares in
m ways means that there are exactly m standard forms for p.

Sums of two squares always factor over C: p = f2
1 + f2

2 =⇒ p = (f1 +
if2)(f1 − if2), so the expression of p in standard form as a sum of squares is
equivalent to a factorization p = G+G− over C[t, u] as a product of conjugate
factors so that G±(1, 0) = f1(1, 0) ± if2(1, 0) = 1. Note also that if p = G+G−,
where G± = f1 ± if2, then for all θ, p = (e−iθG+)(eiθG−), where

e∓iθG± = (cos θf1 + sin θf2)∓ i(sin θf1 − cos θf2).

The linear factors of p(t, u) over C[t, u] are either real or appear as conjugate
pairs, and since the coefficient of t2d in p is 1, we may arrange that the coefficient
of t is 1 in each of these factors:

(18) p(t, u) =
q∏

j=1

(t + λju)mj

r∏

k=1

(t + (µk + iνk)u)nk

r∏

k=1

(t + (µk − iνk)u)nk .

Furthermore, since p ≥ 0, the exponents of the real factors, mj , must be even.

Theorem 4. Suppose p(t, u) is a psd binary form of degree 2d with p(1, 0) = 1,
and suppose that p factors over C as in (18). Then p is a sum of two squares in⌈

1
2

∏r
k=1(nk + 1)

⌉
ways.

Proof. Suppose p = f2
1 + f2

2 is given in standard form, with f1(1, 0) = 1,
f2(1, 0) = 0. Suppose first that p has the real linear factor `(t, u) = t + λu. Then
p(λ,−1) = 0 for j = 1, 2, hence fj(λ,−1) = 0 as well, and so ` divides both f1

and f2. In this way, we can “peel off” all the real linear factors of p, and we may
assume without loss of generality that p has only the complex conjugate factors.

As noted above, we consider the possible factorizations of p = G+G−. Since
G+ | p, there exist 0 ≤ ak, bk ≤ nk such that

G+(t, u) =
r∏

k=1

(t + (µk + iνk)u)ak

r∏

k=1

(t + (µk − iνk)u)bk .

Taking conjugates, we see that

G−(t, u) =
r∏

k=1

(t + (µk + iνk)u)bk

r∏

k=1

(t + (µk − iνk)u)ak .

Comparison with the factorization of p shows that ak +bk = nk, hence bk = nk−ak

for all k. There are N =
∏r

k=1(nk + 1) ways to choose the ak’s, giving N pairs
(G+, G−) of complex conjugate factors of p, which in turn define N pairs (f1, f2) =
( 1
2 (G+ +G−), 1

2i (G+−G−)). If G+ 6= G−, then exactly one of the pairs {(G+, G−),
(G−, G+)} will leave f2 in standard form. There is one exceptional case: if all nk’s
are even, then taking ak = 1

2nk gives G+ = G−, and f2 = 0. This occurs in the
case that p is already a square. ¤

We shall need the following result, though not in its full generality for n vari-
ables.
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Theorem 5. Suppose p ∈ R[X] is quartic and can be written as a sum of two
squares. If p has no linear factors over R[X], but factors as a product of linear
forms over C[X], then p is a sum of two squares in 2 ways. Otherwise, p is a sum
of two squares in 1 way.

Proof. Since p is psd, if ` is a real linear factor and ` | p, then `2 | p, and if
p = f2

1 + f2
2 , then ` | fj . Writing p = `2p̄, fj = `f̄j , we’d have p̄ = f̄2

1 + f̄2
2 . Since p̄

is quadratic, this means it has rank two, and there is only one way to write it as a
sum of two squares (up to (8), as always.)

We now assume that p has no linear factors, p(x1, . . . , xn) = x4
1 + . . . and that

a representation p = f2
1 + f2

2 has f1(1, 0, . . . , 0) = 1 and f2(1, 0, . . . , 0) = 0. Then
p = (f1 + if2)(f1− if2) factors over C[X] as a product of conjugate quadratics, and
conversely, any such factorization gives p as a sum of two squares. If p has a different
standard form representation p = g2

1 + g2
2 , then p has a different factorization

p = (g1 + ig2)(g1− ig2), with g1± ig2 6= c(f1± if2). Let `1 = gcd(f1 + if2, g1 + ig2).
Then `1 has to be linear, and we can normalize so that `1(1, 0, . . . , 0) = 1. It is
now easy to show by unique factorization in C[X] that there are linear factors `j

so that `j(1, 0, . . . , 0) = 1 and

f1 + if2 = `1`2, f1 − if2 = `3`4; g1 + ig2 = `1`3, g1 − ig2 = `2`4

It follows that `4 = ¯̀
1 and `3 = ¯̀

2, so that p = `1 ¯̀
1`2 ¯̀

2, and this implies that
the two representations are all that are possible. (It does not matter whether `1
and `2 are distinct in this case; in the notation of the last theorem, 2 = d 2+1

2 e =
d (1+1)(1+1)

2 e.) ¤
Finally, we shall need the following result. It is similar to the classical canon-

ical form for the binary quartic, which is in the literature. However, the classical
theorem allows invertible changes in GL(2,C); it is unclear whether our analysis
of the real case is in the literature.

Theorem 6. If p(t, u) is a psd quartic form, then using an invertible change,
p(t, u) can be put into one of the following shapes: t4, t2u2, t2(t2 + u2), (t2 + u2)2,
or t4 + λt2u2 + u4 with |λ| < 2. The particular shape of p depends only on the
factorization of p over C[t, u].

Proof. Factor p as in (18). If
∑

mj = 4, then since the mj ’s are even, either
p = `41 or p = `21`

2
2, where `1 and `2 are non-proportional linear forms. Make the

invertible change t′ = `1(t, u) and u′ = `2(t, u) to get the first two cases.
If

∑
mj = 2, then p(t, u) = `2q(t, u), where ` is linear and q is a positive

definite quadratic. Make a preliminary invertible change so that ` = t′, drop the
prime and note that q(t, u) = at2 + 2btu + cu2, where c > 0, ac > b2. Thus,

q(t, u) = (a− b2

c )t2 + c( b
c t + u)2.

Writing d = a− b2

c > 0 and `′(t, u) = b
c t+u, we can make another invertible change

so that `′ = u′. This shows that p can be turned into t2(dt2 + u2). By taking
u =

√
du′ and dividing by d, we obtain the third case.

In the last two cases, p has only complex conjugate roots. If they are repeated,
then p is the square of a positive definite binary quadratic form, which after an
invertible change is t2 + u2.

Otherwise, we may assume that p(t, u) = (t2 + u2)(at2 + 2btu + cu2), where
the second factor is positive definite. Under an orthogonal change of variables
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t = ct′ + su′, u = −st′ + cu′, where s = sin α, c = cos α, the first factor becomes
(t′)2+(u′)2 and the coefficient of t′u′ in the second becomes (a−c) sin 2α+2b cos 2α.
Thus, we may choose α so that the second factor is also even in t′ and u′. (In fact,
any two positive definite quadratic forms can be simultaneously diagonalized.) In
other words, after an invertible change, we may assume that p is a product of two
even positive definite quadratic forms, and after rescaling t and u if necessary, we
have p(t, u) = (t2 + ru2)(t2 + 1

r u2) = t4 + Rt2u2 + u4, with R = r + 1
r > 2. A final

invertible change gives

p(t + u, t− u) = (2 + R)
(

t4 +
(

12− 2R

2 + R

)
t2u2 + u4

)
,

and since λ = 12−2R
2+R = −2 + 16

2+R = 2− 4R−8
2+R , we have |λ| < 2.

¤

6. The direct approach to Hilbert’s Theorem

Let us now assume Hilbert’s Theorem, and write

(19) p(x, y, z) = x4 + 2x2F2(y, z) + 2xF3(y, z) + F4(y, z) =
3∑

j=1

f2
j (x, y, z).

As noted earlier, we may assume that the term x2 appears only in f1, and up to
sign, we may assume that its coefficient is 1. Thus,

(20) p(x, y, z) =
(

x2 + g1,1(y, z)x + g2,1(y, z)
)2

+
3∑

j=2

(
g1,j(y, z)x + g2,j(y, z)

)2

.

Comparing the coefficients of x3 in (19) and (20), we see that 0 = 2g1,1(y, z), hence
we may assume that f1(x, y, z) = x2 + Q(y, z) for a binary quadratic Q and

(21) p(x, y, z) =
(

x2 + Q(y, z)
)2

+
3∑

j=2

(
g1,j(y, z)x + g2,j(y, z)

)2

.

We now exploit the algebraic properties of sums of two squares, in a lemma
which will be applied to p− (x2 +Q)2. The basic idea is similar to [3, Lemma 7.5].

Lemma 7. Suppose

φ(x, y, z) = h2(y, z)x2 + 2h3(y, z)x + h4(y, z)

is a quartic form (so that hk is a form of degree k). Then there exist forms ψ(j) so
that φ = ψ2

(1) +ψ2
(2) if and only if φ is psd and the discriminant of φ as a quadratic

in x,
∆(y, z) := h2(y, z)h4(y, z)− h2

3(y, z),
is the square of a real cubic form.

Proof. First, if φ = ψ2
(1) + ψ2

(2), then it is psd and we have

ψ(j)(x, y, z) = λ(j)(y, z)x + µ(j)(y, z),

hence h2 = λ2
(1) + λ2

(2), h3 = λ(1)µ(1) + λ(2)µ(2), h4 = µ2
(1) + µ2

(2). It follows that

∆ = h2h4 − h2
3 = (λ(1)µ(2) − λ(2)µ(1))2.

Conversely, suppose φ is psd and ∆ is a square. Then h2(y, z) is a psd quadratic
form, so after an invertible change in (y, z), which will affect neither the hypothesis
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nor the conclusion, we may consider one of three cases: h2(y, z) = 0, h2(y, z) = y2,
h2(y, z) = y2 + z2.

In the first case, ∆ = −h2
3, so h3 = 0 as well and φ(x, y, z) = h4(y, z) is a psd

binary quartic. By Theorem 4, φ = h4 is a sum of two squares.
In the second case, ∆(y, z) = y2h4(y, z) − h2

3(y, z) ≥ 0, hence ∆(0, z) =
−h2

3(0, z) ≥ 0, so h3(0, z) = 0. Thus h3(y, z) = yk2(y, z) for some quadratic
k2. Further, there exists a cubic form c3(y, z) so that

∆(y, z) = y2(h4(y, z)− k2
2(y, z)) = c2

3(y, z).

Thus, c3(y, z) = ys2(y, z) for some quadratic s2. But this means that h4− k2
2 = s2

2,
hence

φ(y, z) = x2y2 + 2xyk2(y, z) + k2
2(y, z) + s2

2(y, z) = (xy + k2(y, z))2 + s2
2(y, z)

is a sum of two squares.
Finally, in the third case, since ∆ is a square, there exists real c3 so that

∆(y, z) = (y2 + z2)h4(y, z)− h2
3(y, z) = c2

3(y, z).

It follows that, over C[y, z],

(y + iz)(y − iz)h4(y, z) = (y2 + z2)h4(y, z) = h2
3(y, z) + c2

3(y, z)
= (h3(y, z) + ic3(y, z))(h3(y, z)− ic3(y, z)).(22)

Thus, up to choice of sign of c3, y + iz is a factor of h3(y, z) + ic3(y, z). Write

(23) h3(y, z) + ic3(y, z) = (y + iz)(k2(y, z) + is2(y, z)).

so that

h3(y, z) = yk2(y, z)− zs2(y, z), c3(y, z) = ys2(y, z) + zk2(y, z).

Taking conjugates in (23) and substituting into (22), we get

h4(y, z) = (k2(y, z) + is2(y, z))(k2(y, z)− is2(y, z)) = k2
2(y, z) + s2

2(y, z).

Thus,

φ(y, z) = x2(y2 + z2) + 2x(yk2(y, z)− zs2(y, z)) + k2
2(y, z) + s2

2(y, z)
= (xy + k2(y, z))2 + (xz − s2(y, z))2.

¤

This lemma leads to the fundamental constructive theorem of this paper.

Theorem 8. If p is a quartic satisfying (19), then p can be written as in (21)
if and only if

p(x, y, z)−(x2+Q(y, z))2 = 2(F2(y, z)−Q(y, z))x2+2F3(y, z)x+F4(y, z)−Q2(y, z)

is psd and

∆(y, z) = 2(F2(y, z)−Q(y, z))(F4(y, z)−Q2(y, z))− F 2
3 (y, z)

is the square of a real cubic form.

Note that for every Q which satisfies the above conditions, p(x, y, z) − (x2 +
Q(y, z))2 is quadratic in x and is a sum of two squares, and hence by Theorem 5
can be written as a sum of two squares in at most two ways. That is, the number
of representations of p as a sum of three squares is bounded by twice the number
of suitable Q.
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Whereas the Gram matrix approach involves a system of polynomial equa-
tions in the six parameters {a, b, c, d, e, f}, the method of Theorem 8 involves three
parameters, the coefficients of Q. It is not difficult to set up necessary condi-
tions for a binary sextic to be the square of a cubic form, and when applied to
∆ = 2(F2 −Q)(F4 −Q2)− F 2

3 , these give a non-trivial system of three equations,
although the degree is much higher than that which arises in the Gram matrix
approach.

Finally, by comparing Corollary 2 and Theorem 8, we see that Hilbert’s Theo-
rem can be reduced entirely to a theorem in binary forms.

Corollary 9. Suppose F2, F3, F4 are binary forms of degree 2, 3, 4 respectively,
such that F4 is psd and

27F 2
3 ≤ 4

(
−F2 +

√
F 2

2 + 3F4

)(
2F2 +

√
F 2

2 + 3F4

)2

.

Then there exists a binary quadratic Q such that 2(F2 − Q)(F4 − Q2) − F 2
3 is a

perfect square and F2 −Q and F4 −Q2 are psd.

We believe that it should be possible to prove Corollary 9 directly. This would
provide a purely constructive proof of Hilbert’s Theorem. We hope to validate this
belief in a future publication.

7. Some constructions

The simplest applications of Theorem 8 occur when F3(y, z) = 0; that is, when
p is an even polynomial in x. (Unfortunately, a constant-counting argument which
we omit shows that not every real ternary quartic can be put in this form after an
invertible change.) We revisit Theorem 8 in this special case:

Corollary 10. There is a representation

(24) x4 + 2F2(y, z)x2 + F4(y, z) = (x2 + Q(y, z))2 +
3∑

j=2

f2
j (x, y, z)

if and only if one of the following four cases holds:
(a): F4 − F 2

2 is psd and Q = F2.
(b): F4 = k2

2 is a square, Q = ±k2 and F2 ∓ k2 is psd.
(c): There is a linear form ` so that Q = F2 − `2, and F4 − (F2 − `2)2 is a

square.
(d): There is a linear form ` so that F4 − Q2 = `2(F2 − Q) and F2 − Q is

psd. (In this case, F2 −Q is a factor of F4 − F 2
2 .)

Proof. By Theorem 8, the necessary and sufficient conditions are that

2(F2(y, z)−Q(y, z))x2 + F4(y, z)−Q2(y, z)

be psd, and that

(25) ∆(y, z) = (F2(y, z)−Q(y, z))(F4(y, z)−Q2(y, z))

is the square of a real cubic form. The first condition is equivalent to F2 −Q and
F4 −Q2 both being psd. We now turn to the second condition.

If the first factor in (25) is 0, then ∆ = 0 is trivially a square, and Q = F2.
Thus, the remaining condition is that F4 − F 2

2 be psd. This is (a).
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If the second factor in (25) is 0, then again ∆ is trivially a square and Q2 = F4.
Suppose F4 = k2

2, then Q = ±k2, and the remaining condition is that F2 − Q =
F2 ∓ k2 be psd and we obtain case (b).

In the remaining two cases, we have a quadratic q2 = F2 − Q and a quartic
q4 = F4 − Q2 whose product is a square. If q2 and q4 are relatively prime, then
each must be a square. Thus, F2−Q = `2 for some linear form `, and F4−Q2 = s2

2

is a square. This is (c).
Finally, if gcd(q2, q4) = g, then q2 = gu and q4 = gv, with u and u relatively

prime, so that q2q4 = g2uv is a square. This implies that u and v are squares, so
that g has even degree. This last case is that g is quadratic, so we may take g = q2

and write v = `2 for a linear form `; that is, F4 −Q2 = (F2 −Q)`2. Note that this
implies that (F2 − Q)(`2 − F2 − Q) = F4 − F 2

2 . Thus any Q which satisfies this
condition will have the additional property that F2 −Q is a psd factor of F4 − F 2

2 .
¤

Remark. We can use Corollary 10 to count the number of possible repre-
sentations as a sum of three squares of x4 + 2F2(y, z)x2 + F4(y, z). If (a) holds,
then

p(x, y, z) = (x2 + F2(y, z))2 + (F4(y, z)− F 2
2 (y, z)),

and the second summand above is a sum of two squares by Theorem 4, in one or
two ways, depending on whether F4 − F 2

2 has linear factors. (It may also happen
to be a square: q2 + 02 can be viewed as a sum of two squares.)

In case (b), the condition that F2 − Q = F2 ∓ k2 is psd may be true for zero,
one or two choices of sign. If it is true, we have

p(x, y, z) = (x2 + Q(y, z))2 + 2x2(F2(y, z)−Q(y, z)),

If F2 −Q is psd, it is a sum of two squares (in exactly one way) by Theorem 4.
If (c) holds, then

p(x, y, z) = (x2 + F2(y, z)− `2(y, z))2 + 2`2(y, z)x2 + s2(y, z)2

is, as written, a sum of three squares. Furthermore, although 2`2(y, z)x2 +s2(y, z)2

factors into quadratic forms over C[y, z], it does not factor into linear forms unless
` | s2, and so the sum of three squares is unique except in this case. It is not a
priori clear how many different linear forms ` satisfy these conditions for a given
pair (F2, F4).

Finally, in case (d),

p(x, y, z) = (x2 + Q(y, z))2 + 2(F2(y, z)−Q(y, z))(x2 + `2(y, z)).

Since F2 −Q is a psd binary form, it splits into linear factors over C[y, z], and so
any suitable Q leads to two representations of p as a sum of three squares. Again,
it is not a priori clear how many such forms Q exist for given (F2, F4).

We conclude this section with some simple examples.

Example. The psd quartic

p(x, y, z) = (x2 + y2)(x2 + z2) = x4 + x2(y2 + z2) + y2z2

is a product of two sums of two squares and hence is a sum of two squares in
two different ways. Are there other ways to write p as a sum of three squares?
Using Theorem 8, if one of the squares is x2 + Q(y, z), then F2 − Q and F4 − Q2
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must be psd. If y2z2 − Q2(y, z) is psd, then Q(y, z) = αyz with |α| ≤ 1 and
F2 −Q = 1

2 (y2 − 2αyz + z2) is psd. But

∆(y, z) = 1−α2

2 (y2 − 2αyz + z2)y2z2

will be a perfect square only when α = ±1. This re-derives the familiar represen-
tations from the two-square identity:

p(x, y, z) = (x2 − yz)2 + x2(y + z)2 = (x2 + yz)2 + x2(y − z)2

Example. The similar-looking psd quartic

p(x, y, z) = x4 + x2y2 + y2z2 + z4

is irreducible, and so is not a sum of two squares. It is not trivial to write p as a
sum of three squares, so we apply the algorithm.

Here, F2(y, z) = 1
2y2 and F4(y, z) = z2(y2 + z2). If F4 −Q2 is psd then z | Q,

so Q(y, z) = ayz + bz2 for some (a, b). It is easily checked that F4 − Q2 is psd if
and only if a2 + b2 ≤ 1 and it’s a square, z2(by − az)2, if and only if a2 + b2 = 1.
And F2 −Q is psd if and only if a2 + 2b ≤ 0, and it’s a square, (y − 1

2az)2, if and
only if b = − 1

2a2.
Running through the cases, we see that (a) and (b) are not possible, because

Q cannot equal F2 and F4 is not a square. For (c), F2 −Q and F4 −Q2 are both
squares when b = − 1

2a2 and a2 + b2 = 1, which implies that

a = ±τ := ±
√

2
√

2− 2, b = 1−
√

2.

This gives the representation

p(x, y, z) = (x2 ± τyz + (1−
√

2)z2)2 + x2(y ∓ τz)2 + z2((
√

2− 1)y ± τz)2.

The sum of the last two squares does not split over C[y, z], so there are no additional
representations in this case. In (d), 1

2y2 − Q(y, z) = 1
2 (y2 − 2ayz − 2bz2) must be

a psd factor of

F4 − F 2
2 = z4 + z2y2 − 1

4y4 =
(
z2 + 1−√2

2 y2
)(

z2 + 1+
√

2
2 y2

)
.

Thus, it is a multiple of z2 + 1+
√

2
2 y2, and a = 0, b = 1−√2. This leads to

p(x, y, z) = (x2 + (1−
√

2)z2)2 + (x2 + z2)(y2 + (2
√

2− 2)z2);

since the last sum of two squares splits into linear factors over C, there are two
more representations of p as a sum of two squares, making four in all.

Example. We consider the class of quartics: p(x, y, z) = (x2 + G(y, z))2, so
that F2(y, z) = 2G(y, z) and F4(y, z) = G2(y, z). By Corollary 10, p is a sum of
three squares as in (24) if and only if 2(G − Q) and G2 − Q2 are both psd and
(G−Q)(G2−Q2) = (G−Q)2(G + Q) is a square. If G = Q, then these conditions
are satisfied immediately, and of course, we recover the representation of p as a
single square. If G = −Q, then we get another representation, provided G is psd:

(x2 + G(y, z))2 = (x2 −G(y, z))2 + 4x2G(y, z).

Since G is a quadratic form, this gives p as a sum of two squares if G = `2 and a
sum of three squares if G is positive definite. Otherwise, we must have that G−Q
is psd and G+Q is a square. This means that G(y, z) ≥ |Q(y, z)| for all (y, z), and
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hence G is psd. Thus Q(y, z) can be −(G(y, z)− (ay + bz)2) for any (a, b) for which
2G(y, z)− (ay + bz)2 is psd.

If G has rank 1, then after an invertible change, G(y, z) = y2, and Q(y, z) =
(1 − a2)y2, so that (G + Q)(y, z) = (2 − a2)y2 ≥ 0; that is, Q(y, z) = −λy2, with
−1 ≤ λ ≤ 1. This gives an infinite family of representations:

(x2 + y2)2 = (x2 − λy2)2 + (2 + 2λ)x2y2 + (1− λ2)y4.

If G has rank 2, then after an invertible change, G(y, z) = y2 + z2, and G ≥ |Q| if
and only if a2 + b2 ≤ 2. This gives a doubly infinite family of representations:

(x2+y2+z2)2 = (x2−(y2+z2−(ay+bz)2))2+(2(y2+z2)−(ay+bz)2)(2x2+(ay+bz)2).

If G is not psd, then p has only the trivial representation. This also can be
seen directly: since x2 + G(y, z) is indefinite, in any representation p =

∑
f2

j , fj

must be a multiple of x2 + G(y, z); by degrees, it must be a scalar multiple. Thus
any representation of p as a sum of squares is orthogonally equivalent to the trivial
one.

8. A complete answer in a special case

We now simplify further still, by supposing that F2(y, z) = 0 as well, so that

p(x, y, z) = x4 + F4(y, z),

where F4 is a psd quartic form. Hilbert’s Theorem is no mystery in this special
case, because we already know that F4 can be written as a sum of two squares,
and this gives one way to write p as a sum of three squares. Are there any other
representations? Note that necessary conditions on Q include that −Q and F4−Q2

are both psd.
There are five cases, based on the factorization of F4; we shall need two lemmas

about real binary forms.

Lemma 11. Suppose F (y, z) is a positive definite quartic form, and consider
the equation

(26) F (y, z)− (ay + bz)4 = q2(y, z)

for linear forms ay + bz and quadratic forms q. If F is a square, then (26) has only
the trivial solution (a, b) = (0, 0). If F is not a square, then there are two different
q’s for which (26) holds.

Proof. By Theorem 6, we may assume that F (y, z) = y4 + λy2z2 + z4 and
that −2 < λ ≤ 2. There are two trivial solutions to (26):

y4 + λy2z2 + z4 − (1− λ2

4 )z4 = (y2 + λ
2 z2)2,(27)

y4 + λy2z2 + z4 − (1− λ2

4 )y4 = (λ
2 y2 + z2)2.

If λ = 2, these are truly trivial! It is easy to see that these are the only possible
expressions in which a = 0 or b = 0. For other solutions, assume ab 6= 0, and set up
the five equations for the coefficients of F (y, z)− (ay + bz)4 = (ry2 + syz + tz2)2:

1− a4 = r2, −4a3b = 2rs, λ− 6a2b2 = 2rt + s2, −4ab3 = 2st, 1− b4 = t2.

Since 4r2s2t2 = r2(2st)2 = t2(2rs)2, we have

(1− a4)(−4ab3)2 = (1− b4)(−4a3b)2 =⇒ a2b6 − a6b6 = a6b2 − a6b6.
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Since ab 6= 0 it follows that a4 = b4, so a2 = b2 and so rs = st. If s = 0, then
ab = 0, which is impossible, so we conclude that r = t. But then

s2 = s2 + 2rt− 2r2 = (λ− 6a2b2)− 2(1− a4) = λ− 2− 4a4 < 0,

which is a contradiction. Thus, (27) gives the only solutions to (26). ¤

Lemma 12. If F (y, z) and G(y, z) are non-proportional positive definite qua-
dratic forms, then there is a unique positive number µ0 such that F − µ0G is the
non-zero square of a linear form.

Proof. Since F and G are both positive definite, the following minimum is
well-defined; it is positive, and achieved for θ = θ0:

µ0 = min
0≤θ≤2π

F (cos θ, sin θ)
G(cos θ, sin θ)

.

Let Hµ(y, z) = F (y, z) − µG(y, z). Then Hµ0 is psd and Hµ0(cos θ0, sin θ0) = 0,
and as F and G are not proportional, Hµ0 is not identically zero. Thus Hµ0 is the
non-zero square of a linear form. If µ < µ0, then Hµ is positive definite, and so is
not a square; if µ > µ0, then Hµ(cos θ0, sin θ0) < 0, so Hµ is not even psd. ¤

If |λ| < 2, then λ = 2− ν2 with 0 < ν < 2, so

y4 + λy2z2 + z4 = (y2 + νyz + z2)(y2 − νyz + z2)

is a product of two positive definite quadratics. In this case, the computation of µ0

is extremely easy: the minimum occurs at the extreme value of cos θ sin θ, namely,
± 1

2 and

µ0 = min
0≤θ≤2π

1 + ν cos θ sin θ

1− ν cos θ sin θ
=

1− ν
2

1 + ν
2

.

In this case, note that

(y2 ± νyz + z2)−
(

2− ν

2 + ν

)
(y2 ∓ νyz + z2) =

(
2ν

2 + ν

)
(y ± z)2.

Corollary 13. Suppose p(x, y, z) = x4 + F4(y, z) is psd. The one of the
following holds:

(1) F4 = `4 for some linear form `, and p is a sum of three squares in infinitely
many ways.

(2) F4 = `21`
2
2 for non-proportional linear forms `1 and `2, and p is a sum of

three squares in exactly one way.
(3) F4 = `2k2, where k2 is positive definite, and p is a sum of three squares

in exactly two ways.
(4) F4 = k2

2, where k2 is positive definite, and p is a sum of three squares in
exactly three ways.

(5) F4 = k2q2, where k2 and q2 are positive definite and not proportional, and
p is a sum of three squares in exactly eight ways.

Proof. Throughout, we shall use the classification of Theorem 6 as the first
step in the proof.
1. We assume that `(y, z) = y. We must have that −Q(y, z) and y4 −Q2(y, z) are
psd. The second condition implies that Q(y, z) = αy4 with 1 ≥ α2, and the first
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implies that α < 0. In this case ∆ = −α(1− α2)y6 is always a square and, writing
α = −β2, 0 ≤ β ≤ 1 we have

x4 + y4 = (x2 − β2y2)2 + 2β2x2y2 + (1− β4)y4.

The distinct values of β give orthogonally distinct different representations of p as
a sum of three squares. This can’t be too surprising, because p is obviously a sum
of two squares. However, the next case gives another sum of two squares which has
no additional representations as a sum of three squares.

2. In this case, `1(y, z) = y and `2(y, z) = z. We must have that −Q(y, z) and
y2z2−Q2(y, z) are psd. The second condition implies that yz | Q, hence Q(y, z) =
αyz. But the first condition then implies that α = 0, so Q = 0 and we have

x4 + y2z2 = (x2)2 +
3∑

j=2

f2
j (x, y, z).

But this implies that fj(y, z) = αjyz and 1 = α2
2 + α2

3; these are all orthogonally
equivalent to (yz)2 + 02. So the only representations of p as a sum of three squares
are orthogonally equivalent to those as a sum of two squares. In fact, the psd
Gram matrices for p have no parameters, and p has, up to orthogonal equivalence,
a unique representation as a sum of squares.

3. In this case, we assume that F4(y, z) = y2(y2 + z2). The condition that F4−Q2

is psd implies that y | Q, and the condition that −Q is psd implies that Q(y, z) =
−αy2, with α ≥ 0, so now F4(y, z)−Q2(y, z) = y2((1−α2)y2+z2), hence 0 ≤ α ≤ 1.
Finally, the condition that ∆ = αy4((1−α2)y2 +z2) be a square implies that α = 0
or α = 1. In the first case, we have

x4 + y2(y2 + z2) = (x2)2 +
3∑

j=2

f2
j (x, y, z).

There is by Theorem 4 exactly one way to write y2(y2+z2) as a sum of two squares,
(y2)2 + (yz)2. In the second case, we have

x4 + y2(y2 + z2) = (x2 − y2)2 +
3∑

j=2

f2
j (x, y, z) =⇒ 2x2y2 + y2z2 =

3∑

j=2

f2
j (x, y, z).

By Theorem 5, there is also just one way to write y2(2x2 + z2) as a sum of two
squares, 2(xy)2 + (yz)2, so altogether there are two ways to write p as a sum of
three squares.

4. We assume that k2(y, z) = y2 + z2. We now run through the four cases in
Corollary 10. In case (a), we have Q = 0, and

x4 + (y2 + z2)2 = (x2)2 +
3∑

j=2

f2
j (x, y, z).

We know from Theorem 4 that there are two inequivalent choices for (f2, f3). These
are easy to compute by hand and give

x4 + (y2 + z2)2 = (x2)2 + (y2 + z2)2 + 02 = (x2)2 + (y2 − z2)2 + (2yz)2.
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In case (b), Q(y, z) = ±(y2 + z2) and −Q is psd, so Q(y, z) = −(y2 + z2) and

x4 + (y2 + z2)2 = (x2 − (y2 + z2))2 +
3∑

j=2

f2
j (x, y, z).

This implies that 2x2(y2 + z2) =
∑3

j=2 f2
j (x, y), and, as before, Theorem 5 implies

that there is a unique representation:

x4 + (y2 + z2)2 = (x2 − (y2 + z2))2 + 2(xy)2 + 2(xz)2.

In case (c), we have that Q(y, z) = −(ay + bz)2 and (y2 + z2)2 − (ay + bz)4 is a
square. We have seen in Lemma 11 that this is impossible. Finally, in case (d),
−Q is a psd factor of F4 − F 2

2 = (y2 + z2)2, hence Q(y, z) = −α(y2 + z2) for some
α > 0. This implies that ∆(y, z) = α(1 − α2)(y2 + z2)3, which is only a square
for α = 0, 1, which have been already discussed. Altogether, there are only three
representations.
5. We write F4(y, z) = y4+λy2z2+z4, with |λ| < 2 and, as before, write λ = 2−ν2,
with 0 < ν < 2. In case (a), Q = 0, and as in the last case, F4 is a sum of two
squares in two ways:

y4 + λy2z2 + z4 = (y2 + λ
2 z2)2 + (1− λ2

4 )z4 = (y2 − z2)2 + (2 + λ)(yz)2.

This gives two ways to write x4 + F4(y, z) as a sum of three squares.
Case (b) does not apply, since F4 is not a square. In case (c), Q = −`2,

and F4 − `4 = s2
2 is a square. By Lemma 11, there are two different choices of

(`2, s2) for which this is the case. For simplicity, let ρ =
√

1− λ2

4 . These give the
representations

x4 + y4 + λy2z2 + z4 = (x2 − ρy2)2 + 2ρx2y2 + (λ
2 y2 + z2)2,

and a similar one, with y and z permuted. Note that the factors of the two sum-
mands are

√
2ρxy ± i(λ

2 y2 + z2) which are irreducible over C. Thus there is only
one representation of p as a sum of three squares for each Q = −`2, and so two in
all.

Finally, in case (d), we have that −Q is a psd factor of

F4(y, z) = (y2 + νyz + z2)(y2 − νyz + z2)

Thus Q = κ(y2 ± νyz + z2) for some choice of sign. In this case

F4(y, z)−Q2(y, z) = 1
κQ(y, z)

(
(y2 −∓νyz + z2)− κ2((y2 ± νyz + z2)

)
.

By Lemma 12, the last factor is a square if and only if κ2 = 2−ν
2+ν . In this case, we

have

x4+y4+λy2z2+z4 = (x2−κ(y2±νyz+z2))2+(y2±νyz+z2)(2κx2+(1−κ2)(y∓z)2)

Since the sum of these last two squares splits over C, we get four different repre-
sentations of p as a sum of three squares altogether, so there are four from case (d)
and eight in all. ¤

Example. We illustrate the eight representations of p(x, y, z) = x4 +y4 +z4 as
a sum of three squares of real quadratic forms. In this case, λ = 0, ρ = 1, ν =

√
2

and κ =
√

2−√2
2+
√

2
=
√

2− 1, so that 1− κ2 = 2κ. The two from case (a) are

p(x, y, z) = (x2)2 + (y2)2 + (z2)2 = (x2)2 + (y2 − z2)2 + 2(yz)2.
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That is, (12) and one of (13). The two cases from (c) become the other two from
(13).

p(x, y, z) = (x2 − y2)2 + 2(xy)2 + (z2)2 = (x2 − z2)2 + 2(xz)2 + (y2)2.

Finally, from case (d), we get four representations from

(x2 − (
√

2− 1)(y2 ±
√

2yz + z2))2 + 2(
√

2− 1)(y2 ±
√

2yz + z2)(x2 + (y ∓ z)2).

The two-square identity then gives (15).
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[5] D. Hilbert, Über die Darstellung definiter Formen als Summe von Formenquadraten, Math.
Ann. 32 (1888), 342-350.

[6] A.R. Rajwade, Squares, London Mathematical Society Lecture Notes 171, Cambridge Uni-
versity Press, Cambridge, 1993.

[7] F. Rouillier, Algorithmes efficaces pour l’étude des zéros réels des systèmes polynomiaux, PhD.
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Contemporary Mathematics

On the History of the Algebraic Theory of
Quadratic Forms

Winfried Scharlau

The purpose of these remarks is not to give a complete and systematic
history of the algebraic theory of quadratic forms. Rather, I shall concen-
trate on some aspects neglected in the existing literature, and others on
which I can report from personal experience. References to the subject are
Pfister’s talk (1984) at the Hamilton conference, his paper (1990), and his
survey (2000). A thorough discussion of Milnor’s algebraic work can be
found in Bass (1993); for the history of algebraic K-theory I refer to Weibel
(1999). I am grateful to many colleagues for valuable information and useful
discussions of special topics; I particularly want to mention M. Kneser, A.
Pfister and M. Knebusch. I want to thank the referee for a critical reading
of the paper and many corrections and helpful comments.

This paper is dedicated to the founder of the algebraic theory of qua-
dratic forms, Albrecht Pfister, at the occasion of his 65th birthday.

1. A quick summary

In this section I try to give an overview of some of the most significant
developments in the theory of quadratic forms since Witt’s paper (1937). It
is not possible to describe all important work and I apologize to all colleagues
whose contributions will not be mentioned appropriately. (A number of
names come to my mind immediately.) In the following sections I shall
discuss selected topics in some detail.

1.1. Functorial properties. After the appearance of Witt’s paper it
was a natural task to study the functorial properties of the Witt ring and
its relation to other functorial constructions like the Brauer group, Galois
cohomology or K-theory. Already Witt himself did the first steps in this
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c©0000 (copyright holder)
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direction: he defines for every quadratic form its Clifford algebra and stud-
ies the functorial properties of this construction. He mentions (p. 35) the
analogies between quadratic forms and simple algebras.1 Springer (1959)
and Serre (1964) pointed out the relation to the Galois cohomology of the
orthogonal and related groups. Delzant (1962), Scharlau (1967), Belskii
(1968), Milnor (1970), Arason (1975) and later many others investigated
quadratic forms and (abelian) Galois cohomology. This development culmi-
nated in the proof of the Milnor conjecture (see Pfister (2000) for a more
thorough discussion).

Durfee (1948) and Springer (1955) developed the theory for quadratic
forms over a discrete valuation ring.2 In particular, they classified quadratic
forms over complete discrete valuation rings and their quotient field if the
residue characteristic is not 2. Knebusch (1976, 1977) extended this to arbi-
trary places. Several authors investigated fields with an arbitrary henselian
valuation (and residue characteristic not 2).

The behaviour of quadratic forms and Witt rings under ground field ex-
tensions was studied by Springer (1952), Scharlau (1969a, 1970), Rosenberg-
Ware (1970), Knebusch-Scharlau (1971), Elman-Lam (1976), where in par-
ticular the case of quadratic extensions is clarified, which is crucial for many
applications. As an application of these techniques, norm principles were
proved by Scharlau (1969) and Knebusch (1971). Dress (1971) pointed out
close relations between the Burnside ring of monomial representations and
the Witt ring, the trace defining a natural functor. Milnor (1970) invented
Milnor K-theory to formalize similar descriptions of the functors W and K2

by generators and relations.

1.2. Structure theorems. The basic structure theorems for the Witt
ring were proved by Pfister (1966) and Arason-Pfister (1971). Some comple-
ments were contributed by Witt, Harrison (1970) and Lorenz-Leicht (1970).
Several authors developed alternative approaches to the structure theo-
rems, e.g. Scharlau (1970), Lorenz-Leicht (1970), Dress (1971), Knebusch-
Rosenberg-Ware (1972), and Lewis (1989). The structure of the graded
Witt ring remained the most important problem of the whole theory for
some time. After very important initial results of Arason (1975) (and some
others) the first significant breakthrough is due to Merkurjev (1981). This
was followed by work of Merkurjev-Suslin, Rost, Jacob-Rost and Szyjew-
ski. The complete solution, i.e. the proof of the Milnor conjecture, was
announced by Voevodsky and Orlov-Vishik-Voevodsky.

Since the Milnor conjecture is perhaps the most important single result
in the theory of quadratic forms we briefly state what it claims: for every
field F of characteristic not 2 and all n, three abelian groups are canonically
isomorphic, namely

In(F )/In+1(F ), Hn(F,Z/2Z), kn(F ) = Kn(F )/2Kn(F ).

1The footnotes can be found at the end of the paper.
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The groups are defined via quadratic form theory, Galois cohomology, and
algebraic K-theory, respectively. I(F ) denotes the “fundamental ideal” of
even dimensional forms in the Witt ring W (F ), and Kn(F ) is the n-the
Milnor K-group of F . - Presently, many details of the proof have not yet
been published, not even in preliminary form. We refer again to Pfister
(2000) for more details.

1.3. The Hasse principle. The Hasse principle (or local-global princi-
ple), originally discovered by Minkowski (1890) and Hasse (1923, 1924) in the
classification of quadratic forms over algebraic number fields but extending
far beyond this theory (see Colliot-Thélène (1992)), is a powerful tool which
allows to reduce problems from algebraic number fields to the corresponding
questions over the p-adic completions. It was systematically employed by
Hasse to prove central results of algebraic number theory and class field the-
ory. Landherr (1938) extended Hasse’s results on quadratic forms to various
kinds of hermitian forms. In the fifties it was recognized (Weil, Serre) that
hermitian forms and similar objects can be described by Galois 1-cocycles
of their automorphism groups. This led to the problem of the validity of
the Hasse principle for arbitrary algebraic groups. It was also recognized
that this depends essentially on the cohomological dimension of the ground
field (see Serre (1964)). Kneser (1969), Harder and others obtained impor-
tant results for semisimple simply connected linear algebraic groups. It is
impossible to quote all the relevant work on this problem. However, af-
ter the proof of the Merkurjev-Suslin theorem further progress was possible
concerning the classical groups (i.e. hermitian forms of various kinds; see
Bayer-Fluckiger, Parimala (1995, 1998)). Also Scheiderer (1996) completely
settled the case of virtual cohomological dimension 1 (where one has coho-
mological dimension 1 “except for real places”). Concerning in particular the
Witt group, we want to mention also Sujatha (1995) and Parimala-Sujatha
(1996) for results on the Hasse principle for algebraic curves over global
fields. Concerning higher Galois cohomology groups, Hasse principles have
been proved by Kato (1986) and Jannsen (1989/90 and unpublished). This
has important applications to the Pythagoras numbers of algebraic function
fields over algebraic number fields (Colliot-Thélène, Jannsen (1991)).

1.4. Generalizations. Arf (1941) extended Witt’s results to fields of
characteristic 2. Later, Baeza published several papers which extended
known results to the characteristic 2 case. A systematic treatment was given
by Milnor (1971) and Sah (1972). Surprisingly, the proof of the Milnor con-
jecture in characteristic 2 turned out to be easier than in the general case
(Sah (1972), Kato (1982)). In principle, some aspects of the theory in char-
acteristic 2 are more interesting and richer because one has to distinguish
between symmetric bilinear and quadratic forms and inseparable extensions
have to be considered. Nevertheless, fields of characteristic 2 have remained
the pariahs of the theory.
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Long before the emergence of the algebraic theory, quadratic forms were
studied over rings, e.g. over Z or other rings of number theory. After the
basic ideas of K-theory were formulated in the late fifties, it was clear that
a systematic theory of quadratic forms over rings (and schemes) could and
should be developed. Serre (1961/62) suggested to do this; Kneser (un-
published (1962)) worked out essential parts of this theory over Dedekind
rings. Several authors considered the case of local rings and valuation rings;
a comprehensive reference is Baeza (1978) where additional references are
given. A systematic development of the theory over arbitrary schemes was
given for the first time in Knebusch (1969/70) and later extended in Kneb-
usch (1977a). A significant, if so far somewhat isolated result, is Arason’s
computation (1980) of the Witt group of projective spaces. Starting in the
seventies quadratic forms over polynomial rings, affine algebras and related
rings were systematically studied by Karoubi, Knus, Ojanguren, Parimala,
Sridharan, Quebbemann and many others. This developed into a full fledged
theory, systematically presented in Knus (1991). We refer to this book for
further references.

It was also clear from the beginning that a similar theory could be de-
veloped in noncommutative settings, e.g. over division algebras with invo-
lution. The basic existence and classification theorems for involutions were
found by Albert (1939) and simplified by Riehm (1970) and Scharlau (1975).
After these first beginnings the theory of involutions developed into a vast
research field of its own. An exhaustive treatment of the present state of
the art is given in Knus-Merkurjev-Rost-Tignol (1998). The theory of her-
mitian forms was worked out in number theoretic situations by Landherr
(1938) and Kneser (1969). Concerning the basic notions – e.g. of the Witt
group - several variations are possible and lead to somewhat different but
related theories. Foundational work in this direction is due to Bass (1967),
Bak (1969, 1981), Fröhlich-McEvett (1969), C.T.C. Wall (1970, 1973) and
others.

Since the time of Weierstraß and Kronecker the classification of arbitrary
sesquilinear forms, of isometries and selfadjoint transformations had been a
somewhat separated but related field. Dozens of papers by many authors
are devoted to this topic. Initially, the ground field was C or R and the
approach purely matrix theoretic. More or less all results lead to a unique
Jordan decomposition. Later arbitrary ground fields were considered, e.g.
in several papers by Williamson. A systematic, more conceptual treatment
was given for isometries by G.E. Wall (1963) and Milnor (1969). Eventually
one realized that all these different problems could be handled by the con-
sideration of abelian k-categories with involution. This general concept was
worked out in detail by Quebbemann-Scharlau-Scharlau-Schulte (1976) and
Quebbemann-Scharlau-Schulte (1979) with further contributions and appli-
cations by several authors, among others Knus-Ojanguren-Parimala (1982),
Bayer-Fluckiger, Kearton, Wilson (1989) and Knus (1991, Chap. II).
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Perhaps a generalization in a completely different direction should be
mentioned also in this section, namely quaternionic structures, abstract (re-
duced) Witt rings, and abstract ordering spaces. What first looked like
a rather formal (and perhaps useless) generalization of the notion of Witt
rings under the hands of Marshall (1980) (and other papers quoted there)
turned into a most useful tool providing elementary and purely combinato-
rial proofs of deep and difficult structure theorems in real algebra and real
algebraic geometry. (See also section 1.7.)

1.5. Pfister forms. The most important notion in the algebraic theory
of quadratic forms is probably the notion of Pfister forms (Pfister (1965)).
Pfister forms are 2n-dimensional forms that can be written as n-fold tensor
products of 2-dimensional forms 〈1,−ai〉, that is, forms of type

〈〈a1, . . . , an〉〉 :=
n⊗

i=1
〈1,−a1〉.

Hence 2-fold Pfister forms are of type 〈1,−a,−b, ab〉, etc. They are an
indispensable tool for almost every significant problem. They have many
important properties, but the most significant seems to be that for Pfister
forms the “difficult” problem of isotropy coincides with the “easy” prob-
lem of hyperbolicity. This makes it possible to apply functorial Witt ring
methods to the study of individual forms. The existence of Pfister forms
seems to be specific to the theory of quadratic forms. Decomposable ele-
ments a1 ∪ . . .∪ an in Galois cohomology, respectively symbols {a1, . . . , an}
in Milnor K-theory are analogues but do not seem to be of quite the same
importance as Pfister forms.

1.6. Generic splitting. First examples of generic splitting fields occur
already in H. Kneser (1934) and later in Pfister’s work on the level and in
the proof of the Arason-Pfister Hauptsatz. If ϕ0 = ϕ = 〈a1, . . . , an〉 is an
anisotropic form over a field K0 = K its generic zero field is defined as the
algebraic function field

K1 = K(X1, . . . , Xn)/(a1X
2
1 + . . . + anX2

n).

In a sense, which easily can be made precise, this is the most general field
in which ϕ becomes isotropic. If ϕ1 is the anisotropic part of ϕ0 ⊗ K1

one can repeat this construction inductively and obtains finally the generic
splitting field. A systematic study of generic splitting fields was initiated
by Knebusch (1976, 1977). I remember that Knebusch and I discussed the
possibility of developing such a theory already some years earlier; a paper
of Roquette (1966) suggested such an approach. What first seemed to be
a rather restricted circle of ideas, soon turned out to be a crucial tool for
a number of important questions. Merkurjev’s construction (1992) of fields
with given even u-invariant uses generic splitting fields in an essential way
and the same is true for all work on the Milnor conjecture. This also leads
naturally to the investigation of quadratic forms over quadrics and similar
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varieties, a field of active research. All this work is based essentially also
on Quillen’s (1973) computation of the K-theory of projective spaces and
Brauer-Severi varieties, on Swan’s (1985) computation of the K-theory of
quadrics, and, more recently, on the computation of motivic cohomology of
some “motives” associated to Pfister quadrics (in particular by M. Rost).

1.7. Formally real fields. The first result relating quadratic forms
and real fields is of course Sylvester’s law of inertia. The relation between
the two concepts comes from the trivial fact that sums of squares are always
positive. This leads immediately to Hilbert’s 17th problem: can positive
definite functions be represented as sums of squares? Artin and Schreier
(1927) solved this problem and developed for this purpose the theory of or-
dered and formally real fields. It is well known that Hilbert’s 17th problem
led to similar questions in real algebraic geometry (real Nullstellensatz, Posi-
tivstellensatz, Krivine (1964), Dubois (1969), Stengle (1974), Risler (1976)).

However the “real” starting point was again Pfister’s work, namely his
local-global principle, that is, the exact sequence

0 −→ Wt(K) −→ W (K)
sign−→ Π

P
Z

where P runs over all orderings of K, sign is the total signature and Wt(K)
is the torsion subgroup. This leads immediately to a number of questions:
What can be said about the structure of the ordering space X(K), what
is the functorial behavior of X(K)? This question led to Marshall’s (1980)
theory of abstract ordering spaces and over arbitrary ground rings to the
notion and the theory of the real spectrum (see Knebusch (1984)). Closely
related is the determination of the image and of the cokernel of the total
signature map. This led to the notions of fans, reduced Witt rings, stability
indices, etc. The first essential results in this direction are due to Bröcker
(1974, 1977), Becker-Bröcker (1978), Marshall and others. Moreover, special
classes of ground fields were considered in detail, e.g. pythagorean fields,
hereditary pythagorean fields, euclidean fields, SAP- and WAP-property,
etc.

The years 1968 – 1980 saw a “real” explosion in this area. Deep con-
nections between quadratic forms, real and ordered fields, valuation theory,
model theory and real algebraic geometry were discovered. Probably more
papers were published in this area than in the rest of the algebraic the-
ory of quadratic forms. We therefore refrain from mentioning more details
and refer instead to the following books, lecture notes and expository ar-
ticles containing also extensive references: Colliot-Thélène et al. (1982),
Lam (1983), Marshall (1980), Prestel (1984), Bochnak-Coste-Roy (1987),
Knebusch-Scheiderer (1989), Bröcker (1991), Coste et al. (1991).

1.8. Field invariants. So far we have mentioned mainly structural
and functorial aspects of the algebraic theory. We come now to a somewhat
different circle of ideas, concerned with the so called field invariants. The
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most important ones are level, u-invariant, and Pythagoras number. The
level of a field K is the minimal number s such that −1 is a sum of s squares
in K. If such a representation of −1 does not exist, that is, if K is formally
real, the level is ∞. Pfister (1995) is an excellent reference. Again, Pfister’s
results on the level of fields were the first breakthrough: if s is finite it is a
2-power; all 2-powers occur as levels of suitable fields (see also section 3 for
some details).

The definition and the first results on the u-invariant (the maximal di-
mension of anisotropic torsion forms) are due to Kaplansky (1953) and were
consequences of the classification theorems. Since iterated power series and
rational function fields (e.g. over algebraically closed fields) have 2-power
u-invariants (Springer (1955), Tsen (1936)), it has been conjectured that the
u-invariant is always a power of 2. A sensational result of Merkurjev’s (1992)
disproves this: there exist fields of given even u-invariant. (The problem of
odd u-invariants is open for u > 7.)4. Merkurjev’s proof uses essentially so
called index-reduction formulas on the behaviour of the index of a central
simple algebra under a base field extension given by the function field of a
suitable variety. Their proof, in turn, depends on the computation of the
K-theory of certain homogeneous spaces.

Before Merkurjev’s result, Elman and Lam (1973), in a series of papers,
studied the u-invariant for fields satisfying additional hypotheses (concern-
ing e.g. I3 or the quaternion algebras). Also, Leep (1984) proved a nice
result on the zeros of systems of quadratic forms, with applications to the
u-invariant of a finite field extension L/K. After Merkurjev’s result a consid-
erable number of papers appeared containing simplifications, variations and
applications of his methods and results. Nevertheless, it had not hitherto
been possible to compute the u-invariant of a given field, such as a rational
function field. Therefore it was a remarkable success when Hoffmann-van
Geel (1998) proved recently thatQp(X) has finite u-invariant (in fact u ≤ 22)
if p 6= 2. The proof is based on an important theorem of Saltman (1997)
concerning common splitting fields of quaternion algebras. The bound was
later sharpened to u ≤ 10 by Parimala and Suresh (1998).

The Pythagoras number of a field (or ring) originated from the quantita-
tive version of Hilbert’s 17th problem: It is the smallest number p such that
every sum of squares is already a sum of p squares. For non-real fields p = s
or p = s + 1 (s = level). The determination of p(K) for algebraic number
fields follows from the Hasse-Minkowski theorem. Besides this the first re-
sults were obtained for rational function fields F = K(X1, . . . , Xn). If K is
real closed, Cassels (1964) proved 1+X2

1 +. . .+X2
n is not a sum of n squares,

that is p(F ) ≥ n + 1. (This result is one of the starting points of Pfister’s
work, see section 3.) Ax proved p(F ) ≤ 8 for n = 3, Pfister (1967) proved
p(F ) ≤ 2n for arbitrary n, and Cassels-Ellison-Pfister (1971) proved for
n = 2 that the (positive) Motzkin polynomial 1− 3X2

1X2
2 + X4

1X2
2 + X2

1X4
2

is not a sum of 3 squares, hence p(F ) = 4 for n = 2. Already Landau
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proved p(Q(X)) ≤ 8 but Pourchet (1971) and Hsia-Johnson (1974) sharp-
ened this to p(K(X)) ≤ 5 for every algebraic number field. As mentioned in
1.3 work on the Kato conjecture and cohomological Hasse principles yields
p(F ) ≤ 2n+1 for K an algebraic number field and n = 2, 3, as well as a
number of related results (Colliot-Thélène, Jannsen (1991)). See Hoffmann
(1999) for a recent result on the Pythagoras numbers of fields.

The invariants level, u-invariant, and Pythagoras number can also be
defined for commutative rings. An number of results are known, perhaps
the most spectacular is due to Dai-Lam-Peng (1980): the integral domain
R[X1, . . . , Xn]/(1 + X2

1 + . . . + X2
n) has level n. The proof uses topologi-

cal methods, namely the Borsuk-Ulam theorem. This connection between
topology and algebra was in principle known since the fifties, certainly since
Swan (1962). However, this application came as a surprise; it led on the
one hand to algebraic proofs of the Borsuk-Ulam theorem and the Brouwer
fixed point theorem (Knebusch (1982), Arason-Pfister (1982)), on the other
hand to the notion of the level of a topological space with involution and
the computation of this invariant for projective spaces (Dai-Lam (1984),
Pfister-Stolz (1987), Stolz (1989)). Mahé proved that the level of a real
affine algebra without a real point is finite. We refer to Pfister (1995) for
some results on the Pythagoras number of rings.

2. Quadratic forms over arbitrary fields: The work of Dickson

Perhaps the most basic problem in the algebraic theory of quadratic
forms is the classification problem: how can one decide whether two qua-
dratic forms over a given field or ring are isometric? It is not clear (to me)
who explicitly formulated this question for the first time. Certainly, in 1890
Minkowski (1864 – 1909) asked and solved this question for the field of ratio-
nal numbers. Since the fundamental concepts of algebra and linear algebra
were clarified at about the same time one can assume that the problem was
on the agenda since about this time. In 1899 L. E. Dickson (1874 – 1954)
solved the classification problem for finite fields (a rather trivial result) and
he seems to have been aware of the general question. The details are cer-
tainly involved. It should be kept in mind that already in 1890 Kronecker
(1823 – 1891) had discussed the more difficult problem of the classification
of pairs of quadratic forms.

In 1907 Dickson published an article “On quadratic forms in a general
field”, a title very reminiscent of Witt’s famous paper (1937). The paper
begins with the words: We investigate the equivalence, under linear trans-
formation in a general field F, of two quadratic forms . . .

q ≡
n∑

i=1

aix
2
i ; Q ≡

n∑

i=1

αiX
2
i .

Though he does not say so, Dickson probably believed that he had given
in some sense a complete solution of the classification problem, and in some
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sense he was right! He continued: An obvious necessary condition is that α1

shall be representable by q , viz., that there shall exist elements bi in F such
that

α1 =
n∑

i=1

aib
2
i .

Using this representation he writes down an explicit transformation of q in
a form

q′ ≡ α1x
′2
1 +

n∑

i=2

a′ix
′2
i .

Then, he states and proves the cancellation law (yes!) and is thus re-
duced to the discussion of (n − 1)-dimensional forms. It must have been a
very natural idea for him to believe that in order to solve the classification
problem, one must at least be able to decide the “obvious” necessary con-
dition, whether q represents a given element. Today we have realized that
the representation problem is in fact the more difficult problem.

In more detail and in modern terminology, Dickson’s paper (1907) con-
tains the following results:

1) Every quadratic form over a field of characteristic 6= 2 can be di-
agonalized. (Footnote on p. 108)

2) If q = 〈a1, . . . , an〉 represents b 6= 0 , then q ∼= 〈b, . . .〉. (Theorem in
§2 ; there is some inessential restriction on the characteristic.)

3) If q = 〈a1, . . . an〉 and υ is a vector with q(υ) = a1, then there
exists an automorphism σ of q sending v to the first basis vector.
(Theorem in §5 on p. 114. The statement is marred by the fact
that Dickson considers simultaneously q and q′ = 〈a−1

1 , . . . , a−1
n 〉.

Then σ is an isometry of q if and only if σt is an isometry of q′ .
One has to take this trivial fact into account.)

4) Every isometry between regular subspaces can be extended to an
isometry of the whole quadratic space. (Theorem in §6 on p. 115)

5) The cancellation law holds: 〈a, a2, . . . , an〉 ∼= 〈a, b2, . . . , bn〉 implies
〈a2, . . . , an〉 ∼= 〈b2, . . . , bn〉. (Theorem in §4 on p. 114.)

6) In section 1 Dickson discusses necessary and sufficient conditions
for 〈a1, . . . , an〉 ∼= 〈α1, . . . , αn〉. Writing out these conditions, one
sees that he constructs this isometry stepwise. It is easy to see that
his equation (1) means that one has to change only two diagonal
coefficients every step (Witt’s “Satz 7”). A remark in an earlier
paper (Dickson (1906)), however, suggests that he was not aware
of this fact.

It seems that Dickson’s paper went by completely unnoticed; I could not
find a single reference to it in the literature. However, one must admit, that
this paper – like most of Dickson’s work – is not very pleasant to read. It
is entirely algebraic. Dickson is not aware of the geometric interpretation
of quadratic forms that Witt (1937) uses so elegantly. Where a simple



238 WINFRIED SCHARLAU

geometric argument could be used he performs lengthy calculations. He
does not know the importance of reflections. When he has to construct a
suitable isometry he uses the Cayley transform, a somewhat awkward tool.
Nevertheless, I believe that, as far as “Witt’s theorem” and related questions
is concerned, some credit should be given to Dickson.

One may also note that Hasse in his classical papers (1923a, b; 1924 a,
b) was not aware of the cancellation law which could have saved him a lot of
work. Hasse proves in his first paper the strong local-global principle. As we
know today, this, together with the cancellation law, immediately implies
the weak local-global principle for isometry – but he does the whole theory
again – and that in a somewhat complicated way.

Concerning the classification problem itself, it seems that before Voevod-
sky there had been not much real progress beyond the work of Minkowski
and Hasse. All known results (real function fields, local fields, and a few
others) rely on ideas that can be found in those papers; Witt (1937) gives a
very clear discussion of the classification problem. See also Elman and Lam
(1974).

3. The work of A. Pfister

The modern algebraic theory of quadratic forms begins with Witt’s (1911
– 1991) fundamental paper (1937). The importance of this paper has been
pointed out and discussed so often that I think I cannot add anything sig-
nificant to this issue. Pfister (1990) summarizes: Mit [dieser Arbeit] stößt
er ein neues Tor auf und leitet die Loslösung von der Zahlentheorie und die
Verselbständigung der Theorie der quadratischen Formen ein. Die damals
revolutionierenden, heute aber wohlbekannten und in jedem guten Kurs über
Lineare Algebra gelehrten Inhalte sind . . .

However, it should perhaps be mentioned that Witt’s paper had almost
no immediate effect: In the following 25 years, only very few papers on the
algebraic theory of quadratic forms appeared and even fewer were inspired
directly by Witt’s paper. One may say: the gate was open but nobody
walked through it. (An exception is Arf’s (1941) treatment of the charac-
teristic 2 case along the lines suggested by Witt.)

The real breakthrough in the algebraic theory of quadratic forms came
with Pfister’s papers (1965, 1965a, 1966).

I heard (or rather read) the name Pfister for the first time on 22nd
November 1963 when I received a postcard from H. Lenz telling me: Un-
terdessen hat Herr Dr. A. Pfister, Math. Institut Göttingen, in den dort
angeschnittenen Fragen ganz wesentliche Fortschritte erzielt. In a letter
dated 4th April 1999, Pfister informed me in some detail about the discov-
ery of his structure theorems. The story begins with a course by H. Lenz
on Geometrische Algebra in the summer semester 1962 at the University of
Munich. It contained material from Artin’s book (1957) and Dieudonné’s
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book (1955) on classical groups, but mentioned also Hurwitz’ work on the
composition of forms, H. Kneser’s remarks (1934) on the level of fields, some
inequalities relating level and number of square classes, the u-invariant and
a related result of M. Kneser. Pfister writes: Das war gewissermaßen meine
Grundlage. (In particular, Kneser’s paper (1934) must be considered as one
of the germs of the algebraic theory of quadratic forms. It formulated a
really significant (and accessible) problem and contributed to its solution.)
A little later, Lenz published a short paper (1963) expanding on this earlier
work. It contains the first “structure theorem” for the Witt group: Satz 1.
Die Wittsche Gruppe eines nicht formalreellen Körpers K ist eine 2-Gruppe
. . . and it finishes with an important open problem: Es ist ja immer noch
offen, ob die Fälle s > 4 überhaupt vorkommen; und falls ja, ob dann die
Anzahl q der Quadratklassen endlich sein kann. (The second half of this
problem is still open.)

The story continues in Göttingen, where Pfister became M. Kneser’s
assistant in May 1963. The decisive event was a colloquium talk by Cassels
on 11th July 1963, where Cassels proved that 1 + X2

1 + . . . + X2
n is not

a sum of n squares in R(X1, . . . , Xn). Pfister reported in (1984): I heard
this talk and immediately realized that the result should be connected with
the unsolved problem [of the possible levels]. One day later he had proved,
using Cassels’ theorem, that H. Kneser’s construction (1934) gives a field of
level 8; three days later the case of level 16 was solved. In August Lenz and
Pfister met and discussed various problems, in particular Lenz formulated
the problem of the possible Pythagoras numbers. Pfister became more and
more convinced that a general solution of the level problem should be related
to the fact that the elements represented as sums of 2n squares form a group.
He was able to prove this decisive fact on 17th September and submitted
his first paper (1965) a few weeks later.

The exchange of ideas between Lenz and Pfister continued during the
following year. In February 1964 Lenz asked whether, in the composition
formula

n∑

i=1

z2
i =

(
n∑

i=1

x2
i

)(
n∑

i=1

y2
i

)
, n = 2m,

the zi can be taken as linear functions in the yj , a fact proved immediately
by Pfister. In March Pfister proved that the values of “Pfister” forms form
a group; in May he submitted the corresponding paper (1965a); Lenz con-
jectured that the Witt group has only 2-torsion, a fact proved by Pfister
the same day; a few days later Lenz conjectured that the Witt ring does
not contain zero divisors of odd dimension, etc. Also, during these months,
Pfister’s results became known to the public through colloquia, and talks in
Oberwolfach by himself, Cassels and Lenz. In a letter dated 1st December
1964 Pfister informed me about the essential results of his Inventiones pa-
per (1966) and mentioned also: Ungelöstes Problem:

∞∩
n=1

Mn = 0 für jeden
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Körper K ? This “Hauptsatz” was proved a few years later by Arason and
Pfister (1971).

Regarding the cooperation with Lenz, Pfister writes (4.4.99): Lenz ar-
beitete alle meine Briefe gründlich durch, fand eigene Beweisvarianten und
massenhaft neue Fragen. Er investierte enorm viel Interesse, Zeit und Ar-
beit. Sein Einfluß auf mich war daher in diesem guten Jahr der stärkste und
wesentlichste. – I think that this cooperation is a fine example of the fact,
that also – and perhaps quite often – not so well known mathematicians
contribute to the progress of our science.

It is well known that several authors – in particular Witt himself, who
suddenly reappeared on the stage – simplified and extended Pfister’s re-
sults. It is however my impression that all these contributions are only
marginal compared to Pfister’s achievements. Of course, Witt’s approach,
using “round” forms – which I shall mention again later – is simpler, very
elegant and clever. But Pfister’s theory of multiplicative forms gives more
and also deeper results. One should note, for example, that only Pfister’s
“strong” methods give a proof of the Arason-Pfister Hauptsatz.

Because it gives me the opportunity to mention an other important
name, I want to report a little anecdote concerning the exchange of ideas
between Pfister and Witt: It is well-known that one of the few examples
where the classification is possible are the C2-fields of Tsen (1936). In fact,
Tsen’s work is the basis for all later work on quadratic forms over algebraic
function fields. By definition, a field K has the Ci-property if every homo-
geneous polynomial f ∈ K[X1, X2, . . . , Xn] of degree d > 0 with n > di

has a root (x1, x2, . . . , xn) 6= 0 ∈ Kn. In particular, the Cn-property of
C(X1, . . . , Xn) is essential in Pfister’s work on Hilbert’s 17th problem. But
it seems that by the sixties Tsen had been completely forgotten; instead
references were made to Lang and Nagata. So, when also Pfister attributed
the Cn-property to Lang, Witt replied: Das hat doch schon mein Freund
Chungtze Tsen bewiesen! – This may have saved Tsen’s name from falling
into oblivion.3

Certainly Pfister’s first papers on the level, on multiplicative forms and
on the structure of the Witt ring contain his best known results. The alge-
braic theory of quadratic forms rests on this foundation. It seems to me that
after this breakthrough Pfister’s main interests shifted from structure theo-
rems more in the direction of the study of concrete “individual” forms. (Of
course, it is an essential point, that the structure theorems resulted from the
study of the properties of individual forms, in particular Pfister forms.) Any-
way, his lecture notes (Pfister (1995)) show his main interests very clearly:
the u-invariant and related invariants, Pythagoras numbers, systems of qua-
dratic forms, etc. They contain a wealth of information which is difficult
to find elsewhere. One should particularly mention Pfister’s work on sys-
tems of quadratic forms and his interest in “strong” properties of forms over
function fields (e.g. estimates for the “size” of isotropic vectors). Today it
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is clear that these problems are much more difficult than the more formal
theory.

4. Algebraic topology

The flourishing of a theory depends on interesting examples and appli-
cations. For the algebraic theory of quadratic forms, algebraic topology has
played an important rôle, which – in my opinion – has perhaps been under-
estimated a little bit so far. Already in the twenties and thirties quadratic
forms appeared several times as algebraic invariants of topological objects.
I want to mention and to discuss briefly the following (related) examples:

1) the Kronecker-Poincaré intersection form,
2) the quadratic form of a knot,
3) the linking form (Verschlingungsform).

If M is a compact oriented connected 4k-dimensional manifold, one has
the cup product symmetric bilinear form

∪ : H2k(M,Z)×H2k(M,Z) −→ H4k(M,Z) = Z.

H. Weyl (1924) – and independently but in less explicit form Veblen (1923) –
proved that this form is unimodular. Weyl already expected this form to be
an interesting topological invariant of the manifold: Por tanto, con m par,
la clase a que pertenece la forma caracteristica de grado m (en particular
su indice de inercia) constituye una nueva peculiaridad de las superficies
2m-dimensionales respecto al Análisis-Situs.

The quadratic form of a knot was first defined by the little known math-
ematician Lebrecht Goeritz (1933), who apparently worked out suggestions
and ideas of K. Reidemeister. Already the title of his paper “Knoten und
quadratische Formen” indicates a close connection. For every knot an inte-
gral quadratic form is defined. The class of this form is determined by the
isotopy class of the knot up to integral equivalence and adding or cancelling
direct summands 〈±1〉. In particular the Minkowski symbols cp are well
defined knot invariants.

The linking form is perhaps a less well known invariant. It is defined
on a finite abelian group taking values in Q/Z. This finite abelian group is
the torsion subgroup of Hk(M) of a (2k + 1)-dimensional oriented manifold
M . If k is odd this form is symmetric, if k is even it is skew-symmetric. It
is defined and discussed in some detail by de Rham (1931) who also gives
references to earlier work by Brouwer and Lebesgue. If M is the twofold
covering of a knot complement, Seifert (1936) points out a close connection
to the quadratic form of the knot. This form leads naturally to a purely
algebraic study of forms on finite abelian groups. The first steps of such an
investigation are already contained in de Rham’s paper. He considers the
case of skew-symmetric forms and gives a complete description. However he
fails to notice the orthogonal decomposition in primary components, using
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elementary divisors instead, and he does not discuss the symmetric case.
Unaware of de Rham’s paper, Kneser and Puppe (1953) investigate the sit-
uation more carefully, and they proved essentially (and up to terminology) a
rather fundamental algebraic result in the theory of quadratic forms, namely
the existence of the exact sequence

0 → W (Z) → W (Q) → WT → 0 (∗)

where WT denotes the Witt group of symmetric bilinear forms on finite
abelian groups. It is interesting to note what R.H. Fox writes about this
paper in his report for the Mathematical Reviews (1954 I 100): The proof
depends on a little-known theorem of A. Meyer . . . and an equally recondite
theorem of M. Eichler . . . It seems to the reviewer that this theorem is of
considerable importance, not only to knot theory but to the theory of qua-
dratic forms itself; can it be that there is no simple direct proof of it? (I
must confess that I never looked at this paper before preparing this talk and
that I was quite surprised when I saw that this result (∗) had essentially
been proved so early.)

However, I am not the only one who had not read the Kneser-Puppe
paper. In 1963 C.T.C. Wall once again discussed quadratic forms on finite
groups mentioning neither de Rham nor Kneser-Puppe. Like the earlier
papers he does not work out the 2-part completely. It seems that the details
of quadratic forms on 2-groups were written down explicitly only around
1970 when also the relations to Gaussian sums and quadratic reciprocity
were pointed out by several authors. A complete discussion is provided by
Durfee (1977).

I will later discuss another instance where a question from knot theory
led to very significant developments in the theory of quadratic forms.

I come now to the intersection form of a 4k-manifold. It is well known
that this has been in the center of mathematical research for more than
50 years. The first thing to mention is perhaps Hirzebruch’s (1956) in-
dex theorem (Hauptsatz 8.2.2) answering the question posed (implicitly) by
Weyl and which is one of Hirzebruch’s great achievements. Since the index
of inertia depends only on the real intersection form, the theory of qua-
dratic forms does not yet enter significantly at this point. However, it was
recognized very early that the intersection form has the “right” functorial
properties. For example it is hyperbolic (over any coefficient field) if M
bounds a (n + 1)-manifold. Thus it gives an invariant from the cobordism
ring to the Witt ring. A much deeper connection between quadratic forms
and algebraic topology is established in Milnor’s paper (1958). Though it
is to some extent a report on known results it had a significant influence on
the further development on both theories. Milnor discusses the problem to
which extent an oriented simply connected 4-manifold is determined by its
quadratic form. This continues earlier work of Whitehead (1949). Milnor
proves that two such manifolds have the same homotopy type if and only
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if their quadratic forms are isometric. So, for a complete classification of
the homotopy types, one needs a classification of integral unimodular forms.
With the assistance of O.T. O’Meara he summarizes what was known about
this problem, thus introducing odd and even forms (type I and II), men-
tioning E8 and Gaussian sums and referring to earlier work of A. Meyer, H.
Braun, B.W. Jones and Eichler. He also asks which quadratic forms occur as
intersection forms, a question which leads directly to the marvellous work
of Donaldson and Freedman. An other closely related topic discussed by
topologists during these years is the so called van der Blij invariant mod 8
of an integral quadratic form (van der Blij (1959)).

A few years later, Milnor (1961) discusses a more delicate question origi-
nating from a concrete problem in topology (surgery): When is the intersec-
tion form isotropic? As an application of the Hasse-Minkowski theorem, he
proves that this is the case if and only if it is indefinite (remember that the
determinant is ±1). At this point a really significant connection between
topology and algebra is established. (See also the remarks on the work of
Freedman below.) Certainly, Milnor became interested in the theory of qua-
dratic forms through these examples. This had far-reaching consequences
for the further development of the theory of quadratic forms.

Looking at papers in algebraic topology from this time, one quite often
finds some remarks on quadratic forms. Serre (1962) – at the request of H.
Cartan – took up the task of giving a systematic treatment. His talks in
the Cartan seminar of 26th February and 5th March 1962 are remarkable
examples of clear and perspicuous presentation.

He begins with the words: Il s’agit de résultats arithmétiques qui sont
utiles en topologie différentielle. He defines several new concepts (Grothen-
dieck rings, λ-ring structure) and hints at the existence of entire new theo-
ries: La catégorie S peut se définir pour un anneau commutatif quelconque
(et même en fait pour un schéma de base quelconque, non nécessairement
affine); un élément de S est l’analogue algébrique d’un fibré vectoriel ayant
pour groupe structural le groupe orthogonal.

In Serre’s talk we not only find new concepts but also new results or at
least new proofs. In particular, he gives a complete classification of indefinite
unimodular lattices, clearly a fundamental result. One may argue that, in
principle, this had already been obtained: Eichler’s (1912 – 1992) result
(1952, Kap III, §15) on indefinite lattices is a much more general and deeper
result. (For n > 2 every spinor genus contains only one class.) However,
Eichler fails to mention the explicit application to unimodular Z-lattices, and
also O’Meara (1963) misses this point quite narrowly in the last paragraph
of his book. Also, Serre’s proof – using only the Hasse-Minkowski theorem
in Meyer’s version and Kneser’s method of neighbors – is much easier than
the application of Eichler’s theory.

Though this is quite clear from the discussion of Milnor’s algebraic work
in Bass (1993), I would like to add one further remark concerning J. Milnor:
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he arrived at the theory of quadratic forms from (at least) two different
directions. One has been sketched already; its starting point is the inter-
section form and the classification of 4-dimensional manifolds. The other
one begins with Whitehead’s work on simple homotopy equivalence of finite
CW-complexes. This leads to the Whitehead group and Whitehead torsion
which is related to h- and s-cobordism. The calculation of the Whitehead
group is closely related to the functor K1 and the congruence subgroup
problem. This in turn leads to central extensions and the functor K2, to
Steinberg symbols, norm residue symbols, reciprocity laws, etc. The defin-
ition of K2 is perhaps Milnor’s best known achievement in algebra (Milnor
1971a). When it appeared it certainly came as a great surprise to the math-
ematical community. Bass’ (1968) monumental monograph on K0 and K1

had already been published, but it was not at all clear how to define K2

with the right properties. As far as quadratic forms are concerned, the es-
sential point seems to be that Milnor realized that for fields the functors K2

(via Matsumoto’s theorem) and Witt ring (and perhaps Galois cohomology)
have very similar descriptions by generators and relations. This led to im-
portant results (e.g. on the Witt group of a rational function field K(X))
and eventually to the Milnor conjecture.

The paper (1970) which contains the Milnor conjecture is certainly Mil-
nor’s most important contribution to the theory of quadratic forms. But
it should not be overlooked that also (1969) on the classification of isome-
tries had some significant influence on the further development. The paper
originated also in topology, namely in some problems about knot cobor-
dism discussed by Levine, but its content is entirely algebraic. First of
all, it contains a very perspicuous presentation of the classification problem
for isometries. As mentioned in 1.4, this problem had, in principle, been
solved before. But Milnor’s treatment opened the way to a much more
general theory. His approach is a model for similar classification problems
(self-adjoint transformations, sesquilinear forms, pairs of quadratic forms,
in general spaces with additional structures). Together with the relevant
chapters in Bass’ book (1968) it led directly to the introduction of additive
and abelian categories with duality, a convenient setting for many aspects
of quadratic form theory. Secondly the paper contains what may seem to
be a purely technical result, namely that over p-adic fields the transfer of
quadratic forms preserves the Hasse symbol. Today it is well known that
this theorem has many applications. When I saw it the first time, I real-
ized immediately that this allowed to reduce the proof of Hilbert’s quadratic
reciprocity law for arbitrary algebraic number fields to the field Q. During
my stay in Princeton, I mentioned this to A. Weil and he informed me that
already his paper (1964) contained Milnor’s result and what is now known
as Weil’s reciprocity law.

But now we have digressed perhaps too far from algebraic topology! Lack
of time, space, energy and information – the basic concepts of our world –
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prevent me from discussing the relations between quadratic forms and topol-
ogy in more detail, and I want to close this section with two remarks. Firstly,
since the sixties also non-simply-connected oriented 2k-dimensional mani-
folds were considered. In this case the fundamental group acts as a group of
isometries of the intersection form. This leads to the study of ε-symmetric
and ε-quadratic forms over group rings. More than anybody else, C.T.C.
Wall initiated a systematic investigation of this situation, from the topo-
logical side as well as from the algebraic. Surgery obstruction groups and
Witt groups of various kinds were defined, their functorial properties studied
systematically, exact localization sequences, Mayer-Vietoris sequences and
periodicity results were proved and more or less explicit calculations were
performed. This is a field of active research to the present day.

Secondly, I want to mention the marvellous work of M. H. Freedman
and S. Donaldson. Compact simply connected 4-manifolds M are charac-
terized up to homeomorphism by the intersection form ω (and the Kirby-
Siebenmann invariant σ ∈ Z/2Z, indicating whether M stably has a differ-
entiable structure or not). Every unimodular quadratic form ω arises in this
way. The invariants ω, σ are independent except for the relation prescribed
by Rochlin’s theorem: if M is stably differentiable, then the signature is a
multiple of 16. Moreover, if a differentiable 4-manifold has a positive defi-
nite intersection form, then this is actually the unit form. (For all this, see:
Proceedings of the International Congress of Mathematicians 1986.)

5. Unpublished work

Digressing even more from a systematic treatment of my topic, I now
want to report on some unpublished work which nevertheless had significant
influence on the development of the algebraic theory of quadratic forms.

The first is a talk by M. Kneser (1962) in Paris. It seems his private
notes of this talk did not circulate widely, but certainly Kneser’s results
were prototypical for later work by a considerable number of authors (Bak-
Scharlau, Fröhlich, Knebusch, Knebusch-Rosenberg-Ware, Wall, Scharlau).
I received the manuscript in July 1967; the (unpublished) second part of
my Queen’s University course on quadratic forms in 1968/69 was partially
based on it. Kneser’s notes contain in particular: the definition of various
Witt-Grothendieck groups over arbitrary rings; a brief discussion of the Clif-
ford algebra; the description (over fields) of the discriminant and the Witt
invariant via non-abelian Galois cohomology; a discussion of the first terms
of the filtration of the Witt-Grothendieck ring; a discussion of special ground
fields, in particular of local and global number fields. He then discusses Witt
and Witt-Grothendieck groups Ŵ of rings of algebraic integers considering
unimodular and also non-degenerate (det 6= 0) forms. In fact his results
carry over easily to an arbitrary Dedekind domain R. As an application of
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the strong approximation theorem he proves the exactness of the sequence

0 −→ C/C2 −→ Ŵ (R) −→ Ŵ (K)

(where C denotes the ideal class group). In retrospect one sees a rather close
connection to the Kneser-Puppe paper (1953) and gets the impression that
already at that time Kneser knew all basic results concerning Witt groups
of Dedekind domains and their quotient fields as exposed e.g. in Scharlau
(1985), Chap. 5 and 6.

Next I want to mention some work of G. Harder which was not pub-
lished by Harder himself but is contained (at least partially) in Knebusch’s
Habilitationsschrift (1970). Harder had worked on a much more general
and difficult problem, namely semisimple groups over complete curves. Spe-
cializing one of his results to the orthogonal group and the projective line
(Harder (1968), 3.5) he obtained the result that every quadratic form over
the polynomial ring K[X] is extended from K. Obviously this led him
to think about quadratic forms over the rational function field. One should
note perhaps at this point that the analogous problem in algebraic K-theory,
namely the structure of projective modules over R[X] had already received
a lot of attention at this time; in fact it was one of the central problems of
algebraic K-theory (see Weibel (1999) for more details).

Knebusch told me in a letter of 17th December 1969 that during the sum-
mer semester 1968 Harder had established the existence of the reciprocity
(or sum) formula for the second residue forms. That a result like this should
hold was clear from the analogous result for the Brauer group. Details and
generalizations of Harder’s ideas were worked out a little later by Knebusch
(1970), Scharlau (1972), and Geyer, Harder, Knebusch, Scharlau (1970). In
some colloquium talks Harder gave simple proofs of his result which used
only elementary lattice theory and the Riemann-Roch theorem for rational
function fields (a more or less trivial result).

At about the same time, J. Tate worked on a very similar and closely
related problem, namely the computation of K2 of Q and of a rational
function field K(X). In the course of this computation he essentially re-
discovered Gauss’ first proof of the quadratic reciprocity law. Tate talked
about these things several times and thus inspired Milnor’s analogous com-
putation of W (K(X)), which is more elementary than Harder’s approach.
Milnor (1970) also published Tate’s results. As mentioned before, all this
work of Kneser, Harder, Tate, and Milnor is closely related, and has a strong
number theoretic flavour.

I now come to a different topic, namely Witt’s highly influential col-
loquium talks in 1967 and 1968. The first was given in Cologne on 10th
November 1967; it is now published in Witt’s Collected Papers (1998). It is
well known that in this talk Witt gave simplified proofs of Pfister’s struc-
ture theorems. He achieved this by the introduction of round forms, and he
obviously enjoyed to talk about “round quadratic forms”. (He also liked to
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mention that he had learned the Grothendieck construction from his Chi-
nese nanny. And when he passed from the Grothendieck ring to the Witt
ring he said: and now we introduce the relation 1 + −1 = 0.) As one may
guess, I had attended the Cologne lecture and was quite impressed. Witt
spoke however for almost two hours and the audience got a little nervous, in
particular when he mentioned very close to the end that he had a lot more to
say about lattices, their Θ-series and modular forms. I want to mention one
further little detail: at some point he mentioned pythagorean fields. It was
the first time that I heard of such a thing but one year later I noticed that
the pythagorean closure of a field may in some sense replace the family of all
real closures. I think in this way pythagorean (and related) fields became an
interesting special topic in the algebraic theory of quadratic forms. – Witt’s
results - though unpublished – became quickly known in the community, in
particular through Lorenz’ (1970) and my own lecture notes.

The last unpublished paper which I would like to mention is Ax (1967)
which was submitted for publication on 11th January 1967 but withdrawn
after Pfister (1967) had completely solved the problem posed there. It is con-
cerned with a quantitative version of Hilbert’s 17th problem: every positive
definite function in R(X1, . . . , Xn) is a sum of 2n squares. Ax proved this
for n ≤ 3 and contributed substantially to the general case. In particular
he had the idea to apply Tsen’s theorem. Pfister (1995 p. 89) writes: I am
very grateful to J. Ax for sending me a preprint of his manuscript . . . . This
was one of the most lucky occurrences in my life. After a careful study of
the manuscript I realized that the reduction to Cn-fields should be retained,
but that the use of cohomology should be replaced by multiplicative forms.
- Of course, this is exactly the principle of the Milnor conjecture: replace
cohomology by quadratic forms, cup products by Pfister forms. (Unfortu-
nately, Ax’s important paper is not mentioned in any of the standard books
on quadratic forms.)

Perhaps one may conclude this section with the remark that the course
of history cannot entirely be reconstructed from published documents but
other sources have to be considered also in order to get a more complete (and
accurate) picture. (Concerning the history, one may mention the work of Vo-
evodsky and his collaborators and quite a few of Rost’s influential preprints.)

6. Some reminiscences 1962 – 1970

I began my university studies in Bonn in the summer semester 1959.
During the summer term 1962 I attended a little course (one hour weekly)
by F. Hirzebruch on “Quadratische Formen”. It covered roughly the first
four paragraphs of Hirzebruch’s lecture notes (Hirzebruch, Neumann, Koh
(1971)). During the summer vacation I undertook a two-months backpack
trip to the Near East resulting in one of my first ornithological publica-
tions, Scharlau (1963) (on the birds of the Egyptian oasis El-Dachla). The
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following winter semester I attended two seminars of Hirzebruch, one on
“Charakteristische Klassen”, the other the “Oberseminar”. I gave talks on
“Stiefel-Whitney-Klassen” and the “Hurwitz-Radon-Eckmann Theorem” on
the number of independent linear vector fields on spheres. - Algebraic topol-
ogy was the big thing in those days! – Some time later, I asked Hirzebruch for
a subject for a “Diplomarbeit” and I suggested myself the field of quadratic
forms. This was a little bit unusual since almost all of Hirzebruch’s students
worked in topology. Nevertheless, he agreed and suggested that I should
start reading Delzant’s note (1962). This lead me to Galois cohomology and
Serre’s Corps locaux (1962) that had just appeared.

From the first moment on it was obvious that it should be possible to
develop a theory of quadratic forms similar to – but much easier than - the
theory of vector bundles and K-theory. I made for myself lists of analo-
gies between the two theories, and talked a lot about this with Karl-Heinz
Mayer, the assistant supervising my progress. By the summer semester 1964
I had finished my Diplomarbeit “Quadratische Formen und Stiefel-Whitney-
Klassen”. Among other things, I worked out the effect of the Bockstein ho-
momorphism on the Stiefel-Whitney classes and showed that the non-abelian
Galois cohomology of

1 → SO → O → {±1} → 1; 1 → {±1} → Pin → O → 1

leads to the first two Stiefel-Whitney classes. Both results were suggested
by topology; I was not aware of Springer’s paper (1959) containing the same
result.

My Diplomarbeit was never published, not even submitted to the “Prüf-
ungsamt”. I hesitated to take the examination because then I might have
been drafted for military service. In the meantime S. Lang had invited me
to spend one year at Columbia University. While preparing my stay there,
I continued my work and computed the Witt group of a power series field
k((t)) – again being unaware of Springer’s result (1955) – and discovered
as an application fields where quadratic forms are not classified by Stiefel-
Whitney classes. (This is of course a very trivial fact. But in March 1970, at
the inauguration of “New Fine Hall” in Princeton, J. Milnor, who spoke on
the results of his paper (1970), mentioned it and wrote my name in huge let-
ters across the board, one of the prouder moments of my mathematical life.)
I talked to J. Tits, who had become a professor in Bonn, about these results.
He communicated them to Serre, who, of course, noticed immediately the
generalization to local fields.

At Columbia I attended a very substantial course on “Quadratic Forms”
by H. Bass. It started with algebraic number theory and treated quadratic
forms in a quite general and modern fashion. Later Bass extended this
material to his Tata notes (1967). Bass’ course was also attended by T.-Y.
Lam and A. Bak.
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Back in Bonn, I started to work on my thesis on “Quadratische Formen
und Galois-Cohomologie” which I finished by November 1966. It appeared
in somewhat revised form in Scharlau (1967) and contained also some results
on the Brauer group of henselian fields. After the Ph.D.-examination I wrote
my paper on the Brauer group of algebraic function fields. I think, I must
have tried to compute also the Witt group of a rational function field but
I was not successful. The academic year 1968/69 I spent with my friends
J. Neukirch (1937 - 1997) and W.-D. Geyer and their families at Queen’s
University. We had a really good time; I enjoyed very much giving a course
on quadratic forms and learned a lot in Geyer’s course on algebraic function
fields. One of the things I tried to work out was a cohomological proof
of Springer’s result on odd degree extensions. I did not succeed, but in the
process I discovered the method of transfer in the first days of October 1968.
The point was to take not the trace but a suitable different linear map. I
realized immediately that this would prove to be a useful construction.

The following year I spent at the Institute in Princeton. My main inter-
est were structure theorems for the Witt ring and applications of the method
of transfer on the one hand and quadratic reciprocity laws for number and
function fields on the other. I profited very much from the work and talks
of Milnor, Bass, Tate, Harder and Knebusch. As mentioned before, A. Weil
informed me about his results on the transfer and “Weil reciprocity”. He
also suggested that the characteristic 2 case always should be included as far
as possible. It seems the quadratic forms community has not followed this
advice. (Knus et al. (1998) is an exception). M. Knebusch and I exchanged
several letters resulting a little later in some common publications on the
questions mentioned above. – Looking back at that time it seems to me that
it was quite easy to discover and prove theorems – theorems, perhaps not
very deep and difficult, but certainly basic and aesthetically satisfying. Life
was like in paradise, one had not to work very hard but just to pick up the
fruits.

7. An outlook

It is probably not possible to predict the future course of a mathemat-
ical theory. But one may assume that already visible trends will continue
for some time. The algebraic theory of quadratic forms is an offspring of
abstract algebra, in particular of linear and geometric algebra and of field
theory. We have seen that also problems originating in topology played an
important rôle. However, for about twenty years algebraic geometry has had
the strongest impact on the algebraic theory of quadratic forms. In some
sense this is true also for the preceding period. Significant work of Cassels,
Ax, Pfister and others made essential use of polynomial rings etc., that is of
algebraic geometry in a broad sense. The same is true, of course, for Kneb-
usch’s concept of generic splitting fields. I remember that I talked around
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1964 to M. Kneser about possible research problems, and that he mentioned
quadratic forms over function fields, adding that it would be necessary to
study algebraic geometry for this purpose. In this context it may be interest-
ing to see how M. Knebusch remembers these years (letter dated 1st March
1999): Ganz im Gegenteil glaubte ich ursprünglich, daß eine direkte Theo-
rie der quadratischen Formen über Körpern einfach zu schwierig ist. Man
müsste erst mehr über quadratische Formen über vollständigen Schemata
wissen, um bei Körpern weiter zu kommen. Ein Körper erlaubt zu wenig
Geometrie. Es gibt dort sozusagen zu viele quadratische Formen, während
es über den vollständigen Schemata nur wenige Vektorbündel mit quadratis-
cher Form gibt, aber gute Möglichkeiten für eine geometrische Betrachtung.
- Auch heute glaube ich, daß diese Philosophie nicht ganz verkehrt ist.

In fact, these remarks seem to describe very precisely the present sit-
uation: the Milnor conjecture is a statement about quadratic forms over
fields, but Voevodsky’s proof requires a lot of difficult and to some extent
highly technical algebraic geometry. The future will show how much of
this is really necessary. But in the meantime we can expect that algebraic
geometry will continue to exert a strong influence on quadratic form the-
ory. Many of the most important unsolved problems – odd u-invariants4,
the behaviour of generic splitting towers, the validity of Hasse principles,
the computation of u-invariants and Pythagoras numbers, Witt groups of
function fields, curves and higher-dimensional varieties, relations to Chow
groups, K-groups, and cohomology – all this and much more seems to de-
pend on further progress in algebraic geometry. However, it is interesting to
observe that the constructions by Voevodsky (and others, like Bloch, Fried-
lander, Morel) involve many techniques from algebraic topology. One of the
main obstacles to progress seems to be the fact that the Witt group functor
does not have good properties e.g. one does not know analogues of the ex-
act sequence of cohomology or K-theory for Witt groups. Perhaps also this
problem will be resolved in the context of algebraic geometry.

Footnotes

1) In the introduction of his paper (1937) Witt makes the following interesting remark: Da
aus der neueren Theorie der Algebren bekannt ist, daß eine Algebra (a, b) im wesentlichen
dasselbe ist, wie ein System von Normrestsymbolen, hat Artin in einer Vorlesung die
quadratischen Formen von vornherein auf dieser Grundlage behandelt. Er ordnete jeder
Form f =

Pn
1 aix

2
i die Algebra S(f) =

Q
i≤k(ai, ak) zu. Die Invarianz dieser Algebra

bei allen Transformationen war allerdings nicht ganz leicht einzusehen, . . . . This leads
to the question how Artin could in fact prove the invariance of S(f); usually one applies
cancellation and Witt’s “Satz 7”. This remark seems also to indicate that what today
is usually called Hasse algebra should perhaps be named after Artin. And finally it is
fascinating to observe, that already in this first paper the crucial word “Normrestsymbol”
occurs. This is certainly a “Leitmotiv” of the whole theory, leading directly to the Milnor
and the Bloch-Kato conjecture.

2) It seems that Durfee’s paper is not very well known. The standard books do not refer
to it. But Durfee had essentially proved the same results as later Springer.
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3) The history of the Cn-property is strange: It was discovered by Tsen and Lang, and
certainly Lang was not aware of Tsen’s priority. Nevertheless, their work was perhaps not
“independent” because both were students of E. Artin. D. Leep pointed out to me that
the situation is even more confusing: almost simultaneously with Lang’s work, also Carlitz
(1951) proved the Cn-property of function fields over finite fields. Necessarily his methods
and results are very close to Tsen’s and Lang’s. F. Lorenz (Münster) has collected some
biographical information on Tsen (unpublished). More information on Tsen and his work
is contained in Sh. Ding, M. Kang, E. Tan (1999).

4) In July 1999 Izhboldin proved the existence of fields of u-invariant 9.
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89–104
A. Prestel (1984): Lectures on formally real fields. Lecture Notes in Math-
ematics 1093, Berlin, Heidelberg, New York: Springer
H.G. Quebbemann, R. Scharlau, W. Scharlau, M. Schulte (1976): Quad-
ratische Formen in additiven Kategorien. Bull. Soc. Math. France Mémoire
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Local fundamental classes derived from higher K-groups: III

Victor P. Snaith

Abstract. To a Galois extension of local fields is associated a canonical fun-
damental class constructed from algebraic K-groups in dimensions 2r, 2r+1 for
any r ≥ 0. The case r = 0 is a familiar part of classical local class field theory
and the higher dimensional analogues satisfy all the same naturality proper-
ties. In positive characteristic we study the connection between the K2/K3

fundamental class and Lichtenbaum’s motivic complex of weight two. Also the
fundamental classes are used in the construction of higher-dimensional Chin-
burg invariants, Ωr(E/F, 2), associated to a Galois extension of global fields.
We explain how to calculate Ω1(E/F, 2) in the case of tamely ramified Galois
extension of function fields.

1. Introduction

At the conference I gave a talk entitled: “Does the weight-two motivic complex
have an Euler characteristic?” and in this paper I shall describe the background
to this question – the existence of local fundamental classes associated to higher
K-groups – and ramifications in a number of directions, including the connection
with the motivic complex of weight two.

Let us begin with the local fundamental classes. Suppose that G is a finite
group and that

E : A −→ B −→ C −→ D

is a 2-extension of Z[G]-modules in which B and C are cohomologically trivial.
Such a sequence defines an element of Ext2Z[G](D, A).

There are two natural operations associated to a subgroup, J ⊆ G. The first
- passage to subgroups - is merely to consider the modules as Z[J ]-modules. The
second - passage to quotient groups - is more complicated and applies to the case
of a normal subgroup, J / G. In this case, let AJ , AJ denote the J-invariants
and J-coinvariants of A, respectively ([19] p.3). We have a commutative diagram
of Z[G/J ]-modules in which the rows and columns are exact and NJ denotes the
norm, N(x) =

∑
g∈J gx,
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BJ

AJ

CJ

BJ

DJ

CJ

0

NJ
∼= NJ

∼=

---0

?
?

---

resulting in the associated J-invariant/coinvariant 2-extension

AJ −→ BJ −→ CJ −→ DJ

in which the Z[G/J ]-modules, BJ and CJ , are cohomologically trivial.
These operations are relevant to the naturality properties of the fundamental

classes constructed in ([15] [16] [17]).

Theorem 1.1.
Let L/K be a Galois extension of local fields with group, G(L/K). Then for

each r ≥ 0 there exists a canonical 2-extension of Z[G(L/K)]-modules of the form

0 −→ K2r+1(L) −→ Ar(L) −→ Br(L) −→ K2r(L) −→ 0

satisfying the following conditions:
(i) The Z[G(L/K)]-modules Ar(L) and Br(L) are cohomologically trivial.
(ii) If G(L/E) ⊆ G(L/K) then the canonical 2-extension associated with L/E

is canonically isomorphic to the canonical 2-extension for L/K, considered as a
2-extension of Z[G(L/E)]-modules.

(iii) If G(L/E) /G(L/K) then the canonical 2-extension associated with E/K
is canonically isomorphic to

K2r+1(L)G(L/E) −→ (Ar(L))G(L/E) −→ (Br(L))G(L/E) −→ K2r(L)G(L/E).

Actually, in [15] and [16] we showed how to construct the canonical, natural 2-
extension (depending up to quasi-isomorphism upon a choice of a root of unity, ξt)
of Theorem 1.1 for finite Galois extensions of p-adic local fields. Furthermore, when
r ≥ 2 in this case we needed to assume that the Lichtenbaum-Quillen Conjecture
([16] p.326) was true for the mod p algebraic K-theory of p-adic local fields. When
[16] was written this was known for 2-adic fields by [22]. For p-adic fields when
p is odd the conjecture was proved recently [8]. When L/K is a Galois extension
of local fields of characteristic p the Lichtenbaum-Quillen Conjecture is now known
to be true by [7], which shows that the K-theory of L has no p-torsion, combined
with the results of [20].

These advances make it possible to construct the local fundamental classes
associated to the higher K-groups of local fields without any assumptions.

When r = 0 the result is well-known from local class field theory and the
theory of the Brauer group. The construction in higher dimensions is accomplished
by imitating the construction of the classical local fundamental class given in ([14]
p.202; see also [18] p.303, [19] p.9). Since [15] and [16] only dealt with p-adic local
fields I shall devote §2 to a sketch of the construction in the characteristic p case.
I shall do this by giving a complete treatment of the construction of the K2/K3
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case in §2.1-§2.18 and in §2.19 I shall explain the simple modifications necessary for
the K2r/K2r+1 case. In §3 we concentrate on the case of a tamely ramified Galois
extension in characteristic p. From the construction of §2 we deduce a simpler
representative (Theorem 3.3) of the fundamental 2-extension in the tame case. We
also compute, in Remark 3.6, the Ext2, in all cases, in which the local fundamental
2-extensions live. We would like to compare our K2/K3 local fundamental class
with the motivic complex Γ(2, L) of ([9] [10]). As a first approximation to this, in
Theorem 4.2, we sketch how to prove that the K2/K3 local fundamental class and
Γ(2, L) induce the same cup-product isomorphism in Tate cohomology, at least if
we invert 2. It is here that the homological results of Remark 3.6 are used to reduce
to the tame case. The last two sections explain how one uses the K2r/K2r+1 local
fundamental classes to associate a Chinburg invariant, Ωr(E/F, 2), to each Galois
extension of global fields E/F in characteristic p > 0. The Chinburg invariant
takes its values in the class-group of the integral group-ring of the Galois group,
as explained in §5.1. This means that it may be described in terms of projective
modules or in terms of idélic-valued functions on the representation ring, via the
Hom-description of §6.2. We sketch how to evaluate Ω1(E/F, 2) in the tame case
in terms of modules (Theorem 5.6) and of the Hom-description (Theorem 6.5).

2. Constructing the local fundamental classes in characteristic p

2.1. Let L/K be a Galois extension of local fields in characteristic p > 0 with
group, G(L/K). Let K0 denote the maximal unramified extension of K, L0 = K0L
and d = [K0 ∩ L : K]. Let L denote the residue field of L so that L is a finite field
of characteristic p. Since K2r(L) and K2r+1(L) have no p-torsion [7] the results of
[20] imply that the tame symbol

δ : K2r(L) −→ K2r−1(L)

and the map induced by the inclusion of the field of constants

K2r+1(L) −→ K2r+1(L)

each has uniquely divisible kernel and cokernel. Since G(L/K) is finite we have
canonical isomorphisms of the form

Ext2Z[G(L/K)](K2r(L), K2r+1(L)) ∼= Ext2Z[G(L/K)](TorsK2r(L),K2r+1(L))

∼= Ext2Z[G(L/K)](K2r−1(L),K2r+1(L))

where TorsM denotes the torsion subgroup of M . Incidentally, for one-dimensional
local fields L the indecomposable K-group Kind

j (L) [11] differs from Kj(L) only
by uniquely divisible groups when j ≥ 3 by [2].

For the moment let us concentrate on the construction of the K2 −K3 funda-
mental class. The preceding isomorphisms of Ext-groups will be very useful since,
in the K2 −K3 case, they reduce the construction of the 2-extension of Theorem
1.1 to Theorem 2.2 below, which will be explained in the remainder of this section.

In §2.19 I will explain how to modify the following construction to the K2r −
K2r+1 case when r ≥ 2. However in §3.2 and Theorem 3.3 I will give a much
simpler construction of an equivalent 2-extension in the tamely ramified case. The
main advantages in using the following modification of the construction of [15] and
[16] are that it works even in the wildly ramified case and using it the proof of the
naturality property of Theorem 2.2 (iii) is identical to that of ([15] §4). Possibly
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one might attempt to verify the naturality properties by using Remark 3.6, which
establishes an isomorphism of Ext2’s in the wild and the tame cases, to reduce
the verification to the tame case, to reduce the verification to the case of the tame
2-extension of Theorem 3.3.

Theorem 2.2.
Let L/K be a Galois extension of (one-dimensional) local fields with group,

G(L/K), and char(L) = p. Then there exists a canonical 2-extension of Z[G(L/K)]-
modules of the form

K3(L) −→ ⊕̃d

i=1K3(L0)
1−F̂−→ W̃ −→ TorsK2(L)

satisfying the following conditions:
(i) The Z[G(L/K)]-modules ⊕̃d

i=1K3(L0) and W̃ are cohomologically trivial.
(ii) If G(L/E) ⊆ G(L/K) then the canonical 2-extension associated with

L/E is quasi-isomorphic to the canonical 2-extension for L/K, considered as a
2-extension of Z[G(L/E)]-modules.

(iii) If G(L/E) /G(L/K) then the canonical 2-extension associated with E/K
is quasi-isomorphic to

K3(L)G(L/E) −→ (⊕̃d
i=1K3(L0))G(L/E) 1−F̂−→ (W̃)G(L/E) −→ TorsK2(L)G(L/E)

where MG denotes the G-coinvariants of M .

2.3. Assume for the moment that L/K is totally ramified, so that K0 ∩L = K

and d = 1. We have isomorphisms, G(K0/K) ∼= G(L0/L) ∼= Ẑ, the adic integers,
and we may define L(s) = LK(s) ⊂ L0 to be the fixed field of sẐ for each positive
integer, s. Let κ(s) denote the kernel of the norm, NL(s)/L : K3(L(s)) −→ K3(L).
From [11], bearing in mind that Kind

3 (L) and K3(L) differ only by a uniquely
divisible group, we have a canonical exact sequence of the form

0 −→ H1(G(L(s)/L); K3(L(s))) −→ K2(L)

−→ K2(L(s))G(L(s)/L) −→ H1(G(L(s)/L); K3(L(s))) −→ 0.

Let F ∈ G(L(s)/L) denote the lifting of the Frobenius under the isomorphism,
G(L0/L)

∼=−→ G(L0/L), where L0 = Fp, the algebraic closure of Fp, and L respec-
tively denote the residue fields of L0 and L. Hence we have an exact sequence

0 −→ K3(L) −→ K3(L(s)) 1−F−→ κ(s) −→ Ker(K2(L) −→ K2(L(s))G(L(s)/L)) −→ 0

since K3(L(s))G(L(s)/L) ∼= K3(L). Taking the direct limit over s we obtain an exact
sequence of Z[G(L/K)]-modules of the form

0 −→ K3(L) −→ K3(L0)
1−F−→ U −→

⋃
s

Ker(K2(L) −→ K2(L(s))G(L(s)/L)) −→ 0

where U =
⋃

s κ(s). By a result of Tate ([21], c.f. [15] Lemma 2.1; see also [12])
K2(L) ∼= µ(L) ⊕DL where DL is uniquely divisible and µ(L) ∼= µ(L) is the cyclic
group of order prime to p given by the groups of roots of unity, µ(L). As in ([15]
Proposition 2.8)

⋃
s

Ker(K2(L) −→ K2(L(s))G(L(s)/L)) = p∞K2(L),
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the p-primary part of K2(L), which is zero.
The torsion in K3(L0) is isomorphic to (Q/Z)(2)[1/p], which also lies in U , both

being isomorphic to K3(L0). Furthermore, if L = K = Fq, then L(s) ∼= Fqs((X))
([5] p.9) and the cokernel of the injective homomorphism induced by the inclusion
of the field of constants, K3(Fqs) −→ K3(L(s)), is uniquely divisible ([11] I(1.4),
[13]). Therefore each of the inclusions

K3(Fp) ∼= (Q/Z)(2)[1/p] −→ K3(L0)

and
K3(Fp) −→ U

induces isomorphisms on Tate cohomology groups, Ĥi(G(L/K);−), for all i (c.f.
[15] Corollary 2.12).

2.4. Now let us consider the general case of a finite Galois extension of (one-
dimensional) local fields, L/K, in characteristic p with W ′ = L∩K0 and d = [W ′ :
K]. Hence W ′/K is the maximal unramified subextension of L/K. Since L/W ′ is
totally ramified we have, from §2.3, a short exact sequence of Z[G(L/W ′)]-modules

0 −→ K3(L) −→ K3(L0)
1−F−→ U −→ 0,

which we shall modify to construct the canonical 2-extension of Theorem 2.2 fol-
lowing the method of ([15] §3) which was in turn an imitation of the fundamental
class of local class field theory, as described in ([18] §7.1; [19] §1.2).

Notice that G(L/W ′) = G0(L/K) and G1(L/W ′) = G1(L/K), by ([14] p.62),
so that

r = [G(L/W ′) : G1(L/W ′)] = [G0(L/K) : G1(L/K)] .

If G(L/E) = G1(L/K) then

G(L/K)/G(L/E) ∼= G(E/K) = {a, g | ar = 1, gd = ac, gag−1 = av}
where < a >= G(E/W ′) and v = |K|.

Now let us consider the Galois groups which will be involved in the construction.
We have a map, given by the restriction of g to W ′ and denoted by (g|W ′), inducing
a homomorphism

h1 : G(K0/K)×G(L/K) ∼= Ẑ×G(L/K) −→ G(W ′/K)

defined by h1(F i, z) = (F i|W ′)·(z|W ′)−1. Here, as in §2.3, F denotes the Frobenius
automorphism. To a pair, (F i, z) ∈ Ker(h1), we may associate the Galois auto-
morphism of L0 = LK0 which is equal to F i on K0 and to z on L. This induces an
isomorphism

Ker(h1)
∼=−→ G(L0/K).

If d = [W ′ : K] define F0 ∈ G(L0/K) by (F0|K0) = F d and (F0|L) = 1, the identity
map.

As explained in ([18] pp. 303-304; [19] pp. 9-10), there is an isomorphism of
K-algebras

λ : L⊗K K0 −→ ⊕d
i=1L0

given by the formula λ(α ⊗ β) = (F d−1(β)α, F d−2(β)α, . . . , βα) and fitting into a
commutative diagram of the form
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(1⊗ F )

F̂

λ λ

L⊗K K0

?

⊕d
i=1L0

-

- L⊗K K0

?

⊕d
i=1L0

where F̂ (x1, . . . , xd) = (F0(xd), x1, . . . , xd−1). Since K-theory is additive there is
an induced isomorphism

λ : Ks(L⊗K K0) −→ ⊕d
i=1Ks(L0)

for each s ≥ 0. This isomorphism induces a G(L/K)-action on the right-hand
group, induced by the Galois action on L. Since the Frobenius acts on the other
factor, K0, in the tensor product we may define a Z[G(L/K)]-homomorphism

F̂ : ⊕d
i=1Ks(L0) −→ ⊕d

i=1Ks(L0)

by the same formula as before. Therefore the induced map

F̂ : ⊕d
i=1K

ind
3 (L0) −→ ⊕d

i=1K
ind
3 (L0)

is also a Z[G(L/K)]-homomorphism.

Lemma 2.5. ([15] Lemma 3.2)
Suppose that g ∈ G(L/K) satisfies (g|W ′) = (F j |W ′) for some 0 ≤ j ≤ d− 1.

Then the action of g on (u1, u2, . . . , ud) ∈ ⊕d
i=1K

ind
3 (L0) is given by

g(u1, u2, . . . , ud) = F̂−j((F j , g)(u1), (F j , g)(u2), . . . , (F j , g)(ud)).

Definition 2.6. Let U ⊂ Kind
3 (L0) be as in §2.3. Define a subgroup, W ⊂

⊕d
i=1K

ind
3 (L0) by

W = {(u1, u2, . . . , ud) |
d∑

i=1

ui ∈ U}.

Hence W = U when d = 1.

Lemma 2.7. ([15] Lemma 3.4)
(i) The subgroup, W ⊂ ⊕d

i=1K
ind
3 (L0), is a Z[G(L/K)]-submodule and

(ii) the image of 1− F̂ : ⊕d
i=1K

ind
3 (L0) −→ ⊕d

i=1K
ind
3 (L0) lies in W.

Proposition 2.8. (c.f. [15] Proposition 3.5)
In the notation of §2.4, there is a natural exact sequence of Z[G(L/K)]-modules

of the form

0 −→ Kind
3 (L) ∆−→ ⊕d

i=1K
ind
3 (L0)

1−F̂−→ W −→ 0

where ∆ denotes the diagonal map.

Theorem 2.9.
With the notation of §2.4, each of the inclusions

⊕d
i=1(Q/Z)(2)[1/p] ∼= ⊕d

i=1K3(Fp) ⊂ W ⊂ ⊕d
i=1K3(L0)
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induces an isomorphism on Tate cohomology groups, Ĥi(G(L/K);−), for all i.
Furthermore

Ĥi(G(L/K);⊕d
i=1K3(L0)) ∼=





Z/r if i is odd,

0 if i is even

where r = [G0(L/K) : G1(L/K)].

Proof
The statement concerning cohomology isomorphisms follows from the discus-

sion of §2.3.
Consider the spectral sequence for ordinary group cohomology

Es,t
2 = Hs(G(W ′/K); Ht(G(L/W ′);⊕d

i=1K3(L0)))

=⇒ Hs+t(G(L/K);⊕d
i=1K3(L0)).

As in §2.4, let r = [G(L/W ) : G1(L/W ′)] = [G0(L/K) : G1(L/K)]. By Lemma 2.5,
G(L/W ′) acts diagonally, component-by-component on ⊕d

i=1K
ind
3 (L0) and trivially

on the subgroup, ⊕d
i=1(Q/Z)(2)[1/p]. Also, since G1(L/K) = G(L/E) is a p-group,

Ht(G(L/W ′); K3(L0)) ∼= Ht(G(L/W ′); (Q/Z)(2)[1/p])
∼= Ht(G(E/W ′); (Q/Z)(2)[1/p])

which is isomorphic to Z/r = r(Q/Z)(2)[1/p]), the r-torsion subgroup, if 0 < t is
odd and is zero if 0 < t is even, since G(E/W ′) ∼= G0(L/W ′)/G1(L/W ′) ∼= Z/r.

Note that L0 = W ′
0, although in the rest of this proof we shall refer to it as W ′

0

since it helps in keeping track of the Galois actions which are to follow.
Hence,

Ht(G(L/W ′);⊕d
i=1K3(L0)) ∼=





⊕d
i=1Z/r if t is odd,

0 if 0 < t is even,

⊕d
i=1K3(W ′

0) if t = 0.

If g ∈ G(W ′/K) ∼= Z/d is a generator then the cohomology, H∗(G(W ′/K);M),
is computed from the cochain complex

. . . −→ M
1−g−→ M

N−→ M
1−g−→ M −→ . . .

where N =
∑d−1

j=0 gj . The generator, g, may be lifted to

(F, F ) ∈ G(L0/K) ⊂ G(K0/K)×G(L/K)

in the notation of §2.4. By Lemma 2.5, the action on ⊕d
i=1Z/r is given by

g(a1, . . . , ad) = (F (a2), F (a3), . . . , F (ad), F−1
0 (F (a1)))

= (F (a2), F (a3), . . . , F (ad), F (a1))

= (qa2, qa3, . . . , qad, qa1)

since F acts on Z/r = r(Q/Z)(2)[1/p] by “multiplication” by q = |K|2, F0 = F d

and r divides qd − 1.
Therefore Ker(1 − g) consists of d-tuples, (a1, . . . , ad), such that ai = qd−iad

which comprise a copy of Z/r generated by (qd−1, qd−2, . . . , q, 1). On the other
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hand
N(a1, . . . , ad) = (a1, a2, . . . , ad−1, ad)

+(qa2, qa3, . . . , qad, qa1)

+(q2a3, q
2a4, . . . , q

2a1, q
2a2)

...

= xq1−d(qd−1, qd−2, . . . , q, 1)

where x =
∑d

i=1 qi−1ai ∈ Z/r. Therefore H2s(G(W ′/K);⊕d
i=1Z/r) vanishes if

s > 0 and is isomorphic to Z/r if s = 0.
An element, (a1, . . . , ad), lies in Ker(N) if and only if x =

∑d
i=1 qi−1ai ≡ 0

(modulo r). However, for such elements, we may solve the equation

(a1, . . . , ad) = (1− g)(b1, . . . , bd) = (b1 − qb2, b2 − qb3, . . . , bd − qb1)

by choosing b1 and bd to satisfy bd − qb1 = ad and then setting

bi = qd−i+1b1 +
d∑

j=i

qj−1aj

for 2 ≤ i ≤ d− 1. This is consistent because, in Z/r

a1 + qb2 = (a1 + qa2 + q2a3 + . . . + qd−1ad) + qdb1 = b1 .

Hence H2s+1(G(W ′/K);⊕d
i=1Z/r) vanishes for all s ≥ 0.

Now let us consider Hs(G(W ′/K);⊕d
i=1K3(W ′

0)). Since F0 = F d acts trivially
on W ′

0 the action on (u1, . . . , ud) ∈ ⊕d
i=1K3(W ′

0) is given by

g(u1, . . . , ud) = (F (u2), F (u3), . . . , F (ud), F (u1)) .

Therefore (u1, . . . , ud) ∈ Ker(1−g) if and only if ui = F d−i(ud) for each 1 ≤ i ≤ d.
On the other hand

N(v1, . . . , vd) = (v1, v2, . . . , vd−1, vd)

+(F (v2), F (v3), . . . , F (vd), F (v1))

+(F 2(v3), F 2(v4), . . . , F 2(v1), F 2(v2))
...

= (w,F−1(w), F−2(w), . . . , F 1−d(w))

where w =
∑d

j=1 F j−1(vj). Setting v1 = v2 = . . . = vd−1 = 0 and vd = ud shows
that Ker(1 − g) = Im(N) and H2s(G(W ′/K);⊕d

i=1K3(W ′
0)) vanishes for s > 0

while H0(G(W ′/K);⊕d
i=1K3(W ′

0)) ∼= K3(W ′
0).

The element, (u1, . . . , ud), lies in Ker(N) if and only if 0 =
∑d

j=1 F j−1(uj) ∈
K3(W ′

0) while (1− g)(v1, . . . , vd) = (v1−F (v2), v2−F (v3), . . . , vd−F (v1)). In this
case the equation (1 − g)(v1, . . . , vd) = (u1, . . . , ud) may be solved by choosing v1

and vd to satisfy vd−F (v1) = ud and then setting vi = F d−i+1(v1)+
∑d

j=i F j−i(uj)
for 2 ≤ i ≤ d− 1. This is consistent because

u1 + F (v2) = u1 +
d∑

j=2

F j−2+1(uj) + F d(v1) = v1 .

Hence H2s+1(G(W ′/K);⊕d
i=1K3(W ′

0)) vanishes for all s ≥ 0.
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Therefore Es,t
2 = 0 if 0 < s + t is even so that Ĥ2s(G(L/K);⊕d

i=1K3(L0)) van-
ishes when s > 0, as required. When s+t = 2u+1 the only contributions in the spec-
tral sequence come from E0,2u+1

2
∼= Z/r and so Ĥ2u+1(G(L/K);⊕d

i=1K3(L0)) ∼=
Z/r, as required. Finally, the only contribution to H0(G(L/K);⊕d

i=1K3(L0)) comes
from E0,0

2
∼= K3(W ′

0), from which is it easy to calculate the Tate cohomology in
dimensions less than or equal to zero. 2

2.10. Suppose that L/K is a totally ramified Galois extension of local fields in
characteristic p with group, G(L/K) and set r = [G(L/K) : G1(L/K)]. Choose
a primitive r-th root of unity, ξr. If X is any Z[G(L/K)]-module containing
r(Q/Z)(2)[1/p], depending on the choice of ξr, we shall define a new module X⊕̃Z,
and an extension of the form

0 −→ X −→ X⊕̃Z −→ Z −→ 0.

For example, this construction may be applied with X equal to any module in
the chain

K3(Fp) ∼= (Q/Z)(2)[1/p] ⊂ U ⊂ K3(L0).
Note that the action of G(L/K) on (Q/Z)(2)[1/p] is trivial, since L/K is

totally ramified, while the Frobenius, F of §2.4, acts like “multiplication” by t2

where t = |L|.
As an abelian group X⊕̃Z is just the direct sum, X ⊕ Z. As a Z[G(L/K)]-

module the embedding of X is given by sending x ∈ X to (x, 0). If G1(L/K) =
G(L/E), as in Theorem 2.9 (proof), the action on (0, 1) ∈ X⊕̃Z will factor through
G(L/K)/G(L/E) ∼= G(E/K). Furthermore, if G(E/K) ∼= Z/r with generator, g,
then g(0, 1) = (ξr, 1). This action is well-defined since gi(0, 1) = (iξr, 1), in additive
notation.

Similarly we may define a Z[G(L/K)]-module, X⊕̃Z[1/p], and an extension of
the form

0 −→ X −→ X⊕̃Z[1/p] −→ Z[1/p] −→ 0
by setting

X⊕̃Z[1/p] = lim
→

(X⊕̃Z
(1,t)−→ X⊕̃Z

(1,t)−→ X⊕̃Z
(1,t)−→ . . .),

the direct limit of iterations of the map sending (z,m) to (z, mt) where t = |L|.
This is a Z[G(L/K)]-module, since t ≡ 1 (modulo r).

Proposition 2.11. ([15] Proposition 2.8)
In the notation of §2.10 let X be any of the Z[G(L/K)]-modules in the chain

Tors(K3(L0))[1/p] ∼= (Q/Z)(2)[1/p] ⊂ U ⊂ K3(L0).

Then X⊕̃Z[1/p] is a cohomologically trivial Z[G(L/K)]-module.

2.12. In the situation of §2.4 we shall define a Z[G(L/K)]-module

⊕̃d
i=1K3(L0).

As an abelian group this module is simply the direct sum

(⊕d
i=1K3(L0))⊕ (⊕d

i=1Z[1/p]).

The summand, ⊕d
i=1K3(L0), has the Z[G(L/K)]-module structure described in the

proof of Theorem 2.9. Thus g ∈ G(L/K) lifts to (F, F ) ∈ G(L0/K) and acts like

g(a1, . . . , ad) = (F (a2), F (a3), . . . , F (ad), F−1
0 (F (a1))).
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Any element, h ∈ G(L/W ′), acts component-by-component as h(a1, . . . , ad) =
(h(a1), . . . , h(ad)).

Consider the Z[G(L/K)]-submodule, ⊕d
i=1(Q/Z)(2)[1/p] ⊂ ⊕d

i=1K3(L0). Since
L/W ′ is totally ramified, G(L/W ′) acts trivially on this submodule. Hence G(L/K)
acts through the quotient, G(W ′/K) =< g >, with

g(a1, . . . , ad)=(F (a2), F (a3), . . . , F (ad), F−1
0 F (a1))=(qa2, qa3, . . . , qad, q

1−da1)

where q = v2 and v = |K|. An arbitrary element of the Z[G(L/K)]-module

Inf
G(L/K)
G(W ′/K)Ind

G(W ′/K)
{1} ((Q/Z)(2)[1/p])

has the form z = 1⊗ bd + g ⊗ bd−1 + . . . + gd−1 ⊗ b1 and

g(z) = 1⊗ b1 + g ⊗ bd + . . . + gd−1 ⊗ b2 .

Hence, if we write z = (b1, . . . , bd) then g(z) = (b2, b3, . . . , bd, b1).
Define an isomorphism

φ : ⊕d
i=1(Q/Z)(2)[1/p]

∼=−→ Inf
G(L/K)
G(W ′/K)Ind

G(W ′/K)
{1} ((Q/Z)(2)[1/p])

by
φ(a1, . . . , ad) = (q1−da1, q

2−da2, . . . , q
−1ad−1, ad) .

This is an isomorphism of Z[G(L/K)]-modules, since

φ(g(a1, . . . , ad)) = φ(qa2, qa3, . . . , qad, q
1−da1)

= (q2−da2, q
3−da3, . . . , ad, q

1−da1)

and
g(φ(a1, . . . , ad)) = g(q1−da1, q

2−da2, . . . , q
−1ad−1, ad)

= (q2−da2, q
3−da3, . . . , ad, q

1−da1).

We have an isomorphism of Z[G(L/K)]-modules

Inf
G(L/K)
G(W ′/K)Ind

G(W ′/K)
{1} ((Q/Z)(2)[1/p]) ∼= Ind

G(L/K)
G(L/W ′)((Q/Z)(2)[1/p])

where G(L/W ′) acts trivially on (Q/Z)(2)[1/p]. Hence we may form the following
push-out diagram, which defines the module ⊕̃d

i=1K3(L0).

⊕d
i=1(Q/Z)(2)[1/p] ∼= Ind

G(L/K)
G(L/W ′)((Q/Z)(2)[1/p])

Ind
G(L/K)
G(L/W ′)((Q/Z)(2)[1/p]⊕̃Z[1/p])

⊕d
i=1K3(L0)

⊕̃d
i=1K3(L0)-

? ?

-

Proposition 2.13. ([15] Proposition 3.10)
The Z[G(L/K)]-module, ⊕̃d

i=1K3(L0), of §2.12 is cohomologically trivial.
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2.14. Now consider the Z[G(L/K)]-submodule, W ⊂ ⊕d
i=1K

ind
3 (L0), of De-

finition 2.6. Since (Q/Z)(2)[1/p] ⊂ U we have ⊕d
i=1(Q/Z)(2)[1/p] ⊂ W. Also

G(L/W ′) acts component-by-component on W so that W ∼= (⊕d−1
i=1 Kind

3 (L0)) ⊕ U
as a Z[G(L/W ′)]-module. Therefore, by Theorem 2.9, the inclusion induces a co-
homology isomorphism of the following form

Ĥt(G(L/W ′);W)
∼=−→ Ĥt(G(L/W ′);⊕d

i=1K
ind
3 (L0)).

Define W̃ by the pushout diagram

⊕d
i=1(Q/Z)(2)[1/p] ∼= Ind

G(L/K)
G(L/W ′)((Q/Z)(2)[1/p])

Ind
G(L/K)
G(L/W ′)((Q/Z)(2)[1/p]⊕̃Z[1/p])

W

W̃-

? ?

-

so that we immediately obtain the following result from Proposition 2.13.

Proposition 2.15. ([15] Proposition 3.12)
The Z[G(L/K)]-module, W̃, of §2.14 is cohomologically trivial.

2.16. On (Q/Z)(2)[1/p] F0 acts by multiplication by qd where q = v2, v = |K|.
Hence, if ai ∈ (Q/Z)(2)[1/p], then

(1− F̂ )(a1, . . . , ad) = (a1 − qdad, a2 − a1, . . . , ad − ad−1).

Now consider the isomorphism of §2.12

φ : ⊕d
i=1(Q/Z)(2)[1/p]

∼=−→ Ind
G(L/K)
G(L/W ′)((Q/Z)(2)[1/p])

where, on the right, G(L/W ′) acts trivially on (Q/Z)(2)[1/p] and

φ(a1, . . . , ad) = (q1−da1, q
2−da2, . . . , q

−1ad−1, ad) =
d−1∑

i=0

gi ⊗ q−iad−i.
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Hence F̂ translates to φF̂φ−1, which is given by

φ(F̂ (φ−1(
∑d−1

i=0 gi ⊗ bd−i)))

= φ(F̂ (φ−1(b1, . . . , bd)))

= φ(F̂ (qd−1b1, q
d−2b2, . . . , qbd−1, bd))

= φ(qdbd, q
d−1b1, q

d−2b2, . . . , qbd−1))

= (qbd, qb1, . . . , qbd−1)

= q(1⊗ bd−1 + g ⊗ bd−2 + . . . + gd−1 ⊗ bd)

= qgd−1(
∑d−1

i=0 gi ⊗ bd−i)

= qg−1(
∑d−1

i=0 gi ⊗ bd−i).

Define

F̂ : Ind
G(L/K)
G(L/W ′)((Q/Z)(2)[1/p]⊕̃Z[1/p]) −→ Ind

G(L/K)
G(L/W ′)((Q/Z)(2)[1/p]⊕̃Z[1/p])

by the formula (b ∈ (Q/Z)(2)[1/p], m ∈ Z[1/p]))

F̂ (gi ⊗ (b, m)) = gi−1 ⊗ (qb, vm).

If u ∈ Z satisfies uv ≡ 1 (modulo r) then

g−iagi(0, 1) = aui

(0, 1) = (uiξr, 1) ∈ (Q/Z)(2)[1/p]⊕̃Z[1/p]) ,

writing the first coordinate additively, as usual. Here a and g are as in §2.4. Then
F̂ is a Z[G(L/K)]-module homomorphism since

F̂ (a(gi ⊗ (0, 1))) = F̂ (gi ⊗ aui

(0, 1))

= F̂ (gi ⊗ (uiξr, 1))

= gi−1 ⊗ (quiξr, v)

while
a(F̂ (gi ⊗ (0, 1))) = a(gi−1 ⊗ (0, v))

= gi−1 ⊗ aui

(0, v))

= gi−1 ⊗ (vui−1ξr, v)

and these are equal since vui−1 ≡ quui−1 ≡ qui (modulo r). Also

F̂ (g(gi ⊗ (0, 1))) = F̂ (gi+1 ⊗ (0, 1)) = gi ⊗ (0, v)

while
g(F̂ (gi ⊗ (0, 1))) = g(gi−1 ⊗ (0, v)) = gi ⊗ (0, v).
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Theorem 2.17. (c.f. [15] Theorem 3.14)
In the notation of §2.4 and §2.16, there is a 2-extension of Z[G(L/K)]-modules

of the form

K3(L) ∆−→ ⊕̃d

i=1K3(L0)
1−F̂−→ W̃ −→ L

∗ ∼= TorsK2(L).

Proof
We have merely to evaluate the kernel and cokernel of the map

1− F̂ : ⊕̃d
i=1K

ind
3 (L0) −→ W̃

where F̂ was defined in §2.16. However, as abelian groups there are isomorphism

⊕̃d

i=1K
ind
3 (L0) ∼= (⊕d

i=1K
ind
3 (L0))⊕ (⊕d

i=1Z[1/p])

and
W̃ ∼= W ⊕ (⊕d

i=1Z[1/p]).
Furthermore the resulting map on the quotients of these direct sums by the sub-
modules given by the first summands has the form

λ : ⊕d
i=1Z[1/p] −→ ⊕d

i=1Z[1/p]

and is given by

λ(m1, . . . , md) = (m1 − vmd, . . . ,md − vmd−1).

If (m1, . . . , md) ∈ Ker(λ) then m1 = vmd, m2 = vm1, . . . and md(1 − vd) = 0 so
that λ is injective. Also we can solve the equation λ(m1, . . . , md) = (x1, . . . , xd) by
choosing xd, x1, . . . , xd−2 successively but the equations are consistent if and only
if

md(1− vd) = vd−1x1 + vd−2x2 + . . . + vxd−1 + xd.

Therefore, if π2 is defined to depend only on the coordinates in the second summand
and to be given by

π2(x1, x2, . . . , xd) = vd−1x1 + vd−2x2 + . . . + vxd−1 + xd

then Ker(π2) = Im(λ), which proves the exactness of the sequence.
It remains to verify that G(L/K) acts on Z/(vd − 1) ∼= L

∗
via the quotient to

G(W ′/K) whose generator acts by “multiplication” by v = |K|. Certainly, G(L/E)
acts trivially on ⊕̃d

i=1K
ind
3 (L0) and W̃. Also the action by a ∈ G(E/W ′) is trivial

on the second coordinates in the direct sums. Finally the generator, g ∈ G(W ′/K),
acts via

g(x1, . . . , xd) = g(
∑d−1

i=0 gi ⊗ xd−i)

=
∑d−1

i=0 gi+1 ⊗ xd−i

= (x2, x3, . . . , xd, x1)

and x1 + vxd + v2xd−1 + . . . + vd−1x2 ≡ v(vd−1x1 + vd−2x2 + . . . + vxd−1 + xd)
(modulo vd − 1) so that g acts on Z/(vd − 1) by multiplication by v, as required.2

2.18. The proof of Theorem 2.2
The verification of the naturality properties for the 2-extension of Theorem

2.17 is identical to that of the p-adic case in ([15] §4). 2



274 VICTOR P. SNAITH

2.19. Modifications when r ≥ 2
In order to construct the local fundamental class of Theorem 1.1 when r ≥ 2

one replaces

F̂ : Ind
G(L/K)
G(L/W ′)((Q/Z)(2)[1/p]⊕̃Z[1/p]) −→ Ind

G(L/K)
G(L/W ′)((Q/Z)(2)[1/p]⊕̃Z[1/p])

in 2.16 by the homomorphism

F̂ : Ind
G(L/K)
G(L/W ′)((Q/Z)(r + 1)[1/p]⊕̃Z[1/p])

−→ Ind
G(L/K)
G(L/W ′)((Q/Z)(r + 1)[1/p]⊕̃Z[1/p])

given by the formula (b ∈ (Q/Z)(r + 1)[1/p], m ∈ Z[1/p]))

F̂ (gi ⊗ (b,m)) = gi−1 ⊗ (vr+1b, vrm).

Thereafter one follows the construction of §2.3 - §2.18 after the manner of [16].

3. The local fundamental classes in the tame case in characteristic p

3.1. Suppose we are in the tame situation. That is, L/K is a tamely ramified
Galois extension of local fields with Galois group G(L/K) of the following form:

G(L/K) = < a, g | gd = ac, ar = 1, gag−1 = av >

where v = |K|, the order of the residue field of K. Here, if W ′/K is the maximal
unramified subextension then G(L/W ′) =< a > and the image of g in G(L/K)
is the Frobenius automorphism. Note that, as in ([3] p.369), in general we may
arrange that c is a divisor of r. However, when char(K) = p > 0 we may arrange
that c = r since K ∼= Fv((X)), the field of fractions of Fv[[X]], and L is a Kummer
extension of L<a> = Fvd((X)). Hence G(L/K) is equal to the semi-direct product
< g >∝< a > of the cyclic group of order d, < g >, acting on the cyclic group of
order r, < a >, by gag−1 = av.

For each positive integer, m, set L(m) = FvdmL as in §2.3 so that L(m) = Fvdm

and
G(L(m)/K) = < a, g | gdm = 1 = ar, gag−1 = av >

and there is an extension of the form

G(L(m)/L) −→ G(L(m)/K) πm−→ G(L/K)

in which πm(a) = a and πm(g) = g. The kernel of πm, G(L(m)/L), is isomorphic
to G(Fvdm/Fvd) which is cyclic of order m generated by gd. If L0 is the maxi-
mal unramified extension of L, as in §2.1, then L0/K is equal to the limit of the
extensions, L(m)/K.

As explained in §2.1, for r ≥ 1 there are homomorphisms of the form

δ : K2r(L(m)) −→ K2r−1(L(m)) = K2r−1(Fvdm) ∼= F∗vdmr

and
F∗vdm(r+1)

∼= K2r+1(Fvdm) = K2r+1(L(m)) −→ K2r+1(L(m))

each having uniquely divisible kernel and cokernel.
Hence we have canonical cohomology isomorphisms for r ≥ 1

Hi(G(L(m)/K); K2r(L(m))) ∼= Hi(G(L(m)/K);F∗vdmr ),

Hi(G(L(m)/K); K2r+1(L(m))) ∼= Hi(G(L(m)/K);F∗vdm(r+1))
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for all i > 0 and

Ext2Z[G(L(m)/K)](K2r(L(m)),K2r+1(L(m))) ∼= Ext2Z[G(L(m)/K)](F
∗
vdmr ,F∗vdm(r+1)).

3.2. The economical 2-extension
Let µ∞[1/p] denote the group of roots of unity of order prime to p. This group

is Q/Z[1/p] written multiplicatively. Let µ∞[1/p]⊕̃Z denote the Z[< a >]-module
given by the direct sum of µ∞[1/p] with the integers where a acts trivially on
µ∞[1/p] but satisfies a(1, 1) = (ξr, 1) for some primitive r-th root of unity, ξr. Note
that the first coordinate of (1, 1) is the trivial element of µ∞[1/p] while the second
coordinate is the integer, 1. Hence we have the induced Z[G(L(m)/K)]-module,
Ind

G(L(m)/K)
<a> (µ∞[1/p]⊕̃Z). This is a submodule of the module appearing in the

bottom left corner of the diagrams of §2.12 and §2.14 when r = 1, the only difference
being that Z[1/p] has been replaced by the integers, Z.

Theorem 3.3.
Let L(m)/K be as in §3.1. Then
(i) Ind

G(L(m)/K)
<a> (µ∞[1/p]⊕̃Z) is a cohomologically trivial Z[G(L(m)/K)]-mod-

ule and
(ii) there is a 2-extension of Z[G(L(m)/K)]-modules of the form

F∗vdm(r+1) −→ Ind
G(L(m)/K)
<a> (µ∞[1/p]⊕̃Z)

F̂−1−→ Ind
G(L(m)/K)
<a> (µ∞[1/p]⊕̃Z) −→ F∗vdmr

where
F̂ (gi ⊗ (η, m)) = gi−1 ⊗ (ηvr+1

,mvr)
whose class in Ext2Z[G(L(m)/K)(F

∗
vdm ,F∗v2dm) corresponds under the isomorphism of

§3.1 to the K2r/K2r+1 local fundamental class of Theorem 1.1.

Proof
We shall consider only the case when r = 1, since for r ≥ 2 one modifies the

argument in the manner described in §2.19.
Part (i) follows from Proposition 2.11. As mentioned in §3.2, the module

Ind
G(L(m)/K)
<a> (µ∞[1/p]⊕̃Z) is a submodule of both ⊕̃d

i=1K3(L0) and W̃. Further-
more the homomorphism

⊕̃d
i=1K3(L0)

1−F̂−→ W̃
restricts to the homomorphism 1 − F̂ where F̂ is defined by the formula of Theo-
rem 3.3(ii). Hence we obtain a homomorphism of 2-extensions of Z[G(L(m)/K)]-
modules. It is straightforward to verify that this homomorphism induces the canon-
ical maps of §3.1 between the modules at the two ends. 2

In the next section we shall compare the 2-extension of Theorem 3.3 when r = 1
with the motivic-cohomology complex Γ(2, L) of ([9] [10]). For that purpose we
shall need the following two computational results.

Proposition 3.4.
The edge homomorphism in the Serre spectral sequence of the extension in §3.1

yields an isomorphism of the form

H∗(G(L(m)/K);F∗vdm)
∼=−→ H∗(G(L/K);F∗vd)

for all positive integers, m.
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There is a similar isomorphism of the form

H∗(G(L(m)/K); K3(Fvdm))
∼=−→ H∗(G(L/K); K3(Fvd)).

Proof
For the first part the cohomology spectral sequence has the form

Es,t
2 = Hs(G(L/K); Ht(G(L(m)/L);F∗vdm)) =⇒ Hs+t(G(L(m)/K);F∗vdm).

We have Es,t
2 = 0 for all t > 0. This is because L(m)/L is unramified and so

G(L(m)/L) ∼= G(Fvdm/Fvd), which implies that Ht(G(L(m)/L);F∗vdm) = 0 for all
t > 0 and H0(G(L(m)/L);F∗vdm) = F∗vd . This proves the first part and replacing
Fvdm by Fv2dm

∼= K3(Fvdm) yields the second part. 2

Corollary 3.5.
The natural map yields an isomorphism

Ht(G(L(m)/K);F∗vdm)
∼=−→ Ht(G(L(ms)/K);F∗vdms)

for all t ≥ 0;m, s ≥ 1.
In the limit we obtain an isomorphism

Ht(G(L/K);F∗vd)
∼=−→ lim

→
m

Ht(G(L(m)/K);F∗vdm)

for all t ≥ 0.

Remark 3.6. In the circumstances of §3.1, using Theorem 3.3, one can show
that there is an isomorphism of the form

Ext2Z[G(L/K)](F
∗
vd ,F∗v2d) ∼= Z/r ⊕ Z/r

where r is the order of the inertia group, G0(L/K) =< a >.
In fact this isomorphism holds even if L/K is not tamely ramified. Let L/K

be any Galois extension of local fields in characteristic p > 0 with Galois group,
G(L/K). Let G1(L/K) ⊂ G(L/K) denote the first wild ramification group ([14]
p.62), which is a finite p-group. If M is the fixed field of G1(L/K) = G(L/M) then
M/K is the maximal tamely ramified subextension.

Consider the spectral sequence

Es,t
2 (L/K) = Hs(G(L/K); ExttZ(K2(L),K3(L))) =⇒ Exts+t

Z[G(L/K)](K2(L),K3(L))

and the corresponding one for M/K. Since G(L/M) / G(L/K) is a p-group and
multiplication by p is an isomorphism on each of K2(L),K3(L),K2(M),K3(M) it is
not difficult to show that the natural map induces an isomorphism, Es,t

2 (M/K)
∼=−→

Es,t
2 (L/K). Therefore it gives an isomorphism between corresponding Ext2’s so

that

Z/r ⊕ Z/r ∼= Ext2Z[G(M/K)](K2(M), K3(M)) ∼= Ext2Z[G(L/K)](K2(L),K3(L))

as claimed.
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4. The motivic complex Γ(2, L)

4.1. In [9] (see also [10]) Lichtenbaum constructs the motivic complex, Γ(2, L),
for a field L. It is a natural 2-extension of the form

0 −→ Kind
3 (L) −→ C2,1(L)

φ2,L−→ C2,2(L) −→ K2(L) −→ 0.

The motivic-cohomology complex for L is given by

0 −→ C2,1(L)
φ2,L−→ C2,2(L) −→ 0

and is denoted by Γ(2, L).
The related motivic cohomology complex Γ(1, L) is given by a short exact

sequence of the form ([9] Proposition 2.4)

0 −→ C1,1(L) −→ C1,2(L)
φ−→ K1(L) ∼= L∗ −→ 0

where
C1,2(L) = Z[P1

L − {0, 1,∞}],
the free abelian group on the projective line minus three points. The homomor-
phism, φ, may be taken to be

φ(
∑

i

ni[ai, bi]) =
∏

i

(1− (ai/bi))ni ∈ L∗.

There is a pairing which gives rise to an important commutative diagram of
the form

Tor(L∗, L∗) //

ρL

²²

L∗ ⊗ C1,1(L) //

²²

L∗ ⊗ C1,2(L)
1⊗φ //

µL∼=
²²

L∗ ⊗ L∗

φL

²²
K3(L) // C2,1(L) // C2,2(L) // K2(L)

In this diagram φL is the Steinberg symbol map and, if L is a local field of charac-
teristic p > 0, ρL becomes an isomorphism upon inverting 2.

When L/K is a Galois extension of local fields in characteristic p > 0 the
2-extension associated to Γ(2, L) defines a class in

[Γ(2, L)] ∈ Ext2Z[G(L/K)](K2(L),Kind
3 (L)) ∼= Ext2Z[G(L/K)](K2(L),K3(L))

∼= Ext2Z[G(L/K)](F
∗
vd ,F∗v2d)

where K = Fv and L = Fvd . This class defines cup-product homomorphisms in
Tate cohomology of the form

([Γ(2, L)]
⋃
−) : Ĥi(G(L/K); K2(L)) −→ Ĥi+2(G(L/K); Kind

3 (L)).

On the other hand cup-product with the K2/K3 local fundamental class of Theo-
rem 1.1 and Theorem 2.2 (equivalently Theorem 3.3) yields isomorphisms in Tate
cohomology

Ĥi(G(L/K);F∗vd)
∼=−→ Ĥi+2(G(L/K);F∗v2d)

for all i.
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Theorem 4.2.
Let L/K be any Galois extension of local fields in characteristic p. Then, upon

inverting 2, the cup-product of §2.2 is an isomorphism for all i

([Γ(2, L)]
⋃
−) :Ĥi(G(L/K); K2(L)⊗Z[1/2]) → Ĥi+2(G(L/K);Kind

3 (L)⊗Z[1/2])

which may be identified with the isomorphism given by the cup-product with the
K2/K3 local fundamental class for L/K of Theorem 3.3

Ĥi(G(L/K); K2(L)⊗ Z[1/2])) −→ Ĥi(G(L/K);F∗vd ⊗ Z[1/2]).

Proof
I shall only sketch the steps of the proof, since it is rather computational and

because I intend elsewhere to prove the stronger result that the 2-extensions are
equivalent.

The first step is to use the observations of Remark 3.6 to reduce to the tamely
ramified case. The second step is to make an equivalent extension to [Γ(2, L)],
after inverting 2, out of the upper row of the diagram of §4.1 because it is easier to
produce a map of 2-extensions into the upper row. Since we are permitting ourselves
to invert 2 we lose nothing by this simplification as ρ⊗ Z[1/2] is an isomorphism,
as mentioned in §4.1. Even with these simplifications it does not seem possible to
map the 2-extension of Theorem 3.3 for L/K into the modified upper row of the
diagram. On the other hand it is not difficult to find such a map for the 2-extension
associated to the infinite Galois extension, L0/K. However, such comparison of 2-
extensions is sufficient by virtue of the cohomology isomorphisms of Proposition
3.4 and Corollary 3.5. 2

5. Euler characteristics and Chinburg invariants

5.1. Suppose, in §1, that A and D are finitely generated Z[G]-modules. Then
the 2-extension defines a class, [E] ∈ Ext2Z[G](D, A) which may be represented
by a (possibly different) 2-extension in which B and C are finitely generated and
cohomologically trivial. In this case B (resp. C) has a finitely generated, projective
Z[G]-resolution of the form P1,B −→ P0,B −→ B (resp. P1,C −→ P0,C −→ C). The
Euler characteristic of [E] is defined to be the element

χ[E] =
1∑

i=0

(−1)i([Pi,B ]− [Pi,C ]) ∈ K0(Z[G]).

The Euler characteristic depends only on the isomorphism class – which is
weaker than the 2-extension equivalence class – of [E] and is defined if and only if
the cup-product

([E]
⋃
−) : Ĥi(G;D) −→ Ĥi+2(G; A)

is an isomorphism on Tate cohomology for all i.
In particular, suppose that we are in the situation of §2.1. That is, L/K is a

Galois extension of local fields in characteristic p > 0 with group, G(L/K). Suppose
that the residue fields satisfy L = Fvd and K = Fv. As explained in §3.1 in the
tame case, K2r(L) and K2r+1(L) differ from F∗vdr and F∗

vd(r+1) , respectively, only
by uniquely divisible groups. Hence we have an isomorphism of the form

Ext2Z[G(L/K)](K2r(L),K2r+1(L)) ∼= Ext2Z[G(L/K)](F
∗
vdr ,F∗vd(r+1)).
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Therefore the K2r/K2r+1 local fundamental class of Theorem 1.1, constructed in
§2 in characteristic p > 0, has an associated Euler characteristic denoted by

Ωr(L/K, 2) ∈ Cl(Z[G(L/K)]) = Ker(rank : K0(Z[G]) −→ Z) .

This Euler characteristic lies in the reduced K0-group, given by the kernel of the
rank homomorphism, because F∗

vd(r+1) and F∗vdr are both finite (i.e. of rank zero).
We shall call Ωr(L/K, 2) a local Chinburg invariant.

When L/K is a tamely ramified Galois extension of local fields of characteristic
p > 0, as in §3.1, we may use the particularly simple form of the local fundamental
class given by Theorem 3.3 for computations of Ωr(L/K, 2) . For this reason I shall
restrict to the tamely ramified case for the rest of this section.

The notation Ωr(L/K, 2) is intended to suggest the local Chinburg invariants of
([18] Ch VII). The main role of the Ωr(L/K, 2)’s is to construct the higher K-theory
analogues of the second Chinburg invariant, Ωr(E/F, 2), of a Galois extension of
global fields in characteristic p > 0. Let OE denote the ring of integers of E.

For each prime P /OF choose a prime Q /OE above P and let EQ/FP denote
the Galois extension of local fields given by the completions of F and E at P and
Q, respectively. The inclusion of the decomposition group G(EQ/FP ) ⊆ G(E/F )
induces a homomorphism of class-groups

Ind
G(E/F )
G(EQ/FP ) : CL(Z[G(EQ/FP )]) −→ CL(Z[G(E/F )]).

The K2r/K2r+1 second Chinburg invariant of E/F is defined by

Ωr(E/F, 2) =
∑

P/OF , prime

Ind
G(E/F )
G(EQ/FP )(Ωr(G(EQ/FP ), 2)) ∈ CL(Z[G(E/F )]).

It is easy to see that the sum which defines Ωr(E/F, 2) is finite. All but finitely
many extensions, EQ/FP , are unramified. However, in the unramified case the
Galois modules, F∗

vd(r+1) and F∗vdr , are cohomologically trivial in Theorem 3.3. In
fact each module has trivial class in the class-group ([18] Ch VII) so that

Ωr(EQ/FP , 2) = [F∗vd(r+1) ]− [F∗vdr ] = 0 ∈ CL(Z[G(EQ/FP )]).

Remark 5.2. It is worthwhile comparing the definition of Ωr(E/F, 2) given in
§5.1 for global fields in characteristic p > 0 with the construction in characteristic
zero given in [15] for r = 1 and in [16] in general. The problem in characteristic zero
is that K2r+1(EQ) is not a finitely generated Z[G(EQ/FP )]-module (even modulo
uniquely divisible modules). Hence one proceeds, by means of the syntomic regula-
tor map, to find a free submodule of K2r+1(EQ) with a finitely generated quotient
to play the role of K2r+1(EQ). The intrusion of a regulator in the construction
promises to make explicit computations very difficult.

Question 5.3. Theorem 4.2 implies that the 2-extension of [G(L/K)]-modules
associated to Γ(2, L) has an Euler characteristic

χ[Γ(2,L)] ∈ CL(Z[1/2][G(L/K)]).

This raises the question: Do the Euler characteristics associated to Theorem
4.2 coincide? That is, do we have the equation

χ[Γ(2,L)] = Ω1(L/K, 2) ∈ CL(Z[1/2][G(L/K)]) ?

I imagine that this relation is true and hope to return to its proof in a subse-
quent paper.
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An analogous question is discussed in the number field situation in §5 of [1].

5.4. The K2/K3 second Chinburg invariant in the tame case
As in §3.1, let L/K be a tamely ramified Galois extension of local fields with

char(K) = p > 0 and Galois group

G(L/K) = < a, g | gd = ar = 1, gag−1 = av >

where v = |K|, the order of the residue field of K.

Proposition 5.5.
Let L/K be as in §5.4. Then there is a finitely generated projective Z[G(L/K)]-

module, M(L/K), defined by the following pushout diagram:

Z[G(L/K)](a− 1) //

(−vd−1g)

²²

Z[G(L/K)]

Ψ

²²
Z[G(L/K)](a− 1) // M(L/K)

Proof
It is not difficult to see that the Tate cohomology of Z[G(L/K)](a− 1) is given

by

Ĥi(G(L/K);Z[G(L/K)](a− 1)) ∼=




Z/r if i is odd,

0 if i is even,

since Z[G(L/K)]/Z[G(L/K)](a − 1) ∼= Ind
G(L/K)
<a> (Z). Since HCF (v, r) = 1 the

left-hand vertical homomorphism induces an isomorphism on Ĥ∗(G(L/K);−), which
ensures that M(L/K) is cohomologically trivial and therefore projective, being fi-
nitely generated and torsion-free. 2

Theorem 5.6.
Let L/K be a tamely ramified Galois extension of local fields in characteristic

p > 0, as in §3.1. Then the local K2/K3 Chinburg invariant of §5.1 is given by

Ω1(L/K, 2) = [M(L/K)]− [Z[G(L/K)]] ∈ Cl(Z[G(L/K)]).

Proof
I shall only sketch the proof, which is rather laborious homological algebra.
Firstly one constructs a commutative diagram of Z[G(L/K)]-modules of the

form

X̂(2) //

g4

²²

P1
δ //

g3

²²

P0
//

g2

²²

F∗vd

1

²²
F∗v2d

// Ĩnd(2)
F̂−1 // Ĩnd(2) // F∗vd

where X̂(2) = ker(δ) and Ĩnd(2) = Ind
G(L/K)
<a> (µ∞[1/p]⊕̃Z). The lower 2-extension

in the diagram is that of Theorem 3.3 when m = 1. The upper 2-extension is made
from the start of a projective resolution of F∗vd . Secondly one ensures that g4 is
surjective. Then it is straightforward (cf. [3] pp. 369/370) to show that

Ω1(L/K, 2) = [Ker(g4)]− rank(Ker(g4)) · [Z[G(L/K)]] ∈ Cl(Z[G(L/K)]).



LOCAL FUNDAMENTAL CLASSES DERIVED FROM HIGHER K-GROUPS: III 281

A suitable choice for the upper 2-extension is given by modifying the tame resolution
of ([3] Lemma 6.3 p.370). 2

6. The Hom-description of Ω1(E/F, 2)

It is often useful and illuminating to describe arithmetic invariants lying in the
class-group, CL(Z[G(E/F )]), in terms of idèlic-valued functions on the representa-
tion ring R(G(E/F ) by means of the Hom-description. In this section I shall do
this for Ω1(E/F, 2) in the case when E/F is a tamely ramified Galois extension of
global fields in characteristic p > 0.

Definition 6.1. Adèles and Idèles
A more extensive reference for the material of this section is ([4]II,p.334 et seq).
Let N be an number field. The adèle ring of N is defined to be the ring given

by the restricted product

J(N) =
∏′

P prime

NP ,

where
∏′ signifies that we take those elements of the topological ring,

∏
P NP , for

whom almost all entries lie in the ring of integers, ONP . When P is an Archimedean
prime we adopt the convention that ONP

= NP . The group of idèles, J∗(N), is the
group of units in J(N)

J∗(N) = {(xP ) ∈ J(N) | xP 6= 0 and almost everywhere xP ∈ O∗NP
}

where, as usual, O∗NP
denotes the multiplicative group of units in ONP

. The unit
idèles is the subgroup in which every entry is a unit

U(ON ) =
∏

P prime

O∗NP
.

Now let G be a finite group. We may extend the adèles and idèles to the
group-rings, ON [G] and N [G]. Define

J(N [G]) =
∏′

P prime

NP [G],

J∗(N [G]) = {(αP ) ∈ J(N [G]) | αP ∈ ONP [G]∗ for almost
all P and αP ∈ NP [G]∗otherwise }

U(ON [G]) =
∏

P prime

ONP [G]∗.

6.2. Now suppose that M/N is a finite Galois extension of number fields with
Galois group, G(M/N). In this case G(M/N) acts on the set of primes of M and
hence acts upon the groups J∗(M), U(OM ), J∗(M [G]) and U(OM [G]). Therefore
the absolute Galois group, ΩN , also acts continuously on these groups via projection
to G(M/N).

Suppose now that M is large enough to contain all |G|-th roots of unity, so
that M is a splitting field for G. In this case the ring of finite dimensional M -
representations of G, RM (G) ∼= R(G) is also a Z[G(M/N)]-module. Therefore we
may consider the group of G(M/N)-equivariant maps

HomG(M/N)(R(G), J∗(M)) ∼= HomΩN
(R(G), J∗(M)).
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Let V be a projective Z[G]-module of rank one. This means that V ⊗ Zp is a
free Zp[G]-module on one generator, xp, for each prime p and that V ⊗Q is a free
Q[G]-module on one generator, x0. Since Q[G] and Zp[G] are subrings of Qp[G] we
may compare these bases for the Qp[G]-module, Zp ⊗Qp. This means that there
is a unit

λp ∈ Qp[G]∗

which is defined by
λp · x0 = xp ∈ V ⊗Qp.

In fact, λp will almost always lie in Zp[G]∗ so that we obtain an idèle

(λp) ∈ J∗(Q[G]).

More generally, if V is a projective module of rank n this comparison of bases
will yield an invertible n× n-matrix with adèlic entries

(λp) ∈ GLn(J(Q[G])).

Now suppose that T is a representation

T : G −→ GLm(M).

We may apply T to each λp ∈ GLn(Qp[G]) to obtain an invertible matrix

T (λp) ∈ Mmn(Qp ⊗Q M)

where Mn(A) denotes the n×n matrices with entries in A. There is a ring isomor-
phism of the form

Qp ⊗Q M ∼=
∏

Q|p
Q prime of M

MQ.

Therefore we obtain an element

det(T (λp)) ∈
∏

Q|p
Q prime of M

M∗
Q.

Suppose that M/Q is Galois. Since (λp) ∈ GLn(J(Q[G])) we obtain an ΩQ-
equivariant map, given by det(T (λp)) at the primes of M which divide p,

Det((λp)) ∈ HomΩQ
(R(G), J∗(M)).

Now let us consider the dependence upon the choices of the basis elements, x0

and xp. The discussion is similar in the case of modules of rank greater than one. If
we replace xp by another generator, x′p, these choices will be related by an equation

x′p = upxp

for some up ∈ Zp[G]∗ so that we obtain a unit idèle

u = (uP ) ∈ U(Z[G])

and Det((λp)) will be altered by multiplication by

Det(u) ∈ Det(U(Z[G])) ⊂ HomΩQ
(R(G), J∗(M)).

Also there is a diagonal embedding of M∗ into J∗(M) which induces an inclu-
sion

HomΩQ
(R(G),M∗) ⊂ HomΩQ

(R(G), J∗(M)).
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By a similar argument, changing x0 to x′0 will change Det((λp)) by a function
which lies in the subgroup, HomΩQ

(R(G),M∗). Therefore we have associated to
each finitely generated projective Z[G]-module, V , a well-defined element

Det[V ] ∈ HomΩQ
(R(G), J∗(M))

HomΩQ
(R(G),M∗) ·Det(U(Z[G]))

.

The following connection between the Det-construction and the class-group is
called the ‘Hom-description’ and is originally due to Fröhlich.

Theorem 6.3. ([4]II,p.334; [6])
With the notation introduced above there is an isomorphism

Det : CL(Z[G])
∼=−→ HomΩQ

(R(G), J∗(M))
HomΩQ

(R(G),M∗) ·Det(U(Z[G]))

which sends the class of a projective module, V , to the class of Det((λp)) of 6.2.

6.4. The Hom-description representative Ω1(L/K, 2)
I shall now calculate the representative for [M(L/K)] ∈ CL(Z[G(L/K)]), which

occurred in Theorem 5.6, in the Hom-description of the class-group.
Let N denote the element

(1 + v2gd−1 + . . . + v2d−2g) = N ∈ Z[G(L/K)]

and set
α0 = N v(1 + a + . . . + ar−1)− vd−1g ∈ Z[G(L/K)].

Since v is a unit in the rationals and in Zp for all primes, p, except for the
residue characteristic we may take Ψ(α0 ⊗ 1) as a basis element for M(L/K) ⊗ Λ
when Λ = Q or Zp when v is not a power of p. This means that the Hom-description
representative is trivial for all primes except the residue characteristic.

The same is true even for the residue characteristic if d = 1.
If p is the residue characteristic and d ≥ 2 we need a basis element for M(L/K)⊗

Zp.
Choose βp ∈ M(L/K)⊗ Zp to be the image of

(a− 1, 1) ∈ Zp[G(L/K)](a− 1)⊕ Zp[G(L/K)],

where the coordinates refer to the upper right and lower left corners of the pushout
diagram of Theorem 5.6 so that (0, 1) = α0. Then the image of βp under the
quotient map

M(L/K)⊗ Zp −→ M(L/K)⊗ Zp

Zp[G(L/K)](a− 1)
∼= Zp[g]/(gd − 1)

is equal to the generator, 1. On the other hand, in the bottom left corner of the
pushout,

(a− 1)vd−1βp = (a− 1)vd

+ (a− 1)vd−2(a− 1)α0

= (a− 1)vd

+ (a− 1)vd−1(−vd−1g)

≡ avd − 1 (modulo p)

≡ a− 1 (modulo p).

Therefore (a−1)vd−1βp generates Zp[G(L/K)](a−1) in the bottom left corner and
so

M(L/K)⊗ Zp = Zp[G(L/K)]βp.
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When tensored with Qp, βp is equal in the top right Qp[G(L/K)] to 1 + (a −
1)g−1v1−d while the rational basis is 1 in the top right so that the Hom description
representative is equal to

Det(1 + (a− 1)g−1v1−d) ∈ HomΩQp
(R(G(L/K),O∗S)

for any Galois extension, S/Qp, containing all [L : K]-th roots of unity.
Therefore we have established the following result:

Theorem 6.5.
Suppose that E/F is a tamely ramified Galois extension of global fields in char-

acteristic p > 0. Then there exists a representative of the K2/K3 Chinburg invari-
ant of §5.1
Ω1(E/F, 2) =

∑

P/OF , prime

Ind
G(E/F )
G(EQ/FP )(Ω1(G(EQ/FP ), 2)) ∈ CL(Z[G(E/F )])

in the Hom-description of the class-group which is trivial except at places above p.
At places above p the representative is given by sending χ ∈ R(G(E/F )) to

∏

P

Det(1 + (aP − 1)g−1
P v1−dP

P )(Res
G(E/F )
G(EQ/FP )(χ))

where the product is taken over those primes of P /OF for which

G(EQ/FP ) = < aP , gP | gdP

P = arP = 1, gP aP g−1
P = avP

P >

with vP = |OF /P | and d ≥ 2 in the notation of §5.4.
Proof
This follows from the definition of Ω1(E/F, 2) together with the fact that the

homomorphism

Ind
G(E/F )
G(EQ/FP ) : CL(Z[G(EQ/FP )]) −→ CL(Z[G(E/F )])

corresponds in the Hom-description to the map induced by restriction of represen-
tations to the decomposition group. 2
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Hilbert’s Theorem on Positive Ternary Quartics

Richard G. Swan

Abstract. We give a detailed exposition of Hilbert’s proof that a non-negative
real quartic form in 3 variables is a sum of 3 squares.

In [H] Hilbert proved the following theorem.

Theorem. Let F (x, y, z) be a homogeneous form of degree 4 over the real num-
bers such that F (x, y, z) ≥ 0 for all real (x, y, z). Then F = ϕ2 + ψ2 + χ2 where
ϕ,ψ, χ are real quadratic forms.

Hilbert’s proof is very condensed and assumes the reader is familiar with ideas
then current. Consequently, the proof is almost incomprehensible to a modern
reader. T. Y. Lam remarked that it would be a good idea to give a new exposition
of this proof in modern terminology and with more of the details filled in. This
is the aim of the present paper. The argument follows roughly that indicated by
Hilbert but I have not attempted to follow his method exactly.

In [CL], Choi and Lam gave a short elementary proof of the fact that F in the
theorem is a sum of squares of quadratic forms. Their method, however, does not
show that only 3 quadratic forms are required.

This paper was originally intended for publication in the proceedings of the
Santa Barbara conference [JR] but I withdrew it after Lam informed me that an
exposition of this theorem had been published by Rajwade [R]. Since there is still
considerable interest in Hilbert’s theorem and my version of the proof differs in
many details from that of Rajwade, I am publishing it here in the hope that it
also may prove useful to those working on this subject. I would like to thank
B. Reznick for pointing out that there may still be some value in publishing this
version. I would also like to thank A. Ranicki for agreeing to publish it in the
present proceedings.

I will begin with some preliminary results needed for the proof.

1. Counting constants. If F is a ternary quartic form over C, let [F ] ∈
P14(C) be the point whose homogeneous coordinates are the coefficients of F , and
let {F = 0} be the curve in P2(C) defined by F = 0.
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Lemma 1.1.
{
[F ] ∈ P14(C)

∣∣ {F = 0} is not smooth
}

is a closed subset of P14

of dimension ≤ 13 (actually = 13).

Proof. In P14 × P2 let

X = {([F ], p)
∣∣ {F = 0} is singular at p}

= {([F ], p) | F (p) = 0,
∂F

∂x
(p) =

∂F

∂y
(p) =

∂F

∂z
(p) = 0} .

By Euler’s theorem there are only 3 independent conditions on F so the fibers of
pr2 : X → P2 are isomorphic to P11. In fact we can choose coordinates so that
p = (0, 0, 1) and the fiber consists of all [F ] where the coefficients of xz3, yz3, z4 are
zero. By the dimension theorem [Ha, Ch. 2, Ex. 3.22], dim X = 11 + 2 = 13
and the required set is pr1 X. It is closed since P2 is proper.

Remark. Since, except for a set of [F ] of dimension 7, {F = 0} has only a
finite number of singular points, pr1 : X → pr1(X) has finite general fibers and the
dimension theorem shows that dim pr1(X) = dim X = 13.

Lemma 1.2. Let Y =
{
[F ]

∣∣ {F = 0} has at least 2 distinct singular points
}
.

Then dim Y ≤ 12.

Proof. Let ∆ be the diagonal of P2 ×P2 and let X ⊂ P14× (P2× P2−∆) be
the set of ([F ], p, q) such that {F = 0} is singular at p and at q. In other words,

F (p) =
∂F

∂x
(p) =

∂F

∂y
(p) =

∂F

∂z
(p) = 0

and

F (q) =
∂F

∂x
(q) =

∂F

∂y
(q) =

∂F

∂z
(q) = 0 .

Then Y = pr1(X). Choose coordinates so p = (0, 0, 1) and q = (0, 1, 0). The
fiber of pr2 : X → P2 × P2 −∆ over (p, q) consists of all [F ] with the coefficients
of xz3, yz3, z4, xy3, y4, zy3 all zero so the fiber is P8. By the dimension theorem,
dim X = 8 + 4 = 12 and X → Y is dominant so dim Y ≤ 12. The general fibers
are again finite so dim Y = 12.

Presumably similar arguments give Hilbert’s assertions about the linear system
αF + α′F ′ + α′′F ′′ but we will not need this here.

2. Regular sequence. Let S = k[x0, . . . , xn] be a polynomial ring over a
field k and let f1, . . . , fm be forms of positive degree in S. Let V (f1, . . . , fm) ⊂
Pn = Proj S be defined by f1 = 0, . . . , fm = 0 so that V (f1, . . . , fm) = Proj A with
A = S/(f1, . . . , fm).

Lemma 2.1. If m ≤ n + 1 then f1, . . . , fm is a regular sequence on S if and
only if dim V (f1, . . . , fm) ≤ n−m. (This means V (f1, . . . , fm) = ∅ if m = n + 1).

Proof. Let m = S+ = ⊕i>0Si. If M is a finitely generated graded S-module
then Mm = 0 if and only if M = 0. Therefore f1, . . . , fm is regular on S if and only
if it is regular on Sm. Now

dim V (f1, . . . , fm) = dim Proj A = dim A− 1 = dim Am − 1 .
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The last equality follows from the fact that all minimal primes P of A are homoge-
neous and so lie in A+. Since all maximal ideals in an affine domain have the same
height, dim A/P = dim Am/Pm. Now Am = Sm/(f1, . . . , fm) so we have to show
that f1, . . . , fm is regular on Sm if and only if dim Sm/(f1, . . . , fm) ≤ dim Sm −m
(and so = dim Sm −m). This is clear since Sm is Cohen-Macaulay.

Corollary 2.2. Let ϕ,ψ, χ be forms of degree > 0 in S = k[x, y, z]. Then
ϕ,ψ, χ is a regular sequence on S if and only if ϕ,ψ, χ have no common zero in
P2(k).

Here k is the algebraic closure of k. By Hilbert’s Nullstellensatz ϕ,ψ, χ have
no common zero in P2(k) if and only if V (ϕ,ψ, χ) = ∅.

Remark. We only need the “if” statement here. This special case can also
be deduced from Max Noether’s fundamental theorem so we cannot conclude that
Hilbert knew about Cohen-Macaulay rings. If ϕ,ψ, χ have no common zero in P2

then ϕ and ψ have no common factor since such a factor would have a common
zero with χ. Suppose that ϕϕ′ + ψψ′ + χχ′ = 0. If p lies on {ϕ = 0} ∩ {ψ = 0},
choose coordinates so that z 6= 0 at p and let ϕ∗ = ϕ(x, y, 1), etc. in the local ring
OP2,p.Then χ∗ is a unit in OP2,p so χ′∗ ∈ (ϕ∗, ψ∗). By Noether’s theorem [F, Ch.5,
§5], we have χ′ ∈ (ϕ,ψ) in S as required.

The relevance of Noether’s theorem for Hilbert’s proof was already observed in
[CL].

3. Tangent map. Let f : Pm(R) Ã Pn(R) be a rational map given by
x 7→ (f0(x), . . . , fn(x)) where the fi are forms of degree r. Let z be a point of
Pm(R) with fi(z) 6= 0 for some i so that f is defined at z. Then f induces a map of
tangent spaces Tz(Pm) → Tf(z)(Pn). Consider the affine cones Rm+1 − {0} → Pm

and Rn+1−{0} → Pn. Let f : Rm+1 → Rn+1 be given by f(x) = (f0(x), . . . , fn(x)).

Lemma 3.1. Let x be a point of Rm+1 − {0} over z. Then

ker[Tz(Pm) → Tf(z)(Pn)] ≈ ker[Tx(Rm+1) → Tf(x)(Rn+1)] .

Proof. Let T vert
x (Rm+1) consist of tangent vectors to the fiber of Rm+1 −

{0} → Pm. We get

0 // T vert
x (Rm+1) //

²²

Tx(Rm+1) //

²²

Tz(Pm)

²²

// 0

0 // T vert
f(x)(R

n+1) // Tf(x)(Rn+1) // Tf(z)(Pn) // 0 .

Identify Tx(Rm+1) with Rm+1 so ξ ∈ Rm+1 corresponds to the tangent at x to the
curve ε 7→ x + εξ. The vertical tangents in Tx(Rm+1) correspond to multiples of
x (ξ = λx, λ ∈ R). The map Tx(Rm+1) → Tf(x)(Rn+1) sends ξ to the tangent at
f(x) to the curve

ε 7→ f(x + εξ) = f(x) + ε(
∑

j

∂fi

∂xj
(x)ξj) + O(ε2)
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and so is given, as expected, by the Jacobian ∂fi

∂xj
. The map T vert

x (Rm+1) →
T vert

f(x)(R
n+1) sends ξ = λx to the tangent vector at f(x) to the curve

ε 7→ f(x + εξ) = (1 + ελ)rf(x) = (1 + rελ + O(ε2))f(x)

and so sends λx to rλf(x) which is non-trivial since f(x) 6= 0 by assumption (and
r 6= 0 in R). Therefore, T vert

x (Rm+1) → T vert
f(x)(R

n+1) is an isomorphism and the
snake lemma shows that the kernels in Lemma 3.1 are isomorphic.

The same result also holds over C.

4. Topological dimension. The following must be well-known.

Lemma 4.1. Let X ⊂ Rn be a real algebraic set,

I = {f ∈ R[x1, . . . , xn]
∣∣ f |X = 0} ,

and A = R[x1, . . . , xn]/I. Then

dimtop X = Krull dim A .

Proof. If X has irreducible components Xi then dimtop X = sup dimtop Xi

[HW, Th. III 2]. Therefore we can assume X irreducible so that A is a domain.
If Krull dimA = 0 then X is finite and we are done. If s ∈ A, the coordinate
ring of Z = X ∩ {s = 0} is a quotient of A/(s) and so has lower Krull dimension.
Therefore dimtop Z < Krull dimA by induction on the Krull dimension and it will
suffice to show that Xs = X − Z has dimtop Xs = Krull dim A. The coordinate
ring of Xs = X ∩ {s 6= 0} is As which can be seen by embedding Xs in Rn × R by
x 7→ (x, s(x)−1) so that Xs is defined by the equations of X and ys(x) = 1. If B is
a finitely generated R-algebra and has the same quotient field K as A, we can find
As = Bt. Write K = R(x1, . . . , xd, y) where the xi are algebraically independent,
d = Krull dim A, and y satisfies

f(x, y) = ym + f1(x)ym−1 + · · ·+ fm(x) = 0

with ∂f
∂y (x, y) 6= 0 in K. Replace A by a localization As of B = (R[x1, . . . , xd, y]/f) ∂f

∂y
.

Now Xs is an open set of the set defined by f(x, y) = 0 and the implicit function
theorem shows that Xs → Rd by (x, y) 7→ x is a local homeomorphism.

Corollary 4.2. If Y ⊂ Cn is an algebraic set then dimtop(Y ∩Rn) ≤ dimalg(Y ).
If Y ⊂ Pn(C) is algebraic, dimtop(Y ∩ Pn(R)) ≤ dimalg(Y ).

Proof. Apply Lemma 4.1 to X = Y ∩ Rn. The Zariski closure of X in Cn

is SpecC ⊗R A and lies in Y so dim Y ≥ dimC ⊗R A = dim A ≥ dimtop(X). The
second assertion follows from the first.

5. Proof of Hilbert’s theorem. Let F stand for a ternary quartic form.
Write F > 0 if F (x, y, z) > 0 for all real (x, y, z) 6= (0, 0, 0), and similarly for F ≥ 0.
Let U = {[F ] ∈ P14(R) | F > 0}. The topological closure U is {[F ] ∈ P14(R) | F ≥
0} since we can approximate F by F +ε(x4+y4+z4) in U . Note that U is connected
since we can join [F ] and [G] in U by the curve t 7→ [tF + (1− t)G], 0 ≤ t ≤ 1. Let
V = {[F ] ∈ U

∣∣ {F = 0} is smooth as a curve over C } .
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Lemma 5.1. V is open, dense in U , and connected.

Proof. By Lemma 1.1, W = {[F ] ∈ P14(R)
∣∣ {F = 0} is smooth} is open.

Since V = W ∩ U , V is also open. Let Y be the set of Lemma 1.2. We claim
V = U − Y . Clearly V ⊂ U − Y . If [F ] ∈ U − Y then F > 0 so {F = 0} has
no real points. Since F is real, the singular points of {F = 0} occur in complex
conjugate pairs but [F ] /∈ Y so {F = 0} has at most one singular point. Therefore
it is smooth. Let T = Y ∩ P14(R). Then T ⊂ Y ∩ P14(R) which has topological
dimension ≤ 12 by Lemma 1.2 and Corollary 4.2, so dim T ≤ 12. Since V = U −T ,
U −V ⊂ T but U −V is a 14 dimensional manifold (if not empty) and dim T ≤ 12.
It follows that U ⊂ V . Since dim T ≤ dim U − 2, V = U − T is connected by [HW,
Th. IV 4 Cor. 1].

Now define π : P17(R) → P14(R) by [ϕ, ψ, χ] 7→ [F ] where ϕ,ψ, χ are quadratic
forms, [ϕ,ψ, χ] is the point whose homogeneous coordinates are the coefficients of
ϕ,ψ, χ, and F = ϕ2 + ψ2 + χ2. If [ϕ, ψ, χ] ∈ π−1(V ) then ϕ, ψ, χ have no common
zero in P2(C) since at such a point p we would have

F (p) = 0 ,
∂F

∂x
(p) = 2ϕ

∂ϕ

∂x
+ · · · = 0 =

∂F

∂y
=

∂F

∂z

and {F = 0} would be singular. Consider the map of tangent spaces T[ϕ,ψ,χ](P17(R))
→ T[F ](P14(R)). By Lemma 3.1, its kernel is the same as that of T{ϕ,ψ,χ}(R18) →
T{F}(R15) where {ϕ,ψ, χ} is the point whose coordinates are the coefficients of
ϕ,ψ, χ, and similarly for {F}. To find this kernel, consider the curve

ε 7→ {ϕ,ψ, χ}+ ε{ϕ′, ψ′, χ′}
which maps to

ε 7→ (ϕ + εϕ′)2 + (ψ + εψ′)2 + (χ + εχ′)2 = F + 2ε(ϕϕ′ + ψψ′ + χχ′) + O(ε2) .

The map of tangent spaces is {ϕ′, ψ′, χ′} 7→ 2{ϕϕ′ + ψψ′ + χχ′} and the kernel is{{ϕ′, ψ′, χ′}
∣∣ ϕϕ′+ψψ′+χχ′ = 0

}
. By Corollary 2.2 with k = R, this is generated

by the “Koszul elements” {ψ,−ϕ, 0}, {χ, 0,−ϕ}, {0, χ,−ψ} so

{ϕ′, ψ′, χ′} = α{ψ,−ϕ, 0}+ β{χ, 0,−ϕ}+ γ{0, χ,−ψ} .

All are quadratic so α, β, γ are constant (i.e. lie in R) and the kernel has dimension
≤ 3. This forces T[ϕ,ψ,χ](P17(R)) → T[F ](P14(R)) to be onto since these are vector
spaces of dimension 17 and 14. The implicit function theorem now shows that in
the neighborhood of [ϕ,ψ, χ], π is diffeomorphic to a projection (x1, . . . , x17) 7→
(x1, . . . , x14). In particular, π−1(V ) → V is an open map so its image is an open
set of V . On the other hand, π(π−1(V )) = π(P17(R))∩V which is closed in V since
π(P17(R)) is compact. Since π(π−1(V )) is clearly non-empty and V is connected,
π(π−1(V )) = V so that V ⊂ π(P17(R)) ⊂ U . Since π(P17(R)) is closed and V = U ,
π(P17(R)) = U as required.

Remark. This argument doesn’t work over C since π : P17(C) → P14(C) is
not defined everywhere because ϕ2 + ψ2 + χ2 can be zero so it is not clear whether
the image is closed.
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Quadratic forms and normal surface singularities

C.T.C. Wall

Abstract. A rapid survey of the current understanding of normal sur-
face singularities (over C). After introducing the main examples, we
recall the topological classification, and proceed to properties of the in-
tersection quadratic form on the lattice of cycles on a resolution. Next
the main analytic invariants are defined, and the known results on their
relation to topological invariants (especially for rational and elliptic sin-
gularities) are presented. Quadratic forms also play a major part in
the discussion of smoothings of singularities. We conclude with a brief
mention of the Durfee conjecture and of the Neumann-Wahl conjecture.

The title announced for my talk1 was ‘Quadratic forms in singularity
theory’. But that is too wide a topic for a lecture. There are important
applications of quadratic forms to the study of deformations and hence, for
example, to enumeration of possible configurations of singularities on quartic
surfaces. A good survey of such applications is given by Nikulin [29]. I have
chosen the above topic partly because it remains an area of current activity,
with challenging problems.

This is intended as a survey article for non-specialists. No new results
are claimed, and I will attempt to explain things as we go.

1. Terminology and examples

Roughly speaking, a normal surface singularity is an isolated singular
point of a complex surface (i.e. 2 complex dimensions). We may regard (a
piece of) the surface as embedded in affine space Cn, with the singular point
at O: then the surface X is locally defined by equations fi = 0 where each
fi is holomorphic in some neighbourhood of the origin. More precisely, one
may choose a neighbourhood U of O in Cn such that all fi are holomorphic
on U ; X is the locus of their simultaneous zeros in U , and X is of dimension
2, with O as its only singular point.

We are only interested in a neighbourhood of O in X; we use the standard
notation (X, O) to denote the germ of X at O: a normal surface singularity

1Expanded version of talk given at conference on quadratic forms, Dublin, July 1999.

c©0000 (copyright holder)
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consists of such a germ. Later we will need to be more precise about the
neighbourhood U . The local ring OX,O is defined as the quotient of the
ring On of germs at O of holomorphic functions on Cn (or equivalently, the
ring of power series in (z1, . . . , zn) with non-zero radius of convergence) by
the ideal generated by the fi. This ring determines the singularity up to
the natural equivalence relation, local analytic isomorphism. A convenient
reference for foundational material on normal surface singularities is [15].

The word normal refers to the fact that we require the local ring OX,O

to be normal — i.e. integrally closed in its quotient field. For the case of
surface singularities, this implies that O is an isolated singularity of X, and
that X has only one branch at O. The converse holds if [15, 3.1] (X, O) is an
IHS or more generally if it is an ICIS; the example of the image of the map
(C2, O) → (C4, O) given by (x, y) 7→ (x2, x3, y, xy) shows that some further
condition is needed. In general, an isolated surface singularity is normal if
and only if it is Cohen-Macaulay.

We illustrate these definitions with some important examples.
Let f(x, y, z) = 0 be an algebraic equation in 3 complex variables having

an isolated singularity at the origin. This is said to define an isolated hy-
persurface singularity, or IHS2 for short. Examples of particular importance
are the ADE singularities:

An xn+1 + y2 + z2 = 0 (n ≥ 1)
Dn xn−1 + xy2 + z2 = 0 (n ≥ 4)
E6 x4 + y3 + z2 = 0,
E7 x3y + y3 + z2 = 0,
E8 x5 + y3 + z2 = 0.

The next most complicated examples may be defined by equations of the
form

xp + yq + zr + λxyz = 0,

where p, q, r ≥ 2 are integers. For the parabolic singularities we have 1
p + 1

q +
1
r = 1 (and in each case certain values of λ are excluded). If 1

p + 1
q + 1

r < 1
we say we have a cusp singularity: here λ 6= 0 and we may change variables
to reduce to λ = 1.

There exist extensive further classifications (see e.g. [1], [46]) of IHS’s,
mostly included in the subclass of examples of the form g(x, y) + zn = 0.

A surface defined in Cn+2 by just n equations is said to be a complete
intersection. If in addition we have an isolated singularity (usually taken to
be at the origin) we speak of an isolated complete intersection singularity, or
ICIS for short. In many ways these are similar to IHS’s. The most important
examples are surfaces given by 2 equations in C4.

If a finite group G acts linearly on C2, with the action free on the
complement of the origin, one may define a quotient space X = C2/G,
which will have an isolated singularity at the image of the origin: these are

2Warning: some authors use IHS to mean integral homology sphere.
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called quotient singularities. For example, we write (Xn,r, x) for the quo-
tient of the unit ball by the action of the cyclic group Zn of order n given
by T.(z1, z2) = (εnz1, ε

r
nz2), where εn := e2πi/n (we will retain this notation

for other examples) and r is prime to n.
Although this definition does not exhibit X as a subset of affine space,

an embedding may be constructed using a set of generators of the ring
of invariants C[z1, z2]G. For example, the action of Z3 defining X3,1 has
generating invariants w1 = z3

1 , w2 = z2
1z2, w3 = z1z

2
2 , w4 = z3

2 , and X3,1 can
be identified with the subset of C4 defined by w1w3 = w2

2, w1w4 = w2w3,
w2w4 = w2

3.
One may always suppose G ⊂ U2; if further G ⊂ SU2 then, as was

shown by Klein, we have an ADE singularity, as shown in the following
table, where Q4a denotes the quaternion group of order 4a and T ∗, O∗, I∗
the binary polyhedral groups.

Singularity An = Xn+1,−1 Dn E6 E7 E8

Group Zn+1 Q4n−4 T ∗ O∗ I∗

Otherwise we have a singularity which is not an ICIS: the example given
above required 3 defining equations in C4.

One may combine the above constructions by taking the quotient of an
IHS or ICIS by a finite group acting on it in a manner which is free outside
the singular point, giving a hyperquotient singularity.

In a certain sense, quotients of spheres can be replaced by quotients of
the hyperbolic plane H. Let a, b, c be natural numbers with a−1+b−1+c−1 <
1. Consider a triangle in H with interior angles π/a, π/b and π/c. Let G
be the group of isometries of H generated by the reflections in the edges
of this triangle, and G+ the subgroup of index 2 of orientation-preserving
isometries. There is an induced action of G+ on the tangent line bundle
TH. Form the quotient space TH/G+, and collapse the zero section H/G+

to a point. The quotient can be proved to have an induced structure as
complex space, and is a normal surface singularity. These are called triangle
singularities. It is known that there are just 14 triples a ≤ b ≤ c for which
the singularity is an IHS, and a further 8 for which we have an ICIS. For
example, the triple (2, 3, 7) corresponds to the singularity x2 + y3 + z7 = 0.

Cusp singularities in general are so called because they arise naturally as
‘cusps’ in the compactification of Hilbert modular surfaces [11]. We briefly
recall the definition. Let K be a real quadratic field; denote conjugation over
Q by a prime. Let M be an additive subgroup of K which is free abelian of
rank 2; we may suppose M generated by 1 and ω with ω > 1 > ω′ > 0. The
group G of elements γ ∈ K with γM = M and γ, γ′ > 0 is infinite cyclic:
let Gj be the subgroup of (finite) index j. The semi-direct product M.Gj

acts freely and properly on H× H by (γ,m)(z1, z2) = (γz1 + m, γ′z2 + m′):
denote the quotient by X ′(M, Gj). Then define X(M,Gj) by compactifying
at one point, corresponding to (i∞, i∞).
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In [11], Hirzebruch gives a detailed analysis of these singularities and
their resolutions. There is a purely periodic negative continued fraction
expansion

ω = b1 − 1
b2−

1
b3− . . . 1

bk−
1

b1− . . .,
with each br ≥ 2, where we take k as j times the minimal period. We may
distinguish the br equal to 2 from those exceeding 2 and then write the
sequence b1, . . . , bk (up to cyclic reordering) as

b = 2, . . . , 2, k1 + 2, 2, . . . , 2, k2 + 2, . . . . . . kg + 2,
where there are k∗1−1 numbers 2 in the first group, k∗2−1 in the second, and
so on. We have (up to cyclic reordering) the continued fraction expansion

ω − 1 = k1 + 1
k∗1+

1
k2+

1
k∗2+ . . ..

Shifting this by 1 to interchange the roles of k and k∗ yields another cyclic
sequence

b∗ = k∗1 + 2, 2, . . . , 2, k∗2 + 2, . . . , . . . , 2, . . . , 2,
where there are k1 − 1 numbers 2 in the first group, and so on till kg − 1
numbers 2 in the last. Then ∆ =

∑
(br − 2) =

∑
ki is the length of the

sequence b∗ and ∆∗ =
∑

(b∗r − 2) =
∑

k∗i is the length of the sequence b.
Cusp singularities are classified by sets b of integers ≥ 2, defined up to

cyclic reordering, or equivalently by the dual set b∗. The cusp singularity
is an IHS if ∆∗ ≤ 3 and an ICIS if (and only if) ∆∗ ≤ 4.

Another important class are the quasihomogeneous singularities: here we
require all the equations defining X to be homogeneous (of various degrees)
with respect to assigning zi to have weight ai for each i. We may then choose
a common multiple A of the ai and define an action of the multiplicative
group C× by t.(z1, . . . , zn) = (tA/a1z1, . . . , t

A/anzn). This group action, with
O as fixed point, is the essential feature of this class of singularities. Thus
an IHS is quasihomogeneous if the equation f is equivariant under an action
of the multiplicative group C× of the form f(tax, tby, tcz) ∼= tdf(x, y, z).

Of the above examples, the ADE, parabolic, quotient and triangle sin-
gularities are quasihomogeneous; the cusp singularities are not.

The above examples are the easiest to describe, and hence in some sense
the simplest. We shall see that even for them there are unsolved problems.

2. Topological classification

Somewhat surprisingly, the most accessible part of the structure of a
normal surface singularity is its topology. Let us begin by choosing the
neighbourhood U of O in Cn to be a closed neighbourhood, with boundary
∂U , such that X0 = X ∩ U is homeomorphic to the cone on its boundary
∂X0 = X ∩∂U . Routine arguments show that we may choose U to be given
by

∑n
1 |zi|2 ≤ ε for any small enough ε. This is not always a convenient

choice: if X is quasihomogeneous as just described, then we may take U
as

∑n
1 |zi|2A/ai ≤ ε for small enough ε. This gives a neighbourhood X0

invariant by the action of {t ∈ C | |t| ≤ 1}, with ∂X0 invariant by the circle
group S1.
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From now on, when we write (X, x) for a normal surface singularity, we
suppose X itself to be a good neighbourhood of x in this sense.

It is known that one may construct, by a sequence of blowings-up and
normalisations, a resolution, viz. a proper map

π : (X̃, E) → (X, x)

with the following properties:
X̃ is a non-singular complex surface (with boundary);
E has dimension 1, and is a union of irreducible curves Ei;
π induces an isomorphism of X̃ − E onto X − {x}, and π(E) = x.

We have a good resolution if also
each component Ei of E is a smooth embedded curve;
the components Ei have normal crossings: at each point of E lying on

more than one Ei there are local coordinates (z1, z2) (in X̃) such that the
components are given respectively by z1 = 0 and z2 = 0; in particular, there
are only 2 components through such a point.

This result has a somewhat involved history. In Zariski’s 1935 book he
examines critically each of 4 claimed proofs of resolution of singularities of
surfaces and finds them all wanting; a satisfactory argument was given in
1936 by R.J. Walker. A convenient proof for present purposes may be found
in [15, Chap. 2].

The resolution procedure is explicit enough to be used for effective cal-
culations, and has been implemented in computer algorithms. The result
is almost unique, but it remains possible to blow up a point of E, giving
a further resolution. The effect of blowing up a point on a smooth surface
is to produce one exceptional curve, of genus 0, with self-intersection −1:
such a curve is traditionally called an exceptional curve of the first kind. A
resolution is said to be minimal if it includes no exceptional curve of the
first kind; a good resolution is minimal if it includes no exceptional curve
of the first kind which meets at most 2 other components of E. There exist
an essentially unique minimal resolution and an essentially unique minimal
good resolution [15, 5.12]. Mostly we prefer to deal with an arbitrary good
resolution, and take care when it matters that the invariants we define are
unchanged by this process.

The resolution provides the following numerical data:
for each component Ei, the genus gi = g(Ei);
the self-intersection numbers bi,i = E2

i of the cycles Ei in X̃;
the intersection numbers bi,j = Ei.Ej = #(Ei ∩ Ej).

The numerical data are usually conveniently presented in the form of a
weighted graph Γ. This has one vertex vi for each component Ei of the ex-
ceptional set, which is weighted by the genus (in brackets: [gi]) and negative
self-intersection ai = −E2

i : the default values gi = 0, ai = 2 are omitted
where they occur. Two vertices vi, vj are joined by Ei.Ej edges.

Theorem 2.1. A set of integers {gi : 1 ≤ i ≤ n} and {bi,j : 1 ≤ i, j ≤ n}
can be realised as arising from an isolated surface singularity if and only if
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gi ≥ 0 for each i, bj,i = bi,j ≥ 0 for each i 6= j, and the quadratic form∑n
i,j=1 bi,jxixj is negative definite.
The numerical data completely determine the topology of X̃ and X.
If the singularity is normal, then Γ is connected.

Proof. The fact that the quadratic form defined by intersection num-
bers is negative definite was proved by Mumford [23] in a paper which marks
the beginning of modern research in this area. A proof is also given in [15,
4.4].

The self-intersections E2
i determine the normal bundles of the curves Ei,

which are embedded and of given genera gi, and hence the topology of the
neighbourhood is determined. The neighbourhoods are plumbed together
as indicated by the intersection numbers Ei.Ej . Moreover, since we chose
a good neighbourhood X of x, X̃ is itself a smooth regular neighbourhood
[10] of E, so may be described topologically as such a plumbing.

Conversely, we can use plumbing to construct a neighbourhood X̃ of a
set E with the given invariants. Now by a theorem of Grauert [8] (a proof
is also given in [15, 4.9]), since the quadratic form is negative definite, there
exists a map π : (X̃, E) → (X, x) defining an isolated surface singularity:
this proves sufficiency. If the singularity is normal, there is just one branch
at x: this is equivalent to connectedness of E, and hence to that of Γ. ¤

In particular, the numerical invariants determine the topology of the link
L = ∂X ∼= ∂X̃, which has a natural orientation as boundary of the complex
(hence oriented) manifold X̃. (To determine the analytic type one would
need also the analytic types of the Ei, of their normal bundles, and the
precise positions of the intersection points.) There is also a strong converse
result, due to Neumann [26].

Theorem 2.2. (i) The topology of the oriented link L uniquely deter-
mines the numerical data.
(ii) Both L and −L are singularity links if and only if either (a) L is a lens
space or (b) L is a T 2 bundle over a circle whose monodromy matrix has
trace ≥ 3.
(iii) If L is not as in (a)or (b), then π1(L) determines L uniquely.
(iv) In all cases, L is an irreducible 3-manifold; unless π1(L) is cyclic or a
triangle group, L is Haken.

As to (a), the following are equivalent:
π1(L) is cyclic,
L is a lens space,
(X, x) is a cyclic quotient singularity.

In fact, ∂Xn,r is the lens space L(n, r), which is orientation-preserving home-
omorphic to L(n, s) if and only if s ≡ r or rs ≡ 1 (mod n) and is orientation-
reversing homeomorphic to L(n,−r).
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The exceptional case (b) corresponds to cusp singularities, where the
monodromy matrix may be taken as

A(b) =
(

b1 1
−1 0

)
· · ·

(
bn 1
−1 0

)
,

and −L is the link of the cusp singularity defined by the dual sequence b∗.
For all the simpler examples, the graph Γ is a tree. For the cyclic quotient

singularity Xn,r, Γ is a bamboo or chain, so Ei.Ej = 1 if j = i+1 and 0 if i < j
otherwise; all gi vanish, but the ai = −E2

i are determined as the coefficients
in the expansion of r

n as a negative continued fraction 1
a1−

1
a2− . . . 1

ak
.

For a cusp singularity, Γ consists of rational curves Ei arranged in a cycle
with the negative self-intersection numbers being (b1, . . . , bk) (this needs
interpretation if k = 1).

For a parabolic singularity E has just one component, which has genus
1. In general, a singularity for which E consists of a single elliptic curve is
called simple elliptic [33].

For any quasihomogeneous singularity, we have an action of S1 on the
link L, and L/S1 has the structure of orbifold, with genus g, say, and some
cone points. The corresponding resolution graph is a star, with central
vertex having genus g, and one arm for each cone point corresponding to
the resolution of a cyclic quotient singularity. The details are explained in
full in [26].

For an ADE singularity, Γ is the Dynkin graph associated to the Lie
group of the same name (with each gi = 0, ai = −2). For a triangle singu-
larity there are 3 cone points; the central vertex has g0 = 0, a0 = 1; and
each arm has length 1.

Each 2-dimensional orbifold has a geometric structure in the sense of
Thurston, whose type is determined by the sign of the orbifold Euler char-
acteristic. Correspondingly it was shown by Neumann [27] that each quasi-
homogeneous singularity link L has a geometric structure, whose type is S3

if χ(L/S1) > 0, Nil if χ(L/S1) = 0, and S̃L2(R) if χ(L/S1) < 0.
For a cusp singularity, the link has a geometric structure of type Sol.
Among the more naive invariants of the topology of any normal surface

singularity are the Betti numbers (with rational coefficients) β1(Γ) of the
graph and β1(L) of the link. Elementary homology calculations show that

β1(L) = β1(X̃) = β1(E) = β1(Γ) + 2
∑

gi,

while of course χ(Γ) = 1− β1(Γ) = #I −∑
i<j bi,j .

3. The algebra of cycles

Some interesting topological invariants of (X, x) can be obtained from a
close study of the quadratic form of Theorem 2.1. In this section we will give
more details than in the rest of this article, since some of the results may
be new to specialists of pure quadratic form theory. Write H for H2(X̃;Z)
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and HQ for H2(X̃;Q). Then the quadratic form is just that given on H

by intersection numbers on X̃. We make the standing hypothesis that the
form is negative definite, with bi,j ≥ 0 for i 6= j; we usually (but not always)
suppose also Γ connected.

The group H has a preferred basis consisting of the classes of the cycles
Ei (which we also denote by Ei). This defines a partial order on H: set∑

aiEi ≥ 0 if ai ≥ 0 for each i.
We say that D ∈ H is nef if D.Ei ≥ 0 for each i. The negatives of

the nef classes form a semigroup E ⊂ H (it is the intersection of H with a
convex cone), and we write E+ for E with {0} removed.

Lemma 3.1. (i)If D ∈ E, then D ≥ 0.
(ii) If Γ is connected, and D ∈ E+, then D ≥ ∑

Ei; in particular, D > 0.
(iii) If Γ is connected, and W ⊆ E+, then inf W ∈ E+.

Proof. (i) Set D =
∑

aiEi = D+ − D−, where D+ := sup{D, 0} =∑
ai>0 aiEi, so also D− :=

∑
ai<0(−ai)Ei ≥ 0. Since −D is nef and D− ≥ 0,

D.D− ≤ 0. Since Ei.Ej ≥ 0 for i 6= j and D+, D− have no components in
common, D+.D− ≥ 0. Thus D−.D− = D+.D−−D.D− ≥ 0. Since the form
is negative definite, it follows that D− = 0.

(ii) Now D ≥ 0. If any ai = 0, D.Ei ≥ 0 while as −D is nef, D.Ei ≤ 0, so
D.Ei = 0. Thus for each j such that vj is adjacent to vi in Γ, we must have
aj = 0. By connectivity of Γ, it follows that D = 0, contrary to assumption.

(iii) Set W := inf W =
∑

aiEi, and choose Di ∈ W having ai as
coefficient of Ei. Then Di − W ≥ 0 and has zero coefficient of Ei, so
0 ≤ Ei.(Di − W ) ≤ −Ei.W since Di ∈ E+. Thus −W is nef. By (ii) we
cannot have W = 0. ¤

The element Znum := inf E+ was introduced by Artin [3], who called
it the fundamental cycle. It follows from the lemma that Znum ≥ ∑

Ei.
Now if Znum ≥ D ≥ 0 and D.Ei > 0 we have Znum ≥ D + Ei. For if
Znum −D =

∑
miEi ≥ 0, since (Znum −D).Ei < 0 we must have mi > 0.

We may thus begin with D =
∑

Ei and whenever D.Ei > 0, add Ei: the
process must terminate with Znum.

Our first important invariant of the singularity is the integer ∆ =
−Z2

num.

We next consider the canonical class K ∈ H2(X̃;Z). For any divisor D

on any smooth algebraic surface X̃, we have the formula χ(OD) = −1
2(D2 +

〈K, D〉). If D is the class of a reduced curve C, then χ(C) = 2χ(OC)+µ(C),
where χ(C) is the usual Euler characteristic and µ(C) a measure of the
singularities of C. In particular as Ei is non-singular, we obtain

2− 2gi = χ(Ei) = 2χ(OEi) = −E2
i − 〈K, Ei〉.

Thus in the presence of the quadratic form, the knowledge of the 〈K, Ei〉
is equivalent to a knowledge of the genera gi. Since E2

i < 0 we see that if
〈K, Ei〉 < 0 then gi = 0, E2

i = −1 and we have an exceptional curve of the
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first kind. If 〈K, Ei〉 = 0 then gi = 0 and E2
i = −2. In particular, if we have

a minimal resolution, 〈K, Ei〉 ≥ 0 for each i.
Since the quadratic form is nondegenerate, there is a unique K ′ ∈ HQ

such that, for each i, K ′.Ei = 〈K,Ei〉 = 2gi − 2 − E2
i . We may now define

further numerical invariants K ′.Znum = 〈K, Znum〉 (equivalently we may
consider χ(OZnum) = −1

2(Z2
num +K ′.Znum)) and K ′2. Unlike the others the

latter changes, being decreased by 1, if we blow up an additional point of E.
Thus we must either insist that we have a minimal (perhaps good) resolution
or add the number of components of E, which is #I = β2(E) = β2(X̃), thus
giving K ′2 + β2(X̃).

There is an alternative ‘fundamental cycle’ defined as follows (cf. eg.
[14]). Set K ′ =

∑
aiEi and define Zk :=

∑
[−ai]Ei, where the square

bracket denotes integer part. The relation of this to Znum is not clear to the
writer.

An invariant of a rather different kind is obtained from the Zariski de-
composition. The following is an adaptation by Sakai [34] and Wahl [45] of
Zariski’s original result, and presents a rather strange feature of quadratic
form theory.

Theorem 3.2. For each D ∈ HQ there is a unique decomposition D =
P + N such that

P is nef, so for each i, pi = P.Ei ≥ 0;
N ≥ 0, so N =

∑
qiEi with each qi ≥ 0;

for each i, piqi = 0.

Proof. The proof will use induction: observe that our standing hypoth-
esis is inherited by the restriction of the form to the sublattice generated by
any collection of the Ei (we are not assuming Γ connected).

We begin with existence. Set D1 := D, I1 := {i |D1.Ei ≤ 0}, and let N1

be the unique linear combination of {Ei | i ∈ I1} such that N1.Ei = D1.Ei for
each i ∈ I1: this exists since the restriction of a negative definite quadratic
form to any subspace is nondegenerate.

Applying (i) of Lemma 3.1 to this subspace, we find N1 ≥ 0. Now set
D2 := D1 −N1, I2 := {i |D2.Ei ≤ 0}, and repeat the process.

More formally, suppose inductively that we have constructed Dk and
Nk ≥ 0 by this process. Set Dk+1 := Dk − Nk, Ik+1 := {i |Dk+1.Ei ≤ 0},
and let Nk+1 be the unique linear combination of {Ei | i ∈ Ik+1} such that
Nk+1.Ei = Dk+1.Ei for each i ∈ Ik+1: then by Lemma 3.1, Nk+1 ≥ 0.

Then by construction if i ∈ Ik, Dk+1.Ei = 0 so i ∈ Ik+1, so Ik+1 ⊇
Ik. Since there are only finitely many subsets, this sequence must become
constant. But if Ik+1 = Ik, then Dk+1 is nef. It then suffices to take
P = Dk+1, N =

∑k
1 Nr.

As to uniqueness, suppose we have two decompositions D = P + N =
P ′ + N ′; write N = Nc + Nd, N ′ = N ′

c + N ′
d, where Nc, N ′

c contain the
components Ei appearing in both N and N ′ and Nd, N ′

d are linear com-
binations of the other components. Thus for Ei in N , Ei.N

′
d ≥ 0. Hence
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N ′
c.Ei ≤ N ′.Ei, and since D − N ′ is nef, this ≤ D.Ei, which equals N.Ei

since Ei is orthogonal to P . Now N ′
c − N involves only components of N ,

and we have seen that its product with each is non-negative. Thus by (i) of
Lemma 3.1 again, N ′

c − N ≥ 0, so N ′ − N ≥ N ′
c − N ≥ 0. By symmetry,

N −N ′ ≥ 0. Hence N = N ′. ¤

To illustrate the character of this result, consider the quadratic form

with matrix
( −2 1

1 −2

)
. The decomposition of xE1 + yE2 has

N = xE1 + yE2 if x ≥ 0, y ≥ 0,

N = (y − 1
2x)E2 if x ≤ 0,−x + 2y ≥ 0,

N = (x− 1
2y)E1 if 2x− y ≥ 0, y ≤ 0, and

N = 0 if − x + 2y, 2x− y ≤ 0.

We now apply the decomposition theorem to write K ′ +
∑

Ei in the
form P +N . It is then shown by Wahl [45] that P 2 is a useful invariant. In
particular, he shows that P 2 ≤ 0, and depends only on π1(L).

4. Some analytic invariants

A surprising — and challenging — feature of the theory of normal sur-
face singularities is that their analytic properties are only weakly related to
the relatively straightforward topological classification. In this section we
define some of the most important analytic invariants which we would like
to understand.

The simplest of these is the embedding dimension ed (X, x): the least
number n such that there exists a singularity (Y, O) ⊂ (Cn, O) isomorphic
to (X, x). The components of any map from (X, x) to (Cn, O) must be
functions on X, i.e. elements of OX,x, vanishing at x; and thus belonging
to the maximal ideal m of OX,x. It is not hard to show that a collection
of n elements of m defines an embedding of (X, x) in (Cn, O) if and only
if it spans m modulo m2. Thus we have ed (X, x) = dim (m/m2). We may
regard the embedding dimension as the first in the sequence of invariants
dim (mk/mk+1), which may be collected as the coefficients in a power series,
the Hilbert-Samuel function of (X, x). This determines in turn the multiplic-
ity mult (X,x): the local intersection number of (X,x) at O with a generic
(n− 2)-dimensional linear subspace of Cn. In fact we have

2mult (X, x) = lim
k→∞

k−2 dim (mk/mk+1).

Next write ωX for the sheaf of regular holomorphic 2-forms on X. On
the smooth part (X − {x}) of X, we can identify this with the determinant
line bundle of the complex cotangent bundle. The singularity (X,x) is said
to be Gorenstein if this bundle is trivial over the punctured neighbourhood
X − {x} of x. This turns out to be an extremely important condition. It
holds for all IHS, ICIS, cusp and triangle singularities, but not for quotient
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singularities other than the ADE singularities. For the IHS f(x, y, z) = 0,
for example, elementary calculations show that

ω :=
dx ∧ dy

∂f/∂z
=

dy ∧ dz

∂f/∂x
=

dz ∧ dx

∂f/∂y

spans ωX at any point 6= O, since at least one of the partial derivatives
is non-zero. If (X, x) is Gorenstein, then K ′ ∈ H is integral, and hence
Zk = −K ′.

There are several equivalent definitions for the genus pg(X, x) of the
singularity. We may set pg(X, x) = dimH1(X̃;OX̃) = dim (R1π∗OX̃)x, or
regard pg(X,x) = dim (Γ(X̃ − E, ωX̃)/Γ(X̃, ωX̃)) as the dimension of the
space of obstructions to extending a holomorphic 2-form defined on X̃ − E
to one defined on the whole of X̃ (note that numerator and denominator in
this definition are each separately infinite-dimensional).

The genus can also be regarded as the first in a sequence of invariants,
the plurigenera. There are several variations of the definition (see e.g. [22]).
Consider

dim
(
Γ(X̃ −E,O(mKX̃))

/
Γ(X̃,O(mKX̃ + rE))

)

Taking r = m − 1 we obtain the L2-plurigenus P l
m(X, x) (see particularly

[47]), and with r = m the log-plurigenus P g
m(X,x) (it is natural to take r =

0, but this does not give good results). Following (as we have done with the
other invariants) the standard development for algebraic varieties, we extract
invariants that measure the rate at which Pm tends to infinity. For b = l or
g we define the Kodaira dimension κb(X,x) as lim supm→∞ log P b

m/ log m,
where log 0 is interpreted as −∞. Thus κb(X,x) is −∞ if all P b

m vanish, and
is 0 if not, but they are bounded. For normal surface singularities, κl(X, x)
takes only the values {−∞, 0, 2} and κg(X, x) the values {−∞, 2}.

One may also measure the growth of P b
m by the invariant

Cb := lim sup P b
m/m2 .

Thus Cb = 0 unless κb = 2. It was shown by Morales [21] that Cg = −1
2K2

(for the minimal resolution), and by Wahl [45] that C l = −1
2P 2.

Finally, the definitions of classes of singularities important for the clas-
sification theory of algebraic varieties specialise to surfaces as follows (see
e.g. [14, §2.3]). For a normal surface singularity (X, x), K ′ =

∑
eiEi — or

sometimes min ei — is called the discrepancy. Now (X, x) is said to be
terminal if each ei > 0; canonical if each ei ≥ 0;

log terminal if each ei > −1; and log canonical if each ei ≥ −1.

5. Characterisations of classes of singularities

5.1. Rational singularities. The singularity (X, x) is said to be ra-
tional if pg(X, x) = 0. This condition was defined by du Val [40] and
developed by Artin [2] and [3]. Artin showed that it was equivalent to the
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condition χ(OZnum) = 1 (we always have χ(OZnum) ≤ 1). Artin also showed
that within this class, the embedding dimension and multiplicity could be
computed topologically: ed (X, x) = 1− Z2

num and mult (X,x) = −Z2
num.

A singularity is rational and Gorenstein if and only if it is an ADE
singularity; these are also the only canonical singularities (and a terminal
surface singularity is, in fact, non-singular). This class of singularities has a
long history: algebraic geometers often call them du Val singularities after
[40]; they may also be characterised as rational singularities of multiplicity
2, and so are sometimes called rational double points. Singularity theorists
call them simple singularities after [1]. Further equivalent conditions are
K2 = 0 and κg(X,x) = −∞.

We have κl(X, x) = −∞ if and only if (X, x) is a quotient singularity.
All such singularities are rational. They were first studied by Brieskorn [4].
Equivalent conditions are that π1(∂X) is finite, and that X is quasihomo-
geneous, with ∂X having geometric structure of S3 type: an enumeration is
easily derived from this. A singularity is log terminal if and only if it is a
quotient singularity [14, 4.18].

Since rational singularities may be characterised topologically they may
in principle be enumerated by combinatorial arguments. In each case, Γ
is a tree, and all components Ei are rational curves. Enumerations were
given for rational singularities of multiplicity 3 by Artin [2], multiplicity 4
by Stevens [38] and multiplicity 5 by Tosun [39] (those of multiplicity 2 are
the ADE singularities).

The sandwiched singularities defined by Spivakovsky [36] as singularities
which can be mapped onto a smooth surface are also rational singularities
of some importance.

5.2. Elliptic singularities. Following Wagreich [41] many authors use
the term ‘elliptic’ to refer to singularities with χ(OZnum) = 0. However
we will reserve the term for the singularities with genus pg(X,x) = 1:
pg(X, x) = 1 implies χ(OZnum) = 0, but not conversely. The condition
pg(X, x) = 1 cannot be characterised topologically.

Elliptic Gorenstein singularities were studied by Laufer [16] and Reid
[32], who (each) characterised them topologically by the condition

χ(OZnum) = 0, and 0 < D < Znum implies χ(OD) > 0.
In view of this latter condition, they are often called ‘minimally elliptic sin-
gularities’. Both authors showed that the embedding dimension and multi-
plicity are topological invariants for this class, and established Theorem 5.2
for this case.

A different, but also important class is given by

Proposition 5.1. The following conditions on a normal surface singu-
larity are equivalent, and imply that pg(X,x) ≤ 1: (X, x) is log canonical;
π1(L) is solvable or finite; (X,x) is either smooth, simple elliptic, or a cusp
singularity or a finite quotient of one of these; κl(X, x) ≤ 0; P 2 = 0.
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Singularities with solvable or finite fundamental group were studied by
Wagreich [42], who enumerated the graphs Γ. One may deduce directly
that in each case some finite cover is either smooth, simple elliptic, or a
cusp singularity. The equivalence of this to log canonical was proved by
Kawamata [13] (see also [14, 4.1]), who again enumerated the graphs. If
(X, x) is a finite quotient of a simple elliptic singularity, ∂X is geometric
of type Nil; a classification may be obtained directly via listing orbifolds
with χ = 0. The only possible type of covering giving a cusp singularity is
a double covering; these too are easily listed (reversal of order in b must
give the same sequence up to cyclic rearrangement). Equivalence of these
conditions to κl(X, x) ≤ 0 is given by Ishii [12].

5.3. Other singularities. Although there exists an extensive litera-
ture, and many classifications (particularly for singularities with χ(OZnum) =
0), very few general results are known beyond the above classes.

If κl(X,x) > 0, then κl(X,x) = 2; κg(X, x) takes only the values −∞
and 2; so neither of these invariants yields further information.

A Gorenstein surface with pg(X, x) = 2 satisfies χ(OZnum) = 0. How-
ever, this class is not topologically defined.

The following recent result is the best currently known on the questions
we have mentioned.

Theorem 5.2. [24] Suppose (X, x) a Gorenstein surface singularity such
that χ(OZnum) = 0 and β1(X̃) = 0. Then
(i) there is a topological way to calculate pg(X,x) (it is the length of the
‘elliptic sequence’ of divisors);
(ii) ed (X, x) = max (3,−Z2

num);
(iii) If Z2

num ≤ −3, then dim (mk/mk+1) = −kZ2
num for all k ≥ 1, (there are

also formulae for −Z2
num = 1, 2) and hence

(iv) if Z2
num ≤ −2, then mult (X, x) = −Z2

num.
(v) (X, x) is an ICIS if and only if −Z2

num ≤ 4.

6. Smoothings

If f(x, y, z) = 0 defines an IHS, then nearby surfaces f(x, y, z) = η are
smooth (at least, in a neighbourhood of O). If we intersect with the ball
Bε : |x|2+|y|2+|z|2 ≤ ε, where η << ε << 1), and set D∗

η := {t|0 < |t| ≤ η},
then according to Milnor [20] f induces a fibration Bε ∩ f−1D∗

η → D∗
η. The

fibres of this are called Milnor fibres; we write M for a typical one. Milnor
also showed that M is simply-connected. For the restriction to the boundary
∂Bε, there is no need to exclude the value f = 0, and we find that ∂M can
be identified with L.

We thus have two 4 (real) dimensional manifolds with boundary L: X̃
and M . We will see that usually they are very different, and will seek to
compare them.
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A slight variation of the argument also goes through for the case of an
ICIS. Here, as in the IHS case, M is simply-connected.

More generally, for any normal surface singularity (X0, x), where we sup-
pose (as usual) X0 chosen as a good neighbourhood, a deformation consists
of a flat, proper map π : M→ S, which we may suppose topologically trivial
on the boundary, of complex spaces, such that O ∈ S and π−1(O) ∼= X0. It
can be shown that there always exists a deformation which is universal in
an appropriate sense. The base space S of this universal deformation is in
general reducible (see Example 1 below). A component Si of S is called a
smoothing component if, for generic v ∈ Si, Mv := π−1(v) is smooth, and
such a fibre is called a smoothing of (X0, x). The topology of Mv does not
depend on the choice of v ∈ Si (provided v avoids a suitable discriminant
variety), but may well depend on the choice of component Si (see Example
1 below). We shall see that there may be no smoothing components, but
Artin showed that if (X0, x) is rational, there is one; indeed in this ca e,
all components are smoothing components. If (X0, x) is an ICIS, then S is
smooth, of dimension τ , say.

Example 1 (Pinkham [30]). Let X = X4,1: X is a cone on a rational
normal quartic curve, and is parametrised by (x4, x3y, x2y2, xy3, y4).

We may write the equations defining X as the conditions that the ma-

trix
(

z0 z1 z2 z3

z1 z2 z3 z4

)
has rank ≤ 1. Introduce parameters t1, t2, t3 and

replace the lower row by (z1 + t1, z2 + t2, z3 + t3, z4). This defines a family
{Mt} with base space S1 having three coordinates (t1, t2, t3).

Secondly, we write the equations using a 3× 3 matrix, which we deform
to 


z0 z1 z2

z1 z2 + u2 z3

z2 z3 z4


 .

Here we have one parameter u2 giving the coordinate on the base space
S2. Again writing the conditions that the rank of the matrix is 1 defines a
deformation {Mu} of X, which is smooth for generic values of the parameter.

The deformation space S is the union of the 3-parameter space S1 and
the 1-parameter space S2, meeting in a single point. Each of S1 and S2 is
a smoothing component. For S1, the Betti number of the fibre β2(M) = 1;
for S2, β2(M) = 0.

We have the following interesting characterisation.

Theorem 6.1. (Wahl [44]) For (X, x) an ICIS, β2(M) ≥ τ , with equal-
ity if and only if (X, x) is quasihomogeneous.

Suppose M the fibre of a smoothing of (X,x); we may, as above, suppose
∂M ∼= L. Consider the quadratic form of intersection numbers on H2(M).
This is no longer in general negative definite (it is if (X,x) is rational).
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Diagonalise the form over R on H2(M ;R), and write µ−, µ0 and µ+ for the
respective numbers of negative, zero and positive terms, so that µ− + µ0 +
µ+ = µ = dimH2(M ;R). We concentrate on these invariants. Write also σ
for the signature µ+ − µ−.

Elementary homology calculation shows that µ0 = β1(L)− β1(M). But
in [9] we find the nontrivial result:

Theorem 6.2. For M a smoothing of a normal surface singularity,
β1(M) = 0.

Thus µ0 = β1(L) is determined by the topology of the singularity. Also,
χ(M) = 1 + β2(M) = 1 + µ. Now we have

Theorem 6.3. The genus is given by µ0 + µ+ = 2pg.

This was established by Durfee [5] in the case of IHS and, following some
partial results, proved for arbitrary smoothings of normal surface singulari-
ties by Steenbrink [37].

Thus the quadratic form on H2(M) is negative definite if and only if the
singularity is rational (we recall that the form on H2(X̃) is always negative
definite). Moreover, (X, x) (though not just the topology of (X, x)) deter-
mines µ+ as well as µ0. It follows from Example 1 that it does not always
determine µ−. However there are several essentially equivalent formulae for
µ.

First, for the case of IHS, Durfee [5] established the formula (1), and
Laufer [17] proved (2).

(1) 3σ + 2µ + 2β1(L) + K2 + β2(X̃) = 0.

(2) 12pg − µ− β1(L) + K2 + β2(X̃) = 0.

Subtracting (2) from (1) and dividing by 3 gives σ +µ+β1(L) = 4pg. Using
β1(L) = µ0 and σ = µ+ − µ−, this reduces to the assertion of Theorem 6.3.

Then Looijenga and Wahl proved in [19] that (3) holds, and reduces to
(4), for arbitrary smoothings of normal surface singularities.

(3) (K2
M − 2χ(M))− σ(M) = (K2

X̃
− 2χ(X̃))− 3σ(X̃).

(4) c2
1(M) + χ(M) = c2

1(X̃) + χ(X̃) + 12pg.

Substituting χ(M) = 1+µ, c1(X̃) = K, and χ(X̃) = 1−β1(X̃)+β2(X̃)
with β1(X̃) = β1(L), we see that (4) reduces to

(5) c2
1(M) + µ = K2 − β1(L) + β2(X̃) + 12pg,

which coincides with (2) apart from the term c2
1(M). Now we have

Lemma 6.4. (Seade [35]) If (X, x) is Gorenstein, then M admits a
nowhere 0 holomorphic 2-form, so c1(M) = 0.
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Hence (2) holds for all smoothings of normal Gorenstein singularities
(X, x) — in fact, this result is due to Steenbrink [37] — in particular, (X, x)
determines µ and hence also µ− in these cases.

For any normal Gorenstein singularity we may use these formulae to
calculate a value of µ−. If this value turns out to be negative, there cannot
exist a smoothing. This conclusion is already non-trivial — for example, it
implies that if a simple-elliptic singularity with Z2

num = −D is smoothable,
we must have D ≤ 9, which is best possible. For smoothability of a cusp sin-
gularity it yields the necessary condition (in the above notation) ∆ ≤ ∆∗+9.

Example 2 (Laufer) The IHS x2 + y7 + z14 = 0 and x3 + y4 + z12 = 0
have the same topological type, with Γ consisting of only one vertex, with
g = 3 and E2 = −1 (so µ0 = β1(L) = 6). But the invariants (µ−, µ0, µ+, pg)
take the values (60, 6, 12, 9) in the first case and (50,6,10,8) in the second.
Moreover, the singularities have different multiplicities.

Now let M be a simply-connected 4-manifold with boundary L such that
β1(L) = 0. The quadratic form of intersection numbers on H2(M ;Z) is non-
degenerate, so we can identify the dual lattice in H2(M ;Q) with H2(M ;Z),
and the quotient H2(M ;Z)/H2(M ;Z) with H1(L;Z). The bilinear pairing
of H2(M ;Q) with itself to Q (the discriminant bilinear form) thus induces
a bilinear pairing of H1(L;Z) with itself to Q/Z: the linking pairing. For
a general 4-manifold we obtain a non-degenerate quadratic form on the
quotient H2(M ;Z) of H2(M ;Z) by the torsion subgroup and the radical
of the intersection form, and this induces a linking pairing on the torsion
subgroup H1(L;Z)t of H1(L;Z).

If (X, x) is a normal Gorenstein singularity, and M a smoothing, we may
apply the above considerations to both M and X̃, each having boundary
L. The discriminant bilinear forms of the intersection forms on H2(M ;Z)
and H2(X̃;Z) must both coincide with the linking pairing on H1(L;Z)t.
Thus the singularity (X, x) determines the discriminant bilinear form of the
intersection form on H2(M ;Z) as well as µ−, µ0 and µ+. Thus a necessary
condition for the existence of a smoothing of (X, x) is the existence of a
quadratic form over Z, with the given values of µ−, µ0, µ+ and the given
discriminant bilinear form: this is already quite a strong condition.

This condition was enhanced by Looijenga and Wahl [19], with a very
careful presentation of the details. If M is simply-connected and β1(L) = 0
and moreover the intersection pairing on H2(M ;Z) is even, the linking pair-
ing on H1(L;Z) can be enhanced to a quadratic map to Q/2Z (the dis-
criminant quadratic form of the quadratic form on H2(M ;Z)). A closer
analysis shows that such an enhancement can be defined whenever M is
almost-complex, and that the discriminant quadratic form for L is deter-
mined (independently of M) by the almost complex structure on τL ⊕ R,
provided only that c1 gives a torsion class in H1(L).
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Matters are complicated by the possibility that H1(M ;Z) contains non-
trivial torsion. However, the possibilities for the torsion are bounded by
the torsion in H1(L;Z). Eventually, it is shown in [19] that if we set
A := H1(L;Z) and write q : At → Q/Z for the form that has been con-
structed, a smoothing component induces an (isomorphism class of) quin-
tuple (V,Q, I, i, s) where (V, Q) is an ordinary lattice; s an orientation on a
maximal positive semidefinite subspace; I is an isotropic subspace of At; and
i : V ∗/V → A/I an injective homomorphism with finite cokernel inducing
an isomorphism V ∗/V → I⊥/I of quadratic groups.

Work of Nikulin [29] gives (in most cases) necessary and sufficient con-
ditions for the existence of a quadratic form with assigned signature and
discriminant form. Using this, Looijenga and Wahl essentially determine
the set S of isomorphism classes of the relevant quintuples for the problems,
which triangle singularities, or which cusp singularities are smoothable?

These methods do not address the converse problem, of finding smooth-
ings, for which global methods seem more effective. For triangle singulari-
ties work of Looijenga [18] using the structure of the moduli space for K3
surfaces shows in many cases that the set of smoothing components maps
bijectively to S. The situation for cusp singularities is similar but less clear;
the relevant references here are [6] and [7].

7. Two conjectures

As a result of a number of calculations, Durfee [5] was led to the con-
jecture that for all IHS, and probably for all ICIS (where there is still a
canonical smoothing) σ ≤ 0 and to the sharper conjecture that pg ≤ µ/6
(which is equivalent to σ ≤ −1

3µ−µ0). Numerous partial results are known.
Stronger inequalities are available if χ(OZnum) ≥ 0, or if we have an IHS
with equation of the form g(x, y)+ z2 = 0: see the review in [25]. The most
general result to date is due to Némethi [25]: the conjecture holds for all
IHS with equation of the form g(x, y)+zn = 0 provided that g is irreducible.
The verification depends on direct calculations of both sides.

The following example shows that the inequality does not hold for all
smoothings of normal surface singularities.

Example 3 (Wahl [43]) Consider the IHS (Y, O) defined by z1z
3
2 + z2z

3
3 +

z3z
3
1 = 0. The formula T.(z1, z2, z3) = (ε7z1, ε

2
7z2, ε

4
7z3) defines an action

of a group G of order 7; the quotient (X, x) = (Y,O)/G is a triangle
singularity corresponding to the triple (6, 6, 6). There is a smoothing ob-
tained by factoring out G from an equivariant smoothing of (Y, O). It has
(µ−, µ0, µ+) = (1, 0, 2), so σ = 1 > 0.

Again arising out of experimental verifications, it was conjectured by
Neumann and Wahl [28] that if (X,x) is an ICIS such that H1(L;Z) = 0,
so L is a homology sphere over Z, the Casson invariant λ(L) is equal to 1

8σ.
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They verified the conjecture if (X,x) is weighted homogeneous, or an IHS
with equation of the form g(x, y) + zn = 0, and in a few other cases.

Perhaps the conjecture holds for any smoothable Gorenstein singularity;
perhaps it can be extended to the case when L is a rational homology sphere
(i.e. β1(L) = 0); but the evidence for any such extension of the conjecture
is very weak.

The cases that have been verified again depend on direct evaluations of
both sides (using, e.g. Dedekind sums . . . ).
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