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CODIMENSION 2 EMBEDDINGS, ALGEBRAIC SURGERY AND
SEIFERT FORMS

MACIEJ BORODZIK, ANDRAS NEMETHI, AND ANDREW RANICKI

ABSTRACT. We study the cobordism of manifolds with boundary, and its applications to
codimension 2 embeddings M™ C N™%2 using the method of the algebraic theory of
surgery. The first main result is a splitting theorem for cobordisms of algebraic Poincaré
pairs, which is then applied to describe the behaviour on the chain level of Seifert surfaces
of embeddings M?*"~' c §?"*! under isotopy and cobordism. The second main result is
that the S-equivalence class of a Seifert form is an isotopy invariant of the embedding,
generalizing the Murasugi—Levine result for knots and links. The third main result is a
generalized Murasugi-Kawauchi inequality giving an upper bound on the difference of the
Levine—Tristram signatures of cobordant embeddings.

INTRODUCTION

This is one of a trilogy of papers by the authors concerned with Morse theory for manifolds
with boundary [BNRI], Seifert forms and signature invariants of codimension 2 embeddings
M™ c N™*2 (in the current paper), and the applications in the case M?"~1 c §2"+! to
the mod 2 spectrum of isolated hypersurface singularities [BNR3].

The common feature of these papers is the use of the relative cobordism theory of man-
ifolds with boundary, and in this paper also the relative cobordism theory of symmetric
Poincaré pairs in the algebraic theory of surgery |[Rall Ra2]. A symmetric Poincaré com-
plex is a chain complex with Poincaré duality; a symmetric Poincaré pair is a chain complex
pair with Poincaré-Lefschetz duality. A closed manifold determines a complex; a manifold
with boundary determines a pair.

In the first instance, the relative cobordism theories appear to be trivial, since every
manifold with boundary is null-cobordant, and similarly for a symmetric Poincaré pair.
Nevertheless, it is possible to extract nontrivial applications!

In our applications of relative cobordism, the manifolds with boundary are the Seifert
surfaces ™1 of codimension 2 embeddings M™ C S™+2, with 0¥ = M. We shall be
particularly concerned with the case m = 2n — 1. In order to understand the behaviour of
the Seifert form on H,,(X) under relative cobordism it is necessary to extend the homology
methods pioneered by Kervaire [Ke] and Levine [Lell Le2] for M = §2"~1 c §2"*1 to chain
complexes.

0.1. Background. Seifert [Sei] proved that every knot M = S' C S2 is the boundary
M = 0% of a Seifert surface X2 C S3, using linking numbers of disjoint cycles in S to
define the Seifert form (H;(X), A(X)), and to express the Alexander polynomial as

A(t) = det(tA(X) — AX)* : Hi(D)[t,t7Y — Hy(D)*[t,t7Y]) e Z[t, t 71 .
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Murasugi [Mu] introduced the S-equivalence relation on Seifert forms, proving that the
Seifert forms of a knot are S-equivalent, and that the S-equivalence class is an isotopy
invariant. Kervaire [Ke| initiated the classification theory of m-dimensional knots S™ C
S™+2 for all m > 1, extending the construction of Seifert surfaces and forms to high-
dimensional knots. For n > 1 Levine [Lel| identified the cobordism group Ca,_1 of (2n—1)-
dimensional knots S?"~1 C §?"*! with the cobordism group of Seifert forms, and showed
that Cy,—1 is determined modulo 2-primary torsion by the signatures

Ogon-1cgemi1(€) = signature((1 — &) A(E) + (—=1)"T (1 - ¢HAD)*) € Z

for £ € S! with A(¢) # 0 € C. Furthermore, Levine [Le2] proved that for n > 1 the isotopy
classes of simple (= (n — 1)-connected) knots S?"~! c §27*1 are in one-one correspondence
with the S-equivalence classes of Seifert forms. Tristram [Tr] extended the constructions of
[Lel] to Seifert surfaces and matrices of spherical links

M — §2n=1jg2n=1,. .. | §2n—1 ~ g2ntl

with signatures o (€) for € € S', which are cobordism invariant for A(¢) # 0 € C. The
papers |Lell [Le2l [Tr] made essential use of the behaviour of Seifert surfaces and matrices
under cobordisms and isotopies of knots and links.

The algebraic theory of surgery of [Rall,[Ra2, [Ra3|] deals with the cobordism of symmetric
Poincaré complexes (= chain complexes with abstract Poincaré duality), which has many
features in common with the cobordism theory of manifolds. In this paper we shall consider
isotopy and cobordism invariants of codimension 2 embeddings M?*~1 C S?**+1 via their
Seifert surfaces. Our results depend on the descriptions of the isotopies and cobordisms
given by the surgery theory of manifolds with boundary, and on the algebraic analogues
for symmetric Poincaré pairs. In fact, much of the methodology of the paper applies to
codimension 2 embeddings M™ C N™*t2 for arbitrary m, N.

0.2. Outline of the paper. In Il The cobordism of manifolds we extend the surgery
and handlebody theory for cobordisms of closed manifolds to the half-surgery and half-
handlebody theory of relative cobordisms, i.e. the cobordisms of manifolds with boundary.
(Half-surgeries and half-handlebodies have already appeared in [BNRI], in the context of
Morse theory for manifolds with boundary). Also, we introduce the notion of split relative
cobordisms, which are the unions of left and right product cobordisms: the homological
properties of split cobordisms are the key to our algebraic descriptions of isotopies and
cobordisms of codimension 2 embeddings. The main result of {1l is Theorem [[L3.4] which
gives a complete description of the relationships between the homology groups of a relative
cobordism with a half-handle decomposition.

In §21 Forms and their enlargements we study the algebraic properties of (—1)"-symmetric
forms (F, B), with I a f.g. free abelian group and B a (—1)"-symmetric bilinear pairing

B : FxXF—=Z; (z,y) = B(z,y) = (=1)"B(y, %) ,
which can also be a viewed as a self-(—1)"-dual morphism of abelian groups
B = (-1)"B* : F— F* = Homg(F,Z) ; z— (y — B(x,y)) .

We introduce the notion of a rank ¢ enlargement of a (—1)"-symmetric form (F, B) over Z
as a form of the type

.8) = rar(_ S ).

with (L, D) a (—1)"-symmetric form, dimy, L = ¢ and C' € Homgz(L, F*). Call (F, B) a rank
¢ reduction of (F',B"). Every form (F, B) is a rank dimg F' enlargement of (0,0), but the
notion is useful all the same.
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A 1-symmetric form (F, B) has a signature o(F, B) € Z and a nullity n(F, B) > 0.

The main result of §2lis :
Theorem [2.2.7l If n is even and (F', B') is a rank ¢ enlargement of (F, B) the signatures
and nullities are related by the inequality

lo(F',B") — o(F,B)| + |n(F',B") —n(F,B)| < £ .
For a rank 1 enlargement there is an equality
lo(F',B") — o(F,B)| + [n(F',B") —n(F,B)] = 1.

In §3] The intersection form of a manifold with boundary we consider the (—1)"-symmetric
intersection form (F,(X), B(X)) of a 2n-dimensional manifold with boundary (X, M), with
F,.(X) = H,(X)/torsion a f.g. free abelian group. The effect on the intersection form of
a surgery on the interior X\ M is a rank ¢ enlargement or reduction with ¢ € {0,2}, so
dimy F,,(X) changes by one of {—2,0,2}. The effect on the intersection form of a half-
surgery on (3, M) is a rank ¢ enlargement or reduction with ¢ € {0,1}, so dimg F, (%)
changes by one of {—1,0,1}.

The main result of §3lis :

Theorem A half-handle decomposition for a (2n + 1)-dimensional relative cobor-
dism (25 X0, X1, W; My, My) determines a sequence of enlargements and reductions taking
(Fn(30), B(X0)) to (Fn(X1), B(%1)).

In § The cobordism of symmetric Poincaré complexes we develop the algebraic theory
of surgery of [Rall Ra2, [Ra3] further, to include algebraic versions of splitting and half
handle decompositions for relative cobordisms of symmetric Poincaré pairs. Again, a relative
cobordism is split if it is a union of a left and a right product cobordism. A splitting (resp.
half-handle decomposition) of a relative cobordism of manifolds with boundary determines
on the chain level an algebraic splitting (resp. half-handle decomposition) of a relative
symmetric Poincaré cobordism.

The main result of §4 and indeed the first main result of the paper, is the Algebraic
Poincaré Splitting Theorem :

Main Theorem 1. (45.6) Every relative symmetric Poincaré cobordism is algebraically
split.

This theorem is an algebraic converse to a standard construction in cobordism theory:
the union of three manifolds at a common boundary component is a stratified set, with a
thickening which is a manifold with boundary.

As a consequence of Main Theorem [I], every relative cobordism of manifolds with bound-
ary has at least an algebraic half-handle decomposition. In [BNR1] such an algebraic half-
handle decomposition is realized geometrically as a half-handle decomposition of a relative
cobordism, under the hypothesis that all the manifolds involved are non-empty and con-
nected, but we only need an algebraic half-handle decomposition here.

In §8 Codimension q embeddings, especially for ¢ = 2 we consider the general properties
of codimension g embeddings M™ C N™%¢ and the particular properties in the case g = 2.
A Seifert surface for M™ C N™*? is a codimension 1 embedding ¥™*! C N such that
0¥ =M.

The main result of §5lis :

Theorem 5.4.8. A codimension 2 embedding M™ C N™+2 admits a Seifert surface if and
only if [M] =0 € Hp,(N), if and only if it is framed (i.e. the normal 2-plane bundle vy n
is trivial).
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46l Codimension 2 embeddings M™ C S™*2 is the core of the paper. We extend to such
embeddings the standard notions associated to high-dimensional knots and links, concen-
trating on the odd dimensions m = 2n — 1. In many cases the extensions are already in
the literature. The notions include cobordism, H -cobordism, Seifert surface X, Seifert form
(Fn (%), A(X)) with B(X) = A(X) + (—1)"A(2)*, variation map, Blanchfield pairing etc.
In particular, we introduce the notion of enlargement and reduction of a Seifert form, by
analogy with the enlargement and reductions of forms, as well as the S-equivalence and
H -equivalence of Seifert forms (Definition [6.2.T]).

Main Theorem 2. [6.2.6) Let M?"~! C S?"*! be a codimension 2 embedding with a Seifert
surface X, and Seifert form (F,(X), A(X)). Then the S-equivalence class of (F,(X), A(X))
depends only on the isotopy class of the embedding. Furthermore, if My, My C 8?1 are H-
cobordant codimension 2 embeddings, then the corresponding Seifert forms are H -equivalent.

The Main Theorem 2 has a deep consequence: all the classical knot and link invariants
that can be derived from the Seifert forms (F,(3), A(X)) also give rise to invariants of
arbitrary framed codimension 2 embeddings M?"~! c §2n+1,

The Alexander polynomial of M?**~1 C S?"*1 with respect to a Seifert surface ¥ is defined
by

Ays(t) = dettAX) + (—1)"AX)* : B(D)[t,t7 — Fu(X)*[t,t 7)) € Z]t,t71] .

The Main Theorem 2 implies that this definition does not depend on the choice of a Seifert
surface X, so Aprx(t) can be denoted Apy(t).
For ¢ € S! the nullity of M?"~! C §?"+1 with respect to a Seifert surface ¥ is defined by

nyx(§) = nullity(SA(X) + (=1)"A(E)" : Hn(3;C) — Hp(5,C)) 20,
and the Levine—Tristram signature is defined by
oux(§) = signature(H,(3;C), (1 - A(E) + (-1)" (1 - OAX)") € Z

with H,(X;C) = C ®z F,(X). Corollary (i) to the Main Theorem 2 states that
nax(€) and opx(€) are invariants of the isotopy class of M C S?"*1 and so may be
denoted nps(€), opr(€). Corollary (ii) shows that nx(§), oa(§) are invariants of the
H-equivalence class of (Fy,(2), A(X)) for € € S* such that Ap/(€) # 0, and hence invariants
of the H-cobordism class (in the case n = 1 this is the concordance class) of M C S§?"+1.

We obtain in §0l a generalization of the inequality of Murasugi [Mu| and Kawauchi
[Ka] for the signatures of cobordant links | JS! C S to the Levine-Tristram signatures
o (&), o0 (€) of cobordant codimension 2 embeddings M, M’ C S***1 in all dimensions :
Main Theorem 3 (65.1) Let (W2 My, M) C S* 1 x (I;{0},{1}) be a cobordism of
codimension 2 embeddings Mo, M, C S*"T1. Given Seifert surfaces Yo, %1 for My, M;
define the closed 2n-dimensional manifold

¥ = YU WU, =% € 82 T,
For any ¢ #1 € S*

o010 (€) = oy (§)] < b () = bu(30) — bn(X1) + 1ag () + 10, (€)

where b, (X) denotes the n-th Betti number of a topological space X .

In fact, a proof of the Main Theorem 3 is also available in [BNR3|, using a slightly
different method. It should be noted that it is neither assumed that (W; My, M) is an
H-cobordism, nor that Apg (§), An, (§) # 0. The inequality plays a key role in [BNR3],
where it is used to obtain a topological proof of the semicontinuity of the mod 2 spectrum
of isolated hypersurface singularities.
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The literature devoted to codimension 2 embedding theory is vast, both in the classical
case m = 1 and in the higher dimensions m > 2. The survey of Kervaire and Weber [KW]|
and the book of Ranicki [Ra3] have many references on high-dimensional knots. The work
of Cappell and Shaneson [CS], Blanloeil and Michel [BM], Blanloeil and Saeki [BS|] on high-
dimensional links is only a sample. But to date ours is the most general in dealing with the
homological properties of cobordisms of manifolds with boundary, both intrinsically and in
codimension 2.

1. THE COBORDISM OF MANIFOLDS

We shall be working with oriented smooth manifolds, denoting by —M the manifold M
with the opposite orientation.

1.1. Absolute and relative cobordisms.

Definition 1.1.1. (i) An (m + 1)-dimensional (absolute) cobordism (W3 My, M1) consists
of closed m-dimensional manifolds My, M; and an (m + 1)-dimensional manifold W with
boundary

oW = Myu —M; .

(ii) An (m+2)-dimensional (relative) cobordism (£2;Xg, 31, W; My, M) consists of (m+1)-
dimensional manifolds with boundary (X, M), (X1, M7 ), an absolute cobordism (W; My, M),
and an (m + 2)-dimensional manifold © with boundary

o = X U W Up, =21 .

Yo Q >

My w My

(iii) A relative cobordism (£2; X, 31, W; My, My) is a boundary product if
(W5 Mo, My) = Mo x (I;{0},{1}) .

2o Q ¥

MO M()XI M():Ml

(iv) A relative cobordism (€2; Xg, 31, W; My, My) is a right product if

(825 X0, X1, W5 Mo, M)

= (31 x I; 30 x {0}, (X0 Upgy W) x {1}, W x {0} UMy x I; My x {0}, My x {1})
with 2y = S Upg, W
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EOX{O} Q:lel 21X{1}

My x {0} W x{0}uM; xI M x {1}
(v) A relative cobordism (€2; 3¢, 31, W5 My, My) is a left product if it is the reverse of a right
product
(%30, 31, W Mo, M)
= (3o x I; (W Up, 1) x {0},37 x {1}, Mo x TUW x {1}; My x {0}, My x {1})
with Sg = W Uy, 5.

EOX{O} Q:ZOXI 21X{1}

M0><{O} M()XIUW M1X{1}

The trace of an interior surgery on a manifold with boundary is a boundary is a boundary
product relative cobordism. We now develop the notions of half-surgeries on manifolds
with boundary, and their trace relative products. We refer to [BNR1] for the Morse theory
approach to half-surgeries and half-handles.

Definition 1.1.2. (i) Given an m-dimensional manifold with boundary (My, 9My) and an
embedding

Js" x D™ ¢ My\oMy

l
for some ¢ > 1 define the m-dimensional manifold with boundary obtained by ¢ index r + 1
surgeries

(My,0My) = (cl.(Mo\| JS" x D™ "yu D™ x s™77=1 aMy) .
)4 4
Call M; the effect of the surgeries on My. Note that My is the effect of the ¢ index m — r
surgeries on M; by |J D™ x Sm="=1 ¢ My\oM;.
l
(ii) Given an (m + 1)-dimensional manifold with boundary (X9, Mp) and an embedding
s x D™ c My
¢
define the (m + 1)-dimensional manifold with boundary obtained by ¢ index r + 1 right
half-surgeries

(21, M1) = (SoUysrxpm—r | D™ x D™ el (Mo\ | ) S"x D™ yul DT x 8T
¢ ¢ ¢ ¢
Note that M is the effect of the ¢ index r + 1 surgeries on | JS" x D™~ C M.
¢

(iii) The trace of the ¢ surgeries in (i) is the boundary product cobordism
(W; M(), M1,8M0 X [; aM() X {0}, aM() X {1})
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obtained by attaching ¢ index (r 4+ 1) handles to My x I at |JS" x D™ " C My x {1} with
¢
W =My x IUJD"* x D™=,

4
(iv) The trace of the right half-surgeries in (ii) is the right product cobordism of indez r+1,
with
(X1 x I35 x {0}, 1 x {1}, W; My, M)
with W = My x T U|J D™ x D™= the trace (in the sense of (iii)) of the ¢ index r + 1
l

surgeries on [ JS" x D™™" C M.
‘

20 X {0} Y x I 2 X {1}

My x {O} %4 My x {1}
(v) Given an (m + 1)-dimensional manifold with boundary (X, M) and an embedding
(D x D, )87 x D) € (S, M)
¢ ¢
define the (m + 1)-dimensional manifold with boundary obtained by ¢ index r + 1 left
half-surgeries
(S0, M) = (cl(So\| D™ x D7), el (Mo\ | J §” x D™y u| DT s s
l )4 ¢
In particular, M; is the effect of the ¢ index r + 1 surgeries on My by |JS” x D™~ C M.
¢

The trace of the left half-surgeries is the left product cobordism of

(o x 1330 x {0}, 81 x {1}, W; My, M)
with W = My x T U|J D" x D™= the trace (in the sense of (iii)) of the ¢ index r + 1
surgeries on [ JS” x Dl;”_’" C My. Note that (X, M) is obtained from (X1, M;) by ¢ index
m — r right hgalf-surgeries.

Remark 1.1.3. In terms of homotopy theory, if (X1, M) is the (m + 1)-dimensional man-
ifold with boundary obtained by an index r + 1 left half-surgery then 3; is obtained from
Yo by detaching an (m — r)-cell, and M; is obtained from M, by attaching an (r + 1)-cell
and detaching an (m — r)-cell, so that the Euler characteristics are related by

X(21) = x(Zo) = (=1, x(M1) = x(Mo) + (=1)"" — (=1
Example 1.1.4. Here are the two key examples of the effects of surgeries and half-surgeries
on the intersection form, which both start with a closed 2n-dimensional manifold . Define
the 2n-dimensional manifold with boundary

(%0, Mp) = (cL.(Z\D?"),5%71)
with intersection form
(Fn(X0), B(X0)) = (Fu(¥),B(%)) .
(i) Surgery on a trivial embedding S"~! x D"*! € D?" C ¥ results in the connected sum
of 3 and S™ x S™

Y = cl(B\S"T x D"TH U D™ x S" = YgUgen1 (8™ x S™)g = NHS" x S" .
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The intersection form of ¥ is the rank 2 enlargement of the intersection form of

B(X) 0 0

(Fo(2),B(X)) = (F,(®)@ZoZ,| 0 0 1)
0 (=)™ o0
= (F,(®),B(%) @ (Z o7, <(_2)n (1)>)

given by adding the hyperbolic form

(Fo(S™ x S™), B(S" x S")) = (Z& Z, <(_Ol)n (1)>) .

(ii) The effect of an index n left half-surgery on
(D™ x D™, 8"~ x D™) c (D*",5*"71) C (Z¢, Mp)
is the 2n-dimensional manifold with boundary
(S1j2, Myjp) = (S#S™ x D", M#S™ x §"71)

with intersection form a rank 1 enlargement of the intersection form of (2, M)
B(X) 0
(Fu(31)2), B(X12)) = (Fu(¥) &2, < E) ) 0>) .

The effect of an index n + 1 right half-surgery on (3, /9, M;/2) by S™ x Dl c My o is the
2n-dimensional manifold with boundary

(31, M;) = (cL.(X\D*), s> 1)

(X' as in (i)) with intersection form a rank 1 enlargement of the intersection form of
(12, My /2) and a rank 2 enlargement of the intersection form of (g, Mo)

0
(Fa(S1),B(S1) = (Fa(Si) @z, | B2 <1> )
O (=1™) o0
B(X) 0 0
= (F,(X)®oZadZ, 0 0 1]) = (F,(X),B(Y)) .
0 (-1 0

The traces (W—; Mo, M /5) , (W, M, )5, My) are attachments of a cancelling pair of handles,
with

intersection({0} x S"~1, 5" x {0} C My5) = 1,

(W5 Mo, My5) U (W5 My, My) = My x (I;{0},{1}) .
The Witt group stabilization in (i) is matched up to the cancellation of handles in (ii).
Proposition 1.1.5. Let (X9, My) be an (m + 1)-dimensional manifold with boundary.
(i) If (925 %20, %1, My x I; My x {0}, My x {1}) is the trace boundary product cobordism of ¢

index r + 1 surgeries on |JS” x D™ "1 C g\ My there are homotopy equivalences
¢

Q = Yo xIul D x D~ pyul D ~ mpulomort
14 J4 V4

so that

H(Q,5) = Z¢ if gq=r+1 H (%) = 7t if q=m—r+1
75 =0 0 otherwise » a\h A 0 otherwise ’
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(ii) If
(25 X0, X1, W5 Mo, My) =
(X1 x I; 50 x {0}, X1 x {1}, W x {0} Upg, g0y M1 x I; Mo x {0}, My x {1})
is the trace right product relative cobordism of £ index r + 1 right half-surgeries on | JS" X
D™= C My with !

(X1, My) = (XoUng, W, M)

— (S0 Uy grxpm-r UD™ x D el (Mo\ | S™ x D7) [ D"+ x §m=r-l)
L 14 l l

there are defined homotopy equivalences

Q - 21><[ >~ El - 20UUST><DWL7T'UDT+1XDm_T ~ EOLJLJDr—l—l7
¢ 14 £
W ~ MyuDr+! ~ MyulyDm "
14 14

so that
Z¢ if gq=r+1
Hy(S1 % 1,50 x {0}) = Hy(W, Mo) = A
0  otherwise ,
Z¢ if g=m—r
H W) = {2 0=
0 otherwise .
(iii) If

(€25 X0, X1, W5 Mo, My) =
(3o x I; Bg x {0}, 1 x {1}, W x {0} Ups, x 0y M1 x I; Mo x {0}, My x {1})
18 the trace left product relative cobordism of £ index r + 1 left half-surgeries on
(D x D | ST x D™ € (S, M)
l l
with
(21, M) = (cl(Zo\ D x D™ el (Mo\ | S" x D™y u D x §mr)
l ¢ l

there are defined homotopy equivalences
QO = gxI ~ ¥y = X3 UU Dr+lygm—r—1 LJI)H—1 x D™ o~ ¥ U UDm_T R
[ l )4

W ~ MouUD'tt ~ MyuDm™r
l l

so that
/A =m-r
Hy(So x 1,5y x {0}) = H/W.an) = {5 4=
0  otherwise ,
Z¢ if gq=r+1

H,(W,My) =
q( 0) {0 otherwise.
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1.2. Handle and half-handle decompositions. Let us recall the standard theory of
handle decompositions of absolute cobordisms:

Proposition 1.2.1. (Thom, Milnor) Every absolute cobordism (2;%,%) has a handlebody
decomposition, i.e. is the union of traces of surgeries.

Proof. By the standard translation between Morse functions and handlebody decomposi-
tions. 0

Similarly for boundary and right product relative cobordisms :

Proposition 1.2.2. (i) Every boundary product relative cobordism has a handlebody de-
composition, i.e. is the union of traces of interior surgeries.

(ii) Ewvery right product relative cobordism has a right half-handlebody decomposition, i.e. is
the union of traces of right half-surgeries. Likewise, a left product relative cobordism has a
left half-handlebody decomposition.

Proof. (i) Work as in the proof of Proposition [L2Il An (m + 2)-dimensional boundary
product relative cobordism (2;3,%', M x I; M x {0}, M x {1}) admits a Morse function
U : Q — I such that
U=l0) = 2, U7'1) = ¥, Ul = projection : Myx 1T —1T.
Let 0 =c_1 <cg <+ < eme1 < ¢meo = 1 be defined by
r+1

r = -1<r< 2) .

c T3 ( r<m+2)
The Morse function can be arranged for there to be £,,1 critical values of index r 4+ 1 in
(¢rycry1) € (0,1) for r = —1,0,...,m~+2, so that the boundary product relative cobordism

(QT’; 27’7 27’-‘,—1) = U_l([T7 T+ 1]7 {CT’}a {Cr—i-l})
is the trace of £,11 index r + 1 surgeries on

U s x Dt c ,0\0%,

Lri1

with
m+2

@5,%) = |J @2 Se) .
r=—1
(ii) By definition, the right product relative cobordism (Q;%q x {0}, x {1}, W; My, M)
has
Q=X x1,% = 2OUMOW-
A decomposition of the absolute cobordism (W; My, M;) as a union of adjoining absolute
cobordisms
(W5 Mo, My) = (Wo; Mo, My 9) U (W15 My o, My)
extends to a decomposition of (2; X9 x {0}, X1 x {1}, W; My, M;) as a union of right product
cobordisms
(Q; 20 X {0}, 21 X {1}, W; MQ, Ml)
= (£0; %0 x {0}721/2 X {1}7W0;M0,M1/2) U (91§E1/2 x {0},% x {1},W1§M1/2,M1)
with
21/2 = Yo Up, Wo , Qy = El/QXI, O = ¥y x1.
Now apply Proposition [L2.1] to (W; My, M;1): each index r 4+ 1 handle in (W; My, M;)
determines an index r 4 1 right half-handle in of (2;Xg x {0}, x {1}, W; My, M).
Similarly for a left product relative cobordism. O
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The situation is more complicated for relative cobordisms (€; X, X1, W'; My, M7) which
are not boundary products. Of course it is possible to treat the interior and the boundary
separately: it is not hard to show that every relative cobordism is a union of a right product
and a boundary product, i.e. the union of traces of surgeries on the boundary and interior.
But for the applications to the cobordism of Seifert surfaces of codimension 2 embeddings
we need a closer connection between the interior and boundary surgeries.

1.3. Split relative cobordisms.

Definition 1.3.1. An (m + 2)-dimensional relative cobordism I' = (€; X, X1, W'; My, M)
is split if it is expressed as a union I' = I'" UT'" of a left and a right product

™ = (7530, 819, W3 Mo, M) , T = (%5819, 51, WF5 Myjp, My)

with embeddings
(W_,M()) C (ZO,MO) , (W+,M1) C (El,Ml)
and
Q" = YgxI,0" =%, x1T,
Yo = 21/2 UM1/2 W=, ¥ = 21/2 UM1/2 wT, 21/2 = cl.(Z\W™) = Cl.(El\W+) .

A

Q
Y12 Y12
o M O =Yg x1 Ot =% x I M ¥
W~ wt
My |/ M o W+ My

14

Remark 1.3.2. A split (m + 2)-dimensional relative cobordism I' = '~ UT" has three
ingredients:

(i) An (m + 1)-dimensional manifold with boundary (3, 9, Mj2),

(ii) An (m + 1)-dimensional cobordism (W™; Mo, M ),

(iii) An (m + 1)-dimensional cobordism (W™; My /o, My).
The inclusion

WUM1/2 21/2 = W u 21/2 U W+ cQ
is a homotopy equivalence, with isomorphisms
Hi(312) = Hip1(Q,50U%1) , Hu(S1y9, Myyg) = H (W Un,,, B1p0, W) = H(QW) .
Definition 1.3.3. (i) A split (m + 2)-dimensional relative cobordism
(30,81, W; Mo, M) = (7330, 5172, W5 Mo, My y9) U (QF5 51 /9,50, W My jo, My)

is elementary of indexr+1 (with —1 < r < m+1) and of rank (¢, , €, 1) if (27520, X1 9, W5
My, M, j5) is the left product obtained as in Definition [LI1.2] (v) from (%o, My) by £, left
half-surgeries

(U D" x Dm—r—l—l’USr—l « Dm—r—l—l) C (ZoaMO)

o o
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and (Q%; 31 /9, X1, WT; My 9, My) is the trace right product obtained from (X, Mj/2) by
€F, right half-surgeries |J S” x D" C M/, (L2 (iii))

ot
r+1
W_ = MO X I UU Sr—1ly pm—r+1 UDT X Dm—’f‘—l—l ,
o o
W+ = M1/2 X IU U ST Dm—T U DT+1 % Dm_r )
i A
the traces of the surgeries on (J S™~! x D™+ C My and |J 5" x D™™" C Mj 5, and
Z; Z+

r+1
Lo = W™ Unn, Zupz s X = BippUngy, W
Q" = BoxI = (BoUnm, W) X TU grypm-—rer JD™H x DL

25 Oy
ot = 21 x 1 = 21/2 x ITU U SrtixDm-r U DT+2 x D™
AT G
In the case r = —1 it is understood that /~; = 0, and in the case r = m +1 it is understood

that £, = 0. Note that
(Q;Zl,ZQ,W;Ml,M()) = (Q+;21721/27W_;M17M1/2) U (Q_;21/27207W+;M1/27M0)

is an elementary splitting of index m — r, with (3, /3, M} /) is obtained from (X1, M) by
K;Zrl left half-surgeries

(U D+l x D™ U Dl x Sm—r—l) C (EI,MI) ’

of of
r+1 r+1
and (X, Mp) is obtained from (X, 5, M) by £, right half-surgeries [ J D" x S™~" C Mj /5.

o
(ii) A half-handle decomposition of an (m + 2)-dimensional relative cobordism (2; X%, 3 W
M, M) is an expression as a union of relative cobordisms

m—+1
(9;272/7W;M7M/) = U (QT;2T72T+17WT;MT’7MT’+1)

r=-—1
with each
(Qr; Xy Xpg1, Wi M, Mr+1)
= (Q;, 27’7 27‘+1/27 Wr_; MT’a Mr+1/2) U (Qj—v 2r—|—1/27 27“4-17 WT+; MT—|—1/27 MT-H)

an elementary splitting of index r + 1.

5, O =%, x 1 Qf =%,4q x 1 St

M, W~ M4/ Wt M1
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Theorem 1.3.4. (i) Let
(Qr; Era Er—i—la Wr; Mr: Mr-l—l)
= (Q;v E?“v E7“—|—1/27 Wr_; MT7 Mr+l/2) U (qu—a E7’-1—1/27 E7‘-‘1-17 Wr+; Mr+l/27 MT-‘rl)

be an index v + 1 rank (7,07, ) elementary splitting of an (m + 2)-dimensional relative

cobordism. The homology and cohomology groups are such that
Hq(Wr_’Mr) = Hm+1_q(Wr_er+1/2) = q+1(Qr_’Er Un, Wr_)
7t if q=r
0  ifqg#r,
Hy(W Myyap2) = H™IWE Mygy) = H™27UQE Wi U,y Bra)

= H™1UQT 8, ) = H™(Q,,8,4) = {

Zta if g=r+1
0 if g#r+1.

The homology groups of ¥, 3119, Xrt1, 2y fit into a commutative braid of exact sequences

= HQ(ijgr—l—l/?) = HQ(QT’7ET’) = {

HQ+1(ET72T+1/2) HQ(ET’-i-l) HQ(27’+1727‘+1/2)
Hq(2r+1/2) Hq(Qr)
Hy1(Zr41, %041 /2) Hy(%) Hy(%), %0 412)

\_/\/

{ZZT if g=m—r+1

with

H, (%, %, = H, (02,2, =
q +1/2) ql +1/2) 0 ifatmril
Z£j+1 if qg=r+1
H,(Xr11,%, = H,(Qf,%, =
q( +1 +1/2) q( +1/2) {O if qAr+1.
The £ X E;FH matriz of the boundary map

d o Hop(We, W) = Hopt(W, M, jqy9) = 7 H,(W,,M,) = 2"
has entries the homological intersection numbers of the cores
(U0} x 5™ n ([ 87 % {0}) € Mo -
o A

It follows from the exact sequence

s Hy (W, My) — Hyat (W, W)~ H (W, M) — Hy(Wy, M) — ...

that
ker(d:Z0+ — Z8)  if q=r+1
H,(W;, M) = { coker(d : Zh+ ZR) if g=r
0 otherwise .
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In particular, (Wy; M., M,41) is an H-cobordism if and only if d is an isomorphism.
(i) Let

m—+1

(YW, M, M) = U (3, Zpp1, Wys My, My q)
m—+1 r=0

= UO(Q;;EMET—FI/Q’W s My, Myy1y9) U (55540172, Bt W5 My g0, M)
r=

be an (m + 2)-dimensional relative cobordism with a half-handle decomposition. Define the
(m + 2)-dimensional relative cobordisms

(Qpg1/25 Xrg1/2, Zrgsyas Weg1j2s My 72, My 3/2)
= (Q;r7 E?‘+1/27E7‘+17Wr aMr+1/27MT+1) U (Qr+1? Yrt1, Er+3/2,Wr_+1§Mr+1aMr+3/2) .

Qr+1/2
<> - . o @QNAZNAXI@%
r+1/2 M4 Wr_—l—l r+3/2
W, )
Wii1)2

We use the handle decompositions to define three chain complexes C', CT, C~ such that
H.(C) = H(W,M), H(C") = H.(Q,%), H(C™) = H1 (T Uy W) .
The connecting maps of the triples
(W32 UWo 1o UW, 1y, Wil3/o UW, 19, Wi_3)9)

are the differentials

0 : Cp = H(Wyy1/2, Myy12)

= Hy(Wy_3/o UW,_1 g UW,p )0, W3 UW,_y ) = 25+

= Cr1 = Heoa(Wy_1yp, My_1y2) = Hpoa(Wogo UW,_10, W, _3/0) = A

of the cellular chain complex (C,0) = C(W, M) of the absolute handlebody decomposition

m+1
(Wi M, M) = | (Wyt1j0i My o, Myys)0)

r=—1

as in [Radl, 2.22]. The connecting maps of the triples

(32U _10UQq1/9, Q30 UQ_1/9, Q_3/2)
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are the differentials
at : CF = H.(WF, M,y 1))
= Ho(Q3UQ 10U 1)0, Qa0 UQ, 1) = Z5
= CF ) = Hoa(WE , My_qys) = He (32U Qe _1/2,Q3/9) = 2
of the cellular chain complex (C*,d") = C(Q,X). The connecting maps of the triples
(Q_32UQ_12UQy1)2, Q3o UQ_1pUWoy0, QuzpUW_10UW, 1)) .
are the differentials
d- : Co = H. (W, Myy1)
= H1(Q 32U 10 UQ 10, Q30 UQ 10U Wepypn) = Ztr
—-C_, = H._ (W, M,)
= Hp(Q_30UQ10UW, 10, Qg0 UW,_10UW,410) = Z
of the cellular chain complex (C~,d™) = C(Q, X Ups W)ay1. The chain complex (C,0) is
the algebraic mapping cone of a chain map d: (CT,d*T) — (C~,d™ )s_q
Cp = CW, M)y = H(Wyirj9, Mypap2) = CFeCr = 25+ )
9 = ((—d1+)rd d0_> L = OOl Gy = O @0,

with an exact sequence

e Hyy(CF,dY) — 4 H (O d™) —— H,(C,0) —— H (CF,d") —— ... .

It follows from H,(W,M) = H.(C,0) = H.(d) that (W;M,M") is an H-cobordism if and
only if d is a chain equivalence.

Remark 1.3.5. See [Radl, Proposition 8.17] for a proof of the identification of the algebraic
and geometric intersection numbers in Theorem [[.3.4]

2. FORMS AND THEIR ENLARGEMENTS

We describe some algebraic properties of (—1)"-symmetric forms over a ring with invo-
lution R, which will be applied to topology in subsequent sections. In the case R C C we
obtain various estimates for the signature, in terms of ranks and nullities. In particular,
we obtain an estimate for the difference of signatures of a form and its enlargement. Later
on, in §3] we shall deal with the intersection (—1)"-symmetric form of a 2n-dimensional
manifold with boundary (X, M), showing that a (2n + 1)-dimensional relative cobordism
(Q,3,%; W, M, M") determines a common enlargement of the intersection forms of (X, M)
and (X', M’). In §0 we use the algebra to obtain a generalized Murasugi-Kawauchi in-
equality estimating the difference in the Levine-Tristram signatures | (§) — opr(€)] for a
codimension 1 relative cobordism

(Q,2, %W, M, M) c 8" x (I; {0}, {1})

of Seifert surfaces 3, ¥ C §?"*! of codimension 2 embeddings M, M’ C §?7+1,
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2.1. Forms. We fix a ring R with an involution R — R;a > a.

Notation 2.1.1. The transpose of a k x £ matrix
is the £ x k matrix A* = (a;;).

Definition 2.1.2. Fix a sign e =1 or —1.
(i) An e-symmetric form over R (F,B) is a f.g. free R-module F together with an e-
symmetric pairing

B : FXxF—R; (xz,y) = B(z,y) = eB(y,x) .
(ii) The adjoint of (F, B) is the R-module morphism
B = eB* : F— F* = Homg(F,R) ; =+ (y— B(z,y)) .

(iii) A form (F, B) is nonsingular if B : F' — F* is an isomorphism.

A form (F, B) with dimgF = k is essentially the same as a k x k matrix B over R such
that B = eB*.

Next, let us define the morphisms of forms.
Definition 2.1.3. (i) A morphism of e-symmetric forms j : (F', B") — (F,B) over R is
an R-module morphism j : F' — F such that j*Bj = B’, or equivalently if the following

diagram commutes:

F/_j>F

ol

Fl* J F*

(ii) A subform (F',B') C (F,B) of an e-symmetric form (F, B) is the e-symmetric form
defined on a f.g. free R-submodule F' C F by the restriction B’ = B|ps, so that the
inclusion j : F' — F defines a morphism j : (F', B") — (F, B).

(iii) The annihilator of a subform (F',B') C (F,B) is the subform (F'*, B'*) C (F,B)
defined by

Ft = {z € F|B(z,y)=0€ Rforally € F'} = ker(j*B:F — F*)CF .
(iv) The radical of an e-symmetric form (F, B) is the annihilator of (F, B) itself
(Fred predy = (ker(B:F — F*),0) C (F,B) .
Proposition 2.1.4. (i) If j : (F',B’) — (F, B) is a morphism of e-symmetric forms over
R then ker j C F'™. In particular, if (F', B') is nonsingular then ker j = {0}.
(ii) If (F, B) is an e-symmetric form over R such that F"* C F is a direct summand (auto-

matically the case if R is a principal ideal domain) then the radical quotient (F/F" [B])
is a well-defined nonsingular e-symmetric form over R, such that up to isomorphism

(F,B) = (F™ @ (F/F), <8 u%)).

As usual, isotropic subforms are important for the applications of forms to topology.

Definition 2.1.5. (i) A sublagrangian of an e-symmetric form (F, B) is a subform (L,0) C
(F, B) such that L is a direct summand of F' and j*B : F — L* is onto, with j : L — F the
inclusion. In particular, L C L.

(ii) A lagrangian L of (F,B) is a sublagrangian L such that L+ = L.

(iii) A form (F, B) which admits a lagrangian is called metabolic.
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Example 2.1.6. Every nonsingular (—1)-symmetric form over Z is metabolic.

Proposition 2.1.7. (i) The inclusion of a sublagrangian j : (L,0) — (F,B) in an e-
symmetric form (F, B) over R extends to an isomorphism of forms
(L*/L.[B)&H = (F.B)

with H a metabolic form with lagrangian L.
(ii) An e-symmetric form (F, B) is metabolic with lagrangian L if and only if it is isomorphic

L [0 I
to (L@ L*, o C
(iii) Let j : (F',B") — (F, B) be the inclusion of a subform. If j*B : F — F'* is onto (e.g.
if (F, B) is nonsingular and j is a split injection) there is defined an isomorphism of forms

(F/J_vB/J_) OH = (Flv _B,) & (F7B)

) for some e-symmetric form (L*,C).

with H a metabolic form with lagrangian F’.

Proof. (i)4+(ii) Standard.
(iii) Apply (i) to the inclusion of a sublagrangian

C) . (L,0) = (F',0) = (F',—B) @ (F,B) ,
noting that (L*/L,[B]) = (F'*, B'"). O

Definition 2.1.8. Let (F, B) be an e-symmetric form over R.
(i) A rank ¢ enlargement of (F, B) is an e-symmetric form over R of the type
I pn B C
with (L, D) an e-symmetric form over R with dimp L = ¢ and C : L — F* an R-module

morphism. Note that (F, B) is a subform of (F’, B').
(ii) A rank (€7,47) enlargement of (F, B) is a rank £ 4+ ¢~ enlargement of the type

B 0 C
(F,B) = (FeL @®Lt,| 0 0 DJ)
eC* eD* FE

with LT, L~ f.g. free R-modules with dimg L* = ¢* and C, D, E R-module morphisms
C:L"—=F* D:L"—= (L), E =¢eE*: L™= (LT)".

(iii) An H-enlargement is a rank (¢,¢) enlargement as in (ii) in which D is an R-module
isomorphism.

Proposition 2.1.9. (i) If L™ is a sublagrangian of an e-symmetric form (F', B') then (up
to isomorphism) (F', B') is an H-enlargement of (F, B) = ((L™)*/L~,[B']), with

B 0
Lt =w)y,w) =FeL ,F,B)=FaeL oL |0 0
0 €

o~ o
N—

for some e-symmetric form (L1, E).
(i) If (F', B') is an H-enlargement of (F, B) then L_ is a sublagrangian of (F', B') such
that

(L) = F'oL™, (L)Y/L7,[B]) = (F.B),
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and there is defined an isomorphism of forms f: (F', B") & (F, B) & H with

- (I~ + (0 D
H = (L EBL,(ED* )

metabolic with lagrangian L™ and

1 0 0
f=1[DOH*C* 10| :F =FoL oLTwFaoL oLt.
0 0 1

Proof. (i) Immediate from Proposition 2.1.71
(ii) By construction. O

2.2. Nullity and signature. In this subsection we work over a subring R C C. We shall
make use of the fact that a submodule F/ C F of a f.g. free R-module F is a f.g. free
R-module, with C ®r F’ C C®pg F a direct summand.

Definition 2.2.1. The nullity of a morphism B : F' — G of f.g. free R-modules is
n(B) = dimpker B .
We shall make use of the following standard properties of nullity:
n(B:F —G) = dimgp F —dimgpim B ,
n(B*: G* - F*) = dimp G —dimg F + n(B).
The induced morphism of f.g. free C-modules 1 ® j: C®r F' — C @ G is such that
ker(1® B) = C®pgker(B), im(l1®B) = Crim(B), n(l® B) = n(B) .
Notation 2.2.2. A l-symmetric form over C is called hermitian.

Definition 2.2.3. Given an e-symmetric form (F, B) over R define the hermitian form over
C
C F.B) ife=1
(F.B)e = {CERED) e
C®gr (F,iB) ife=-1.

The hermitian form is diagonalizable, and has eigenvalues A1, Ag,..., A\x € R C C with
k = dimg F = dimc(C ®p F).
(i) The nullity of (F, B) is

n(F,B) = n(B:F — F*) = dim¢c F™ = |[{i|\; =0}/ >0

with F7% = ker(B) the radical of (F, B) Z.13).
(ii) The positive and negative rank of (F, B) are

r+(F,B) = dimc Fy = [{i| A >0},
r_(F,B) = dim¢c F- = [{i|\i <0} >0,

with Fy, F~ C F maximal subspaces such that (F, B|) is positive definite and (F_, B|) is
negative definite.
(iii) The signature of (F, B) is

o(F,B) = ry(F,B)—r_(F,B)€Z.
Note that
n(F,B) = n(C®gr(F,B)), re(F,B) = r+(C®gr(F,B)), o(F,B) = o(C®g (F,B)) .
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Example 2.2.4. (i) An e-symmetric form (F,B) over R is nonsingular if and only if
n(F,B) = 0.
(ii)) A hermitian form (F,B) over C is metabolic if and only if it is nonsingular and
o(F,B)=0.

Remark 2.2.5. The signature is 0 for (R,¢) = (Z,—1) or (R, —1), so is not very helpful in
these cases!

Proposition 2.2.6. Let (F, B) be an e-symmetric form over R.
(i) The nullity, ranks and signature of (F, B) are related by the equality

n(F,B)+ry(F,B)+r_(F,B) = dimpF

and the inequality

lo(F, B)| + n(F, B) < dimp F .
(ii) The radical quotient nonsingular e-symmetric form (F/F % [B]) has the same ranks
and signature as (F, B)

r-l—(F/FTad) = T—l—(FvB) ) r—(F/FTad) = T‘_(F,B) ’ O-(F/Frad7 [B]) = J(FvB) .
(iii) If L is a sublagrangian of (F, B) then
n(F,B) = n(L~/L,[B]), o(F,B) = o(L"/L,[B])
and
lo(F,B)| +n(F,B) < dimg(L*/L) = dimg F — 2dimp L .
In particular, if L is a lagrangian then o(F, B) = 0.
(iv) For any morphism j : (F', B") — (F, B)

o(F',B") = o(im(j),B|) = o(F,B) —o(F'*,B*)cZ

with (F'+, B'Y) = (ker(j*B : F — F'*), B|) C (F, B).
(v) For any morphism j : (F', B") — (F, B) with (F, B) metabolic

lo(F',B")| < dimg F — dimg F' +n(F',B') .
Proof. There is no loss of generality in taking (R,¢) = (C,1).
(i) Immediate from a decomposition
(F, B) = (F+7B+) ©® (F—7B—) ©® (Fradvo)

with (F4, B4) positive definite and (F_, B_) negative definite.
(ii)+(iii) Immediate from Proposition 2.1.71
(iv) Choose a direct complement to ker(j) C F”, so that up to isomorphism

j =0&i: (F,B) = (ker(j),0) ® (im(j), B|) — (F,B) .
It follows that
o(F',B") = o(ker(j),0) + o(im(j), B]) = o(im(j),B|) € Z .
The identity o(F,B) = o(F’, B') + o(F'*, B'*) holds in the special case when (F, B) is

nonsingular: writing L = F’, note that

G) . (L,0) = (F',—B') & (F, B)

is the inclusion of a sublagrangian with annihilator
L+ = ker((B' —j*B): F'© F — F'*)
= Lo&ker(j*B: F - F*) = L& F'* |
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so that by Proposition 2.1.7] (i)
o(F,B)—o(F',B") = o(L*/L,|-B'®B)]) = o(F'*+,BH)cZ.

In the general case apply the special case to the morphism of forms

J = (é _1B> . (F'@ F, (%l _OB>)—>(F”,B”) = (F@F*,(Jf é))

with (F”, B"”) metabolic, using

J*B/l — jOB jl . Fl/ — F@F*%F,*@F*,

(F'e F)-,(B'® -B)*) = (ker(J*B"),B"|) = (F'+,B")
to obtain
o(F",B") = o(FF®F,B'®-B)+o((F' & F)*,(B'® -B)*%)
= o(F,B)—o(F",B")+o(F+,BY) = 0 €Z.

(v) Let ¢ : (L,0) — (F, B) be the inclusion of a lagrangian, so that L = ker(i*B : F — L*),
and define
i’ = inclusion : I = j7YL) = F',j = j| : I' - L

such that
ji' = ij : L' = ker(i*B'j: F' - L") - F .
Then
(a) F'"ad = kerj/ C L', since (F, B) is nonsingular, j(F"%) C Fr% = {0} and L =
keri* B,

(b) [i] : (L'/F'm40) — (F'/F" [B]) is the inclusion of a sublagrangian in the non-
singular e-symmetric form (F’/F'm [B']),
(c) i*Byji' =i*Bij’ =0: L' — L*, so that

dimgp L' = dimg F' — dimgim(i*Bj : F' — L*)
> dimp F' — dimg L* = dimp F’' — (dimg F')/2 .
It now follows from (ii) and (iii) that
o(F',B") = o(F'/F"™ [B") <dimg(F'/F™) —2dimg(L'/F)
= dimp F' — 2dimp L' + dimp F'"%
< dimg F — dimg F' + n(F', B') .
U

Theorem 2.2.7. Let (R,¢) = (Z,1) or (R,1) or (C,£1), and let (F, B) be an e-symmetric
form over R with a rank ¢ enlargement

(F'.B) = (Fo L, (ﬁ* g>).

(i) The signatures of (F,B), (F', B') differ by
o(F',B") —o(F,B) = o(F+, B
with (F+, BY) C (F', B") the annihilator of (F, B) C (F', B), given by
Ft = ker((BO): F@® L — F*),
B ((z1,11), (2, 42)) = B(w1,x2) + D(y1,y2) -



CODIMENSION 2 EMBEDDINGS, ALGEBRAIC SURGERY AND SEIFERT FORMS 21

(ii) The nullities and signatures are related by the inequality

o(F', B') — o(F, B)| + [n(F', B') — n(F, B)| < ¢ .
(iii) If ¢ =1 then

lo(F',B") = o(F,B)| + [n(F',B) = n(F,B)| = 1.
(iv) If (F', B') is nonsingular then

n(F,B) = n(F+,BY).
v) If (F', B") is metabolic then
(v) If (F,
o(F,B) = o(F,B)+o(FL,BY) = 0, [o(F,B)| < - n(F,B) .

Proof. (i) A special case of Proposition (iii).
(ii) Without loss of generality may assume (R, ¢) = (C, 1), so that

(F,B) = (Fy,By)® (F_,B_)® (Fr)0)
(F',B") = (F,,B,)& (F.,B")a (F"™0)

with (Fy,By) C (F',B!) positive definite, (F_,B_) C (F’,B’) negative definite, and
Frad ¢ Frrod 1t follows from dime Fly = r+(F,B), dimc F. = ry(F', B’) that

lo(F', B') = o(F, B)| + [n(F', B") — n(F, B)|
= dimc(F/Fy) — dime(F'_ /F_) + dimg(F"™ /Fred) < dime(F'/F) = dime(L) = £.
(iii) If L = R then

1 if B-=0€eR if Bb=0€R
n(FLB) = 400 T ety = 40
0 f B-#0€R sign(B+) if B-#0€R
(iv) Consider the commutative braid of exact sequences
B
ker B 2 ker B+ F = coker B = coker B+
0 / L (FJ‘)* \ 0

(v) follows from (i) and (ii), noting that if (F, B) is metabolic then o(F, B) = 0, n(F, B) =
0. U

Corollary 2.2.8. Let (R,¢) = (Z,1) or (C,=£1), let (F, B) be an e-symmetric form over R,
and let
B 0o C
(F'\B") = (FoL_-oL,,| 0 0 D))
eC* eD* E
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be a rank (£~ ,0%) enlargement.
(i) The signatures of (F,B), (F',B’) differ by
o(F',B")—o(F,B) = o(F',B") € Z

with

(F".B") = (ker (ﬁ g) Jker(B), [B'])

= ({rely|D(x)=0€Lr,C(x) €im(B) C F*},E|) .

(ii) The nullities and signatures are related by the inequalities

lo(F', B") — o(F,B)| + |n(F', B') — n(F, B)| < dimg L_ + dimp L, ,

lo(F', B") — o(F, B)| < min(n(D),n(F,B) +n(F',B")) .
If (F',B’) is an H-enlargement (i.e. if D is an isomorphism) then F" =0 and

n(F,B) = n(F',B")>0, o(F',B") = o(F,B)€Z.

(iii) The determinants of B and B’ with respect to bases for F,L_, Ly and the dual bases
for F* L* | L% are related by

det(B') = —edet(B)det(D)det(D*) € R .

(F', B') is nonsingular if and only if (F, B) is nonsingular and (F', B') is an H-enlargement
of (F,B) (i.e. B’ is an isomorphism if and only if both B and D are isomorphisms), in
which case

o(F,B) = o(F',B")€Z.
Thus any H-enlargement of a nonsingular form is a nonsingular form with the same sig-
nature.

Proof. (i) By Proposition [2.2.6] with j = inclusion : (F, B) — (F’, B") we have
o(F',B")—o(F,B) = o(F*,Bt)cZ
with
(F1,B+) = (ker((BOC):F®L_& Ly — F*),B'|) = (L. L, (68,* gj>) ,
L' = ker((BC):F®Ly— F*),
C': L' - L*; (z,y) = (2= D(y,2)) ,
E' Ly = L7 (oY) = ((22,52) = B/, 22) + E(Y, 92)) -
The annihilator of (ker(B) @ L_,0) C (F+, Bt) is
((ker(B) ® L_)*,01) = (ker(B)® L_,0)® (F",B")
so that applying Lemma 2.1.7] again
o(F',B"Y —o(F,B) = o(F+,B")
o(ker(B) ® L_,0) + o(F",B")
= o(F",B") e L.

(ii) The inequality
lo(F',B") — o(F, B)| + |n(F', B') — n(F, B)| < dimg L_ + dimpg L
is a special case of Theorem 2:2.7] (ii). It is immediate from (i) and F” C ker(D) that
lo(F”, B")| < dimg F” < dimg ker(D) = n(D) .
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The e-symmetric form

-B'1 0 0
(HO) = Ferel.eli| o p 1]
0 0 € O
is metabolic. Let (P, ¢) C (H,0) be the image of the morphism of forms
1 1 0 O
r=1lo 0 0 V@B = Fer.-BaB) - (1.0)
0 eC* eD* 0

and let
N B 0\ —
J = ker(f) = ker((ec* ED*> FoL_—FolLy),
K = ker(B) = ker(B) @ker(B) .
By Proposition
o(F',B")—o(F,B) = o(F,B) = o(P,¢) €Z

The image of the injection

is such that
Q) = (P.o)*

N

(H,9),
so that

dimp P +dimgr @ = dimp H
and by Proposition

o(P,¢)+0(Q,¢v) = o(H,0) = 0€Z.

Consider the commutative braid of exact sequences

/\/\/\/\/\

\/\/\ /\/\/

H =y O*

\/\/\/\/
N N

It follows from the short exact sequences

0-J—F—>P—-0,0-Q—+H—-P —-0,0—=J—K—=ker(yp) >0,

23
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and dimgpF = dimg H that
dimgJ = dimg F —dimg P = dimg H —dimgp P = dimgp @ < dimg K
so that by Proposition
lo(F',B") —o(F,B)| = |0(Q,%)| <dimrQ < dimg K = n(F,B)+n(F',B) .

(iii) Immediate from (ii). O

3. THE INTERSECTION FORM OF A MANIFOLD WITH BOUNDARY

3.1. Torsion-free homology. The intersection (—1)"-symmetric form (F,(3), B(X)) of
a 2n-dimensional manifold with boundary (X,0%) is defined on the torsion-free quotient
F,.(X) = H,(X)/torsion. In order to study the behaviour of the intersection form under
cobordism we bring together some of the properties of the torsion-free quotients of homology
groups.

Definition 3.1.1. The torsion subgroup and the torsion-free quotient of an abelian group
A are the abelian groups

T(A) = {a€ Alka=0€ Aforsome k#0€Z} C A,
F(A) = A/T(A) .
If Ais f.g. then T'(A) is finite, and F'(A) is f.g. free.
Proposition 3.1.2. (i) The short exact sequence
0—-TA) -A—F(A) —0

is natural. A Z-module morphism f : A — B induces a natural transformation of exact
sequences

0 —— T(A) A F(A) 0
|70 lf |0
0 ——T(B) B— > F(B) ——0

with a snake lemma exact sequence
0 — ker(T'(f)) — ker(f) — ker(F(f)) — coker(T'(f)) — coker(f) — coker(F(f)) — 0 .
In particular, if F(f) : F(A) — F(B) is an isomorphism then f : A — B is an isomorphism
modulo torsion, i.e. ker(f) and coker(f) are both torsion modules, with
ker(f) = ker(T(f)), coker(f) = coker(T(f)) .
(i) If
A5 9. ¢
s an exact sequence of Z-modules then
ker(F(g) : F(B) — F(C)) = {z € F(B) |kx € im(F(f)) for some k #0 € Z}

and ker(F(g))/im(F(f)) is a torsion Z-module.
(iii) If B is a f.g. free Z-module and A C B is a submodule (not necessarily a direct
summand), then A is a f.g. free Z-module, and

Ay = {z € B|kx € A for somek#0€Z} CB
is a direct summand such that Ay C A, A/Ay is finite, dimy Ag = dimy A, and
QezA) = QezACQ®zB .
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(iv) If f : A — B is a morphism of f.g. free Z-modules then im(f) C B is a f.g. free
submodule, and ker(f) C A is a f.g. free submodule which is a direct summand. Furthermore

mlef:QezA—-Q®zB) =2 Q®zim(f),

ker(l® f:Q®z A= Q®z B) = Q®gzker(f) .
Proof. Standard homological algebra. O
Definition 3.1.3. Given a Z-module chain complex C let

F(C) = F(H,(C)), F'(C) = F(H"(C))

with H"(C) = H_,(Homz(C,Z)).

Proposition 3.1.4. (i) For a finite f.g. free Z-module chain complex C the groups H,(C),
H"(C) are f.g. Z-modules, and

F(H™(C)) = H.(C)" = F(H.(C))"
H,(Q®zC) = Qez H,(C) = Q@z F(C) .

(ii) For a chain map f : C — D of finite f.g. free Z-module chain complezxes the following
conditions are equivalent:

(a) the induced Z-module morphisms fi : Hi.(C) — H.(D) are isomorphisms modulo
torsion

(b) the induced Z-module morphisms F(fy) : F(H.(C)) — F(H.(D)) are isomorphisms,

(c) the induced Q-module morphisms (1® f)s : H(Q®zC) = H,(Q®z D) are isomor-
phisms.

Proof. Standard. O

The homology groups of a CW complex K
H.(K) = H.(C(K))
are the homology Z-modules of the cellular chain complex C(K), the Z-module chain com-
plex with
Cr(K) = Hy (K", KY)
the free Z-module generated by the r-cells of K. The cohomology groups
H"(K) = H_p(Homz(C(K),Z))
are such that there are defined Z-module morphisms
H"(K) = Hy(K)* = Homgz(H,(K),Z) ; f+ (z+— f(2)),
H,(K)®z H(K) - Hp—(K) ; 2@y — 2Ny
and a bilinear pairing
Hy(K) x H'(K) > Z; (z, f) — f(z) .
Write the torsion-free quotients as
F(K) = F(H,(K)), F'(K) = F(H(K)) .
Proposition 3.1.5. (i) For a map f: K — L of CW complezes
ker(fy : Fj,(K) — F,(L))
= {z € Hy(K) | kx € ker(fy : Hy(K) — Hyp (L)) for some k #0 € Z}/T,(K) ,
im(fy : Flo(K) — F,(L))
=~ {y € Hy(L) |ty € im(f, : H,(K) — Hy(L)) for some £ #0 € Z}/T,(L) .

The following conditions are equivalent:
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(a) the induced Z-module morphisms f. : H.(K) — H.(L) are isomorphisms modulo
torsion,

(b) the induced Z-module morphisms fy (K ) — Fi (L) are isomorphisms,

(c) the induced Q-module morphisms fy : K;Q) — H.(L;Q) are isomorphisms.

H.(
(ii) For a finite CW complex K the groups Hy(K), H"(K) are f.g. Z-modules, and
F'(K) =2 F.(K)", H(K;Q) = Q®z F.(K), H'(K;Q) = Q®z F'(K) .
Proof. Immediate from Propositions B.1.2] B.1.41 d

3.2. The intersection form of a manifold with boundary. Let (X, M) be an oriented
(m + 1)-dimensional manifold with boundary. Cap product with the fundamental class
[X] € Hnt1(2, M) defines the Poincaré-Lefschetz duality isomorphisms

[E]ﬁ_ : HT(EvM) = m—l—l—r(z)v [E]ﬂ— : HT(E) = m—l—l—r(EvM)
in the usual manner.

Definition 3.2.1. The intersection pairing of an (m+1)-dimensional manifold with bound-
ary (X, M) is the pairing

B(Y) : H(X) X Hypy1-(X) = Z
with adjoint the composite
Hy(8) — Hy(3,M) = H™77(8) —= Hp1- ()",

corresponding to the evaluation of the cup product pairing on the fundamental class [X] €
Hyy1(2, M)

H™7(2, M) x H'(S, M) —2= H™ (3, M) =25

The intersection pairing is such that
B(Z)(z,y) = ()" IBE)(y,2) € Z (x € Hy(E),y € Hpy1-1(5)) -

The intersection pairing takes 0 values on torsion homology classes, so there is induced an
intersection pairing on the torsion-free quotients

B(Y) : F.(X) X Fp1-+(2) = Z .
It follows from the exact sequence of Z-modules
= H,(M)— H.(¥) > H.(X,M) - H_1(M) — ...
that there is defined an exact sequence of Q-modules
= Q®z Fr(M) = H,(M;Q) » Q®z F(¥) = Hy(3;Q)

B(X
1(8—& )Q®ZFT(E)* :HT(EvaQ) _>Q®ZF’!‘—1(M) :Hr—l(M;Q) —

If M = or S™ the adjoint Z-module morphisms
B(E) : Fr(z) - Fm+1—r(2)* ;T (y = B(m,y))
are isomorphisms.

Definition 3.2.2. The intersection form of a 2n-dimensional manifold with boundary
(3, M) is the (—1)"-symmetric form (F, (%), B(X)) over Z.

Example 3.2.3. The intersection (—1)"-symmetric form (F,(X), B(X)) is nonsingular in
either of the following cases

(i) X is closed, i.e. M =,
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(i) M =[]S?"! for any n,f > 1, with £ =1 if n = 1.
¢

Proposition 3.2.4. Let ¥ be a closed 2n-dimensional manifold such that ¥ = 3o Ups X1
for codimension 0 submanifolds with boundary (3¢, M), (31,M) C X.

by

(i) The restrictions of the nonsingular (—1)™-symmetric intersection form (F, B) = (F,(2), B(X))
over Z to the direct summands of F

Fy = ker(F — F,(X,%0)) = {x € F|kx € im(F, (X)) for some k #£0 € Z} ,
Fi = ker(F — F(X,%1)) = {z € Flkx €im(F,(X1)) for some k #0 € Z}

define (—1)"-symmetric forms (Fy, By), (F1,B1) over Z such that the morphisms of forms
over Z

(Fn(X0), B(X0)) = (Fo, Bo) , (Fn(X1), B(31)) — (F1, B1)
induce surjections of forms over Q
Q®z (Fu(X0), B(X0)) — Q®z (Fo, Bo) ,
Q®z (Fn(X1), B(X1)) —= Q®z (F1,B1) .

(ii) There is defined a commutative braid of exact sequences

N NN
e \/ \Ff/ S

so that
(Fo, Bo)" = (F1,B1), (F1,B1)" = (Fy,By) C (F,B)
and by Proposition [2.1.77] (i) there are defined isomorphism of forms
(F1, B1) ® Ho = (Fo,—Bo) @ (F,B) ,
(Fo,Bo) @ H1 = (F1,—B1) @ (F,B)

with H; metabolic with lagrangian F;.
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3.3. The signature of a manifold with boundary.

Definition 3.3.1. The signature of a 4k-dimensional manifold with boundary (3, M) is
the signature of the intersection symmetric form over Z

0(X) = o(For(X),B(X)) € Z.
Example 3.3.2. If (X, M) = (K x I,0(K x I)) for a (4k — 1)-dimensional manifold with
boundary (K,0K) then the intersection form is
B(X) = 0 : Fop(X) = Fou(K) = For (X, M) = For_1(K) = Fop(K)*
and the signature is
o(X) = o(Fo(X),0) = 0€Z.

Proposition 3.3.3. (i) (Thom [Thl]) For a (2n + 1)-dimensional manifold with boundary
(Q,X) the (—1)"-symmetric intersection form (F,(X), B(X)) has a lagrangian ker(F, (%) —
Fo(Q)). If n = 2k then X% has signature

o(X) = 0€Z.

(ii) (Novikov additivity) If ¥ is a closed 4k-dimensional manifold such that ¥ = ¥oUp —%;
for codimension 0 submanifolds with boundary (X9,M), (¥1,M) C ¥ with ¥gN¥X; = M
then

o(X) = (X)) —0o(X1)€Z.
(i) If (Q*+L 50, 59, W; My, My) is a (4k + 1)-dimensional relative cobordism then
0(Xog)—0(X1) = c(W)eZ.
If (W; My, My) is an H-cobordism then o(W) =0 and
o(Xp) = o(X1) €Z.

fgoof. (i) ke;‘(F%(Z) — Fo(£2)) is a lagrangian of (Fyi(X), B(X)) (Proposition [Z2:6] (iii)).
ii) The subforms
(Fo, Bo) = im(F2(X0), B(X0)) , (F1,B1) = im(F (1), B(%1)) € (Far (%), B(%))

are such that (Fy-, By-) = (Fy, By), (Fi-, Bi) = (Fo, Bo).
(iii) By (i) and (ii) the signature of 0Q = X Upg, W Upy, —2 is

o(09) = o) +o(W)—0(X1) = 0€Z.
If (W; My, M) is an H-cobordism then B(W) =0 (as in B3.2]). O
Example 3.3.4. (i) Let ' = (; X, %, W; M, M) be a split (2n + 2)-dimensional relative
cobordism. with I' = '~ UT'" the union of a left and a right product cobordism
I~ = (Q°:8, 3" W= M,M"), TT = (QF: %, 3" W+ M", M) .
The (—)™-symmetric intersection forms (£, (M), B(M)), (E,(M"), B(M")), (F,(M"), B(M"))

have lagrangians
L = ker(F, (M) — F,(%)),

L' = ker(F,(M') — F,(X)) ,
L" = ker(E,(M") — F,(X"))
and (F,(M"), B(M")) also has lagrangians
L~ = ker(F,(M") = F,(XUpy W7)),
Lt = ker(F,(M") = F, (Wt Uy X)) .



CODIMENSION 2 EMBEDDINGS, ALGEBRAIC SURGERY AND SEIFERT FORMS 29

The homology group H,+1(£2) fits into an exact sequence
0 — coker(Hyy (W=, M")® Hyppo(WH, M") = Hp11(2")) = Hp41(Q)
— ker(Hpyt(W—,M") & Hypy(WH, M) — Hy(X")) = 0.
If the condition
coker(Hy 1 o(W =, M") @ Hy, i o(WT, M") — H,1(X")) is torsion (%)

is satisfied then the (—1)"*l-symmetric intersection form (F,,1(2), B(Q))) is the form
(F",B";L",L=,L") determined (by the even-dimensional algebraic analogue of Remark
[32) by the (—1)"-symmetric intersection form (F”,B") = (F,(M"),B(M")) and the
inclusions of the three lagrangians

T (L7,0) = (F,BY) " (L7,0) = (BT, BY) gt (LF,0) = (F",B") .
The (—1)"*l-symmetric form defined by
(F".B".L'. L~ L") =

0 j—*Bl/jl/ j—*B/lj—‘,-
(ker((j= 7" jH): L~ @ L"® Lt = F"), | —5"*B"j~ 0 "B )
_j+*B”j_ _j+*B/lj/l 0

is such that
(Fos1(Q),B(Q)) = (F",B";L7,L", L") .

In the case n = 2k — 1 the signature of the 4k-dimensional manifold with boundary (£2,92)
is

o) = o Q") +0o(Q)+o(F,B"; L7, L" LT)

= o(F",B",L~, 1", L*) € 7

since o(QT) = o(Q7) = 0 by Example The signature o(F”,B"; L=, L" L") is the
invariant of Wall [Wa] for the non-additivity of the signature.
(ii) Let (€2,09) be a (2n + 2)-dimensional manifold with non-empty boundary, choose an
embedding D?"*t1x{0,1} c 0 and let I = (; £, %/, W; M, M') be the (2n+2)-dimensional
relative cobordism defined by

(B, M) = (D*+1,8%) x {0},
(X, M') = (D>, 827) x {1},
W = cl(39Q\(D?*"*+! x {0,1}))

Assume that 2 is n-connected, so that X", M" 92 and W are (n — 1)-connected (meaning
that each component is (n — 1)-connected) and the condition (x) in (i) is satisfied, since
H, . 1(X") =0 . Write the (—1)"*!-symmetric intersection form as

(Fn-i-l(Q)? B(Q)) = (F, B)
with F' = Fj,11(Q) = Hp+1(2) a f.g. free Z-module of rank b,,41(2), with an exact sequence

0 = Hyir(99Q) = Hypt(W) —» F —Bo F* 5 H,(0Q) = H,(W) =50 .

The (n — 1)-connected 2n-dimensional 'manifold” M” has the homological properties of
#p,.1()S" X S™ with (—1)"-symmetric intersection form

(.8 = (0500 = For (G, )



30 MACIEJ BORODZIK, ANDRAS NEMETHI, AND ANDREW RANICKI

and the inclusions of the three lagrangians in (i) given by

jm = @) . L™ = Hyp (W™, M") = F» F' = FaF*,

jt = <(1)> C LT = Hyy (WHM") = F>F' = F@F* |

j// — <(1)> . L// — Hn—i—l(Z//aM”) — F*—)F” — F@F* .

In fact, the construction only makes use of the (—1)"*!-symmetric form (F, B).
(iii) Let n = 2 with
(Q,00) = (cl.(CP?\ DY), S%)
in (ii), so that (F, B) = (Z,1). Now (£2,09) is the total pair of the Hopf bundle
(D?,8Y) = (2,00) — 52 .
The decomposition in (ii) is realized geometrically by the decomposition of €2 as a union of

two contractible spaces given by the inverse images of the upper and lower hemispheres of
S%? = D? U D?, as in Wall [Wal, with signature

o(CP?) = o(Q) = o(F",B";L=,L", L")

YA (_01 é);{(w,x)\er},O@Z,Z@O) —1ez.

3.4. The intersection forms of cobordant manifolds. We investigate the intersection
forms in a (2n + 1)-dimensional relative cobordism:

Proposition 3.4.1. Let (; 3, %, W; M, M') be a (2n + 1)-dimensional boundary product
relative cobordism, with

(Wi M,M') = M x (I;{0},{1}) , 9Q = SuUy WUy %" .

Let (F,B), (F', B’) be the restrictions of the (—1)™-symmetric intersection form (F,,(9)), B(0R))
over Z to the direct summands

F = {z € F,(09) | kx € im(F, (X)) for some k £0 € Z} ,
F' = {z € F,(09) | kx € im(F,, (X)) for some k #0€ Z} CF (i=0,1) ,
with surjections
Q@z (Fu(X), B(X)) —= Q®z (F,B) ,
Q®z (Fn(¥'), B(Y)) — Q&g (F,B) .
(i) The homology groups of 3,5, Q fit into the commutative braid of exact sequences

Hn+1(Q7E) Hn(z) HTL(QvE/)
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The (—1)"-symmetric intersection forms (F,B), (F', B") have sublagrangians

L = ker(F - F,(Q) = {z € Flkr € im(Hp+1(2, X)) for somek#0€Z} CF ,
L' = ker(F' — F,(Q) = {z € F'|kx € im(Hp11(Q,%')) for some k #0 € Z} C F’
such that there are defined isomorphisms
(L*+/L,[B)) = (L'"/L',[BY]) ,
(F,B) = (L*/L,[B))eH , (F,B) = (L'H/L,[B))eH ,
(F,B)eaH = (F',BY®H
with H,H' metabolic forms with lagrangians L, L.
(ii) Suppose that there is given a handle decomposition

2n
@2%) = | @i% )

r=—1

with Q, the trace of {11 surgeries of indexr +1 on |J S™ x D*"™" C ¥,\My , so that
£r+1

0, = 5, xITU U Dl x p2ner

€r+1
The boundary product relative cobordisms
n—1 2n
Q7;8,%,) = U (20, Brg1) (Q+§En72/) = U(Qr;zmzr—i-l)
r=—1 r=n

are such that
(8,Y) = (Q7:%,2,)u((Q;%,,Y)
with intersection (—1)"-symmetric forms

(Fo(2),B(X)) = (Fu(32-1),B(X-1)) = ... = (Fu(3n-1), B(Xn-1)) »
(Fn(Zn41), B(Ep41)) = o0 = (Fu(Xant1), B(Z2n41)) = (Fu(X), B(Y)) .

The homology groups of ¥, %,, %, Q7, Q% Q fit into commutative braids of exact sequences

0 H, (%) H,() 0
\ / \ / \ /
Hy,1(Q,%) H,(Q7) H,(2,%)

/ \ / \ / \
H,+1() Hn+1(Q+, Xn) = Zftnt1 H,(Q,%) = Ztn H, (%)
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0 Hp(X') Hy () 0
N T s T S
H,11(Q,%) H,(Q") H,(Q,>)
Hy,11(Q) Hp1 (27, Spy) = Z0 Ho(QF, %) =z Hy, (%)

/\/\/\/\

Z* (%)

“\/\M/\/\//

Hypr(Q°,85U,) (Q,2U%,)

M\/\\/\/
\_/\/

/\/\/—\/‘\

Thn+1 Thnt1

W\/\M/\/\//

n+1 Q+ n+1Q Y LJE Q+2 |_|2

/\/\/
\/\/

The (—1)"-symmetric intersection form
(Fi/2: Bij2) = (Fa(Zn), B(Xn))
has sublagrangians
Lijs = {x € Fijs|kz € im(Hpy1(Q7,5,)) = im(Z™) for some k # 0 € Z}
L’l/2 = {z € Fyjpkx € im(Hp1 (2T, 5,)) = im(Z+1) for some k #0 € Z} C Fy

with isomorphisms

(LlL/z/Ll/%[Bl/z]) & (Fy, Bo) , ((Li/z) /LY j9: [Brya) = (F1,Bi)

so that
(Fj2: Bij2) = (F\B)@Hyyp = (F,B") & Hjp

(%)
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with 7—[1/2,7-1’1/2 metabolic with lagrangians L1/2,L’1/2. The sublagrangians in (1) are given
by
L = ker(F — F,(Q))
= e T € 1m(H 4182, = 1im(ker(d : 2"+t — Z™ or some S CFr,
F | kx € im(H, 99 im(ker(d : Z* 7)) f k#£0€Z}CF
L' = ker(F' — F,(Q))
= T € T € 1m(£H 4182, = 1m(ker LT = 4t or some € - .
F'|k im(H, Q,% im (ker(d* : Z* 7* f k#£0€Z F’

Finally, we have the following compendium of results on the intersection forms in an
odd-dimensional relative cobordism:

Theorem 3.4.2. Let (0,3, % ; W, M, M’) be a (2n+1)-dimensional relative cobordism with
a half-handle decomposition

2n
(@, W M, M) = | (5, Spp1, Wis My, M)

r=—1
with each
(Qr; 55, X1, Wes My, Myy1)
= (7320, Bpgayos Wy My, Mgy )2) Us, Ly (0850410, B, WiF Moy o, M)
an index r + 1 splitting (L33 1(i)), so that
W = M, x TUj g1y pon—r D" x D=

U= I~
- MT+1/2 X I UU DrxS2n—r—1 UDT X D2TL—7‘ ,

0 0y
W:— — MT+1/2 X IU U Srx D2n—r—1 U DT+1 X D2n—?“—1

ot Ay

r41 r+1

g r—+1 X IU U Dr+1><S2n77‘72 U DT’+1 X D2n—7”—1 5
‘Z:r+1 Zjﬂ
27» - 2T+1/2 UMT+1/2 WT_ — 27‘4-1/2 UU DrxS2n—r—1 U D'f‘ X D2TL—7‘ ;
o7 lr
27»_;,_1 = ET—I—I/Q UMT+1/2 Wj = 27’-{-1/2 U U SrxD2n—r-1 U DT+1 X D2n—r—1 s
G A
Q; = ET‘ X I == (ET‘ UMT WT’_) X IUU Srx D2n—r UDT+1 X D2n—7” 5
o I~
Q;" = Y, x1I = (Wr+ UM,y Er—i—l) x TU U SrxD2n—r U D+l x D2
G o
(i) The homology groups are such that
Ho(S) = Hy(S_1) = Ho(S_1n) = ... = Ho(Spo1) |
/
Hpy(Bnq1) = Ho(Zpi32) = o0 = Hpy(B2n) = Ha(YX),

so that the (—1)"-symmetric intersection forms are given by
(Fa(X), B(X)) = (Fa(X-1),B(3-1)) = (Fa(E_1/2), B(X_1)2))
= ... = F(2,-1),B(X0-1)) ,

(Fn(Ent1), B(Ent1)) = (Fu(XEny3/2): B(Xn43/2))
= (Fy(Sam, B(San)) = (Fu(X), B(Y)) .
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(ii) For a relative cobordism with an index n splitting
(Qn—l; En—l: Zna Wn—l; Mn—l: Mn)

- ( 7:_1;En—172n—1/27 n_l;Mn—luMn—1/2) U2n71/2 (Q:{_l;zn—l/272nuw+ 'Mn—1/27Mn)

n—1»
we have
Wn__l — Mn_l X IU U Sn—2x Dn+1 U .Dn_1 X Dn+1
b1 LA
= n—1/2 x U U Dr-lxsn U Dn_l X Dn+1 s
bn1 L
W’r—:_—l — Mn_1/2 X IUU Sn—1x pDn UDn X Dn
ol o
— My X TUQ prygnr UD" x D™,
of o
Y1 = Zas12Un, e Wolt = Zas1pU y proixse U DR x DR
b1 L
Y = 211—1/2 UMn,1/2 Wr—:_—l = En—1/2 UU Sn—lxDn UDn x D",
of oF
Q, = ZpaxI = (o1 Ung,, Wo) X TU (j gnoixprar J D™ x D'
bn1 Lo
+ = = + n n+1
Qn—l = Y, x1I = (Wn—l Uni, En)XIUUSn—lan+1 UD x D .
ol o

There is defined a commutative braid of eract sequences

Zltn Hp(20) 7t
NN S
Hy(3-1/2) Hp(Qn-1)
N
0 Hy(Sn1) 0

The intersection form of ¥,_1/o is a rank ({~,0) enlargement of the intersection form of
En—l

(Fn(zn—l/Q)vB(En—l/Q)) = (Fn(zn_l)@L;_1’<B(EOn_l) 8>)

and the intersection form of X, is a rank (0,£T) enlargement of the intersection form of
Yno1/2

(P BE) = (R o 1 (T4 2))
with
L,y = im(Z1) = ker(Fu(Sp-12) = Fu(Zn-1)) € Fa(Sn-12) € Fu(Sn)
(L) = im((Z5)") = ker(Fa(Sn)* = Fu(Sn12)*) € Fu(Sn)* = F(Sy)
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f-g. free Z-modules such that dim L, | </ _;, dim L} < tF, for some Z-module morphism

Dy
E, = (-1)"Ef : LT — (LH)*.

Cn * * - \x
An - < ) : L:%Fn(zn_l/Q) = Fn(zn_l) @(Ln—l) s

The intersection form of ¥y, is thus a rank (£,_,4}) enlargement of the intersection form
Of 2n—l
B(2,-1) 0 Cp
(Fn(En), B(En)) = (Fn(zn—l)@L;—l@L:{v 0 0 Dy ).

(=n"ey (=O)"D; En
The Z-module morphism D,, : L} — (L, _,)* is related to the boundary map

d : H,(WT

+ _ —_
L My_1p9) = 2% = Hy i (W, My_y) = Zf

n—1°

by a commutative diagram

7t Fo(20)

Consider the following conditions
(1) (Wy—1; My—1, M,,) is an H-cobordism,
(2) d is an isomorphism,
(3) Dy, is an isomorphism,
(4) the intersection form (F,(X,), B(X,)) is an H-enlargement of the intersection form
(Fn(zn—l)v B(En—l))-
(1) is equivalent to (2). (3) is equivalent to (4). If (1) holds and

dimz Lr_z—l = dimz L;’L_

then (3) holds. If the Z-module morphisms Z‘n-1 — L Zh (L)* are isomorphisms

then (1) is equivalent to (3). If (1) holds and (F,,(Xy), B(X,)) is nonsingular then (3) holds.
(iii) The reverse of the (2n+ 1)-dimensional relative cobordism with an index n+ 1 splitting

(Qn; Xy X1, Wi My, Mipy1)

= (0550, Sng1yo, Wi s My, My y179) U Q573 B g1, Bnt 1, Wil M1 /2, M)
is a (2n + 1)-dimensional relative cobordism (Qp; Xpi1, Xp, Wi M1, My,) with an index n
splitting, so (ii) applies, showing that (F,(3y,), B(Xy)) is also a rank (€}, |, () enlargement
of (Fn(En+1), B(En+1))

B(En-i-l) 0 Cn—i—l
(Fn(zn)’B(En)) = (Fn(2n+1) ® L:L—+1 ®L,, 0 0 Dp11 ) .
(_1)n :H-l (_1)nD:z+1 En+1
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Example 3.4.3. Suppose given a (2n + 1)-dimensional relative cobordism with an index n
splitting

(Qn—1§ Yn—1, 20, Wn_1; M1, Mn)

- ( ;_1; 2n—la En—l/Qu Wn__l; Mn—17 Mn—1/2) U (Q:L__h En—1/27 ETH er__l; Mn—1/27 Mn)
as in Theorem [3.4.2] Suppose that

(Wn—l; Mn—17 Mn) = Mn—l X ([7 {0}7 {1})
with
n _
d=1:2Z" =7Z—272%1 =17,

so that ¥, is obtained from ¥,,_; by a surgery on S"~ ! x D"*! ¢ %, |\ M,,_1. Suppose also
that M,,_; = S?"~! so that the (—1)"-symmetric intersection forms (Fy,(X,_1), B(Zn-1)),
(Fn(Xy), B(X,)) are nonsingular. Let o € Hy,(X,,) be the homology class of D" x S™ C %,,,
the image of the generator 1 € Hy,11(Qy—1,%,) = Z. If « is of finite order then

(Fn(Xn-1), B(Zp-1)) = (Fa(Zn), B(Ey))
by Theorem (ii), exactly as in Levine [Le2l §6], with

dimz L, , = dimg L = 0.
If o is of infinite order then
B(X,-1) 0 Ch
(Fn(2,),B(%)) = (Fu(Xn-1)®ZaZ, 0 0 1 1)
(G I G D L O

is an H-enlargement of (F,(X,-1), B(X,—1)) by Theorem (ii), exactly as in Levine
[Le2, §7], with
dimz L, ; = dimg L = 1.
Example 3.4.4. Let I' = (Q;X,%  W; M, M’) be a split (2n + 1)-dimensional relative
cobordism, with I' = I'” UT'" the union of a left and a right product cobordism
r- = Q8. wi;MM", Tt = Q5,22 W, M" M) .
For simplicity assume that Q,%, % W are all (n — 1)-connected, so that M, M’ are also

(n — 1)-connected. We refer to Ranicki [Ra2, §§1.6,1.7] for the glueing of forms using
boundary formations. Write the (—1)"-symmetric intersection forms as

(F,B) = (Fu(%),B(X)) , (F',B") = (Fu(X),B(X), (F",B") = (Fu(X"),B(X)
(G7,C7) = (Fa(W7),BW™)), (G,CF) = (Fn(WF), B(WT)) ,
(G,C) = (Fa(W),B(W)) .

The corresponding boundary (—1)"~!-symmetric formations are such that
IF,B)®d(F"—,B") ~ 9(G~,C7), O(F",B")®9(F',—B') ~ 9(G*,C"),
d(F,B)®o(F',—B") ~ 9(G,C),

and there are defined isomorphisms of (—1)"-symmetric forms

(F,B) = (F",B")U(G~,C7), (F',B") = (F",B")U(G",CT),
(G,C) = (G, CHu(GH,CcT).
The nonsingular (—1)"-symmetric intersection form of the geometric union

00 = (SU-S)Us W
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is the algebraic union
(F.(09), BO9) = ((F,B)& (F,B)) Uy (G,C)
with lagrangian L = ker(F),(02) — F,,(€2)), such that
(F",B") = (ker(F® F' — L*),(B® —B')) .
The (n—1)-connected (2n — 1)-dimensional manifolds M, M’ M" correspond to the bound-

ary (—1)"-symmetric formations 9(F, B), 0(F', B"), O(F",B") respectively, by the odd-
dimensional algebraic analogue of Remark .

4. THE COBORDISM OF ALGEBRAIC POINCARE COMPLEXES

We now apply the algebraic theory of surgery on symmetric Poincaré complexes of [Rall
to obtain algebraic half-handle decompositions. The main result of this section is the
Algebraic Poincaré Splitting Theorem : up to homotopy equivalence every relative
cobordism of symmetric Poincaré pairs is split, i.e. the union of a left product and a right
product. This will be used in Theorem [E71] below to prove that a relative cobordism
(Q; X0, X1, W; My, My) has a half-handle decomposition on the chain level, and in Theorem
that a relative cobordism of codimension 2 embeddings has an embedded half-handle
decomposition on the chain level.

4.1. The Q-groups. Let R be a ring with an involution R — R;a + a. In our applications
either Z C R C R with the identity involution, or R = C with the complex conjugation
involution.

Regard a left R-module as a right R-module by

FxR—F; (z,a) —ax .
The tensor product over R of (left) R-modules F, G is the Z-module
FeorG = FrG/{ar@y—z®ay|x € F,y € G,a € R} .
For any R-modules F, G there are defined a transposition isomorphism
Trg : FORG—-GRrF;z@y—yRc.
The dual of an R-module F' is the R-module F* = Homp(F, R) with
RxF*—=F"; (a,f) = (x — f(x)a) .
If Fis f.g. free then so is F*, and the natural R-module morphism
F = F*; o (f— f(z))

is an isomorphism, which will be used to identify £™* = F.
For any R-modules F, G there is defined a Z-module morphism

F®rG— Homp(F*,G) ;s @y (f = f(z)(y)) -

This morphism is an isomorphism if F' is f.g. projective, in which case it will be used as an
identification.
The duality morphism defined for any R-modules F,G by

Dr¢g : Homp(F,G) = Homp(G*,F*) ; f— (f":9— (x— g(f(2))))
is an isomorphism for f.g. projective F, G, with
Drg = Tp+¢ : Homp(F,G) = F*®r G — Homp(G*, F*) = GerF™*.
Let W be the standard free Z[Zs]-module resolution of Z

1-T 1+T 1-T
e W3 == Z[ZQ] I W2 == Z[Zg] ; W1 == Z[ZQ] I W(] == Z[Zg] —7.
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The symmetric Q-groups of a f.g. free R-module chain complex C' are defined by
Q™(C) = Hp(Homgz, (W,C ®rC)) (m =0) .

An element ¢ € Q™ (C) is represented by a sequence of higher chain homotopies ¢s11 : ¢s =~
Tos (s = 0) with

T : Hompg(C?,Cy) = Homp(C?,Cp) ; 0 (—1)P10" .
Thus
ps : C" = CF = Homp(Cy, R) = Cpy—ris

with
dos + (—1)"psd* 4+ (=1)™ "5 gy + (—1)*Tps—1) = 0 :

cmrts=l 5 0L (520,01 =0) .
In particular, there is defined an R-module chain map
¢o : C™" = Homp(C,R)pm—s — C
with C™™* the dual f.g. free R-module chain complex defined by
dem— = (=1)"d* : (C™™*), = C™" = (C™*),_, = C™ L,
Proposition 4.1.1. ([Rall Prop.I.1.4]) The Q-groups are not additive with respect to the

direct sum. The Q-groups of a direct sum given by

QMCal) = QMC)®QM(C) & Hn(C®r (') .

The algebraic mapping cone of an R-module chain map f : C — D is the R-module chain
complex C(f) with

_1\yr—1
doy = (0 T0T) e = Do e = Dot

As usual, the relative homology R-modules are defined by
H.(f) = H.(C(f))

with an exact sequence

e et (C) L H 4 (D) = Hops () — Hn(C) — ...

An R-module chain map f : C' — D induces a Z[Zs]-module chain map f® f : C@rC —
D ®r D and hence a Z-module chain map

f% : HomZ[ZQ](VV, C®g C) — Homz[Zﬂ (W, D ®r D)

inducing a long exact sequence of Q-groups

%
L — QM) f—> Q" (D) —= Q" (f) —= Q" (C) — ...

with Q™1 (f) = Hyp1 (f7) the relative symmetric Q-groups. An element (56, ¢) € Q™ (f)
is represented by an element ¢ € Q™(C), and higher chain homotopies d¢s : D" —
Dyy—ryst1 (s = 1) such that

fosf* = dpdgs + (=1)"d¢sd} + (1) (0¢s—1 + (—1)°Tdds-1) :
D™t — D, (s 20,01 =0) .
In particular, there is defined a chain homotopy
0pg : foof* =~ 0 : D" "= D.
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Proposition 4.1.2. (|[Rall, Prop I.1.1], [BRl Prop. 18])
(i) The Q-groups are chain homotopy invariant: if f : C — D is an R-module chain
equivalence then the induced morphisms f% - Q*(C) — Q*(D) are isomorphisms, and

Q*(f) = 0.
(ii) The Q-groups of C(f) and the relative Q-groups of f are related by an exact sequence
= Hin(CorC(f)) = Q(f) = Q™(C(f)) = Hm—1(C®rC(f)) = ...

with
Q™(f) = Q™(C() 5 (56,8) > 66/ , (56/8)s = ((_1)n§?is¢s - (_Un_ﬂ%s_l)

the algebraic Thom construction.

4.2. The disjoint union. The disjoint union of chain complexes is a construction akin
to (but not the same as) the direct sum, with respect to which the Q-groups are additive.
In working with the algebraic Poincaré version of a manifold cobordism (W; M, M’) it is
essential to deal with the Q-groups of the disjoint union C(M) LI C(M’) rather than the
Q-groups of the direct sum C(M U M') = C(M) & C(M’), to avoid having any terms in

Hp(M x M) CQM™(C(M) & C(M')) = Q™(C(M)) & Q™(C(M') & Hm(M x M') .
The product of rings with involution R, S is the ring with involution R x S.
Definition 4.2.1. The disjoint union of an R-module F' and an S-module G is
FUG = F &G regarded as an R x S module .

If Fis a f.g. projective R-module and G is a f.g. projective S-module then F LG is a
f.g. projective R x S-module, with a natural R x S-module isomorphism

FruG = (FUG) ;5 (f,9) = ((z,y) = (f(z),9(¥))) -

(However, if F,G are f.g. free of different rank then F'UG is not a f.g. free R x S-module.)
The functor

{f.g. projective R-modules} x {f.g. projective S-module}
— {f.g. projective R x S-modules} ; (F,G) — FUG

is an equivalence of categories with involution.
We have the obvious but useful property of the disjoint union:

Proposition 4.2.2. For any R-modules F, F' and any S-modules G, G’ there is an identity
of Z-modules

(FUG)®grxs (F'UG) = (FerF) e (GesG) .

We shall only be concerned with the disjoint union in the case R = S. By contrast with
the result of Proposition E.2.2] for any R-modules F, F’', G, G’

(FOG)@r(FFaG) = (FRrF)D (GorG)® (FRrG)® (GorF').
The symmetric Q-groups of an R x R-module chain complex C' are defined by
Q" (C) = Hp(Homgzz, (W,C ®pxr C)) .

Proposition 4.2.3. (i) The symmetric Q-groups of R x R-module chain complexes are
additive with respect to the disjoint union. For any R-module chain complexes C,C’

QmCuc) = QMC)eQ™(C) .
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(ii) Given R-module chain maps f : C — D, f': C' — D there are defined Z|Zs]-module
chain maps

(f& )% : Homgpg, (W, (C & C") ®g (C & C")) — Homgz, (W, D ®g D) ,
(fUf)? = fFa f* . Homgyg, (W, (C ©r C) @ (C' @r C")) = Homgz, (W, D @ D)

with a commutative braid of exact sequences

0 (fu f)”

Hypy1(C @p C7) Q™C) e Q™(C") Q™(D)

Proof. Immediate from the identity
(CUC) @rxr (CUC) = (CeRrC)® (C"@r ().
O

It is easy to extend the disjoint union construction to k-fold disjoint unions, for all k& > 2.
Define the k-fold product ring

HR = RxRx---xR
k

and given R-modules F, Fy, ..., F}, define the k-fold disjoint union [[, R-module
Frukhu---UF, = R ®---®F; .

For R-module chain complexes C1,Cs,...,Cy there is then defined a Z[Zy]-module chain
complex

(C1uCU---UCk) @, r(C1UCU---UC) = (C1@rC1) & (C2@pC) @& (Cr@rCy)

such that

Q*(CLUCyU---UCE) = H*(Homz[zz}(W,(ClLJCQu...LJCk)®HkR(Cluczu...uck)))
= Q*(C1) D Q*(Cr) ®--- @ Q*(Cy) .

4.3. Symmetric Poincaré complexes, pairs and triads. An m-dimensional symmetric
complex (C, ¢) over R is a bounded f.g. projective R-module chain complex C' together with
an element ¢ € Q™ (C). The symmetric complex (C, ¢) is Poincaré if the R-module chain
map ¢g : C™* — (C'is a chain equivalence. In the next subsection we recall from [Ral] how
an m-dimensional manifold M determines an m-dimensional symmetric Poincaré complex
(C(M), ) over Z.

A homotopy equivalence of symmetric complexes f : (C,¢) — (C',¢') is a chain equiva-

lence f : C' — C' such that f7%(¢) = ¢/ € Q™(C").
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Example 4.3.1. Given a f.g. free R-module F' and n > 0 let C be the 2n-dimensional f.g.
free R-module chain complex defined by

C, — {F* ifr=n

0 otherwise .

Then

Q*"(C) = ker(1 — (—=1)"T : Hompg(F, F*) — Hompg(F, F*)) ,
so that a 2n-dimensional symmetric (Poincaré) complex (C, ¢) is the same as a (nonsingular)
(—=1)"-symmetric form (F, B), with B = ¢y. A homotopy equivalence of such complexes is
the same as an isomorphism of forms.

An (m + 1)-dimensional symmetric pair (f : C — D, (d¢,$)) over R is an R-module
chain map f : C — D together with an element (6¢, ) € Q™*!(f). The symmetric pair is
Poincaré if the chain map D™+1=* — C(f) given by

¢of*

is a chain equivalence. We refer to [Ra2l, p.45] for the homotopy equivalence of symmet-
ric pairs. We refer to [Rall Prop.I.3.4] for the proof that the algebraic Thom complex
construction

<5(]50> : Dm—r+1_>c(f)r = D, ®C,_1

(f: C = D,(6¢,0)) = (C(f),50/¢)

defines a one-one correspondence between the homotopy equivalence classes of (m + 1)-
dimensional symmetric Poincaré pairs and (m + 1)-dimensional symmetric complexes.

An (m+1)-dimensional symmetric (Poincaré) cobordism is an (m+ 1)-dimensional sym-
metric (Poincaré) pair of the type

(fUf :CUC = D,(8¢,¢U~¢) € QU (fUf)).
In [Rall, §1.3] the relative Q-groups Q™ (f@ f') were used instead of Q™+ (fL f’); although
the difference is slight, it is significant here. In the following subsection we recall how a
cobordism of manifolds determines a cobordism of symmetric Poincaré complexes.

Definition 4.3.2. The union of chain complexes D, D’ along chain maps f : C — D,
f':C — D' is the chain complex

DucD — c<<]{,> .CsDaD).

We refer to [Ra2l, §1.7] for the construction of the union of adjoining (m+ 1)-dimensional
symmetric Poincaré cobordisms, the (m + 1)-dimensional symmetric Poincaré cobordism
(feU fer : CUC" = D, (0,0 U—¢")) U (ftn U flw : C"UC" = D', (6¢,¢' LU —¢"))
= (J4U St CUC" = D", (58", 6L —4"))
with D" = DUg D',
The theory of chain complex triads is developed in [Ra2, §§1.3,2.1].

Definition 4.3.3. A chain complex triad I' is a commutative square of R-module chain
complexes and chain maps

B E

C D
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In the general theory I' is a chain homotopy commutative diagram, with an explicit chain
homotopy, but we only consider the commutative case here.
The homology R-modules of I' are defined by

H.(T) = H.(C(I')
with C(I') = C(EF' Ug C — D), to fit into the exact sequence
> Hyp(FEUpC) — Hy(D) — Hy(T) - Hy 1 (EUg C) — ...
We shall also use C(I") to denote the R x R-module chain complex
cI) =cc(B—-FEUC)—D).
The symmetric @-groups of I’
Q" (I') = H.(Homg,(W,C(T') @rxr C(I)))
fit into the exact sequence
5 QMB—-EUC) = Q™MD) - Q"T) - Qm Y B —-FUC)— ... .

An (m + 2)-dimensional symmetric triad (I',®) over R is a triad I of bounded f.g. pro-
jective R-module chain complexes, together with an element ® € Q™*+2(I"). The symmetric
triad is Poincaré if ® determines abstract Poincaré-Lefschetz duality isomorphisms

H™*(B) = H.(B), H"' (B~ C) = H.(C),
H™"'"*(B - F) 2 H,(E), H"">*(C - D) = H.(E— D).

An  (m + 2)-dimensional relative symmetric Poincaré cobordism (I',®) is an (m + 2)-
dimensional symmetric Poincaré triad with I' of the form

BuUB E

cuc’ D

with
® € Q") = Hpo(Homgp, (W,C(T) @prxr C(I))) .
There are defined abstract Poincaré-Lefschetz duality isomorphisms

H™*(B) = H.(B), H"*(B)) = H.(B),
H™"=*(B - (C) 2 H(B' - C), H"W'"*(B - FE) 2 H.B' = E),
H" 2= *(CpC'— D) =2 H(FE — D).
This is just a cobordism of symmetric Poincaré pairs in the sense of [Ra2, §2.1], with a
corresponding union construction. In the following subsection we recall how an (m + 2)-

dimensional relative cobordism of manifolds determines an (m + 2)-dimensional relative
symmetric Poincaré cobordism over Z.
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4.4. The symmetric construction. We refer to [Rall §I1.1] for the symmetric construc-
tion on a space X, the natural transformation induced by the Alexander-Whitney-Steenrod
diagonal chain approximation

¢x + Ho(X) = Q(C(X))
with R = Z, such that for any homology class [X] € H,,(X)
ox[Xlo = [X]Nn—: C(X)"* = C(X) .

In general, X is an arbitrary space and C'(X) is the singular Z-module chain complex. We
shall only be concerned with spaces X which are finite CW complexes, with C(X) the
cellular chain complex.

Example 4.4.1. An m-dimensional manifold M determines an m-dimensional symmetric
Poincaré complex (C(M), pp[M] € Q™(C(M))), with [M] € H,, (M) the fundamental class
of M and ¢p[M]o = [M]N—: C(M)™* — C(M) the Poincaré duality chain equivalence.

We shall abbreviate ¢ps[M] to ¢ar.
There is also a relative symmetric construction for a map of spaces f: X — Y

¢r + Ho(f) = Q°(f : C(X) = C(Y))

such that the symmetric construction on the geometric mapping cone C(f) = X x I Uy Y
is given by the composite with the algebraic Thom construction

de @ HCUP) = HA(f) —2 o qr(p)

— Q"(C(C(f)) = QC(f:C(X)=C(Y))) .

For the inclusion of a subspace f : X C Y and a homology class [Y]| € H,+1(f) =
Hy,11(Y, X) with image [X] = 9[Y] € H,,(X), we have a relative Q-group class

orlY] = (¢v[Y] ox[X]) € Q"(f)
with image
¢y/x[Y] = ov[Y]/ox[X] € Q"TH(C(f) = Q"(C(Y, X)) .

Example 4.4.2. An (m + 1)-dimensional manifold with boundary (X, M) determines an
(m + 1)-dimensional symmetric Poincaré pair

(i : C(M) = O(%), (¢x: dm) € Q"H(0))

with ¢ : M — ¥ the inclusion, and with a Poincaré-Lefschetz chain equivalence C(i)™* ~

o).

In order to deal with cobordisms we need to know the symmetric construction on a
disjoint union:

Proposition 4.4.3. The symmetric construction on a disjoint union of spaces X UY is
the disjoint union of the symmetric constructions on X and Y

dxuy = dxUdy @ H(XUY) = Hi(X) D Hi(Y)

OXEN_ o)) = QHCX) @ QF(C(Y))

CRICXUY)) = Q(CX)aC(Y)) = Q(CX)) e (C(Y)) & Ho(X xY) .
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Example 4.4.4. An (m + 1)-dimensional absolute cobordism (W; My, M;) determines an
(m + 1)-dimensional symmetric Poincaré pair

(Z : C(MO) U C(Ml) - C(W)7 (¢W7 ¢M0 U _¢M1) € Qm+1(z))
with 4 : My U M; — W the inclusion.

There is also a triad symmetric construction ¢r : H.(I') — Q*(C(I")) for a commutative
square of spaces and maps T'.

Example 4.4.5. An (m+2)-dimensional relative manifold cobordism (€2; ¥¢, 31, W; My, M)
determines an (m + 2)-dimensional symmetric Poincaré triad

C(Mo) UC(My) —C(W)  dmy U=, — ow

.o - ( | b, ).

C(Zo) L C(Zl) — C(Q) (2520 L —(;521 — (;59
4.5. The Algebraic Poincaré Splitting Theorem. We shall now prove a splitting the-
orem for relative cobordisms of symmetric Poincaré pairs which is an algebraic converse

to the following construction of split relative cobordisms of manifolds with boundary. We
start by recalling the standard thickening construction of a manifold with boundary.

Definition 4.5.1. (i) An (m + 1)-dimensional trinity (W1, Wo, Ws; My, My, M, M3) is a

stratified set W3 U W5 U W3 which is the union at My of (m + 1)-dimensional cobordisms
(Wi; My, M) (k=1,2,3).

M3

W3

My
Wi Wy

M1 M2

(ii) The trinity has strata My U M; U My U Mg and int(W;) U int(Ws) U int(W3). The
thickening of the trinity is the (m + 2)-dimensional manifold with boundary (€2, 0€2) defined
by choosing disjoint closed arcs A, As, Az C S! and setting

Q = (Mo x D*) Upgyx(a,udsuiag) (W1 x A1) U (Wa x Ag) L (W3 x Ag))

so that

ol = (Wl U Wg) U (Wg U Wg) U (Wl U Wg) .



CODIMENSION 2 EMBEDDINGS, ALGEBRAIC SURGERY AND SEIFERT FORMS 45
The inclusion W — 2 is a homotopy equivalence.

]\13 X A3

W3><A3

Wi Un, W3 Wa Ungy W3

W1 Upy Wo

My x Ay M x A

Remark 4.5.2. (i) Trinities first appeared in the work of Wall [Wal] on the nonadditivity
of the signature. If V is an (m + 2)-dimensional manifold with boundary expressed as a
union V =V U VL U V3 of transverse codimension 0 submanifolds V7, Vs, V3 C V then there
is defined an (m + 1)-dimensional trinity

(W, Wa, Wa; My, My, Mo, M) = (Van Vs, VsnN Vi, ViNVa; ViNVon Vs, 0,0,0)

with thickening 2 C V such that cl.(V\Q) = V; U Vo U V. If m = 4k — 2 the signature of
V is given by Novikov additivity [3.3.3] (ii)) to be

oV) = c(Vi)+ (Vo) +0(V3) +0(Q) € Z
with o(€2) the nonadditivity invariant (= Maslov index) determined by the three lagrangians
Lj = ker(ng_l(Mo) — ng_l(Wj)) C ng_l(MO) (] = 1,2,3)

of the (—1)-symmetric intersection form (Fy,_1(My), B(My)) (cf. Example 3.3.4).
(ii) The thickening € of the 1-dimensional trinity

(Wb W27 W3a M07 M17 M27 M3) = (Iv I7 I7 {07 1}7 07 wv ®)
is the 2-dimensional ‘pair of pants’ cobordism, with boundary S' L S LU St.

We now formalize Remark [[L3.2] that a trinity with M3 = () determines a split relative
cobordism.

Proposition 4.5.3. Let (Wy, Wy, Wa; My, My, My, Ms) be an (m + 1)-dimensional trinity
such that Ms = (), writing

(Wo; My, Mp) = (W3 M, M") , (Wi; Mz, M) = (WM, M"),

(Wa; M3, Mo) = (2730, M") .
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M//

M M’

Then the thickening of the trinity W~ UX" U W™ is a split (m + 2)-dimensional relative
cobordism (;%,% Wi M, M') given by

Y= WUy X', Y = YUy W
Q = X x][0,1/2] Usx{1/2} Y x /2,1, W = W~ Unirx{1/2} Wt .

Q
¥ x {0} Q- =3x10,1/2] Ot =% x[1/2,1] ¥ x {1}
M W~ M W+ M’
W
Proof. By inspection. O

From now on, we shall only consider trinities with M3 = ().
We shall now prove that up to homotopy equivalence every relative symmetric Poincaré
cobordism is the thickening of an algebraic trinity.

Definition 4.5.4. An (m + 1)-dimensional symmetric Poincaré trinity is defined by three
(m + 1)-dimensional symmetric Poincaré cobordisms of the type

The thickening of the trinity is the (m + 2)-dimensional symmetric Poincaré pair (0D —
D, (¢, 0¢)) defined by algebraic mimicry of the thickening of a geometric trinity in Definition
4511, using the glueing construction of [Rall p.135], with D = C(Cy — D1 @ Do @ Ds).

Again, we shall only be concerned with algebraic trinities with D3 = 0, in which case the
thickening is a split relative symmetric Poincaré cobordism, exactly as in Proposition [4.5.31
Let (T, ®) be an (m + 2)-dimensional relative symmetric Poincaré cobordism, with

BUB ——=F

e

cuc' ——=D

We can draw this as if it were a relative cobordism of manifolds:
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C D C’

B E B’

Definition 4.5.5. (i) (I', ®) is a left product if the chain map C' — D is a chain equivalence,
in which case F Ug C' — D is also a chain equivalence.

(i) (T, ®@) is a right product if the chain map C’ — D is a chain equivalence, in which case
CUp E — D is also a chain equivalence.

(iii) (T, ®) is split if it is homotopy equivalent to the union (I'", &) U (I't,®T) of a left
product and a right product, with

BUB" ——=E~ B'"UB' ——= E*t
e R S L B
cuc” —-s D~ c'"uc' —- Dt
D
C D~ Dt c’
B E- B" Et B’
E

Theorem 4.5.6. (Algebraic Poincaré Splitting)
Every relative symmetric Poincaré cobordism (T', ®) is homotopy equivalent to a split relative
cobordism

T,®) ~ (I, )u (T, o"),
the thickening of an algebraic trinity.
Proof. The chain complex triads I'",T'" are defined by
" =CCe®C"—-D)yy1, B =C(CoE®C'" D& D)yy1
D =C,E =CC®E—D)y1, Dt =C,E" = CE®C"— D)1
with
D~CUC', E~xE Ugn EY , C~E Ui C", C'~C"Ugn ET .
It follows from the identity
C(T) ®zxz C(T')
= C((BUB"UB')®zxz (BUB"UB') = (E-UC"UE") @zxz (E-UC"UET)),

that
QM) = QMY (BUB"UB - EUC"UET),
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and so
d = ¢ UDT € Q"I

for ®= € QM2(I'7), ®F € Q™T2(I'") determined uniquely by ®. The (m + 2)-dimensional
relative symmetric Poincaré cobordism (T', @) thus determines an algebraic trinity, consist-
ing of

(i) an (m + 1)-dimensional symmetric Poincaré pair (B” — C”, (¢cw, ¢ppr))

(ii) (m + 1)-dimensional symmetric Poincaré cobordisms

(B ® B" — E-, (¢E*7¢B 3] _¢B”)) ) (B// ®B' — E+7 (¢E+7 bpr © _¢B’)) :

with union (', ®).

C/I

B//

O

4.6. Algebraic surgery. We recall from [Rall, §1.4] the essentials of the algebraic theory
of surgery. An algebraic surgery on an m-dimensional symmetric Poincaré complex (C, ¢)
has input an (m + 1)-dimensional symmetric pair (e : C' — 0C, (d¢, ¢)). The trace is the
(m + 1)-dimensional symmetric Poincaré cobordism (C' U C’ — 6C”, (0, ¢ LI —¢')) with

dc 0 (=1)™Hgger
der = [ (=1)7"e dsc (—=)"0¢o
0 0 (=1)"dje
Cl = Cr @ 3Cys1 ®5C™ T 5 O = Cyy @6C, @ 6042 |

_ do (_1)m+1¢06* . r m—r+1 / _ m—r+2
dser = (0 Dyt ) £ 80 = Cr@demTT 601, = Coy @007

The effect of the algebraic surgery is the m-dimensional symmetric Poincaré complex (C”, ¢')
cobordant to (C, ¢). By definition, the surgery is of rank ¢ and index r 4 1 if

¢ — i —
50, — 7t fors=m-—r
0 fors#m-—r.

An (m+1)-dimensional manifold cobordism (W; My, M) determines an (m+-1)-dimensional
symmetric Poincaré cobordism

I' = (C(Mo)UC(My) = C(W), (¢w, drsy U —¢ar,))

such that (C (M), ¢ar, ) is homotopy equivalent to the effect of algebraic surgery on (C (M), ¢ar, )
by the symmetric pair (C(My) — C(W, M1), (¢pw /dnr, s dury))- IE (W5 My, My) is the trace
of £ index r + 1 surgeries on |JD"™! x D™™" C My then I is the trace of an algebraic

‘

surgery of rank ¢ and index r + 1.
By [Rall, Prop.1.4.3] every algebraic surgery is composed of a sequence of surgeries of
varying ranks, and increasing index, by analogy with the Thom-Milnor geometric handle-

body theorem (L2T]).
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There is a corresponding algebraic theory of relative surgery on algebraic Poincaré pairs.
Given an (m + 1)-dimensional symmetric Poincaré pair (f : C' — D, (d¢,®)) and an input
(m + 2)-dimensional symmetric triad

c—t-sC ¢ —— 66

(b, b))

D—2>6D ¢ —> §¢8

the effect of the algebraic relative surgery is an (m + 1)-dimensional symmetric Poincaré
pair (f': C" — D', (6¢',¢")) with

f 0 0
, o sf 0
=10 0 o

0 0 1

C} = Cr®6Cr41 ®6C™ ! — DI = D, @6Dpyq @ 6D™ "2 @ 6C™ L
dp 0 (=1)""2¢dg* 0

4o — | (FD7e dsp o (=) 090 0
bt 0 0 (=1)rds, 0
0 0 Sf* (—1)"di

D! = D, ®3D,1 ® D™ "2 @ 6C™ T+ 5 D! = D,_y & 6D, & DM+ g 5CmT+2

The algebraic effect of a half-surgery on a manifold with boundary is an algebraic surgery
on a symmetric Poincaré pair, as follows. (See also [BNRI) Section2]).

As in Example[.4.5]an (m+2)-dimensional relative manifold cobordism (£2; X, 31, W; My, My)
determines an (m + 2)-dimensional relative symmetric Poincaré cobordism

C(Mo) UC(My) —=C(W)  ¢po U —dpy — dw

(] L

CXo)UC(XE) ——=C(Q) o5, U—¢s, — o0

The (m+1)-dimensional symmetric Poincaré pair (C'(M;) — C(X1), (¢5,, ¢ar,)) is obtained
from (C'(Mp) — C(X0), (¢5,, Pm,)) by a sequence of algebraic half-surgeries, corresponding
to a relative algebraic surgery on the (m + 2)-dimensional symmetric triad

C(Mo) — C(W, M)  ppy — dw/dumy

(] )

C(Xo) —=C(Q%1)  ¢n, — da/ds,
(non-Poincaré in general) with
C(My), = C(Mp), ® C(W, My)py1 @ C(W, M) 177,
C(Z1)r = C(Z0)r © C(Q,21)r1 © C(Q,20)™ 27" @ C(W, My)™ 7
If (Q;%0,%1,W; My, M) is a boundary product then C'(W, M) is chain contractible. If
(30,31, W; My, My) is a left product then C(W,M;) — C(2,%;) is a chain equiva-

lence. If (€; %0, 31, W; My, My) is a right product then C(€2,X;) is chain contractible. If
C(W, M1)y—r = Z' then (C(M;),¢ar,) is obtained from (C(My), ¢ar,) by a sequence of
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algebraic surgeries, with £, index r + 1 surgeries on
U S" x D™ C result of surgeries of index <7 on My (-1 <r <m).
L
Furthermore, if C(Q,%1)mi1-r = ZF then (C(X1),éx,) is obtained from (C(Xg Uy,
W), ¢su MoW) by a sequence of algebraic surgeries, with k, index r 4+ 1 surgeries on
U S™ x D™TITT C result of surgeries of index < 7 on Yo Uy, W\M; (-1 <r <m+1).
ky
Let (X0, Mp) be an (m + 1)-dimensional manifold with boundary. Given an embedding
(U D" x Dm—r—i—l’USr—l > Dm—r—i—l) C (anMO)
Iy oy
there is defined a left product cobordism (€0; X0, > /2, W™; Mo, My /2) as in Proposition
(i), with
QO = E(] X I,
(WQ;MQ,Ml/Q) = (MyxIulJD"x Dm_H—l;

0
My x {0}, cl.(Mg\JS™™t x D+ yu Y D" x S™7") |

Py oy
Y12 = cl(B\UD" x DMLy
13
Given also an embedding J S"x D™™" C M, there is defined a right product cobordism
e
(Q1; %12, X1, Wi; My 5, My) as in Proposition (iil), with
Ql = 21 X I,
(Wi; Myjp, My) = (Myjy x TU |J D™ x D™
A
Mo x {0}, cl.(Myo\ U S"x D™ ")u U Drtl o gm=r=1)
-+ +

1 l

r+1 r+1
The (m + 2)-dimensional relative cobordism

(X0, 81, W5 Mo, My) = (Q0; 0, X172, Wo; Mo, My /9) U (15 4 2, X1, Was My o, My)
is an index r + 1 elementary splitting (Definition [[33] (i)) realizing geometrically the alge-
braic splitting of Theorem The corresponding (m + 2)-dimensional symmetric triad

C(My) — C(W, M)  ppy — dw/dum

| R R

C(3o) —=C(,%1)  ¢5y — do/os,

has
C(W, M) : ... 0 7t L, gt 0
| I
C(Q,%) : ... 0 Zt 0 0
with

CW, M)m—ri1 = C(E)merir = Z , C(W, M)y = Zh+1 .
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For an (m + 2)-dimensional relative cobordism with a half-handle decomposition as in
L33 (ii)
m+1
(Q;Z7ZI7W;M7 M/) = U (QT’;ET’727’+17WT’;MT7MT+1)
r=0

the (m + 2)-dimensional symmetric triad

C(M) —=C(W,M") ¢y — dw/dm

)

CE)——C(Q,Y) ¢x——=da/ds

has
((d+)* +d*
0 (d)* .
CW,M") : ... z5 @ Tt ) 76 @ b
|0 o
. d-)* .
C,x) ... Ztr (@) Ztr+
with

C(W, M prs1 = C(W,M)" = (CT)y & (C™) = Z¢ a1zt |
C(Q, )1 = CUT Uy W)+ = (C7) = Zb .

4.7. Homological half-handle decompositions. We now study the half-handle decom-
positions of relative cobordisms. The basic idea is that a manifold determines a symmetric
Poincaré complex, a cobordism of manifolds determines a cobordism of symmetric Poincaré
complexes, and similarly for relative cobordism. In each case, the handle (or half-handle)
decompositions in topology determine symmetric Poincaré analogues in algebra. In fact,
algebraic handle and half-handle decompositions can be constructed purely algebraically,
as in :

Theorem 4.7.1. Let T' = (Q; 2, %, W; M, M') be an (m + 2)-dimensional relative cobor-
dism.
(i) The relative cobordism of (m + 1)-dimensional symmetric Poincaré pairs

C(M) —= C(W) ~—— C(M')

v | b,

o) —L o) < o

1s split in an essentially canonical manner, in the sense that there is a chain equivalence

CT) ~ CcT)uC(rt)
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of left and right product relative symmetric Poincaré cobordisms C(I'™), C(T'") with the
algebraic properties of

- | ]

W
o = | l |
C(S") —— O(X) =—— C(¥)

(even though there may not be actual left and right product cobordisms T~ = (Q—; X, X" W
M, M"), Tt = Q2" % Wt,M", M'")). The chain complexes in C(I'"),C(I'") are de-
fined by

CX") = C((jJ):CE)eCE) = C(2))ey1
C(M") <é 2) L OE) @ C(W) @ ) = CQ) @ C(Q))r
CW=) = C((jk):C(E)aC(W) = C(Q))st1 »
CWT) = C((kj):C(W)aC(X) = C(Q))et1

with
CQ)~CCE)—=CE)ypCX)), CW)~C(C(M") - CW ) CW™T)),
CX)~C(CM"y - CWH)aCX")), CX)=C(CM") - CE)YeCWT)),
CQ,S) = C(WH, M"Y, C(Q,5) ~ C(W—,M"), C(Q,5 Uy W)~ CW~, M)._; .
(ii) Let d : (CT,dT) — (C~,d")«_1 be a chain map of finite f.g. free Z-module chain
complezes such that
d: (CT,d")~C(Q,%) = (C,d )1 ~C(Q, XUy W)

is in the chain homotopy class of the chain map induced by the inclusion (Q2,3) C (Q,XUps
W). Then C(T') has an algebraic half-handle decomposition

m—+1
C(F) = U (C(QT’);C(Er)ac(2r+l)7C(Wr);C(Mr)ac(Mr-i-l))

r=—1
with
(C(%); C(%,), C(3r11), C(Wy); C (M), C(My41))
= (C(): C(Er), C(Erya1/2), O(W); O(M;), C(Myy12))
( (Q ) (2r+1/2)7c(2T+1)7C(Wr );C(Mr+1/2)7C(MT+1))
the canonical splitting given by (i), elementary of index r + 1 and rank
(ET“_’E;:—I) = (dlmZ Cr_vdimz C:_—I—l) >
with
Y
Hq(Wr_aMr) = q+1(QT’727’ U, Wr) = Hm_q+1(Qrvzr+l) = z Zf =7
0  ifqg#r,
Zt if qg=r+1

H, (W, M, = H,(Q,.,%,) =
dWi My 9) q ) {0 Fadral.
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(iii) The relative homology groups of (W, M) are given by
H*(VV’M) = *+1(d: (O+7d+) — (C_7d_)*—1)

so that (W; M, M) is an H-cobordism if and only if d is a chain equivalence.
(iv) The relative homology groups of (W,, M,.) are given by

ker(d: Zi+t —» Z0)  if q=r1+1
H,(W;, M) = { coker(d : Zbe Z4) if q=r
0 otherwise

so that (C(W,.); C(M,),C(M,+1)) is an H-cobordism if and only if the Z-module morphism
d : C:,Zrl — 7t C~ = Z% is an isomorphism. In particular, if (W; M, M') = M x
(I; {0},{1}) it is possible to realize the chain map d : (CT,d*) — (C7,d")s_1 by an
isomorphism, and each (C(W;); C(M,),C(My41)) is an H-cobordism.

Proof. This is a direct application of the Algebraic Poincaré Splitting Theorem [£.5.6l Every
cobordism of symmetric Poincaré pairs is the union of traces of algebraic half-surgeries. [

Remark 4.7.2. (i) In general, the algebraic splitting of Theorem 7] (i) is not realized
geometrically. For example, if I' = (Q; 0,0, 0; 0, () is the relative cobordism determined by a
non-empty closed (m + 2)-dimensional manifold € there do not exist left and right product
relative cobordisms

r- = QY wWi;MM"), Tt = Q2" W, M M")
such that I' = ' UT'", with homology groups
H(X') = H(W™) = H(W7") = He(Q), Hi(M") = Hi1(Q) @ Hiia (Q) -

(ii) See Example B34 below for even m = 2n (resp. B.44 for odd m = 2n + 1) for the alge-
braic splitting of Theorem [7.1] (i) for the relative (m + 2)-dimensional symmetric Poincaré
cobordism C(T") = (D;0,0,C;0,0) determined by an n-connected m-dimensional symmetric
Poincaré pair (D, C), corresponding to a (—1)"*1-symmetric form (resp. formation).

(iii) By [BNRI, Theorem 4.18] every relative cobordism (£2;3, %/, W; M, M') consisting of
non-empty connected manifolds admits a half-handle decomposition, as a union of right and
left product cobordisms. We shall not actually need geometric half-handle decompositions
in this paper, only the algebraic half-handle decompositions of Theorem .71 (ii).

5. CODIMENSION ¢ EMBEDDINGS, ESPECIALLY FOR ¢ = 2.
5.1. Codimension ¢ embeddings.

Definition 5.1.1. Let ¢ > 0.
(i) A codimension q embedding M™ C N™ is a proper embedding of an m-dimensional
manifold M in an n-dimensional manifold IV, such that n — m = q.
(ii) The normal bundle of M C N is the normal g-plane bundle v = vy : M — BSO(q).
By the tubular neighbourhood theorem M C N extends to a codimension 0 embedding
D(v) C N, with
0

(D1,597) ——= (D(v), 5(v) ~“ M
the total (D4, S9~1)-pair of v, and M C D(v) the zero section.
(iii) The complement of M C N is the n-dimensional manifold with boundary

(K,0K) = (cl.(N\D(v)),S(v)) .
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The inclusion K C N\M is a homotopy equivalence.

K

S(v)

N = D(l/) US(Z/) K
(iv) The Thom class U € HY(D(v),S(v)) of v is characterized by the property that for
every x € M the restriction of U along the inclusion of the fibre
(iz,0iz) = (p,0p)" () = (D9,577") C (D(v), S(v))
is the generator
(iz,0ig)*(U) = 1€ HY(D, ST = 7.

The Thom isomorphism

Uu— : H' (M) = H"(D(v),Sv))

sends the canonical element (1,1,...,1) € HY(M) = Z[ro(M)] to U € HI(D(v), S(v)).
(v) The Euler class of v is the image

e = [U] € HY(D(v)) = HYM)

of the Thom class U € HY(D(v),S(v)). This is also the image of the fundamental class
[M] € H,,,(M) under the composite

inclusion,

H,, (M) Ho(N) = gy Belusion” pappy

(vi) The embedding M C N is framed if there is given a trivialization dv : v 2 €4, in which
case

(D(v),S(v)) = (M x DI MxS8T™ e =0ecHY(M).

Note that if M"™ C N is a codimension g embedding such that [M] =0 € H,,,(N) then
e=0¢e HI(M).

Proposition 5.1.2. For a codimension q embedding M™ C N" with complement K the
homology groups are such that

HA(N,K) = H(D(),S(v)) = Ho_o(M), Hy(N,M) = H,(K,S(v)) .
The Umkehr morphisms
Hy(N) & grr(v) RSN gy (M) (n— g = m)

fit into a commutative braid of exact sequences



CODIMENSION 2 EMBEDDINGS, ALGEBRAIC SURGERY AND SEIFERT FORMS 55

5.2. Cobordism and surgery for codimension ¢ embeddings.

Definition 5.2.1. Let My, M1 C N be framed codimension ¢ embeddings.
(i) A cobordism of My, My C N is a framed codimension g embedding

(W5 Mo, My) € N x (I;{0},{1})
such that W N (N x {j}) = M; (j =0,1). The complements
(J; Ko, K1) = (cl.(N x I\W x D9),cl.(N x {0}\My x D?),cl.(N x {1}\M; x D))
are such that
0J = KoUpgxsar W x ST Uppesa1 K1
and
N x (I;{0},{1}) = (W; Mo, M) x DUy ageay)xsi-1 (J5 Ko, K1)

(ii) An h-cobordism of My, My C N is a cobordism (W; My, M;) C N x (I;{0},{1}) such
that (W; My, M;) is an h-cobordism.
(iii) An isotopy of My, My C N is a level-preserving h-cobordism of the type

(Ws Mo, My) = M x (I;{0},{1}) € N x (I;{0},{1}) ,
so that for each s € I there is defined a framed codimension g embedding

M, = M x{s} C N x{s}.
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Ko J
My x D1 W x D1 @%
N x {0} N xI N x {1}

Proposition 5.2.2. Let N be a closed n-dimensional manifold, and let 1 < g < n.
(i) The Pontrjagin-Thom map of a framed codimension q submanifold M™ C N™ (m =
n—q)

Uy : N —= NJ/clL(N\M x DY) = M x DI/M x 8§97 — D?/§97t = &4

is transverse reqular at 0 € S9, with Uy (0) = M.

(ii) A cobordism of framed codzmenszon q submanifolds (W;M,M') C N x (I;{0},{1})
determines a homotopy Uy : Upr ~ Uppr : N — 59,

(iii) Fvery map U : N — S? is homotopic to a map which is transverse regular at 0 € S,
with M™ = U~(0) C N™ a framed codimension q submanifold. Homotopic maps determine
cobordant submanifolds.

(iv) The Pontrjagin-Thom construction defines a bijection between the set of cobordism
classes of framed codimension q submanifolds M C N and the qth cohomotopy group [N, S9].

Proof. Standard (e.g. [Rad, 6.10]), noting that S? = T'(e?) is the Thom space of the unique
g-plane bundle €7 = RY over a point. O

Remark 5.2.3. There is also a rel 0 version of Pontrjagin-Thom theory, with (K,0K) an
(m + q)-dimensional manifold with boundary 0K = M™ x S9! such as the complement
of a framed codimension ¢ embedding M™ C N™¥4,

(i) There exists a framed codimension (¢ — 1) embedding ¥ ¢ K with

M = SNOK = M x {+}

for some * € S9! if and only if the projection 0K — S9! extends to amap U : K — S971,
in which case U may be taken to be regular at *x € S9~! and ¥ = U~!(x) ¢ K will do.

(ii) For any framed codimension (¢ — 1) embedding X! C K with M = M x {*} there is
a rel 0 Pontrjagin-Thom map

U: K- K/cL(K\X xDI71) = (Ex DI H/(L x 8971y » pr-t/ge-t — ga-1 |
For two such embeddings ¥y, X1 C K there exists a framed codimension (¢ — 1) embedding
(Qm+2:30,%1) € K x (I;{0},{1}) with 9Q = % U (M x I) U X if and only if the rel 9
Pontrjagin-Thom maps are homotopic, Uy = Uy € [K, S971].

5.3. Embedded split relative cobordisms. We shall now extend the splitting theory of

relative cobordisms in §I.3] to relative cobordisms which are embedded in N x (I;{0},{1}),
for use in 6l

Definition 5.3.1. An embedded splitting of a framed codimension ¢ — 1 embedding of an
(m + 2)-dimensional relative cobordism

I' = (9 %0,%1,W; My, My) C N x (I; {0}, {1})
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is a splitting (in the sense of Definition [L31]) as a union I' = I'" U TF of left and right
relative cobordisms

™ = (Q7;80, 810, W3 Mo, My ) , T = (759,51, WF; My 9, My)
together with framed codimension ¢ — 1 embeddings
I~ C N x([0,1/2];{0},{1/2}) , T" € N x ([1/2,1];{1/2},{1})
involving the same embedding (3 /9, M;/9) C N x {1/2}.
We shall construct embedded split relative cobordisms using the following general method:
Lemma 5.3.2. Let N be a closed n-dimensional manifold which is a union
N = AUBUC

with (A,0A), (C,0C) n-dimensional manifolds with boundary, and (B; 0A, 9C) an n-dimensional
cobordism. Given a Morse function f: (B;0A,0C) — (I;{0},{1}) define submanifolds

(BxI< = {(z,y) € BxI|f(x) <y},
(Bx1I)> = {(z,y) € BxI|f(z) =2y},
(BxI)= = {(z,y) € BxI|f(z)=y}
such that
BxI = (BxI)<Upxn- (BxI):,
NxI = (AxTUgaxs (BxI)<)Upxr- (B x1)sUsoxr C x I)
A x {0} AxI Ax {1}
8A x {0} et 8A x {1}
(&
BX{O} (BXI>> X[)§ (BXI)< BX{l}
oC x {0} BT 0C x {1}
C x {0} CxI C x {1}

The right and left product relative cobordisms
I'c = (AxIU(BxI)c;Ax{0},(AUB) x{1},(B xI)=;0A x{0},0C x{1}) ,
I's = (BxI)>UCXxI;(BUC)x{0},C x{1},(B x I)=;0A x {0},0C x {1})
are such that
N x (I;{0},{1}) = Pcur_T>
with T— = ((B x I)=;0A x {0},0C x {1}).
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Proposition 5.3.3. (i) Suppose given an (m + 1)-dimensional manifold with boundary
(X0, My) with a decomposition

20 = W_ UM172 21/2

for an (m+1)-dimensional manifold with boundary (21_/2, Ml_/2) and an (m+1)-dimensional
cobordism (W‘;MO,M172). Let I'™ = (Q_;EO,E;/z,W_;MO,Ml_/z) be the corresponding
(m + 2)-dimensional left product relative cobordism defined by Q= = g x [0,1/2], and
define the (m + q + 1)-dimensional left product relative cobordism

'~ x DIl = (Q x D71, %5 x DI, D1/ X D1 O~ x 892U W~ x DI,

(Xo x S92 U My x DI71), (B % Sa=2y My, % DI~ hy) .

A framed codimension ¢ — 1 embedding Yo C N™19 extends to a framed codimension q — 1
embedding T~ C N x ([0,1/2];{0},{1/2}) with complements
Jo- = c(N x[0,1/2\Q~ x DY) | Jy— = cl.(N x [0,1/2\W~ x D9) ,

Kys, = cl.(N x {0}\3g x DI 1) | KY/ = (N x {1/21\E] ), x D11
1/2

such that
A~ = (Jﬂf;KZO,Kzf/ QT x S1T2UW T x DI
1/2

(B0 x S972U My x DY) (27, x S972 U M7,

1/2 172 % Di~1))

is an (m + q + 1)-dimensional right product cobordism with
(0™ x DTHUA™ = N x([0,1/2];{0},{1/2}) .
(ii) Suppose given an (m + 1)-dimensional manifold with boundary (31, M1) with a decom-

position

Y o= S, uUwWT

1/2
for an (m+1)-dimensional manifold with boundary (Ef/z, M1J72) and an (m—+1)-dimensional
cobordism (W+;M172,M1). Let Tt = (Q+;E;’/2,21,W+;M172,M1) be the corresponding
(m + 2)-dimensional right product relative cobordism, with QT = 31 x [1/2,1], and define
the (m + q + 1)-dimensional left product relative cobordism

't x D7t = (Qt x DI, 2, x D71 %) x D71 QF x S92U W+ x DI° 1,

1/2
(2F, x 812U M, x DY) (2] x S972 U My x DI 1)) .

1/2 1/2

Given a framed codimension q — 1 embedding X1 C N there is defined an extension to a
framed codimension ¢ — 1 embedding T~ C N x ([1/2,1];{1/2},{1}) with complements

Jor = clL(N x [1/2,1\QF x DY) | Jypr = cl.(N x [1/2,1]\W+ x D) |
Ky, = cl(N x {1/2}\2;72 x D7) | Ky, = cl.(N x {1}\X; x D?71)
such that
AT = (JQ+;KZ+/ Ky, QF x S7LU Wt x DY,
1/2

(31 x S972U My x DI Y)ym, (ST, x S92 U M,

1/2 172 % Di~1))

is an (m + q + 1)-dimensional left product cobordism with

(IT x DITYHYUAT = N x ([1/2,1];{1/2},{1}) .
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(iii) If T' = (Q; X0, X1, W; My, M7) is an (m + 2)-dimensional relative cobordism which is
split, i.e. expressed as a union of a left and a right product cobordism

I = T7Ul" = (97530, %10, W5 Mo, My o) U (QF5 85 )5, 81, WF; My 9, M)
restricting to the same embedding 35 C N, and A~ AT are obtained from T'~,T'" as in
(i) and (ii) then A = A~ U A" is a union of a right and a left product cobordism such that
(Cx DY UA = N x (1;{0},{1}) ,

so that T' C N x (I;{0},{1} is embedded split.
Proof. (i) Apply Lemma 532 with N = A~ UB~ UC"~ for

A= = Ky, , B~ = W xDI7t  C~ = 21/

x DI
(ii) Apply Lemma with N = AT UB*T UCT for

AT = Ky, , Bt = Wrx D™t Cct = 21+/2><Dq—1.
(iii) Combine (i) and (ii). O
Proposition 5.3.4. Let (X, M) be an (m + 1)-dimensional manifold with boundary. The
complement of a framed codimension q — 1 embedding (X, M) C N™T4 is the (m + q)-
dimensional manifold with boundary

(Kx,0Ks) = (cL.(N\X x D?1),9(Z x DI71))
such that there are defined chain equivalences
C(CA(E x D7) = C(X x DY) @ C(Kyx)) ~ C(N),
C(Ks) ~ C(C(N) = C(X, M)s—gt1)s+t1 -
Proof. Immediate from the excision chain equivalence
C(N,Ks) ~ C(Ex DT x DI™) = C(2, M)s_gs1 -
O

We do not actually need topological embedded half-handle decompositions in this paper,
relying instead on algebraic half-handle decompositions.
Using the language of algebraic surgery recalled in §4] we formulate:

Definition 5.3.5. An (m+ 1)-dimensional symmetric Poincaré pair (A, B) has an algebraic
codimension q — 1 embedding (A, B) C C in an (m + ¢)-dimensional symmetric Poincaré
complex C' if there are given a complement (m + q)-dimensional symmetric Poincaré pair
(D,0D) with boundary (m + ¢ — 1)-dimensional symmetric Poincaré complex

oD = (A®C(ST7%)U (B C(DI™Y)
= C(BRCO(S172) - (AR C(S17%) @ (B® C(D1Y)))
and a chain equivalence
(A C(DT™ YY) UD = C(B®C(ST?) = (A0 C(DT ) ® D) —= C.
Proposition [(£.3.4] gives the prime example of an algebraic codimension ¢ — 1 embedding
(A,B) = (C(%),C(M))cC = C(N)
with complement D = C(Ky).
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The algebraic theory of surgery extends to symmetric Poincaré complexes with a sub-
complex modelled on a framed codimension ¢ embedding M™ C N™%9 with complement
K = cl.(N\M x D?), so that

N = M x DqUMXSqflK

(cf. [Radl §7]). The (m+ ¢)-dimensional symmetric Poincaré complex of N has an algebraic
decomposition as a union

(C(N),¢n) = (C(M x D) Ugarxsa—1y C(K), ¢pmxpa Up,, oo 1 Pr) (*)

of the (m + ¢)-dimensional symmetric Poincaré pairs of (M x D4, M x S971) and (K, M x
Sa=1), with

(C(M x 8971) — C(M x D7), (¢rrxpa, Prrxsa-1))
= (C(M),éum) ® (C(ST71) = C(D9), (¢pa, Pga-1))

For an (m + ¢)-dimensional symmetric pair (f : C(N) — D, (¢p,¢n)) there is defined
an algebraic surgery with trace an (m + ¢)-dimensional symmetric Poincaré cobordism
(C(NY®C' = D', (¢ppr,dn & —¢¢). If f, D and ¢p have codimension g decompositions as
(algebraic) unions compatible with (x) then so does (C(N) & C" — D', (¢p/, pn & —P¢).

Theorem 5.3.6. For any framed codimension ¢ — 1 embedding
I' = (%3, WM, M) C N x (I;{0},{1})

the algebraic half-handle decomposition of the relative symmetric Poincaré cobordism C(T)
given by Theorem[{.7.1] can be realized by a union of algebraic codimension q—1 embeddings

m+1
C(P) = U (C(Qr)a C(Er)7 C(Er+1)7 C(Wr); C(Mr)a C(Mr-i-l)) - C(N) ® C(I, {0}7 {1}) :

r=—1
Proof. Given a splitting of I' as a union of left and right product cobordisms
(2,5 Wi M,M') = (075,510, W5 M, My 5) U (QF5 5 /9, X W5 My o, M')
Proposition [5.3.3] (i) and (ii) gives extensions to framed codimension ¢ — 1 embeddings
P = (@38, Sy, W5 M, Myja) © N x (0,172 {0}, {1/2}) .
D = (5D, X, W My, M) € N x (112115 {1/2), {1))
with right and left product complements
A- = (Jgf;Kg,KEI/Q,Q_ x SI2UW ™ x D171
(2 x S172UM x DT1), (32 x ST72 UMy 5 x DT71)) € N x ([0,1/2];{0},{1/2}) ,
AT = (Jor; Kx, ), Ks, QT x ST72UWT x DI7Y
(B1/2 X ST2U Mo x D7), (X x ST72U M’ x DI71)) € N x ([1/2,1];{1/2},{1})

such that
(- x DI UA™ = N x ([0,1/2];{0},{1/2}) ,

(T x DY UAY = N x ([1/2,1):{1/2},{1}) .
Next, recall the terminology of 7.1l and the relative cobordism of (m + 1)-dimensional
symmetric Poincaré pairs

C(M) —= C(W) =— C(M')
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involving chain complexes with Poincaré duality. There is defined a chain equivalence
CT) ~ C(I')yuC(rh)
with C(I'7), C(I'") the left and right product symmetric Poincaré cobordisms defined by

2

C(M) ——=C(W7) =—C(M,)3)

o |

O(5) == C(2) = C(S10)
O(Myj2) — C(W+) =— C(M')

- [T

C(Xyp) ——=C(X) == C(Y)
with
CE12) = C((1J):CE)BCE) = C(Q))ut ,
C(Ml/g) C(<‘(7) Z f,) CX)eCcW)alCX) = CQ)aC(Q))it1 ,
CW™) = C((Jk):CE)DCW) = C(2))s41
CWT) = C((kj): C(W) D C(E) = C(Q))sta
such that

C(Q) =C(C(Xyp9) = C(X) @ C(X)) , C(W) =C(C(Mypg) = C(WT) & C(WT)) ,

C(X) =C(C(Myp2) = C(WT) @ C(Xy2)) , C(X) =C(C(Mypa) = C(X12) ©C(WT)),

C(LY) =~ C(WH, M), C(QYE)=C(W™, M), C(QIEUy W)~ C(W™, M), .
(Again, there may not be actual left and right product cobordisms (Q7; X, Y12, W5 M, My ),

(QF;81 )9, X", W5 My 5, M")). Define right and left (m 4 ¢ + 1)-dimensional symmetric
Poincaré relative cobordisms

C(Kz) —=C(Jo-) =— C(Ky,,) C(Ky,,,) —= C(Jo+) =— C(Ky)
S
D E- Dy Dy Et D'

C(Jo-) = CJo+) = C(Ky,,) = C(C(N) = C(Z1/2, M1j2)s—g+1)x+1
~ C(C(N) = C(UW)i—g)st1 ,

D; = CO(Z; x DI7Y)) = O(Z; x S92 U M; x D971 (i =0,1/2,1) ,

E* = C(QF x S 2UW* x DI71) .
By Proposition [(5.3.3] (iii) the unions

CT) = cTHuCcTt), A = A“UA"
are such that there is defined a chain equivalence
A CDT™HuC() ~ C(N)®C(I;{0},{1})

giving an embedded splitting of C'(I"). This gives the embedded analogue of Theorem [£.7.1]
(i). Apply the analogue successively to the relative cobordisms in the algebraic half-handle
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decomposition of [L.7.] (ii), to obtain an algebraic codimension ¢ — 1 embedded half-handle
decomposition. O

5.4. Codimension 2 embeddings.

We shall be mainly concerned with codimension 2 embeddings M™ C N™%2 particularly
for N = S™*+2. We shall assume that N is connected, but not that M is connected, so the
theory will apply to links as well as knots.

Example 5.4.1. (i) An m-dimensional knot is a codimension 2 embedding S™ C S™*2.
(i) An m-dimensional link is a codimension 2 embedding S™ U S™U--- U S™ C §™F2,

We shall make much use of Seifert surfaces for a codimension 2 embedding M™ C N™*2
which are the codimension 1 framed embeddings ¥+ ¢ N™+2 with 0¥ = M. In Theorem
(.48 below we shall prove that a codimension 2 embedding M C N admits a Seifert surface
if and only if [M] =0 € H,,(N), in which case the embedding can be framed.

Proposition 5.4.2. Let M™ C N™*2 be a codimension 2 embedding, with normal 2-plane
bundle v =vycn : M — BSO(2) = CP* = K(Z,2).
(i) The Thom class of v is

(1,1,...,1) € H*(D(v),S(v)) = H°(M) = Z[ro(M)] ,
and v is classified by the Fuler class
e = [1,1,...,1] € H¥D(v)) = H*(M) = [M,BSO(2)] .
The Euler class e is the image of the fundamental class [M] € H,,(M) under the composite

esion, o
Hy(M) =50 () = g2 REsIon oy

In particular, M C N can be framed (i.e. v is trivial) if and only if e = 0 € H*(M).
(i1) There is defined a commutative braid of exact sequences

noting that H*(N,M) = H*(N,D(v)) = H*(K,S(v)). In particular
ker(H(M) — H?(N)) = im(HY(K) — H°(M)) ,
ker(e U —: HY(M) — H*(M)) = im(H'(S(v)) = H°(M)) .
(iii) The Euler class e € H*(D(v)) = H*(M) is the image of the Thom class
(1,1,...,1) € H*(N,K) = H*(D(v),S(v)) = H°(M),

50 that a framing 0v : v = €% corresponds to a lift of (1,1,...,1) € HO(M) to an element
Us, € H'(S(v)) = [S(v),S"]. The map

Us, = projection : 0K = S(v) = M x S' — §*



CODIMENSION 2 EMBEDDINGS, ALGEBRAIC SURGERY AND SEIFERT FORMS 63

induces the surjection

projection

(Usy)« + Hi(S(v)) = H1(M)® Ho(M) Ho(M) = Z[m(M)]

augmentation

Hi(SYHY=7.
The section s : M — S(v) corresponding to € ® 0 C v is such that
S*(U(SV) = UguosEHl(M) = [M’Sl] )
Usy = s«[M] = ([M],s"(Us,) N [M])
€ H'(S(v)) = Hn(SWw)) = Hp(M x SY = Hy(M) @ Hpy (M) .

Proof. (i) This follows from the commutative square

inclusions

Hop (M)

>~

Hp(N)

1

HO(M) Umkehr 2 (N)

inclusion™

1%

H(M)

~

H(D(v), S(v)) === H*(D(v))
(ii)+(iii) By construction. O

Definition 5.4.3. The canonical framing of a codimension 2 embedding M™ C N™*+2 with
e =0¢€ H*(M) is the unique framing év : v = € with s*(Us,) = 0 € HY(M) and

0
The canonical framing is obtained from an arbitrary framing dv by subtracting
s*(Us,) € HY(M) = [M, SO(2)] .

Remark 5.4.4. For a knot M = S' ¢ N = 53 the canonical framing of Proposition [5.4.3]
corresponds to choosing a preferred longitude with linking number 0 with the knot itself.
This is the preferred framing of Rolfsen [Rol p.31].

Definition 5.4.5. A Seifert surface for a codimension 2 embedding M™ C N™*2 is a
framed codimension 1 embedding X! C N such that 0¥ = M.

Proposition 5.4.6. Let M™ C N™*2 be a codimension 2 embedding with a Seifert surface
Em—i—l C Nm+2'

(i) The fundamental class [M] € Hp(M) has image [M] = 0 € Hpy,(N), so that e = 0 €
H2(M) (by[5.4.2 (i)) and M C N is framed.

(i1) The composite M C X C N expresses the normal 2-plane bundle v = vyjcn as a sum
of two line bundles

o = <1> . Hp(M) = Hn(SW) = Hn(M) & Hy (M) .

v = VMCE®VECN|M : M—)BSO(Q) .

The framings vyrcs = €, vscn = € given by the orientations add up to the canonical framing
Sv v = €2, with the section

s 1 M= Svycs) = MxS®— Sy) = MxS!
such that s,[M] = ([M],0) € Hp,(M x SY) = Hy,,(M) ® Hy1(M).
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There is no loss of generality in assuming that
(XN D(v);0%,5(M)) = M x (I;{0},{1})
is a collar of 0¥ = M C %, so that (cl.(X\X N D(v)),s(M)) is a copy of (X, M). From
now on we identify D(v) = M x D? using the canonical framing, and denote the copy by
(3, M), so that ¥ C K with
oY = s(M) = Mx{x} COK = S(v) = M xS,
We shall denote the ‘preferred longitude’ s(M) by M also, as in the figure:

N=MxD?*Uy g K

Definition 5.4.7. (i) A Seifert class for a canonically framed codimension 2 embedding
M™ c N™*2 is a lift of Uz, € H'(S(v)) to a cohomology class U € H'(K) = [K, S].
(ii) A Seifert map U : K — S' is a map representing a Seifert class U € H'(K).
There is no loss of generality in assuming that the Seifert map U : K — S' restricts to
the projection
Us, : 0K = S(v) = M xS' = st
Theorem 5.4.8. The following conditions on a codimension 2 embedding M™ C N™*t2
are equivalent:
1. [M]=0¢€ H,,(N).
2. M C N admits a Seifert surface Xt ¢ N™+2,
3. M C N is framed and admits a Seifert class U € H'(K).
4. M C N is framed and

Us, € ker(HY(M x SY) — H*(K,M x §%)) = im(H'(K) — H'(M x §1)) .
Proof. 1. = 3. Immediate form the exact sequence
HY(K) — H*(N,K) = H°(M)— H*(N) = Hpy(N),
noting that Us, = (1,1,...,1) € H*(M) = Z[no(M)] has image [M] € H,,(N).
2. = 1. Obvious.

2. = 3. The Euler class e € H?(M) is the image of [M] € H,,(M) under the composite
H,(M) — H,,(N) = H*(N) — H?(M). If there exists a Seifert surface ™! C N then
[M] =0 € H?(N), so that e = 0 and v can be framed. The Pontrjagin-Thom construction
gives a Seifert map

U: K- K/clL(K\SxD") = £xD'/$ xS —D'/s" = §'.
3. = 2. It may be assumed that the Seifert map U : K — S! is smooth and transverse
regular at * € S!, in which case X! = U~1(x) is a Seifert surface for M C N.
3. <= 4. Immediate from the exact sequence H'(K) — H*(M xS') — H*(K,MxS'). O
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Corollary 5.4.9. Let M™ C N™*2 be a canonically framed codimension 2 embedding, with
complement K.

(i) The Pontrjagin-Thom map (522 (i))
Uy : N — N/l (N\M x D?) = M x D?/M x S* — D?/s§' = §2
has inverse image (Ups) "' (%) = M C N. The composite
HY (M x SYY — H*(K,M x S') = H*(N,M) — H*(N)

sends the canonical class Us, = (0,1) € HY(M x S') = HY(M) @ H°(M) to the Hurewicz
image in H*(N) of the cohomotopy class Uy; € [N, S?]. There exists a framed codimension
2 embedding (X1 M, 0) € N x (I;{0},{1}) if and only if Upy = 0 € [N, S?].

(ii) The rel O homotopy classes of Seifert maps are in one-one correspondence with the
cobordism classes of Seifert surfaces, corresponding to the cosets of

im(H'(N) - HY(K)) = ker(H'(K) — H*(N,K)) C H'(K)
defined by the inverse image of (1,1,...,1) € H*(N, K), noting the exact sequence
HY(N,K) = H Y (M) = 0 H\(N) — H'(K)
— H*(N,K) = H(M) — H?(N) = H,(N)

and that (1,1,...,1) € H°(M) has image [M] € Hy,(N).

(iii) A Seifert surface ¥ = U~1(x) C K can be pushed into N x I rel M x {0} to obtain a
framed codimension 2 embedding (X; M,0) C N x (I;{0},{1}) as in (i), so that Upy =0 €
[N, S?].

(iv) A Seifert map U € HY(K) = [K,S'] determines an infinite cyclic cover K = U*R
of K, and a cobordism class of Seifert surfaces (as in (iv)), namely all the inverse
images X" = U=l (x) € K of reqular values » € S' of all representative smooth maps
U:K — S

(v) If HY(N) = 0 there is a unique homotopy class of Seifert maps U € H'(K), and all the
Seifert surfaces ¥ C K for M C N are cobordant (in the sense of Definition [5.2.1] (i)).

Proof. Immediate from Theorem (.48 O

Remark 5.4.10. For m > 1 every codimension 2 embedding M™ c N™*t2 = §m+2 g
framed, since the Euler number e € H?(M) is the image of [M] € H,,(M) under the
composite

Hp (M) — Hp,(S™2) = H?(S™2) =0 — H*(M) .

In this case, the existence of Seifert surfaces obtained in Theorem [5.4.8] goes back to Erle
[Ex].

Remark 5.4.11. (Continuation of Remark A.7.2]). Let X! be a Seifert surface for M™ C
N™+2 corresponding to a Seifert map U : K — S!. Suppose that ¥ is disconnected, and
that ¥ is a closed connected component of 3. Then X = Yy LI X1 with X a Seifert surface
with the same Seifert map Uy = U € [K,S'] = H'(K). The Pontrjagin-Thom map of
¥ C K\OK is

U, = [U-Uy] = 0€im(H(K)— H (K\0K)) ,
so that ¥ = 0, is the boundary of a codimension 1 submanifold Q; C K\OK. In dealing

with Seifert surfaces, there is thus no loss of generality in assuming that 3 has no closed
components.



66 MACIEJ BORODZIK, ANDRAS NEMETHI, AND ANDREW RANICKI

5.5. Infinite cyclic covers.

Definition 5.5.1. (i) Let A = Z[t,t~!] be the Laurent polynomial extension ring of Z,

with elements the finite polynomials Y a;t/ (a; € Z). Use t = t~! to define the canonical

J
involution

T A=A () = Zajtjb—mm = Zajt_j.
J J

Use the involution to regard a right A-module K as a left A-module by

KxA—K : (z,p(t)) = p(t)z .
(ii) The A-dual of a (left) A-module L is the A-module
L* = Homy(L,A), Ax L* = L*; (p(t), ) — (z — f(z)p(t))
with a pairing
(,) : LRNL" A 2@ f— f(x).
such that
(p(t)z,q(t)y) = p(t)a(t)(z,y) € A

Proposition 5.5.2. (Reidemeister [Re], Blanchfield [BI], Levine [Le3])

Let K be a CW complex with an infinite cyclic cover K, and let t : K — K be a generating
covering translation.

(i) O(K) is a free A-module chain complex, and the homology groups H,(K) = H,(C(K))
are A-modules.

(ii) The A-cohomology modules

Hy(K) = H-,(Homy(C(K),A))

are such that there are defined A-module morphisms

HY\(K) — H.(K)* = Homp(H.(K),A) ; f+ (z+— f()),

H,(K)®z HY(K) - Hp—r(K) ; 2Qy—2xNy

and a A-hermitian pairing

Hy(R) @p HA(R) > A5 2@ f o> () |
(iii) The augmentation A — Z;t — 1 is such that

Z @y C(K) = coker(t—1:C(K) — C(K)) = C(K),
with an exact sequence

e B L ®) - B —— H (B —— .

(iv) If K is finite, the homology H,(K) and the cohomology H(K) are f.g. A-modules.
(v) If (K,0K) is an (oriented) n-dimensional manifold with boundary and (K,0K) is an
infinite cyclic cover, cap product with the fundamental class [K] € H,(K,0K) defines the
Poincaré-Lefschetz A-module duality isomorphisms

K]n— : HYEK,0K) = H,_(K), [K]n— : HYE) = H,_.(K,9K)

in the usual manner. The natural A-module morphism B : H.(K) — H,.(K,0K) is such
that the composite

H,(K) -2~ H,(K,7K)

12

HY " (K) — Hy,_(K)*
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is the adjoint of the hermitian (up to sign) intersection pairing
B : H.(K)x H, .(K)— A; (x,y) = B(x,y)
with 7
B(a,y) = (=1)"""B(y,z) € A (x € H(K),y € Hy—(K)) ,
Bz, py) = MB(z,y) € A (A p€A).
Remark 5.5.3. We shall call the A-module intersection pairing of
B : H.(K)x Hy,_(K)— A

the Blanchfield pairing, even though it was first introduced by Reidemeister [Re]. The
closely related A-module linking pairing of Blanchfield [BI] is defined for the canonical
infinite cyclic cover K of the complement K of a knot S"~2 C S™

Bl : H(K)x Hy_, 1(K) = STIA/A (1 <7 <n—2)
with S™'A the localization of A inverting the multiplicative subset
S = {p(t)|p(1) = +1} C A
The natural A-module morphisms
HPH(K) — Homy (H,(K), ST*A/A)
are isomorphisms, by [Le3, Corollary 4.4].

The pullback along any map U : K — S of the universal cover R — S1;y — > is an
infinite cyclic cover of K

K = UR = {(z,y) c K xR|U(x) =¥ € S} = K ; (z,y) —~ x|
with generating covering translation
t: K—K; (z,y)~ (z,y+1)
and a Z-equivariant lift of U
U:K—=R; (2,9)—~y.
Proposition 5.5.4. Let M™ C N™2 be a framed codimension 2 embedding with a Seifert
map U : K = cl.(N\M x D?) — S* which is transverse reqular at x € S* with
U| = projection : 0K = M x S' — s,
so that
(,08) = (U '(+),(U) 7" (x) c N2

s a Seifert surface for 0% = M C N with trivial normal bundle X x I C N. It is convenient
to remove a collar neighbourhood from M, so that ¥ x I C K with

(ExI)N (M xD?* = M x{(z,y) € S*|y>0}.
The complement of ¥ C K
Ky = cl.(K\(X x1))
has boundary
0Ky, = 02 x1I) = Ex{0jUMXxTUX x {1},

and
N = (M><D2)UMX51K

= (M x D2) UXxI)UKy = (2x1I) Ua(mx1) Ky
with a commutative braid of exact sequences
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H,(X x oI) H. (X x I)® H,(Kyx) H,(N)
\ / \ /
H.(9(X x I)) H,(K)
/ \ / \
H,.1(N) H,_1(M) H,_1(Z x 0I)

Cutting K along X there is obtained a fundamental domain (Kx; X, t%) for the infinite cyclic
cover K of K, with

o0

K = |J t"(Ex;%,1%) , 0K = M xR.

K 1 t~1 Ky, Y Ky ty  tKx 2%
M x [-1,0] M xTI M x [1,2]

M x {—1} M x {0} M x {1} M x {2}

5.6. Alexander modules and variation maps. The Alexander modules and the varia-
tion maps are defined for framed codimension 2 embeddings M™ C N™+2, with a view to
applying them in §6] in the special case N = S™+2.

Definition 5.6.1. The Alezander modules of a framed codimension 2 embedding M™ C
N™+2 with a Seifert class U €H 1(K) are the homology A-modules H,(K) of the corre-
sponding infinite cyclic cover K = U*R of the complement K.

Proposition 5.6.2. For a Seifert surface Y™ C N the two inclusions
ij : =Ky z—(2,7) (j=0,1)
are such that there are defined Mayer-Vietoris exact sequences in homology
tip — i
= H ), 7 22

S H(2) hi H,(Ks) — H.(K) — H, (%) — . ..

H.(Kx)[t,t7Y ] —— H.(K) — H,_1(D)[t,t 7] —— ...



CODIMENSION 2 EMBEDDINGS, ALGEBRAIC SURGERY AND SEIFERT FORMS 69

and also in cohomology

— HT’(Kg)[t,t_l]MHT’(E)[t t7 Y —— H N (K) —— H Y (Ky)[t,t 7] ——

o — = H'(Kyg) XL H'(S) —— HY(K) — H+Y(Ky) — ... .

The inclusion

lifts to a Z-equivariant inclusion
f: MxR = 0K - K .
The homotopy V : f ~ f: M x S' — K defined by
Vi MxS'xT—K; (2,6, 2) = f(x,?™WH2),
lifts to the Z-equivariant homotopy V : f ~ tf defined by
V: MxRxI—K; (2,y,2)— flz,y+2) .
The restriction of f

Vo = fl =V|: MxI = Mx{0}xI— Ky ;
(z,2) = (2,0,2) = f(z,2) = V(z,0,2)
defines a homotopy Vx : ig|as ~ i1|a between the restrictions
. ij .
ijlMy + M —= ¥ —— Ky (j = 0,1)

such that there is defined a commutative diagram

Vs

M x1I Ky

MxRxI-—VoF

The following variation chain maps are motivated by the variation maps in homology
constructed by Lamotke [La].

Definition 5.6.3. (i) The Blanchfield variation chain map of M™ C N™*2 is the A-module
chain map

V . O(K,9K) - C(K)
induced by V : f ~ tf.

(ii) The Seifert variation chain map of M™ C N™%2 with respect to a Seifert surface ¥ is
the Z-module chain map

Vz} : C(E,M) — C(KX))

induced by Vs :iglpr >~ i1|a-
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Proposition 5.6.4. (i) The Blanchfield and Seifert variation chain maps are such that
there are defined chain homotopy commutative diagrams of Z-module chain maps
i1 — i

m

O(2) — O(8, M) —> C(Ky)

o

O(K) — O(R,0K) -~ 0(K)

C(Kz)m+l_*

v | |1z

O, My™H1=* ~ () —— T O(Ky)

and also a chain homotopy commutative diagram of A-module chain maps
[K]n -
~

V*l lV
C(K, 8—K)m+2‘*_t([K%_>)C(K)

O(F)m+2— O(K,9K)

(ii) The Blanchfield and Seifert variation morphisms fit into commutative braids of exact
sequences
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A SN
meE Vyg(}@)\ /I;MN)
N TN
Hy1(N) H,_1(M) H, 1(%)

H,1(K,%) y H,(Ky) H,(N)
~ 7 N S
H, (2, 1) m®
Nl T N
H,1(N) H,(K,0K) H,(K,Y)

identifying Hy(K,0K) = H,(K,M x R) = H.(K, M).
(iii) The Mayer-Vietoris exact sequences of (ii) and the Blanchfield and Seifert variation
morphisms fit into the following commutative diagrams of exact sequences of A-modules

. —— H™TIT (K]t t—l]ﬁﬁHmH—r(z)[t, t7] —— HyP 2 (K) ——— ...
Vs o Vs v
Ho () [t — 0 g (K[t ) H,(F)
Ho(N)[t, Y] L B H(N)
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(iv) The following conditions are equivalent:
HL(N) = H.(S7+2),

)
) V:H.(K,M)— H.(K) is an isomorphism for 0 <r <m+1,
(¢) Ve : H(3X,M) — H,(Kx) is an isomorphism for 0 <r < m + 1.
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Definition 5.6.5. (i) The mapping torus of a map h : 3 — ¥ is the identification space
T(h) = (¥ x1I)/{(z,0) ~ (h(z),1) |z € X} .

If h is an automorphism there is defined a fibre bundle ¥ — T'(h) — S with projection

U : T(h) = S'; (z,y) — ¥V .
If M C X is a subspace such that h| =1: M — M write

t(h) = M x D?> Uy T(h) .

(ii) For an (m + 1)-dimensional manifold with boundary (X, M) and an automorphism
(h,1): (X, M) — (3, M) there is a defined a framed codimension 2 embedding

M™ = M x {0} ¢ N™™2 = t(h)

with complement K = T'(h), Seifert surface 3, and Seifert map U : K — S! as in (i). The
(m + 2)-dimensional manifold N has an open book decomposition with page ¥, monodromy
h and binding M.

Remark 5.6.6. (i) See Winkelnkemper’s Appendix to [Ra3| for a historical account of open
book decompositions.
(ii) For the codimension 2 embedding of the binding of an open book
M™C N™™2 = t(h:¥ = %)
the complement (K,0K) = (T(h),M x S') is the mapping torus of the monodromy, and
the corresponding infinite cyclic cover is given by
t: K =YxR=YxR; (z,y)— (h(z),y+1),
with L
t] : 0K = MXR—>MxR; (z,y) — (z,y+1)
and
ip : > Ky = Y x1T; JZ'—)(%,O),
ih : X —=> Ky = ¥xI; x— (h(x),1).
The Blanchfield and Seifert variation maps coincide

V =V : H(K,0K) = H,(X,M) = H(K) = H.(X)

See Lamotke [La] (and also [BNR3]) for the application of this variation map to the classical
Picard-Lefschetz theory.

5.7. Cobordism of framed codimension 2 embeddings. Recall from Theorem [5.4.8]
that to every framed codimension 2 embedding M™ C N m+2 with [M] = 0 € H,,,(M) there
are associated an infinite cyclic cover K of the complement K, and an equivalence class

of Seifert surfaces ¥+ C K. This also applies to a cobordism of framed codimension 2
embeddings (W; My, M1) C N x (I;{0},{1}), as follows.

Proposition 5.7.1. Let (W™ M, M') ¢ N2 x (I;{0},{1}) be a cobordism of canoni-
cally framed codimension 2 embeddings.
(i) The complement of the cobordism is the cobordism of the complements K, K' C N

(J; K,K') = (cl.(N x I\W x D?);cl.(N x {0}\M x D?),cl.(N x {1}\M' x D?))
C N x (1;{0},{1})
such that

(a) 0J = KUMXS1 W x Sl UM’XS1 K/.
(b) N x (I;{0},{1}) = (W; M, M") x D* Upwrops,ryxsr (J5 K, K7).
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(¢) The fundamental classes have the same images
W] = [M] = [M'] € Hyr(N x LN x {0,1}) = Hp(N) .

If these images are all 0 there exists a Seifert map U € HY(J) = [J,S'] of J € N x1,
a lift of the canonical class

Us, = (0,1) e HY(S(v)) = HYJ x S') = HY(J)® H(J)

of v = vjcNx1, which restricts to Seifert maps U € HY(K), U’ € H'(K').
(d) If (W;M,M') is an isotopy then the inclusions K — J, K' — J are homotopy
equivalences, inducing isomorphisms in homotopy groups

m(K) = m(J) , m(K') = m(J])
and also in the homology A-modules
— —

H(K) = H.(7), H(K) = H.(J).

(e) If (W;M,M') is an h-cobordism then the inclusions K — J,K' — J are homology
equivalences, inducing isomorphisms in the homology Z-modules

H.(K) = H,(J), H(K') = H,/(J).

K J K’
Mx% W x D? @DQ

N x {0} N xI N x {1}

(ii) A Seifert map V. € H'Y(J) = [J,S] is represented by a smooth map (V;U,U’) :
(J; K, K'Y — S' classifying an infinite cyclic cover (J; K, F/) of (J; K, K"), with

(V;U,U")| = projection : (W;M,M') x St — S* .
The inverse image of a reqular value x € S*
(VU U %) = (:2,%) C (J;K,K")
is a Seifert surface for (W; M, M), such that
00 = SUy WUy =Y CNxIT, QN(Nx{0}) = X, QN(N x{1}) = ¥

by Q ¥/

VN

W
N x {0} N x1I N x {1}
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Cutting the complement (J; K, K') along (Q;3,%') there is obtained a fundamental domain
(Ja; Kx, K&,) for the infinite cyclic cover (J; K, F’) of (J; K,K").

I ¥ x {0} K, tx x {0}

<l

I ¥ x {1} K¢, t3 x {1}

The various homology A-modules fit into a commutative diagram of exact rows and columns

..—>Hr<z>l[t,t ptaziy (Kzf -1] I
e @) T () H,(7)

| | |

o= H (U, D)[t,t7 Y — H,.(Jo, Ky)[t,t '] — H,(J,K)
Define the (m + 3)-dimensional cobordism of manifolds with boundary
(P;Q.Q") = (Ja; QUsyor Kx x {0}, Ky x {1} Upsr1y 1)

If (W;M,M') is an isotopy then (P;Q,Q’) is an h-cobordism (i.e. m.(Q) = m.(P) =
m(Q")), and the A-module morphisms

H.(K)— H.(J) , t(j1,51) — (Jo,i0) : Ho(Q,X)[t,t7 = Ho(Ja, Kx)[t, t7]

are isomorphisms.
If (W; M, M') is an h-cobordism then (P;Q, Q') is an H-cobordism (i.e. H.(Q) = H.(P) =
H.(Q")), and the Z-module morphisms

H.(K) — H.(J) , (j1,11) — (Jo,i0) = Hi(,X) = Hi(Ja, Kx)
are isomorphisms.
(iii) Any two Seifert surfaces 3,5 C N for M C N are cobordant: there exists a Seifert
surface (;%,%) for (W; Mo, M') = M x (I;{0},{1}) C N x I.
6. CODIMENSION 2 EMBEDDINGS M™ C S™+?2

We generalize the Seifert forms, Blanchfield forms and Alexander polynomials familiar in
the spherical case S™ C S™*2 to arbitrary framed codimension 2 embeddings M™ c S™+2,

6.1. The Seifert and Blanchfield pairings.

Proposition 6.1.1. Let M™ C S™*2 be a codimension 2 embedding with complement K
and normal bundle v. Suppose that either m > 1 or m = 0 with [M] =0 € Ho(S?) =
(i) The Thom class of v determines a unique Seifert map for the embedding

U= (1,1,..,1) € H*(D(v),S(v)) = H°(M) = HYK) = Z[ro(M)],
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so that v =2 €2 and
ST — M x D*Up e K .

The Pontrjagin-Thom construction for the Seifert map determines a cobordism class of
Seifert surfaces ¥ C K for M C S™%2.
(ii) The homology groups of K are given by

HT—I—I(D(V)7S(V)):HT—1(M) zfr;éO,m+1
Z if r=0
H,,(M)/Z ifr=m+1,

with Z C Hp, (M) = Zrg(M)] the infinite cyclic subgroup generated by (1,1,...,1) €
Zmo(M)]. In particular, K is connected, and the composite

augmentation

U, : m(K) 2V 7 (K) = Ho(M) = Z]ro(M))] m(SsY = Z

is surjective, so that the infinite cyclic cover K = U*R of K is also connected. For any
Seifert surface ¥ C K there is an isomorphism Hy(X, M) = H1(S™"2, Ky), so that Ky, is
connected if and only if ¥ has one component for each component of M (i.e. M C S™*2 is
a boundary link).

(iii) The Blanchfield variation morphisms V are such that

V:H.(K,M)— H.(K) is an isomorphism for 0 <r <m+ 1,

0— Ho(K,M)=0 v, Ho(K) — Ho(S™?) =Z — 0 is evact,

0 — Hpio(S™2)=7Z — Hpy1 (K, M) v, m+1(K) — 0 is ezact

and the Seifert variation morphisms Vy are such that
Ve i H (X, M) — H.(Kyx) is an isomorphism for 0 <r < m + 1,
Vs
0 — Ho(S, M) —== Hy(Kx) — Ho(S™2) =7 — 0 is exact,
Vs

0— Hpio(S™2) =7 — Hpyr (2, M) —=> H,,11(Ks) — 0 is exact.

There are defined commutative braids of exact sequences
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i1 — i
T
H, (%) H,(Ky) H,(S™+?)
Bs, Vi
e Dl
Hyy1(S5™12) H,_1(M) H,_1(%)

H,1(K,%) H,(Kx) H,(5™F2)
N
H,.(%, M) _ H(K)
N T N
H,11(S™1?) H, (K, M) H,(K,Y)

Proof. Apply Propositions and £.6.4] noting that
[M] = 0€ Hp,(S™?) (= 0form>1)
and that there is a Mayer-Vietoris exact sequence
oo = Ho (S™%) - H,.(S(v)) —» H(K) @ H(D(v)) = H,(S™?) — ... .
O

Example 6.1.2. The complement K of a spherical knot M = S™ C S™*2 is a homology
circle, with U : K — S! inducing isomorphisms U, : H.(K) = H,(S!).

Remark 6.1.3. Proposition[6. 1.1 works also for codimension 2 embeddings M™ C S™+!1x I
with essentially the same proof.

Definition 6.1.4. The Seifert morphisms A(X)o, A(X)1 of a framed codimension 2 embed-
ding M™ C S™*? with respect to a Seifert surface ¥+ C §™*2 are the composites

N .
AX); « Hy (D) R H,(Ky) @ H.(2,M) = H™ (%) (j =0,1)

for 0 < r < m+ 1. The Seifert pairings are the adjoint bilinear pairings on the torsion-free
quotients

AX)j : F(2) X Fpp1-+(8) = Z (j=0,1) .
Proposition 6.1.5. (i) The Seifert morphisms A(X)o, A(X)1 are such that
AD) —A(X)y = B(®) : E(X) = F(2,M) = Fri-r(y)
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with B(X) the natural map induced by the inclusion (X,0) C (3, M) with adjoint the inter-
section pairing. There is an exact sequence of Z-modules

e Ho (M) = H(3) A®) — AZ)g H™7(8) & Hy_ (M) — ...

and also an exact sequence of A-modules

A(X) — A(X)

873 b O rrmtl1—r -1 873
o= He (K) — He (D)t 677 H D)t ] = H(K) — ...
(ii) The Seifert pairings are such that A(X)g is the transpose of A(X)1 up to sign
AZ)y = —(=1)™MHIAS); 2 F(D) X B (B) = Z
so that
B(E)(z,y) = (AX)h — AX)o)(z,y)
= AX)i(z,y) + (=) A (y, x) € Z.
forx € F.(X), y € Fp1—r(2).

From now on, we shall write A(X); = A(X).

6.2. The Seifert form and Alexander polynomial of a codimension 2 embedding
M*=1 c §2n+L For us, a Seifert form (F, A) is a f.g. free Z-module together with a Z-
module morphism A : F — F* (or equivalently a bilinear pairing A : F' x F' — A) together
with a choice of sign € = 1 or —1. This is more general than the usual notion of a Seifert
form in which it is also required that A + eA* : F — F* be an isomorphism, such as arises
for a Seifert surface 3 of a spherical knot S?"~1 C §?7*! with F = F, (%), e = (=1)".

We consider equivalence relations on Seifert forms called S -equivalence and H -equivalence.
We shall also define such equivalence relations on the Laurent polynomial extension ring
A = Z[t,t71]. For a framed codimension 2 embedding M?"~1 C §?"*1 a choice of Seifert
surface ¥ C $?"+1 determines a Seifert form (F,(X), A(X)) with sign ¢ = (—1)", and
hence an Alexander polynomial

AM’g(t) = AA(g)(t) = det(tAX) + (-1)"A(X)") e A .
We shall prove that

(i) the S-equivalence classes of (F,(X), A(X)) and Apsx(t) are isotopy invariants of
M C §2n+t

(ii) the H-equivalence classes of (F,,(X), A(X)) and Ay x(t) are h-cobordism invariants
of M C S+l

generalizing the results of Levine [Lell Le2] for spherical knots M = §?"~1 ¢ §2"+1 In
the next section we shall consider the Levine-Tristram signatures for an arbitrary framed
codimension 2 embedding M C S§?**1, and investigate their cobordism properties.

We now proceed to define Seifert forms, and the S- and H-equivalence relations.

Definition 6.2.1. Fix a sign e =1 or —1.
(i) A Seifert form (F,A) is a f.g. free Z-module F' with a bilinear pairing

A: FXF—Z; (x,y) — A(z,y) .

An isomorphism h : (F,A) — (F', A") of Seifert forms (F, A), (F’, A’) is a Z-module iso-
morphism h : F' — F’ such that

A= nAh . F—F".
(ii) A Seifert form (F, A) is e-nonsingular if the Z-module morphism
B = A+eA* : F = F** - F*
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is an isomorphism.
(iii) A sublagrangian L of a Seifert form (F, A) is a sublagrangian of the e-symmetric form
(F, A+ eA*) such that

A(z,y) = Oforall xz,y e L.

The sublagrangian quotient is the Seifert form (L‘/L,[A]). A lagrangian L is a subla-
grangian such that L+ = L.

(iv) A rank (¢=,0%) enlargement of a Seifert form (F, A) is a Seifert form (F’, A’) of the
type

A = . F = Fozl o7 - F* = Frozt ozt .

O
< oo
w8 Q

The submodule
L' =08Z" ¢0CcF = FaZ' ¢Z" (where F =17F)
is such that
I'Clt = Fozl okelz+ey* 2 - 70 )C F' |
inclusion* (4’ +€A™) = (00z+ey*) : F/ = Fozl o7t - L* = 7
The e-symmetric form (F', A’ + e¢A”™) with
Ated* 0 a+eB

A4 eA” = 0 0 z+ ey*
B+ex* y+ext z+e”
is then a rank (¢7,¢7) enlargement of (F, A + €A*) in the sense of ZT.8] (ii).
(v) An H-enlargement of (F, A) is a rank ({7, ¢") enlargement (F’, A’) such that z + ey*
is an invertible /T x T matrix, or equivalently if L’ is a sublagrangian of (F’, A’), in which
case

(L1 [A) = (FA)

and the e-symmetric form (F’, A’ + €¢A’™) is an H-enlargement of (F, A + ¢A*) in the sense
of ZI.8l Two Seifert forms (Fy, Ag), (Fi1, A1) are H-equivalent if they have isomorphic
H-enlargements (F{, Ap), (Fy, A}).

(vi) An S-enlargement of (F, A) is arank (1,1) H-enlargement (F’, A") with (x,y) = (£1,0)
or (0,£1). (F,A) is an S-reduction of any of its S-enlargements. Two Seifert forms are
S-equivalent if they can be connected by a chain of S-enlargements, reductions and congru-
ences.

Remark 6.2.2. For a fixed sign € = £1 Seifert forms (Fy, Ag), (F1, A1) are S-equivalent if
and only if they have isomorphic H-enlargements (F{, Ap), (Fy, A}) such that

Aj 0 Oéj
Ab = [0 0 =) (j=0,1)
Bi v %

with tx; + ey; invertible over A. We shall not actually need this result, which makes use
of the Higman [Hi] computation Wh(Z) = 0 of the Whitehead group of an infinite cyclic
group Z; it follows from 7(tx; + ey;) = 0 € Wh(Z) = 0 that tz; + ey; is stably a product
of elementary matrices over A. This is the algebraic analogue of the following special case
of the s-cobordism theorem: if (W; My, My) C N™2 x (I;{0},{1}) is an h-cobordism
of framed codimension 2 embeddings with complement an h-cobordism (J; Ko, K1), and
m >4, m (W) = {1}, mi(J) = Z then (W; My, M1) C N x (I;{0},{1}) can be deformed rel
0 to an isotopy.
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Definition 6.2.3. The Seifert form (F,(X), A(X)) of a framed codimension 2 embedding
M?—1  §27+1 with respect to a Seifert surface ¥ is the Seifert pairing

AX) : F,X)x F(X) = Z
of Definition
By Proposition the Seifert from A(X) determines the intersection pairing by
B(X) = AX)+ (-D)"AD)" : F.(2) = E,(2)" .

The linking number interpretation of the Seifert form of a spherical knot S**~1 C
S+l ([Le2]) extends to the Seifert form of an arbitrary framed codimension 2 embed-
ding M2n—1 C S2n+1 .

Proposition 6.2.4. (i) Let M?"~1 C S?"* be a framed codimension 2 embedding with
Seifert surface ©2" C 8L If .y € Cn(X) are cycles then

AX)(zy) = Kk(z,y") €L

is the linking number in S*" 1 of x and the disjoint cycle y* € C,(S*"T1\X) defined by y
pushed slightly off ¥ in the positive normal direction.
(ii) For a framed codimension 1 embedding

(L3, B W2 M, M) © S (1 {0}, {1))
the subgroup L = ker(F,(X) & F,,(X') — F,(Q)) C F,(X) @ F,(Y') is such that
(AZ)® —AX))(z,y) = 0€Z for all z,y € L .

Proof. (i) Exactly as for the spherical case in [Le2].
(i) For any z,y € L there exist chains I';, T'y, € Cy,41(€2) such that

O, = 2, a0, = y € Cu(D) B Cu(S) .

By pushing I'y along the normal vector to €2 in a positive direction, we get a chain F;’ €
Cri1(S?"+1 x 1\Q) such that

oy =y, 0Nl =0.
It follows that
(AD) ® —AX)(z,y) = k(z,y") = T, T = 0€Z.
O

Remark 6.2.5. The Seifert form (F,(X), A(X)) for a spherical knot K : §?7~! ¢ §2n+!
with respect to a Seifert surface ¥?* C $?"*+! is (—1)"-nonsingular, with

B(X) = AX)+ (-1)"AX)* : F,(2) = Fu(2)*

an isomorphism. We have the following classic results of Levine [Lell [Le2] for spherical
knots IC.

(i) The S-equivalence class of (F,(X), A(X)) is an isotopy invariant of K, and in particular
independent of the choice of Seifert surface ¥. The function

{isotopy classes of simple knots K : $2"~1 ¢ §2n+1} —

{S-equivalence classes of (—1)"-nonsingular Seifert forms} ; K — A(X)
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is a bijection for n > 1. By definition, a knot K is simple if the knot complement K is such
that m.(K)=0for 1 <r<n-—1.
(ii) The S-equivalence relation of [6.2.1] (vi) is generated by the S-enlargements of the type

A 0 « A 00

A =10 0 0]Jor |0 01

010 6 0 0

proved exactly as in [Lel]. This is immediate from the congruences

1 F6 0 A 0 « 1 0 0 A 0 «
0 +1 0 0O 0 0 FB £1 Fz| = |10 0 0
0 72 1 68 *1 =z 0 0 1 0 1 0
1 Fa 0 A0 « 1 0 O A 0O
0 £1 0 0 0 =+1 Fa +1 Fz| = |0 0 1
0 F2 1 6 0 =z 0 0 1 8 0 0

(iii) The H-equivalence class of A(X) is an h-cobordism invariant of K : §?*~1 ¢ §2n+1 [If
IC is h-cobordant to the trivial knot Kg : $?*~1 C §?"*! via an h-cobordism

(W25 (%71, Ko(§7"71)) € 82" x (1;{0},{1})

then for any Seifert surface £2* c §2"*! for K there exists a cobordism of framed codimen-
sion 1 embeddings

(@052, D) € § ({0, 1))
The closed 2n-dimensional submanifold
0 = xn Usc(szn-1) W Ugg(s20-1) D c 8l T
is such that F,(09Q) = F,,(¥) and
L = ker(F,(X) — F,(Q)) C F(%)
is a lagrangian of the Seifert form (F,(X), A(X)). Thus
0 =z
AX) = <y p

with  + (—=1)"y* : L* — L* an isomorphism, so that (F,(X), A(X)) is H-equivalent to
(0,0). The function

Con_1 = {h-cobordism classes of knots K : §?n—1 c §2n+1}

{H-equivalence classes of (—1)"-nonsingular Seifert forms} ; K +— A

) L () = LeLl* 5 F(8) = L*aL

is a bijection for n > 1.

We now generalize (ii) and (iii) in Remark [6.2.5] to arbitrary framed codimension 2
embeddings M7~ c §2n+1

Theorem 6.2.6. Let (W;M,M') C S?"*! x (I;{0},{1}) be a cobordism of framed codi-
mension 2 embeddings, with a relative cobordism of Seifert surfaces

D= (@3.) € $2H x (1 {0}, {1)) -
(i) A decomposition of C(T") as union of algebraic codimension 1 embeddings

m—+1
C(F) = U (C(Qr)7 C(Er)v C(Er+1)7 C(WT); C(Mr)v C(Mr+1)) - C(N) ® C(I; {0}’ {1})

r=—1
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given by Theorem determines a sequence of enlargements and reductions taking the
Seifert form (F,(X), A(X)) to the Seifert form (F,(X'), A(X')).
(i) If (W; M, M'") is an H-cobordism the Seifert forms (F, (%), A(X)), (F,(X), A(X)) are
H -equivalent.
(iii) If (W; M, M’) is an isotopy the Seifert forms (F,(X), A(X)), (Fn(¥X'),A(X)) are S-
equivalent.
Proof. (i) We extend to the Seifert forms (F,(2,), A(24)) the computation in Theorem
of the intersection forms (F,(¥X,), B(X,)) of the Seifert surfaces 3, of the framed
codimension 2 embeddings M, C S?"*! which arise in a half-handle decomposition
m—+1
(@2, WM, M) = ) (550, Segr, We; My, Myg1)
r=—1
(noting that we only need an embedded algebraic decomposition), with each
(s 20, Bp1, Wy My, My 1)
= (7350, X410, W, My, My 9) US, 11/ (F; Y t1/25 Xrt1, W M, 41/2, Myy1)

an elementary embedded splitting of index 7 + 1 and index (4,47 ;). As inB42 only the
case r = n — 1 need be considered, so we identify

(Q; X, 2/7 W; M, M,) = (Qn—l; Y1, 2, W13 M1, Mn)

and write
(EH,M”) = (En—l/27 Mn—1/2) :
By [B.4.2] the intersection forms

.56 = Eoe (77 1)),

B = EEnenn ( Z50 7))
are enlargements of rank (¢7,0), (0,¢1), with
L™ = im(Z") = ker(F,(X") = F,(X)) C Fo(X") C Fo(%)
(LT = im((Z7)*) = ker(F,(X)* — F, (X)) C F, () = F*(3),
¢~ = dimg L~ , ¢t = dimg LT .

Let (J; K, K') be the complement of (Q; %, %) C $""2 x (I;{0},{1}), and as in Proposition
67T let (Jo; Kx, K§,) be the fundamental domain for the canonical infinite cyclic cover
(J; K, F/). The inclusions induce a commutative diagram of homology groups with exact

rows and columns
1 1 00
0 0 01

F,E)—F,Q)=F,X)eL —F,X)=F,()eL &L

io 1 Jo 1 0 0 g
0 01 0
n (K

Fp(Ky) = F(S) —> F(Jo) = FM3) @ L~ ~——

Nt o

F,(tY) =tF,(X) —> F,(tQ) = t(F,(X)® L™

0 (;) 41
<0— 1n(t2’) =tF (X)L L")
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with
i = A = ( )n+lA( ) s
(X) a _ nt1 (AR BT
( o) = e (A
AX) 0 « AX) 0 p*
ip =AX) = 0 0 x| ,i# = ()*AE) = (-)»*[ 0 0 g
5y z o* ¥ 2*
The Seifert form (F,(X'), A(YX')) is arank (¢, £1) enlargement of the Seifert form (F, (%), A(X)).

(ii) It follows from the exact sequence

- +(=1)"y"*
0 B (WM Hy@.x) = 70 TV

Hy(Q, Uy W) = HW(Q,Y) = Z = H,_((W, M) =0

that (W; M, M') is an H-cobordism if and only if 4+ (—1)"y* is an invertible ¢ x ¢ matrix
(with £ = ¢+ = ¢7) if and only if (F,(X'), A(Y')) is an H-enlargement of (F, (%), A(X)).
(iii) If (W;M,M’) is an isotopy then the trace of each of the ¢ individual surgeries is an
isotopy, and we can assume ¢ = 1. Consider the commutative diagram of A-modules with
exact rows and columns

-1

S HT(E)[t t ] —> HT’(KZ)[t7t_ ] HT(F
e @ D g o) H,(7)

HT(Q7E)[t7t_1] _>HT(J97 E)[tvt 1] — H, jyf
The A-module morphism

t(jo,io) — (j1,i1) = tz+ (-1)"y" :

Hy(Q,D)[t,t7 = A — Hy((K x I, Kx)[t,t71] = A
is an isomorphism, with (z,y) = either (0,+1) or (£1,0), so that (F,(X'),A(X)) is an
S-enlargement of (F,,(X), A(X)). O
6.3. The Alexander polynomial. We now define the Alexander polynomial of a Seifert
form, and the S- and H-equivalence relations for polynomials.
Definition 6.3.1. The Alexander polynomial of a Seifert form (F, A) is
Aa(t) = det(tA+eA*: Flt,t7'] — F*[t,t7]) € A

using any choice of basis for F.

Remark 6.3.2. By convention, the Alexander polynomial of the zero matrix A = 0 is

Ag(t) =1
Definition 6.3.3. (i) Two polynomials po(t),p1(t) € A are H-equivalent if

o)) (t™) ~s pi(H)ar (H)qr(t™)
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for some qo(t),q1(t) € A with go(1),q1(1) € {—1,1}. Written as po(t) ~g p1(t).
(ii) Two polynomials py(t),p1(t) € A are S-equivalent if
pi(t) = t'po(t) € A
for some k € Z. Written as pg(t) ~g p1(t).
Example 6.3.4. A Seifert form (Z° @ Z¢, A) with

A=y )

and z + (—1)"y* an invertible £ x ¢ matrix is H-equivalent to 0, with Alexander polynomial
Aa(t) = —det(tz + (—1)"y")det(ty + (=1)"z") ~g Ao(t) = 1.
Proposition 6.3.5. (i) The Alexander polynomial of the transpose A* of a Seifert k x k
matrixz A is such that
A g (t) = (Et)kAA(t_l) ~g AA(t_l) .

For any £ x £ matrices x,y

det(ty + ex*) = det(ty* +ex) = (et)'det(t 'z + ey*) ~g det(t™ 'z +ey*) .
(ii) The Alexander polynomial of an enlargement (F', A") of a Seifert form (F, A) is

Ax(t) = —det(tx + ey™)det(ty + ex™)Aa(t) .

(iii) If Ao, A1 are H-equivalent then Aa,(t) ~m Aa,(t).
(iv) If Ao, A1 are S-equivalent then Ay, (t) ~s Aa, ().

Proof. (i) The Alexander polynomial of a k x k matrix A is of the form

k
Ap(t) = det(tA™ +ed) = > ajt/ € A
§=0

and
Aac(t) = det(tA* +eA) = (et)Fdet(t 1A+ eA¥)
k ,
= (e)* Y ajt™ = (et)fAs(t7) €A
7=0
(ii)+(iii)+(iv) By construction. O

Definition 6.3.6. The Alezander polynomial of a framed codimension 2 embedding M?"~! C
527+l with respect to a Seifert surface ¥ is

AM;)(t) = AA(E)(t) = det(tA(E) + (—1)”A(E)*) eA
with (F,(X), A(X)) the Seifert form.

Proposition 6.3.7. (i) The Alezander polynomials Apsx(t), Ay s (t) of h-cobordant framed
codimension 2 embeddings M2"_1,M’2"_1 C S2tL with respect to Seifert surfaces ¥,% C

S+l qre H-equivalent (623.3). The H-equivalence class Ay x(t) is thus an isotopy invari-

ant of M?"—1 c g2+l

(ii) The Alexander polynomials Anx(t), App sv(t) of isotopic framed codimension 2 em-

beddings M2 M1 < S20H1 with respect to Seifert surfaces ©,% C 8§21 gre S-

equivalent (6.3.3). The S-equivalence class of Aprx(t) is thus an isotopy invariant of
M2n—1 C S2n+1.

Proof. Immediate from Theorem [6.2.6] (ii)+(iii) and Proposition (.35 (iii)+(iv). O
In view of Proposition [6.3.7] (ii) we set:
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Definition 6.3.8. The Alezander polynomial of a framed codimension 2 embedding M?"~! C
S2n+1 is

Ap(t) = Apx(t) € A/S-equivalence
for any Seifert surface .

Remark 6.3.9. Let M be a closed m-dimensional manifold, and let (K,0K) be an m + 2-
dimensional manifold with boundary 0K = M x S!, such that the projection 0K — S!
extends to a map U : K — S! transverse regular at * € S'. Then X" = U~1(x) c N
is a framed codimension 1 submanifold, and cutting K along X there is obtained a relative
cobordism

(Ks; Z,t8, M x I; M x {0}, M x {1})

which is a fundamental domain for the infinite cyclic cover K = U*R of K. The Mayer-

Vietoris exact sequence of
o0
K = U Ky
j=—o00
is an exact sequence of A-modules
tig — 1 0

i Hn(z)[tvt_l] Hn(KZ)[t7t_1] — Hn(F) - n—l(g)[t7t_1] e,

with ig,77 : ¥ — Ky the two inclusions. For the complement K of a spherical knot
S§2n=1 ¢ §2n+1 with Seifert surface ¥ and Seifert form A(X) = A we can identify

i = A, i = (=1)"MA* . H,(®) » HY(Y®) = H,(Kx),
so the exact sequence can be written as

= Hy(D)[t, t7Y tA+ (DA H"(D)[t,t7] — H,(K) o, w1 (D)t =

The Z-module morphism A+(—1)"A* : H,(¥) — H™(X) is an isomorphism. The Alexander
polynomial

Ay(t) = det(tA+ (—1)"A*) € A/S-equivalence
is an isotopy invariant of the knot such that A4(1) = +1 and Ax(t)H,(K) = 0. In the
non-spherical case M?"~1 C §2"*1 the exact sequence (*) and A 4(t)H,(K) = 0 are known
only under additional assumptions which ensure that 9 =0 : H,.(K) — H,_1(3)[t,t7!] for
r=mn,n+ 1 (see [Ex]).

6.4. The generalized Levine—Tristram signatures. Having defined the Seifert form we
pass to the definition of the generalized Levine Tristram signatures o¢(M) € Z (€ € S*) of
a framed codimension 2 embedding M?"~! C §27*! using the ¢-twisted (—1)"*!-hermitian

intersection form (H,11(X;&), B(X;&)) on the {-twisted homology of the complement X =
cl.(D?"F2\3 x D?) of a Seifert surface ¥2" C $?"*! pushed into D*"*2.

Definition 6.4.1. For any space X with infinite cyclic cover X and ¢ € S* use the morphism
of rings with involution
Clt,t ] =C;tse(E=t1
to define the &-twisted C-coefficient homology
H.(X;€) = H.(Cocp-1 C(X;0)) .
Example 6.4.2. For ¢ =1 ¢ S!
H«(X;1) = H(X;C) .
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Proposition 6.4.3. For any & € S the short exact sequence of C-module chain complexes

0—0(X%;0) =L (X 0) — C(X;6) —0

induces a long exact sequence of homology C-modules

..— H,.(X;C) t;f) H.(X;C) —= H.(X;¢) —= H,_1(X;C) — ... .

Example 6.4.4. For £ #1c S'and X =Y xS, X =Y xR
H.(X;¢) = H(1-¢:C(Y;C) - C(Y;C) = 0.

Definition 6.4.5. Let (X, 0X) be a m-dimensional manifold with boundary and an infinite
cyclic cover (X,0X).
(i) The C[t,t !]-module chain map

(XN, —

C(X;C) - C(X, X C) C(X;€)™ = Homgyy, 1(C(X),Cltt ™ s

induces the Blanchfield intersection pairings (Remark [5.5.3])
B(X) : H.(X;C) x Hp,_(X;C) — C[t, t7]
such that

BX)(z,y) = (-1)"™ " BX)(y,z) € C[t,t7'],
with an exact sequence

_ _ __B(X) — _
..— H,(0X;C) — H,(X;C) —= Hp—(X;C)* —= H,_1(0X;C) —— ... .

(ii) For ¢ € S! there is also induced the &-twisted intersection pairings
B(X;€) + Hp(X;8) X Hypr(X;€) = C

such that
B(X;&)(z,y) = (-1)""B(X;€)(y,z) € C,

with an exact sequence

B(X;¢) .
S H(0X:§) — Hp (X3 ) —— Hp o (X58)" — H1(0X:6) — ... .

Example 6.4.6. For m = 2n there is defined a (—1)"-hermitian intersection form (H,(X;¢),
B(X;¢)) over C, which is nonsingular if X = (). In particular, if 9X =, X = 9Y for a
(2n+1)-dimensional manifold Y with infinite cyclic cover Y D X, then im(H,, 11 (Y, X;&) —
H,(X;¢)) is a lagrangian of (H,(X;¢), B(X;¢)).

Given a framed codimension 2 embedding M™ C S™*2? with complement K and a Seifert
surface X1 C §™*2 push X rel 9 into a framed codimension 2 embedding (%, M) C
(D™+3,8m+2) (cf. [Ra3l Proposition 27.8]). The complement

(L; K, % x SY) = (cl.(D™P3\X x D?);cl.(S™\M x D?),% x S1)
has boundary the closed (m + 2)-dimensional manifold
OL = KUpyq =2 x St

The canonical infinite cyclic cover (L; K, % x R) of (L; K, % x S!) is classified by the Seifert
map U : L — S', and

H,(L;C) = H,_(3;C)[t,t7Y], H (OL;&) = H.(K;€) (1<r<m).
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The map U has regular inverse image U~ !(x) = ¥ x I, and cutting along the codimension
1 framed embedding
S x ({0} {1}) € (L K, % x 81
gives a fundamental domain
(Lexr; Ks, (8 x SYg) =2 (D™ Ky, % x 1)
for the canonical infinite cyclic cover (L; K, ¥ x R) of (L; K, X x S'), with an exact sequence
of C[t,t~!]-modules

(1 _ t)A + (_1)(r+1)(m+2—r)(1 _ t_l)A*

T Hr-l-l(z; (C) = HT’(E; C)[tv t_l]
HT—I—I(fa 6_14 (C) = Hm+1—r(z; (C)*[tvt_l]) - Hr(a_L; (C) — H’I‘(Z; (C) = HT—l(E; C)[t7t_1] e
with A : H,(X;C) = Hppq1--(2;C)* the Seifert form.

Lemma 6.4.7. For m =2n — 1 the (—1)"*L-hermitian intersection form over C[t,t~] of
L is determined by the Seifert form (F,(X), A(X))

(Hn+1(f; (C)v B(Z)) = (Hn(z; (C)[tv t_1]7 BA(E) (t))

with
Bagy(t) = (1=)A®XE)+ (1)1 -t HAE)*,

and an exact sequence of C[t,t~']-modules

_ . Bas)(t) S 1
g Hn+1(L; (C) = Hn(z; (C)[t’t ] - n+1(Lv aL; (C) = Hn(z; (C)*[tvt ])
— H,(0L;C) — H,(L;C) = H,1(Z;0)[t,t7 — ... .

The &-twisted (—1)" L -hermitian intersection form over C is
(Hny1(L; €), B(L;€)) = (Hn(35C), Bars)(€)) -

For £ # 1 there is an exact sequence
T Hn-i—l(K;f) = Hn-i—l(aL;f) — Hn-i—l(L;f) = Hn(Ev(C)

By (6)

Hp1 (L, K €) = Ho(5:C)" — ...

Definition 6.4.8. Let ¢ =1 or —1, let (F, A) be a Seifert form, and let ¢ # 1 € S! C C.
(i) The —e-hermitian form (C ®z F, Ba(§)) over C is defined by

Ba(§) = (1-§A-e(1-EA".
(ii) The nullity of (F, A) at & is
na(§) = nullity(Ba(€)) = dime (ker(€A +€A*)) >0.
(iii) The signature of (F, A) at & is
oa(§) = 0(C®z F,Ba(§)) € Z .

(iv) Given a framed codimension 2 embedding M?*~! C S§?"*! with a choice of Seifert
surface ¥ and Seifert form (F, (%), A(X)), set € = (—1)" and define the nullity and Levine—
Tristram signature to be

nux(§) = nax)§) =20, ous(§) = oax)(§) €Z .

We shall now investigate the behaviour of the nullities and signatures under the h-
cobordism and isotopy of framed codimension 2 embeddings, using the following algebraic
lemma.
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Proposition 6.4.9. Let (Fy, Ag) be a Seifert form, and let

By z

be a rank (¢,0) enlargement of (Fy, Ag). Sete = (—1)".
(i) The evaluations of the Alexzander polynomials of (Fy, Ao), (F1, A1) at & € C are related
by

AO 0 «
(F1,41) = (Fo@zg@zf,(o 0 g;))

An(§) = det(§A; + (=1)" A7)
= —det(éx + (—1)"y*)det(§y + (—1)"x*)det(§Ag + (—1)"Af) € C .
(i) If € # 1 € St is such that det(éx + (—=1)"y*) # 0 € C (e.g. if Aa, () # 0 € C), the

nullities and signatures of the (—1)""t-hermitian forms (C®zFy, Ba,(€)), (C®zFi, Ba, (£))
are the same

na(§) = na(§) 20, 04,(§) = 04, (§) €Z .

In particular, this is the case if € —1 € C is not an algebraic integer.
(iii) For any ¢ #1 € S*

04,(§) —0a,(§) = o(F,B) €Z
with
F = {weC+(-1)"y)(w) = 0eC, ((at (~1)"5")(w) € im(Ba,(€)) € C*} ,
B = (1-&§z+ (-1~
Proof. Apply Theorem Z2.7 to

( B, () 0 C)

BAl(g) = 0 0 D ,

_1)n+lc* (_1)n+1D* E

C = (1-8at+(-1)""'(1-9p" = (E-D(a+(-1)"6"),
D = (1-8z+ (1)1 -y* = (E—-1)(Ex+ (=1)"y*),
B = (1=t (-1 -2

Corollary 6.4.10. Let M?*»~1 c S?"*1 be a framed codimension 2 embedding, with a
Seifert surface 2" C S?"*1 and Seifert form (F,(X), A(X)).

(i) For any &€ # 1 € St the nullities nyrx(€) and the Levine—Tristram signatures oy x(€)
are isotopy invariants, meaning that if there exists an isotopy (W;M,M') C S?"+1 x
(I; {0}, {1}) then for any Seifert surfaces ¥,% for M, M' c §?"+!

nuxs(§) = nrs(§) , o) = omr s (§) .

(ii) For any &€ #1 € S* such that det(A(X) + (—1)"A(X)*) # 0 the nullities nyrx(€) and
the Levine—Tristram signatures oy (§) are h-cobordism invariants, meaning that if there
exists an h-cobordism (W; M, M') C S>"*1x (I;{0},{1}) then for any Seifert surfaces ¥, %’
for M, M' c §¥+1

nas(€) = nawr(§)  oux(§) = omr(§) -

Proof. Immediate from Theorem [6.2.6] and Proposition [6.4.9] O
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Definition 6.4.11. Let M?"~! c §?"*! be a framed codimension 2 embedding.
(i) The nullity of M for £ #1 € S'is

nu(§) = nux() =0
defined using any Seifert surface ¥2" C S$?"*!. This is an isotopy invariant of M c S?*+1,

independent of the choice of 3, by ().
(ii) The Levine—Tristram signature of M for ¢ #1 € St is

om(§) = oux(§) €Z
defined using any Seifert surface £2* C S2"*!. This is an isotopy invariant of M C §27+1

independent of the choice of ¥, by [6.4.101 (i). For Ayrx(§) # 01it is an h-cobordism invariant,
by 6.4.10] (ii).

The Levine—Tristram signatures of a framed codimension 2 embedding satisfy the same
algebraic properties as the signatures of knots.

Definition 6.4.12. (i) Two complex numbers zg, z; € C are S-equivalent if |zg| = |z1|. The
function
C/{S-equivalence} — [0,00) ; z — |z|
is a bijection.
(ii) Given a framed codimension 2 embedding M2~ C §27+! and ¢ # 1 € St let
Ap (&) = Axl) = det(EA+ (—1)"A%) € C/{S-equivalence} = [0,00)

be the evaluation of the Alexander polynomial Aps(t) € A/{S-equivalence} at t = . This
is an isotopy invariant of M C S?"*1, by Proposition [6.3.01

Lemma 6.4.13. np(§) > 0 if and only if Apr(§) = 0. In particular, if dim(ker ANker A*) =
0, the nullity is equal to zero for all but finitely many values of € € S*.

Proof. As ¢£€ = 1, we can rewrite B4(€) = (£ — 1) (€A + (—1)"A*), hence det B4(£) = 0
if and only if Ap(§) = 0. If dim(ker A N ker A*) > 0, then Ap(§) = 0 and np(§) >
0. So assume that dim(ker A Nker A*) = 0. By the result of Keef [Keef] (see also [Kal,
Theorem 12.2.9] and [BN| Section 3.1]), A is S-equivalent over Q to a matrix with det(A) #
0 € Q, and we can write

Ba(§) = (€-1) (I +(-1)"A"ATH A,
and so det B4(¢) = 0 € C if and only if det(¢1 + (—1)"A*A~1) =0 € C. O

6.5. The Murasugi—Kawauchi inequality in higher dimensions. We obtain a Murasugi—
Kawauchi like theorem giving an upper bound for the difference between the Levine—
Tristram signatures oz, (£), o, (§) of cobordant framed codimension 2 embeddings Mg"_l,
M=t §2n+1 See Kawauchi [Ka, Theorem 12.3.1] for the classical case of signatures for
links My, = |JS' € S (k =0,1), the special case { = —1, n = 1.

225
Theorem 6.5.1. Let (W?"; My, M;) C S*™! x (I;{0},{1}) be a cobordism of framed
codimension 2 embeddings My, My, C S?"T1, let ¥, %, be Seifert surfaces for My, Mi, so
that

Y = Yo Up, WUy, =81 €S2 x T

is a closed 2n-dimensional manifold. For any € #1 € S*
001,(€) — 01, (§)] < Dn(3) = bp(E0) — bn(E1) + 1age (§) + 1ary (€)
where b, (X) denotes the n-th Betti number of a topological space X .
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Proof. The complement
(J; Ko, K1) = (cl.(S*"T x I\W x D?); cl.(S?" T x {03\ My x D?), cl.(S*" ! x {1}\ M x D?))
has boundary the closed (2n + 1)-dimensional manifold
0J = KoUppxst W x St Upp st — K1 -
The Seifert map V : J — S! (Proposition [.7.1) has regular inverse image V~!(x) =

Q2+l J for a cobordism of framed codimension 1 embeddings
(%0, 31) € §7H % (15{0},{1})

with boundary 02 = .. Tt is possible to push €2 rel ¥ into a cobordism of framed codimen-
sion 2 embeddings
("1 %0, B1) € D2 x (I {0}, {1}) ,
which restricts to a framed codimension 2 embedding
¥ D2 {0 U ST x TU —D? T2 {1} = §% 2
The complement
(Y;Lo,L1) = (cl.(D*""2x1\Qx D?); cl.(D*" 72 x {0}\Zg x D?); cl.(D*" 2 x {1}\ 1 x D?))
has boundary the closed (2n + 2)-dimensional manifold
= Y = cl.(SP"AL x D))U-Q x S' = (LoUg, J Ug, —L1) Us g1 —Q x St
with canonical infinite cyclic cover X such that
Ho1(X;C) = Hu(Z0)[5t7", Hopa(Y5C) = Ho(QC)[t ¢

Let ¥g1 = ¥g U —X4, and use the inclusion j : Y91 — X to induce a morphism of
(—1)"*Lhermitian forms over C

g (F,BY) = (Hn(X015C), B(Z01;€)) = (Hn(30;C), Bay(£)) & (Hn(%1;C), —=Ba, (€))
= (F,B) = (Ha(%;C), B(%5€)) -

The (—1)"*!-hermitian intersection form over C[t,t~!] (H,1(X), B(X)) is metabolic, with
lagrangian ker(H,,.1(X;C) — H,41(Y;C)). Use the morphism C[t,t71] — C;t ~ £ to
induce a (—1)"*!-hermitian form C ®¢p4-1] (Hn41(X;C), B(X)) = (F, B) over C which is
also metabolic. By Proposition (v)

lo(F', B")| < dim¢ F — dime F' + n(F', B)
which is precisely

o816 (§) = 02, (§)] < b (X) = bn(30) — bn(X1) + 12010 (§) + 11, (€) -
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