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CODIMENSION 2 EMBEDDINGS, ALGEBRAIC SURGERY AND

SEIFERT FORMS

MACIEJ BORODZIK, ANDRÁS NÉMETHI, AND ANDREW RANICKI

Abstract. We study the cobordism of manifolds with boundary, and its applications to
codimension 2 embeddings M

m
⊂ N

m+2, using the method of the algebraic theory of
surgery. The first main result is a splitting theorem for cobordisms of algebraic Poincaré
pairs, which is then applied to describe the behaviour on the chain level of Seifert surfaces
of embeddings M

2n−1
⊂ S

2n+1 under isotopy and cobordism. The second main result is
that the S-equivalence class of a Seifert form is an isotopy invariant of the embedding,
generalizing the Murasugi–Levine result for knots and links. The third main result is a
generalized Murasugi–Kawauchi inequality giving an upper bound on the difference of the
Levine–Tristram signatures of cobordant embeddings.

Introduction

This is one of a trilogy of papers by the authors concerned with Morse theory for manifolds
with boundary [BNR1], Seifert forms and signature invariants of codimension 2 embeddings
Mm ⊂ Nm+2 (in the current paper), and the applications in the case M2n−1 ⊂ S2n+1 to
the mod 2 spectrum of isolated hypersurface singularities [BNR3].

The common feature of these papers is the use of the relative cobordism theory of man-
ifolds with boundary, and in this paper also the relative cobordism theory of symmetric
Poincaré pairs in the algebraic theory of surgery [Ra1, Ra2]. A symmetric Poincaré com-
plex is a chain complex with Poincaré duality; a symmetric Poincaré pair is a chain complex
pair with Poincaré-Lefschetz duality. A closed manifold determines a complex; a manifold
with boundary determines a pair.

In the first instance, the relative cobordism theories appear to be trivial, since every
manifold with boundary is null-cobordant, and similarly for a symmetric Poincaré pair.
Nevertheless, it is possible to extract nontrivial applications!

In our applications of relative cobordism, the manifolds with boundary are the Seifert
surfaces Σm+1 of codimension 2 embeddings Mm ⊂ Sm+2, with ∂Σ = M . We shall be
particularly concerned with the case m = 2n − 1. In order to understand the behaviour of
the Seifert form on Hn(Σ) under relative cobordism it is necessary to extend the homology
methods pioneered by Kervaire [Ke] and Levine [Le1, Le2] for M = S2n−1 ⊂ S2n+1 to chain
complexes.

0.1. Background. Seifert [Sei] proved that every knot M = S1 ⊂ S3 is the boundary
M = ∂Σ of a Seifert surface Σ2 ⊂ S3, using linking numbers of disjoint cycles in S3 to
define the Seifert form (H1(Σ), A(Σ)), and to express the Alexander polynomial as

∆(t) = det(tA(Σ)−A(Σ)∗ : H1(Σ)[t, t
−1] → H1(Σ)

∗[t, t−1]) ∈ Z[t, t−1] .
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Murasugi [Mu] introduced the S-equivalence relation on Seifert forms, proving that the
Seifert forms of a knot are S-equivalent, and that the S-equivalence class is an isotopy
invariant. Kervaire [Ke] initiated the classification theory of m-dimensional knots Sm ⊂
Sm+2 for all m > 1, extending the construction of Seifert surfaces and forms to high-
dimensional knots. For n > 1 Levine [Le1] identified the cobordism group C2n−1 of (2n−1)-
dimensional knots S2n−1 ⊂ S2n+1 with the cobordism group of Seifert forms, and showed
that C2n−1 is determined modulo 2-primary torsion by the signatures

σS2n−1⊂S2n+1(ξ) = signature((1− ξ)A(Σ) + (−1)n+1(1− ξ−1)A(Σ)∗) ∈ Z

for ξ ∈ S1 with ∆(ξ) 6= 0 ∈ C. Furthermore, Levine [Le2] proved that for n > 1 the isotopy
classes of simple (= (n− 1)-connected) knots S2n−1 ⊂ S2n+1 are in one-one correspondence
with the S-equivalence classes of Seifert forms. Tristram [Tr] extended the constructions of
[Le1] to Seifert surfaces and matrices of spherical links

M = S2n−1 ⊔ S2n−1 ⊔ · · · ⊔ S2n−1 ⊂ S2n+1

with signatures σM (ξ) for ξ ∈ S1, which are cobordism invariant for ∆(ξ) 6= 0 ∈ C. The
papers [Le1, Le2, Tr] made essential use of the behaviour of Seifert surfaces and matrices
under cobordisms and isotopies of knots and links.

The algebraic theory of surgery of [Ra1, Ra2, Ra3] deals with the cobordism of symmetric
Poincaré complexes (= chain complexes with abstract Poincaré duality), which has many
features in common with the cobordism theory of manifolds. In this paper we shall consider
isotopy and cobordism invariants of codimension 2 embeddings M2n−1 ⊂ S2n+1 via their
Seifert surfaces. Our results depend on the descriptions of the isotopies and cobordisms
given by the surgery theory of manifolds with boundary, and on the algebraic analogues
for symmetric Poincaré pairs. In fact, much of the methodology of the paper applies to
codimension 2 embeddings Mm ⊂ Nm+2 for arbitrary m, N .

0.2. Outline of the paper. In §1 The cobordism of manifolds we extend the surgery
and handlebody theory for cobordisms of closed manifolds to the half-surgery and half-
handlebody theory of relative cobordisms, i.e. the cobordisms of manifolds with boundary.
(Half-surgeries and half-handlebodies have already appeared in [BNR1], in the context of
Morse theory for manifolds with boundary). Also, we introduce the notion of split relative
cobordisms, which are the unions of left and right product cobordisms: the homological
properties of split cobordisms are the key to our algebraic descriptions of isotopies and
cobordisms of codimension 2 embeddings. The main result of §1 is Theorem 1.3.4, which
gives a complete description of the relationships between the homology groups of a relative
cobordism with a half-handle decomposition.

In §2 Forms and their enlargements we study the algebraic properties of (−1)n-symmetric
forms (F,B), with F a f.g. free abelian group and B a (−1)n-symmetric bilinear pairing

B : F × F → Z ; (x, y) 7→ B(x, y) = (−1)nB(y, x) ,

which can also be a viewed as a self-(−1)n-dual morphism of abelian groups

B = (−1)nB∗ : F → F ∗ = HomZ(F,Z) ; x 7→ (y 7→ B(x, y)) .

We introduce the notion of a rank ℓ enlargement of a (−1)n-symmetric form (F,B) over Z
as a form of the type

(F ′, B′) = (F ⊕ L,

(
B C

(−1)nC∗ D

)

) ,

with (L,D) a (−1)n-symmetric form, dimZ L = ℓ and C ∈ HomZ(L,F
∗). Call (F,B) a rank

ℓ reduction of (F ′, B′). Every form (F,B) is a rank dimZ F enlargement of (0, 0), but the
notion is useful all the same.
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A 1-symmetric form (F,B) has a signature σ(F,B) ∈ Z and a nullity n(F,B) > 0.
The main result of §2 is :

Theorem 2.2.7. If n is even and (F ′, B′) is a rank ℓ enlargement of (F,B) the signatures
and nullities are related by the inequality

|σ(F ′, B′)− σ(F,B)|+ |n(F ′, B′)− n(F,B)| 6 ℓ .

For a rank 1 enlargement there is an equality

|σ(F ′, B′)− σ(F,B)| + |n(F ′, B′)− n(F,B)| = 1 .

In §3 The intersection form of a manifold with boundary we consider the (−1)n-symmetric
intersection form (Fn(Σ), B(Σ)) of a 2n-dimensional manifold with boundary (Σ,M), with
Fn(Σ) = Hn(Σ)/torsion a f.g. free abelian group. The effect on the intersection form of
a surgery on the interior Σ\M is a rank ℓ enlargement or reduction with ℓ ∈ {0, 2}, so
dimZ Fn(Σ) changes by one of {−2, 0, 2}. The effect on the intersection form of a half-
surgery on (Σ,M) is a rank ℓ enlargement or reduction with ℓ ∈ {0, 1}, so dimZ Fn(Σ)
changes by one of {−1, 0, 1}.

The main result of §3 is :
Theorem 3.4.2. A half-handle decomposition for a (2n + 1)-dimensional relative cobor-
dism (Ω;Σ0,Σ1,W ;M0,M1) determines a sequence of enlargements and reductions taking
(Fn(Σ0), B(Σ0)) to (Fn(Σ1), B(Σ1)).

In §4 The cobordism of symmetric Poincaré complexes we develop the algebraic theory
of surgery of [Ra1, Ra2, Ra3] further, to include algebraic versions of splitting and half
handle decompositions for relative cobordisms of symmetric Poincaré pairs. Again, a relative
cobordism is split if it is a union of a left and a right product cobordism. A splitting (resp.
half-handle decomposition) of a relative cobordism of manifolds with boundary determines
on the chain level an algebraic splitting (resp. half-handle decomposition) of a relative
symmetric Poincaré cobordism.

The main result of §4, and indeed the first main result of the paper, is the Algebraic
Poincaré Splitting Theorem :

Main Theorem 1. (4.5.6) Every relative symmetric Poincaré cobordism is algebraically
split.

This theorem is an algebraic converse to a standard construction in cobordism theory:
the union of three manifolds at a common boundary component is a stratified set, with a
thickening which is a manifold with boundary.

As a consequence of Main Theorem 1, every relative cobordism of manifolds with bound-
ary has at least an algebraic half-handle decomposition. In [BNR1] such an algebraic half-
handle decomposition is realized geometrically as a half-handle decomposition of a relative
cobordism, under the hypothesis that all the manifolds involved are non-empty and con-
nected, but we only need an algebraic half-handle decomposition here.

In §5 Codimension q embeddings, especially for q = 2 we consider the general properties
of codimension q embeddings Mm ⊂ Nm+q and the particular properties in the case q = 2.
A Seifert surface for Mm ⊂ Nm+2 is a codimension 1 embedding Σm+1 ⊂ N such that
∂Σ =M .

The main result of §5 is :
Theorem 5.4.8. A codimension 2 embedding Mm ⊂ Nm+2 admits a Seifert surface if and
only if [M ] = 0 ∈ Hm(N), if and only if it is framed (i.e. the normal 2-plane bundle νM⊂N

is trivial).
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§6 Codimension 2 embeddings Mm ⊂ Sm+2 is the core of the paper. We extend to such
embeddings the standard notions associated to high-dimensional knots and links, concen-
trating on the odd dimensions m = 2n − 1. In many cases the extensions are already in
the literature. The notions include cobordism, H-cobordism, Seifert surface Σ, Seifert form
(Fn(Σ), A(Σ)) with B(Σ) = A(Σ) + (−1)nA(Σ)∗, variation map, Blanchfield pairing etc.
In particular, we introduce the notion of enlargement and reduction of a Seifert form, by
analogy with the enlargement and reductions of forms, as well as the S-equivalence and
H-equivalence of Seifert forms (Definition 6.2.1).

Main Theorem 2. (6.2.6) LetM2n−1 ⊂ S2n+1 be a codimension 2 embedding with a Seifert
surface Σ, and Seifert form (Fn(Σ), A(Σ)). Then the S-equivalence class of (Fn(Σ), A(Σ))
depends only on the isotopy class of the embedding. Furthermore, if M0,M1 ⊂ S2n+1 are H-
cobordant codimension 2 embeddings, then the corresponding Seifert forms are H-equivalent.

The Main Theorem 2 has a deep consequence: all the classical knot and link invariants
that can be derived from the Seifert forms (Fn(Σ), A(Σ)) also give rise to invariants of
arbitrary framed codimension 2 embeddings M2n−1 ⊂ S2n+1.

The Alexander polynomial ofM2n−1 ⊂ S2n+1 with respect to a Seifert surface Σ is defined
by

∆M,Σ(t) = det(tA(Σ) + (−1)nA(Σ)∗ : Fn(Σ)[t, t
−1] → Fn(Σ)

∗[t, t−1]) ∈ Z[t, t−1] .

The Main Theorem 2 implies that this definition does not depend on the choice of a Seifert
surface Σ, so ∆M,Σ(t) can be denoted ∆M (t).

For ξ ∈ S1 the nullity of M2n−1 ⊂ S2n+1 with respect to a Seifert surface Σ is defined by

nM,Σ(ξ) = nullity(ξA(Σ) + (−1)nA(Σ)∗ : Hn(Σ;C) → Hn(Σ;C)
∗) > 0 ,

and the Levine–Tristram signature is defined by

σM,Σ(ξ) = signature(Hn(Σ;C), (1 − ξ)A(Σ) + (−1)n+1(1− ξ)A(Σ)∗) ∈ Z

with Hn(Σ;C) = C ⊗Z Fn(Σ). Corollary 6.4.10 (i) to the Main Theorem 2 states that
nM,Σ(ξ) and σM,Σ(ξ) are invariants of the isotopy class of M ⊂ S2n+1, and so may be
denoted nM (ξ), σM (ξ). Corollary 6.4.10 (ii) shows that nΣ(ξ), σM (ξ) are invariants of the
H-equivalence class of (Fn(Σ), A(Σ)) for ξ ∈ S1 such that ∆M (ξ) 6= 0, and hence invariants
of the H-cobordism class (in the case n = 1 this is the concordance class) of M ⊂ S2n+1.

We obtain in §6 a generalization of the inequality of Murasugi [Mu] and Kawauchi
[Ka] for the signatures of cobordant links

⋃
S1 ⊂ S3 to the Levine–Tristram signatures

σM (ξ), σM ′(ξ) of cobordant codimension 2 embeddings M,M ′ ⊂ S2n+1 in all dimensions :

Main Theorem 3 (6.5.1) Let (W 2n;M0,M1) ⊂ S2n+1 × (I; {0}, {1}) be a cobordism of
codimension 2 embeddings M0,M1 ⊂ S2n+1. Given Seifert surfaces Σ0,Σ1 for M0,M1

define the closed 2n-dimensional manifold

Σ2n = Σ0 ∪M0
W ∪M1

−Σ1 ⊂ S2n+1 × I .

For any ξ 6= 1 ∈ S1

|σM0
(ξ)− σM1

(ξ)| 6 bn(Σ)− bn(Σ0)− bn(Σ1) + nM0
(ξ) + nM1

(ξ) ,

where bn(X) denotes the n-th Betti number of a topological space X.

In fact, a proof of the Main Theorem 3 is also available in [BNR3], using a slightly
different method. It should be noted that it is neither assumed that (W ;M0,M1) is an
H-cobordism, nor that ∆M0

(ξ),∆M1
(ξ) 6= 0. The inequality plays a key role in [BNR3],

where it is used to obtain a topological proof of the semicontinuity of the mod 2 spectrum
of isolated hypersurface singularities.
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The literature devoted to codimension 2 embedding theory is vast, both in the classical
case m = 1 and in the higher dimensions m > 2. The survey of Kervaire and Weber [KW]
and the book of Ranicki [Ra3] have many references on high-dimensional knots. The work
of Cappell and Shaneson [CS], Blanloeil and Michel [BM], Blanloeil and Saeki [BS] on high-
dimensional links is only a sample. But to date ours is the most general in dealing with the
homological properties of cobordisms of manifolds with boundary, both intrinsically and in
codimension 2.

1. The cobordism of manifolds

We shall be working with oriented smooth manifolds, denoting by −M the manifold M
with the opposite orientation.

1.1. Absolute and relative cobordisms.

Definition 1.1.1. (i) An (m + 1)-dimensional (absolute) cobordism (W ;M0,M1) consists
of closed m-dimensional manifolds M0,M1 and an (m + 1)-dimensional manifold W with
boundary

∂W = M0 ⊔ −M1 .

(ii) An (m+2)-dimensional (relative) cobordism (Ω;Σ0,Σ1,W ;M0,M1) consists of (m+1)-
dimensional manifolds with boundary (Σ0,M0), (Σ1,M1), an absolute cobordism (W ;M0,M1),
and an (m+ 2)-dimensional manifold Ω with boundary

∂Ω = Σ0 ∪M0
W ∪M1

−Σ1 .

Σ0 Σ1Ω

M0 M1W

(iii) A relative cobordism (Ω;Σ0,Σ1,W ;M0,M1) is a boundary product if

(W ;M0,M1) = M0 × (I; {0}, {1}) .

Σ0 Σ1Ω

M0 M0 =M1M0 × I

(iv) A relative cobordism (Ω;Σ0,Σ1,W ;M0,M1) is a right product if

(Ω;Σ0,Σ1,W ;M0,M1)

= (Σ1 × I; Σ0 × {0}, (Σ0 ∪M0
W )× {1},W × {0} ∪M1 × I;M0 × {0},M1 × {1})

with Σ1 = Σ0 ∪M0
W .
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Σ0 × {0} Σ1 × {1}Ω = Σ1 × I

M0 × {0} M1 × {1}W × {0} ∪M1 × I

(v) A relative cobordism (Ω;Σ0,Σ1,W ;M0,M1) is a left product if it is the reverse of a right
product

(Ω;Σ0,Σ1,W ;M0,M1)

= (Σ0 × I; (W ∪M1
Σ1)× {0},Σ1 × {1},M0 × I ∪W × {1};M0 × {0},M1 × {1})

with Σ0 =W ∪M1
Σ1.

Σ0 × {0} Σ1 × {1}Ω = Σ0 × I

M0 × {0} M1 × {1}M0 × I ∪W

The trace of an interior surgery on a manifold with boundary is a boundary is a boundary
product relative cobordism. We now develop the notions of half-surgeries on manifolds
with boundary, and their trace relative products. We refer to [BNR1] for the Morse theory
approach to half-surgeries and half-handles.

Definition 1.1.2. (i) Given an m-dimensional manifold with boundary (M0, ∂M0) and an
embedding

⋃

ℓ

Sr ×Dm−r ⊂M0\∂M0

for some ℓ > 1 define the m-dimensional manifold with boundary obtained by ℓ index r+1
surgeries

(M1, ∂M1) = (cl.(M0\
⋃

ℓ

Sr ×Dm−r) ∪
⋃

ℓ

Dr+1 × Sm−r−1, ∂M0) .

Call M1 the effect of the surgeries on M0. Note that M0 is the effect of the ℓ index m− r
surgeries on M1 by

⋃

ℓ

Dr+1 × Sm−r−1 ⊂M1\∂M1.

(ii) Given an (m+ 1)-dimensional manifold with boundary (Σ0,M0) and an embedding
⋃

ℓ

Sr ×Dm−r ⊂M0

define the (m + 1)-dimensional manifold with boundary obtained by ℓ index r + 1 right
half-surgeries

(Σ1,M1) = (Σ0∪⋃
ℓ

Sr×Dm−r

⋃

ℓ

Dr+1×Dm−r, cl.(M0\
⋃

ℓ

Sr×Dm−r)∪
⋃

ℓ

Dr+1×Sm−r−1) .

Note that M1 is the effect of the ℓ index r + 1 surgeries on
⋃

ℓ

Sr ×Dm−r ⊂M0.

(iii) The trace of the ℓ surgeries in (i) is the boundary product cobordism

(W ;M0,M1, ∂M0 × I; ∂M0 × {0}, ∂M0 × {1})
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obtained by attaching ℓ index (r + 1) handles to M0 × I at
⋃

ℓ

Sr ×Dm−r ⊂M0 × {1} with

W =M0 × I ∪
⋃

ℓ

Dr+1 ×Dm−r.

(iv) The trace of the right half-surgeries in (ii) is the right product cobordism of index r+1,
with

(Σ1 × I; Σ0 × {0},Σ1 × {1},W ;M0,M1)

with W = M0 × I ∪
⋃

ℓ

Dr+1 × Dm−r the trace (in the sense of (iii)) of the ℓ index r + 1

surgeries on
⋃

ℓ

Sr ×Dm−r ⊂M0.

Σ0 × {0} Σ1 × {1}Σ1 × I

M0 × {0} M1 × {1}W

(v) Given an (m+ 1)-dimensional manifold with boundary (Σ0,M0) and an embedding

(
⋃

ℓ

Dr+1 ×Dm−r,
⋃

ℓ

Sr ×Dm−r) ⊂ (Σ0,M0)

define the (m + 1)-dimensional manifold with boundary obtained by ℓ index r + 1 left
half-surgeries

(Σ1,M1) = (cl.(Σ0\
⋃

ℓ

Dr+1 ×Dm−r), cl.(M0\
⋃

ℓ

Sr ×Dm−r) ∪
⋃

ℓ

Dr+1 × Sm−r−1) .

In particular, M1 is the effect of the ℓ index r + 1 surgeries on M0 by
⋃

ℓ

Sr ×Dm−r ⊂M0.

The trace of the left half-surgeries is the left product cobordism of

(Σ0 × I; Σ0 × {0},Σ1 × {1},W ;M0,M1)

with W = M0 × I ∪
⋃

ℓ

Dr+1 × Dm−r the trace (in the sense of (iii)) of the ℓ index r + 1

surgeries on
⋃

ℓ

Sr ×Dm−r ⊂M0. Note that (Σ0,M0) is obtained from (Σ1,M1) by ℓ index

m− r right half-surgeries.

Remark 1.1.3. In terms of homotopy theory, if (Σ1,M1) is the (m+1)-dimensional man-
ifold with boundary obtained by an index r + 1 left half-surgery then Σ1 is obtained from
Σ0 by detaching an (m− r)-cell, and M1 is obtained from M0 by attaching an (r + 1)-cell
and detaching an (m− r)-cell, so that the Euler characteristics are related by

χ(Σ1) = χ(Σ0)− (−1)m−r , χ(M1) = χ(M0) + (−1)r+1 − (−1)m−r .

Example 1.1.4. Here are the two key examples of the effects of surgeries and half-surgeries
on the intersection form, which both start with a closed 2n-dimensional manifold Σ. Define
the 2n-dimensional manifold with boundary

(Σ0,M0) = (cl.(Σ\D2n), S2n−1)

with intersection form
(Fn(Σ0), B(Σ0)) = (Fn(Σ), B(Σ)) .

(i) Surgery on a trivial embedding Sn−1 ×Dn+1 ⊂ D2n ⊂ Σ results in the connected sum
of Σ and Sn × Sn

Σ′ = cl.(Σ\Sn−1 ×Dn+1) ∪Dn × Sn = Σ0 ∪S2n−1 (Sn × Sn)0 = Σ#Sn × Sn .
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The intersection form of Σ′ is the rank 2 enlargement of the intersection form of Σ

(Fn(Σ
′), B(Σ′)) = (Fn(Σ)⊕ Z⊕ Z,





B(Σ) 0 0
0 0 1
0 (−1)n 0



)

= (Fn(Σ), B(Σ)) ⊕ (Z ⊕ Z,

(
0 1

(−1)n 0

)

)

given by adding the hyperbolic form

(Fn(S
n × Sn), B(Sn × Sn)) = (Z⊕ Z,

(
0 1

(−1)n 0

)

) .

(ii) The effect of an index n left half-surgery on

(Dn ×Dn, Sn−1 ×Dn) ⊂ (D2n, S2n−1) ⊂ (Σ0,M0)

is the 2n-dimensional manifold with boundary

(Σ1/2,M1/2) = (Σ#Sn ×Dn,M#Sn × Sn−1)

with intersection form a rank 1 enlargement of the intersection form of (Σ,M)

(Fn(Σ1/2), B(Σ1/2)) = (Fn(Σ)⊕ Z,

(
B(Σ) 0
0 0

)

) .

The effect of an index n+1 right half-surgery on (Σ1/2,M1/2) by S
n ×Dn−1 ⊂M1/2 is the

2n-dimensional manifold with boundary

(Σ1,M1) = (cl.(Σ′\D2n), S2n−1)

(Σ′ as in (i)) with intersection form a rank 1 enlargement of the intersection form of
(Σ1/2,M1/2) and a rank 2 enlargement of the intersection form of (Σ0,M0)

(Fn(Σ1), B(Σ1)) = (Fn(Σ1/2)⊕ Z,




B(Σ1/2)

(
0
1

)

(
0 (−1)n

)
0



)

= (Fn(Σ)⊕ Z⊕ Z,





B(Σ) 0 0
0 0 1
0 (−1)n 0



) = (Fn(Σ
′), B(Σ′)) .

The traces (W−;M0,M1/2) , (W
+;M1/2,M1) are attachments of a cancelling pair of handles,

with
intersection({0} × Sn−1, Sn × {0} ⊂M1/2) = 1 ,

(W−;M0,M1/2) ∪ (W+;M1/2,M1) = M0 × (I; {0}, {1}) .

The Witt group stabilization in (i) is matched up to the cancellation of handles in (ii).

Proposition 1.1.5. Let (Σ0,M0) be an (m+ 1)-dimensional manifold with boundary.
(i) If (Ω;Σ0,Σ1,M0 × I;M0 × {0},M0 × {1}) is the trace boundary product cobordism of ℓ
index r + 1 surgeries on

⋃

ℓ

Sr ×Dm−r+1 ⊂ Σ0\M0 there are homotopy equivalences

Ω = Σ0 × I ∪
⋃

ℓ

Dr+1 ×Dm−r+1 ≃ Σ0 ∪
⋃

ℓ

Dr+1 ≃ Σ1 ∪
⋃

ℓ

Dm−r+1 ,

so that

Hq(Ω,Σ0) =

{

Zℓ if q = r + 1

0 otherwise
, Hq(Ω,Σ1) =

{

Zℓ if q = m− r + 1

0 otherwise
.
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(ii) If

(Ω;Σ0,Σ1,W ;M0,M1) =

(Σ1 × I; Σ0 × {0},Σ1 × {1},W × {0} ∪M1×{0} M1 × I;M0 × {0},M1 × {1})

is the trace right product relative cobordism of ℓ index r + 1 right half-surgeries on
⋃

ℓ

Sr ×

Dm−r ⊂M0 with

(Σ1,M1) = (Σ0 ∪M0
W,M1)

= (Σ0 ∪⋃
ℓ
Sr×Dm−r

⋃

ℓ

Dr+1 ×Dm−r, cl.(M0\
⋃

ℓ

Sr ×Dm−r)
⋃

ℓ

Dr+1 × Sm−r−1)

there are defined homotopy equivalences

Ω = Σ1 × I ≃ Σ1 = Σ0 ∪⋃
ℓ

Sr×Dm−r

⋃

ℓ

Dr+1 ×Dm−r ≃ Σ0 ∪
⋃

ℓ

Dr+1 ,

W ≃ M0 ∪
⋃

ℓ

Dr+1 ≃ M1 ∪
⋃

ℓ

Dm−r

so that

Hq(Σ1 × I,Σ0 × {0}) = Hq(W,M0) =

{

Zℓ if q = r + 1

0 otherwise ,

Hq(W,M1) =

{

Zℓ if q = m− r

0 otherwise .

(iii) If

(Ω;Σ0,Σ1,W ;M0,M1) =

(Σ0 × I; Σ0 × {0},Σ1 × {1},W × {0} ∪M1×{0} M1 × I;M0 × {0},M1 × {1})

is the trace left product relative cobordism of ℓ index r + 1 left half-surgeries on

(
⋃

ℓ

Dr+1 ×Dm−r,
⋃

ℓ

Sr ×Dm−r) ⊂ (Σ0,M0)

with

(Σ1,M1) = (cl.(Σ0\
⋃

ℓ

Dr+1 ×Dm−r), cl.(M0\
⋃

ℓ

Sr ×Dm−r) ∪
⋃

ℓ

Dr+1 × Sm−r−1)

there are defined homotopy equivalences

Ω = Σ0 × I ≃ Σ0 = Σ1 ∪⋃
ℓ
Dr+1×Sm−r−1

⋃

ℓ

Dr+1 ×Dm−r ≃ Σ1 ∪
⋃

ℓ

Dm−r ,

W ≃ M0 ∪
⋃

ℓ

Dr+1 ≃ M1 ∪
⋃

ℓ

Dm−r

so that

Hq(Σ0 × I,Σ1 × {0}) = Hq(W,M1) =

{

Zℓ if q = m− r

0 otherwise ,

Hq(W,M0) =

{

Zℓ if q = r + 1

0 otherwise.
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1.2. Handle and half-handle decompositions. Let us recall the standard theory of
handle decompositions of absolute cobordisms:

Proposition 1.2.1. (Thom, Milnor) Every absolute cobordism (Ω;Σ,Σ′) has a handlebody
decomposition, i.e. is the union of traces of surgeries.

Proof. By the standard translation between Morse functions and handlebody decomposi-
tions. �

Similarly for boundary and right product relative cobordisms :

Proposition 1.2.2. (i) Every boundary product relative cobordism has a handlebody de-
composition, i.e. is the union of traces of interior surgeries.
(ii) Every right product relative cobordism has a right half-handlebody decomposition, i.e. is
the union of traces of right half-surgeries. Likewise, a left product relative cobordism has a
left half-handlebody decomposition.

Proof. (i) Work as in the proof of Proposition 1.2.1. An (m + 2)-dimensional boundary
product relative cobordism (Ω;Σ,Σ′,M × I;M × {0},M × {1}) admits a Morse function
U : Ω → I such that

U−1(0) = Σ , U−1(1) = Σ′ , U | = projection : M0 × I → I .

Let 0 = c−1 < c0 < · · · < cm+1 < cm+2 = 1 be defined by

cr =
r + 1

m+ 3
(−1 6 r 6 m+ 2) .

The Morse function can be arranged for there to be ℓr+1 critical values of index r + 1 in
(cr, cr+1) ⊂ (0, 1) for r = −1, 0, . . . ,m+2, so that the boundary product relative cobordism

(Ωr; Σr,Σr+1) = U−1([r, r + 1]; {cr}, {cr+1})

is the trace of ℓr+1 index r + 1 surgeries on
⋃

ℓr+1

Sr ×Dm−r+1 ⊂ Σr\∂Σr ,

with

(Ω;Σ,Σ′) =

m+2⋃

r=−1

(Ωr; Σr,Σr+1) .

(ii) By definition, the right product relative cobordism (Ω;Σ0 × {0},Σ1 × {1},W ;M0,M1)
has

Ω = Σ1 × I , Σ1 = Σ0 ∪M0
W .

A decomposition of the absolute cobordism (W ;M0,M1) as a union of adjoining absolute
cobordisms

(W ;M0,M1) = (W0;M0,M1/2) ∪ (W1;M1/2,M1)

extends to a decomposition of (Ω;Σ0×{0},Σ1×{1},W ;M0,M1) as a union of right product
cobordisms

(Ω;Σ0 × {0},Σ1 × {1},W ;M0,M1)

= (Ω0; Σ0 × {0},Σ1/2 × {1},W0;M0,M1/2) ∪ (Ω1; Σ1/2 × {0},Σ1 × {1},W1;M1/2,M1)

with
Σ1/2 = Σ0 ∪M0

W0 , Ω0 = Σ1/2 × I , Ω1 = Σ1 × I .

Now apply Proposition 1.2.1 to (W ;M0,M1): each index r + 1 handle in (W ;M0,M1)
determines an index r + 1 right half-handle in of (Ω;Σ0 × {0},Σ1 × {1},W ;M0,M1).

Similarly for a left product relative cobordism. �
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The situation is more complicated for relative cobordisms (Ω;Σ0,Σ1,W ;M0,M1) which
are not boundary products. Of course it is possible to treat the interior and the boundary
separately: it is not hard to show that every relative cobordism is a union of a right product
and a boundary product, i.e. the union of traces of surgeries on the boundary and interior.
But for the applications to the cobordism of Seifert surfaces of codimension 2 embeddings
we need a closer connection between the interior and boundary surgeries.

1.3. Split relative cobordisms.

Definition 1.3.1. An (m+ 2)-dimensional relative cobordism Γ = (Ω;Σ0,Σ1,W ;M0,M1)
is split if it is expressed as a union Γ = Γ− ∪ Γ+ of a left and a right product

Γ− = (Ω−; Σ0,Σ1/2,W
−;M0,M1/2) , Γ

+ = (Ω+; Σ1/2,Σ1,W
+;M1/2,M1) ,

with embeddings

(W−,M0) ⊂ (Σ0,M0) , (W
+,M1) ⊂ (Σ1,M1)

and

Ω− = Σ0 × I , Ω+ = Σ1 × I ,

Σ0 = Σ1/2 ∪M1/2
W− , Σ1 = Σ1/2 ∪M1/2

W+ , Σ1/2 = cl.(Σ0\W
−) = cl.(Σ1\W

+) .

Σ1/2Ω− = Σ0 × I Ω+ = Σ1 × I

M0 M1/2W− W+ M1

W
︸ ︷︷ ︸

︷ ︸︸ ︷

Ω

Σ1/2

W−

M1/2







Σ0

Σ1/2

W+

M1/2 Σ1











Remark 1.3.2. A split (m + 2)-dimensional relative cobordism Γ = Γ− ∪ Γ+ has three
ingredients:

(i) An (m+ 1)-dimensional manifold with boundary (Σ1/2,M1/2),

(ii) An (m+ 1)-dimensional cobordism (W−;M0,M1/2),

(iii) An (m+ 1)-dimensional cobordism (W+;M1/2,M1).

The inclusion

W ∪M1/2
Σ1/2 = W− ∪ Σ1/2 ∪W

+ ⊂ Ω

is a homotopy equivalence, with isomorphisms

H∗(Σ1/2) = H∗+1(Ω,Σ0 ⊔Σ1) , H∗(Σ1/2,M1/2) ∼= H∗(W ∪M1/2
Σ1/2,W ) ∼= H∗(Ω,W ) .

Definition 1.3.3. (i) A split (m+ 2)-dimensional relative cobordism

(Ω;Σ0,Σ1,W ;M0,M1) = (Ω−; Σ0,Σ1/2,W
−;M0,M1/2) ∪ (Ω+; Σ1/2,Σ1,W

+;M1/2,M1)

is elementary of index r+1 (with −1 6 r 6 m+1) and of rank (ℓ−r , ℓ
+
r+1) if (Ω

−; Σ0,Σ1/2,W
−;

M0,M1/2) is the left product obtained as in Definition 1.1.2 (v) from (Σ0,M0) by ℓ−r left
half-surgeries

(
⋃

ℓ−r

Dr ×Dm−r+1,
⋃

ℓ−r

Sr−1 ×Dm−r+1) ⊂ (Σ0,M0)
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and (Ω+; Σ1/2,Σ1,W
+;M1/2,M1) is the trace right product obtained from (Σ1/2,M1/2) by

ℓ+r+1 right half-surgeries
⋃

ℓ+r+1

Sr ×Dm−r ⊂M1/2 (1.1.2 (iii))

W− = M0 × I ∪⋃

ℓ−r

Sr−1×Dm−r+1

⋃

ℓ−r

Dr ×Dm−r+1 ,

W+ = M1/2 × I ∪ ⋃

ℓ+r+1

Sr×Dm−r

⋃

ℓ+r+1

Dr+1 ×Dm−r .

the traces of the surgeries on
⋃

ℓ−r

Sr−1 ×Dm−r+1 ⊂M0 and
⋃

ℓ+r+1

Sr ×Dm−r ⊂M1/2, and

Σ0 = W− ∪M1/2
Σ1/2 , Σ1 = Σ1/2 ∪M1/2

W+ ,

Ω− = Σ0 × I = (Σ0 ∪M0
W−)× I ∪⋃

ℓ−r

Sr×Dm−r+1

⋃

ℓ−r

Dr+1 ×Dm−r+1 ,

Ω+ = Σ1 × I = Σ1/2 × I ∪ ⋃

ℓ+r+1

Sr+1×Dm−r

⋃

ℓ+r+1

Dr+2 ×Dm−r .

In the case r = −1 it is understood that ℓ−−1 = 0, and in the case r = m+1 it is understood

that ℓ+m+2 = 0. Note that

(Ω;Σ1,Σ0,W ;M1,M0) = (Ω+; Σ1,Σ1/2,W
−;M1,M1/2) ∪ (Ω−; Σ1/2,Σ0,W

+;M1/2,M0)

is an elementary splitting of index m − r, with (Σ1/2,M1/2) is obtained from (Σ1,M1) by

ℓ+r+1 left half-surgeries

(
⋃

ℓ+r+1

Dr+1 ×Dm−r,
⋃

ℓ+r+1

Dr+1 × Sm−r−1) ⊂ (Σ1,M1) ,

and (Σ0,M0) is obtained from (Σ1/2,M1/2) by ℓ
−
r right half-surgeries

⋃

ℓ−r

Dr×Sm−r ⊂M1/2.

(ii) A half-handle decomposition of an (m+2)-dimensional relative cobordism (Ω;Σ,Σ′,W ;
M,M ′) is an expression as a union of relative cobordisms

(Ω;Σ,Σ′,W ;M,M ′) =
m+1⋃

r=−1

(Ωr; Σr,Σr+1,Wr;Mr,Mr+1)

with each

(Ωr; Σr,Σr+1,Wr;Mr,Mr+1)

= (Ω−
r ; Σr,Σr+1/2,W

−
r ;Mr,Mr+1/2) ∪ (Ω+

r ; Σr+1/2,Σr+1,W
+
r ;Mr+1/2,Mr+1)

an elementary splitting of index r + 1.

Σr Σr+1/2Ω−
r = Σr × I Ω+

r = Σr+1 × I Σr+1

Mr Mr+1/2W−
r W+

r Mr+1

Wr
︸ ︷︷ ︸

︷ ︸︸ ︷

Ωr
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Theorem 1.3.4. (i) Let

(Ωr; Σr,Σr+1,Wr;Mr,Mr+1)

= (Ω−
r ; Σr,Σr+1/2,W

−
r ;Mr,Mr+1/2) ∪ (Ω+

r ; Σr+1/2,Σr+1,W
+
r ;Mr+1/2,Mr+1)

be an index r + 1 rank (ℓ−r , ℓ
+
r+1) elementary splitting of an (m + 2)-dimensional relative

cobordism. The homology and cohomology groups are such that

Hq(W
−
r ,Mr) = Hm+1−q(W−

r ,Mr+1/2) = Hq+1(Ω
−
r ,Σr ∪Mr W

−
r )

= Hm+1−q(Ω−
r ,Σr+1/2) = Hm+1−q(Ωr,Σr+1) =

{

Zℓ−r if q = r

0 if q 6= r ,

Hq(W
+
r ,Mr+1/2) = Hm+1−q(W+

r ,Mr+1) = Hm+2−q(Ω+
r ,W

+
r ∪Mr+1

Σr+1)

= Hq(Ω
+
r ,Σr+1/2) = Hq(Ωr,Σr) =

{

Zℓ+r+1 if q = r + 1

0 if q 6= r + 1 .

The homology groups of Σr,Σr+1/2,Σr+1,Ωr fit into a commutative braid of exact sequences

Hq+1(Σr,Σr+1/2)

''❖❖
❖❖

❖❖
❖❖

❖❖
❖

''
Hq(Σr+1)

!!❉
❉❉

❉❉
❉❉

❉

%%
Hq(Σr+1,Σr+1/2)

Hq(Σr+1/2)

::✈✈✈✈✈✈✈✈✈

$$❍
❍❍

❍❍
❍❍

❍❍
Hq(Ωr)

99ssssssssss

%%❑❑
❑❑

❑❑
❑❑

❑❑

Hq+1(Σr+1,Σr+1/2)

77♦♦♦♦♦♦♦♦♦♦♦

77
Hq(Σr)

==③③③③③③③③

99
Hq(Σr,Σr+1/2)

with

Hq(Σr,Σr+1/2) = Hq(Ω
−
r ,Σr+1/2) =

{

Zℓ−r if q = m− r + 1

0 if q 6= m− r + 1 ,

Hq(Σr+1,Σr+1/2) = Hq(Ω
+
r ,Σr+1/2) =

{

Zℓ+r+1 if q = r + 1

0 if q 6= r + 1 .

The ℓ−r × ℓ+r+1 matrix of the boundary map

d : Hr+1(Wr,W
−
r ) = Hr+1(W

+
r ,Mr+1/2) = Zℓ+r+1 → Hr(W

−
r ,Mr) = Zℓ−r

has entries the homological intersection numbers of the cores

(
⋃

ℓ−r

{0} × Sm−r) ∩ (
⋃

ℓ+r+1

Sr × {0}) ⊂Mr+1/2 .

It follows from the exact sequence

· · · → Hq+1(Wr,Mr) → Hq+1(Wr,W
−
r )

d // Hq(W
−
r ,Mr) → Hq(Wr,Mr) → . . .

that

Hq(Wr,Mr) =







ker(d : Zℓ+r+1 → Zℓ−r ) if q = r + 1

coker(d : Zℓ+r+1 → Zℓ−r ) if q = r

0 otherwise .
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In particular, (Wr;Mr,Mr+1) is an H-cobordism if and only if d is an isomorphism.
(ii) Let

(Ω;Σ,Σ′,W ;M,M ′) =
m+1⋃

r=0
(Ωr; Σr,Σr+1,Wr;Mr,Mr+1)

=
m+1⋃

r=0
(Ω−

r ; Σr,Σr+1/2,W
−
r ;Mr,Mr+1/2) ∪ (Ω+

r ; Σr+1/2,Σr+1,W
+
r ;Mr+1/2,Mr+1)

be an (m+ 2)-dimensional relative cobordism with a half-handle decomposition. Define the
(m+ 2)-dimensional relative cobordisms

(Ωr+1/2; Σr+1/2,Σr+3/2,Wr+1/2;Mr+1/2,Mr+3/2)

= (Ω+
r ; Σr+1/2,Σr+1,W

+
r ;Mr+1/2,Mr+1) ∪ (Ω−

r+1; Σr+1,Σr+3/2,W
−
r+1;Mr+1,Mr+3/2) .

Σr Σr+1/2Ω−
r = Σr × I Ω+

r = Σr+1 × I Ω−
r+1 = Σr+1 × IΣr+1 Σr+3/2

Mr Mr+1/2W−
r W+

r Mr+1 W−
r+1

Mr+3/2

Wr
︸ ︷︷ ︸

︷ ︸︸ ︷

Ωr

Wr+1/2
︸ ︷︷ ︸

︷ ︸︸ ︷

Ωr+1/2

We use the handle decompositions to define three chain complexes C, C+, C− such that

H∗(C) = H∗(W,M) , H∗(C
+) = H∗(Ω,Σ) , H∗(C

−) = H∗+1(Ω,Σ ∪M W ) .

The connecting maps of the triples

(Wr−3/2 ∪Wr−1/2 ∪Wr+1/2 , Wr−3/2 ∪Wr−1/2 , Wr−3/2)

are the differentials

∂ : Cr = Hr(Wr+1/2,Mr+1/2)

= Hr(Wr−3/2 ∪Wr−1/2 ∪Wr+1/2,Wr−3/2 ∪Wr−1/2) = Zℓ+r +ℓ−r+1

→ Cr−1 = Hr−1(Wr−1/2,Mr−1/2) = Hr−1(Wr−3/2 ∪Wr−1/2,Wr−3/2) = Zℓ+r−1
+ℓ−r

of the cellular chain complex (C, ∂) = C(W,M) of the absolute handlebody decomposition

(W ;M,M ′) =
m+1⋃

r=−1

(Wr+1/2;Mr+1/2,Mr+3/2)

as in [Ra4, 2.22]. The connecting maps of the triples

(Ωr−3/2 ∪ Ωr−1/2 ∪ Ωr+1/2 , Ωr−3/2 ∪Ωr−1/2 , Ωr−3/2)
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are the differentials

d+ : C+
r = Hr(W

+
r ,Mr+1/2)

= Hr(Ωr−3/2 ∪ Ωr−1/2 ∪ Ωr+1/2,Ωr−3/2 ∪ Ωr−1/2) = Zℓ+r

→ C+
r−1 = Hr−1(W

+
r−1,Mr−1/2) = Hr−1(Ωr−3/2 ∪ Ωr−1/2,Ωr−3/2) = Zℓ+r−1

of the cellular chain complex (C+, d+) = C(Ω,Σ). The connecting maps of the triples

(Ωr−3/2 ∪Ωr−1/2 ∪ Ωr+1/2 , Ωr−3/2 ∪ Ωr−1/2 ∪Wr+1/2 , Ωr−3/2 ∪Wr−1/2 ∪Wr+1/2) .

are the differentials

d− : C−
r = Hr(W

−
r+1,Mr+1)

= Hr+1(Ωr−3/2 ∪ Ωr−1/2 ∪Ωr+1/2,Ωr−3/2 ∪ Ωr−1/2 ∪Wr+1/2) = Zℓ−r+1

→ C−
r−1 = Hr−1(W

−
r ,Mr)

= Hr(Ωr−3/2 ∪ Ωr−1/2 ∪Wr+1/2 , Ωr−3/2 ∪Wr−1/2 ∪Wr+1/2) = Zℓ−r

of the cellular chain complex (C−, d−) = C(Ω,Σ ∪M W )∗+1. The chain complex (C, ∂) is
the algebraic mapping cone of a chain map d : (C+, d+) → (C−, d−)∗−1

Cr = C(W,M)r = Hr(Wr+1/2,Mr+1/2) = C+
r ⊕ C−

r = Zℓ+r +ℓ−r+1 ,

∂ =

(
d+ 0

(−1)rd d−

)

: Cr = C+
r ⊕ C−

r → Cr−1 = C+
r−1 ⊕ C−

r−1

with an exact sequence

. . . // Hr+1(C
+, d+)

d // Hr(C
−, d−) // Hr(C, ∂) // Hr(C

+, d+) // . . . .

It follows from H∗(W,M) = H∗(C, ∂) = H∗(d) that (W ;M,M ′) is an H-cobordism if and
only if d is a chain equivalence.

Remark 1.3.5. See [Ra4, Proposition 8.17] for a proof of the identification of the algebraic
and geometric intersection numbers in Theorem 1.3.4.

2. Forms and their enlargements

We describe some algebraic properties of (−1)n-symmetric forms over a ring with invo-
lution R, which will be applied to topology in subsequent sections. In the case R ⊆ C we
obtain various estimates for the signature, in terms of ranks and nullities. In particular,
we obtain an estimate for the difference of signatures of a form and its enlargement. Later
on, in §3 we shall deal with the intersection (−1)n-symmetric form of a 2n-dimensional
manifold with boundary (Σ,M), showing that a (2n + 1)-dimensional relative cobordism
(Ω,Σ,Σ′;W,M,M ′) determines a common enlargement of the intersection forms of (Σ,M)
and (Σ′,M ′). In §6 we use the algebra to obtain a generalized Murasugi–Kawauchi in-
equality estimating the difference in the Levine–Tristram signatures |σM (ξ)− σM ′(ξ)| for a
codimension 1 relative cobordism

(Ω,Σ,Σ′;W,M,M ′) ⊂ S2n+1 × (I; {0}, {1})

of Seifert surfaces Σ,Σ′ ⊂ S2n+1 of codimension 2 embeddings M,M ′ ⊂ S2n+1.
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2.1. Forms. We fix a ring R with an involution R→ R; a 7→ ā.

Notation 2.1.1. The transpose of a k × ℓ matrix

A = (aij) (aij ∈ R, 1 6 i 6 k, 1 6 j 6 ℓ)

is the ℓ× k matrix A∗ = (āij).

Definition 2.1.2. Fix a sign ǫ = 1 or −1.
(i) An ǫ-symmetric form over R (F,B) is a f.g. free R-module F together with an ǫ-
symmetric pairing

B : F × F → R ; (x, y) 7→ B(x, y) = ǫB(y, x) .

(ii) The adjoint of (F,B) is the R-module morphism

B = ǫB∗ : F → F ∗ = HomR(F,R) ; x 7→ (y 7→ B(x, y)) .

(iii) A form (F,B) is nonsingular if B : F → F ∗ is an isomorphism.

A form (F,B) with dimRF = k is essentially the same as a k × k matrix B over R such
that B = ǫB∗.

Next, let us define the morphisms of forms.

Definition 2.1.3. (i) A morphism of ǫ-symmetric forms j : (F ′, B′) → (F,B) over R is
an R-module morphism j : F ′ → F such that j∗Bj = B′, or equivalently if the following
diagram commutes:

F ′

B′

��

j // F

B
��

F ′∗ F ∗j∗oo

(ii) A subform (F ′, B′) ⊆ (F,B) of an ǫ-symmetric form (F,B) is the ǫ-symmetric form
defined on a f.g. free R-submodule F ′ ⊆ F by the restriction B′ = B|F ′, so that the
inclusion j : F ′ → F defines a morphism j : (F ′, B′) → (F,B).
(iii) The annihilator of a subform (F ′, B′) ⊆ (F,B) is the subform (F ′⊥, B′⊥) ⊆ (F,B)
defined by

F ′⊥ = {x ∈ F |B(x, y) = 0 ∈ R for all y ∈ F ′} = ker(j∗B : F → F ′∗) ⊆ F .

(iv) The radical of an ǫ-symmetric form (F,B) is the annihilator of (F,B) itself

(F rad, Brad) = (ker(B : F → F ∗), 0) ⊆ (F,B) .

Proposition 2.1.4. (i) If j : (F ′, B′) → (F,B) is a morphism of ǫ-symmetric forms over
R then ker j ⊆ F ′rad. In particular, if (F ′, B′) is nonsingular then ker j = {0}.
(ii) If (F,B) is an ǫ-symmetric form over R such that F rad ⊆ F is a direct summand (auto-
matically the case if R is a principal ideal domain) then the radical quotient (F/F rad, [B])
is a well-defined nonsingular ǫ-symmetric form over R, such that up to isomorphism

(F,B) = (F rad ⊕ (F/F rad),

(
0 0
0 [B]

)

) .

As usual, isotropic subforms are important for the applications of forms to topology.

Definition 2.1.5. (i) A sublagrangian of an ǫ-symmetric form (F,B) is a subform (L, 0) ⊂
(F,B) such that L is a direct summand of F and j∗B : F → L∗ is onto, with j : L→ F the
inclusion. In particular, L ⊆ L⊥.
(ii) A lagrangian L of (F,B) is a sublagrangian L such that L⊥ = L.
(iii) A form (F,B) which admits a lagrangian is called metabolic.
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Example 2.1.6. Every nonsingular (−1)-symmetric form over Z is metabolic.

Proposition 2.1.7. (i) The inclusion of a sublagrangian j : (L, 0) → (F,B) in an ǫ-
symmetric form (F,B) over R extends to an isomorphism of forms

(L⊥/L, [B]) ⊕H ∼= (F,B)

with H a metabolic form with lagrangian L.
(ii) An ǫ-symmetric form (F,B) is metabolic with lagrangian L if and only if it is isomorphic

to (L⊕ L∗,

(
0 I
ǫI C

)

) for some ǫ-symmetric form (L∗, C).

(iii) Let j : (F ′, B′) → (F,B) be the inclusion of a subform. If j∗B : F → F ′∗ is onto (e.g.
if (F,B) is nonsingular and j is a split injection) there is defined an isomorphism of forms

(F ′⊥, B′⊥)⊕H ∼= (F ′,−B′)⊕ (F,B)

with H a metabolic form with lagrangian F ′.

Proof. (i)+(ii) Standard.
(iii) Apply (i) to the inclusion of a sublagrangian

(
1
j

)

: (L, 0) = (F ′, 0) → (F ′,−B′)⊕ (F,B) ,

noting that (L⊥/L, [B]) = (F ′⊥, B′⊥). �

Definition 2.1.8. Let (F,B) be an ǫ-symmetric form over R.
(i) A rank ℓ enlargement of (F,B) is an ǫ-symmetric form over R of the type

(F ′, B′) = (F ⊕ L,

(
B C
ǫC∗ D

)

)

with (L,D) an ǫ-symmetric form over R with dimR L = ℓ and C : L → F ∗ an R-module
morphism. Note that (F,B) is a subform of (F ′, B′).
(ii) A rank (ℓ−, ℓ+) enlargement of (F,B) is a rank ℓ+ + ℓ− enlargement of the type

(F ′, B′) = (F ⊕ L− ⊕ L+,





B 0 C
0 0 D
ǫC∗ ǫD∗ E



)

with L+, L− f.g. free R-modules with dimR L
± = ℓ± and C,D,E R-module morphisms

C : L+ → F ∗ , D : L+ → (L−)∗ , E = ǫE∗ : L+ → (L+)∗ .

(iii) An H-enlargement is a rank (ℓ, ℓ) enlargement as in (ii) in which D is an R-module
isomorphism.

Proposition 2.1.9. (i) If L− is a sublagrangian of an ǫ-symmetric form (F ′, B′) then (up
to isomorphism) (F ′, B′) is an H-enlargement of (F,B) = ((L−)⊥/L−, [B′]), with

L+ = (L−)∗ , (L−)⊥ = F ⊕ L− , (F ′, B′) = (F ⊕ L− ⊕ L+,





B 0 0
0 0 1
0 ǫ E



)

for some ǫ-symmetric form (L+, E).
(ii) If (F ′, B′) is an H-enlargement of (F,B) then L− is a sublagrangian of (F ′, B′) such
that

(L−)⊥ = F ′ ⊕ L− , ((L−)⊥/L−, [B1]) = (F,B) ,
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and there is defined an isomorphism of forms f : (F ′, B′) ∼= (F,B)⊕H with

H = (L− ⊕ L+,

(
0 D
ǫD∗ E

)

)

metabolic with lagrangian L− and

f =





1 0 0
(D∗)−1C∗ 1 0

0 0 1



 : F ′ = F ⊕ L− ⊕ L+ → F ⊕ L− ⊕ L+ .

Proof. (i) Immediate from Proposition 2.1.7.
(ii) By construction. �

2.2. Nullity and signature. In this subsection we work over a subring R ⊆ C. We shall
make use of the fact that a submodule F ′ ⊆ F of a f.g. free R-module F is a f.g. free
R-module, with C⊗R F

′ ⊆ C⊗R F a direct summand.

Definition 2.2.1. The nullity of a morphism B : F → G of f.g. free R-modules is

n(B) = dimR kerB .

We shall make use of the following standard properties of nullity:

n(B : F → G) = dimR F − dimR imB ,

n(B∗ : G∗ → F ∗) = dimRG− dimR F + n(B).

The induced morphism of f.g. free C-modules 1⊗ j : C⊗R F → C⊗R G is such that

ker(1⊗B) = C⊗R ker(B) , im(1⊗B) = C⊗R im(B) , n(1⊗B) = n(B) .

Notation 2.2.2. A 1-symmetric form over C is called hermitian.

Definition 2.2.3. Given an ǫ-symmetric form (F,B) over R define the hermitian form over
C

(F,B)C =

{

C⊗R (F,B) if ǫ = 1

C⊗R (F, iB) if ǫ = −1 .

The hermitian form is diagonalizable, and has eigenvalues λ1, λ2, . . . , λk ∈ R ⊂ C with
k = dimR F = dimC(C⊗R F ).
(i) The nullity of (F,B) is

n(F,B) = n(B : F → F ∗) = dimC F
rad = |{i |λi = 0}| > 0

with F rad = ker(B) the radical of (F,B) (2.1.3).
(ii) The positive and negative rank of (F,B) are

r+(F,B) = dimC F+ = |{i |λi > 0}| ,

r−(F,B) = dimC F− = |{i |λi < 0}| > 0 ,

with F+, F− ⊆ F maximal subspaces such that (F+, B|) is positive definite and (F−, B|) is
negative definite.
(iii) The signature of (F,B) is

σ(F,B) = r+(F,B)− r−(F,B) ∈ Z .

Note that

n(F,B) = n(C⊗R (F,B)) , r±(F,B) = r±(C⊗R (F,B)) , σ(F,B) = σ(C⊗R (F,B)) .
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Example 2.2.4. (i) An ǫ-symmetric form (F,B) over R is nonsingular if and only if
n(F,B) = 0.
(ii) A hermitian form (F,B) over C is metabolic if and only if it is nonsingular and
σ(F,B) = 0.

Remark 2.2.5. The signature is 0 for (R, ǫ) = (Z,−1) or (R,−1), so is not very helpful in
these cases!

Proposition 2.2.6. Let (F,B) be an ǫ-symmetric form over R.
(i) The nullity, ranks and signature of (F,B) are related by the equality

n(F,B) + r+(F,B) + r−(F,B) = dimR F

and the inequality

|σ(F,B)| + n(F,B) 6 dimR F .

(ii) The radical quotient nonsingular ǫ-symmetric form (F/F rad, [B]) has the same ranks
and signature as (F,B)

r+(F/F
rad) = r+(F,B) , r−(F/F

rad) = r−(F,B) , σ(F/F rad, [B]) = σ(F,B) .

(iii) If L is a sublagrangian of (F,B) then

n(F,B) = n(L⊥/L, [B]) , σ(F,B) = σ(L⊥/L, [B])

and

|σ(F,B)| + n(F,B) 6 dimR(L
⊥/L) = dimR F − 2 dimR L .

In particular, if L is a lagrangian then σ(F,B) = 0.
(iv) For any morphism j : (F ′, B′) → (F,B)

σ(F ′, B′) = σ(im(j), B|) = σ(F,B)− σ(F ′⊥, B′⊥) ∈ Z

with (F ′⊥, B′⊥) = (ker(j∗B : F → F ′∗), B|) ⊆ (F,B).
(v) For any morphism j : (F ′, B′) → (F,B) with (F,B) metabolic

|σ(F ′, B′)| 6 dimR F − dimR F
′ + n(F ′, B′) .

Proof. There is no loss of generality in taking (R, ǫ) = (C, 1).
(i) Immediate from a decomposition

(F,B) = (F+, B+)⊕ (F−, B−)⊕ (F rad, 0)

with (F+, B+) positive definite and (F−, B−) negative definite.
(ii)+(iii) Immediate from Proposition 2.1.7.
(iv) Choose a direct complement to ker(j) ⊆ F ′, so that up to isomorphism

j = 0⊕ i : (F ′, B′) = (ker(j), 0) ⊕ (im(j), B|) → (F,B) .

It follows that

σ(F ′, B′) = σ(ker(j), 0) + σ(im(j), B|) = σ(im(j), B|) ∈ Z .

The identity σ(F,B) = σ(F ′, B′) + σ(F ′⊥, B′⊥) holds in the special case when (F,B) is
nonsingular: writing L = F ′, note that

(
1
j

)

: (L, 0) → (F ′,−B′)⊕ (F,B)

is the inclusion of a sublagrangian with annihilator

L⊥ = ker((B′ − j∗B) : F ′ ⊕ F → F ′∗)

= L⊕ ker(j∗B : F → F ′∗) = L⊕ F ′⊥ ,
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so that by Proposition 2.1.7 (i)

σ(F,B)− σ(F ′, B′) = σ(L⊥/L, [−B′ ⊕B]) = σ(F ′⊥, B′⊥) ∈ Z .

In the general case apply the special case to the morphism of forms

J =

(
j 1
0 −B

)

: (F ′ ⊕ F,

(
B′ 0
0 −B

)

) → (F ′′, B′′) = (F ⊕ F ∗,

(
B 1
1 0

)

)

with (F ′′, B′′) metabolic, using

J∗B′′ =

(
j∗B j∗

0 1

)

: F ′′ = F ⊕ F ∗ → F ′∗ ⊕ F ∗ ,

((F ′ ⊕ F )⊥, (B′ ⊕−B)⊥) = (ker(J∗B′′), B′′|) = (F ′⊥, B′⊥)

to obtain

σ(F ′′, B′′) = σ(F ′ ⊕ F,B′ ⊕−B) + σ((F ′ ⊕ F )⊥, (B′ ⊕−B)⊥)

= σ(F,B)− σ(F ′, B′) + σ(F⊥, B⊥) = 0 ∈ Z .

(v) Let i : (L, 0) → (F,B) be the inclusion of a lagrangian, so that L = ker(i∗B : F → L∗),
and define

i′ = inclusion : L′ = j−1(L) → F ′ , j′ = j| : L′ → L

such that

ji′ = ij′ : L′ = ker(i∗B′j : F ′ → L∗) → F .

Then

(a) F ′rad = ker j′ ⊆ L′, since (F,B) is nonsingular, j(F ′rad) ⊆ F rad = {0} and L =
ker i∗B,

(b) [i] : (L′/F ′rad, 0) → (F ′/F ′rad, [B]) is the inclusion of a sublagrangian in the non-
singular ǫ-symmetric form (F ′/F ′rad, [B′]),

(c) i∗Bji′ = i∗Bij′ = 0 : L′ → L∗, so that

dimR L
′ = dimR F

′ − dimR im(i∗Bj : F ′ → L∗)

> dimR F
′ − dimR L

∗ = dimR F
′ − (dimR F )/2 .

It now follows from (ii) and (iii) that

σ(F ′, B′) = σ(F ′/F ′rad, [B′]) 6 dimR(F
′/F ′rad)− 2 dimR(L

′/F ′rad)

= dimR F
′ − 2 dimR L

′ + dimR F
′rad

6 dimR F − dimR F
′ + n(F ′, B′) .

�

Theorem 2.2.7. Let (R, ǫ) = (Z, 1) or (R, 1) or (C,±1), and let (F,B) be an ǫ-symmetric
form over R with a rank ℓ enlargement

(F ′, B′) = (F ⊕ L,

(
B C
ǫC∗ D

)

) .

(i) The signatures of (F,B), (F ′, B′) differ by

σ(F ′, B′)− σ(F,B) = σ(F⊥, B⊥)

with (F⊥, B⊥) ⊆ (F ′, B′) the annihilator of (F,B) ⊆ (F ′, B′), given by

F⊥ = ker((B C) : F ⊕ L→ F ∗) ,

B⊥((x1, y1), (x2, y2)) = B(x1, x2) +D(y1, y2) .
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(ii) The nullities and signatures are related by the inequality

|σ(F ′, B′)− σ(F,B)|+ |n(F ′, B′)− n(F,B)| 6 ℓ .

(iii) If ℓ = 1 then

|σ(F ′, B′)− σ(F,B)| + |n(F ′, B′)− n(F,B)| = 1 .

(iv) If (F ′, B′) is nonsingular then

n(F,B) = n(F⊥, B⊥) .

(v) If (F ′, B′) is metabolic then

σ(F ′, B′) = σ(F,B) + σ(F⊥, B⊥) = 0 , |σ(F,B)| 6 ℓ− n(F,B) .

Proof. (i) A special case of Proposition 2.2.6 (iii).
(ii) Without loss of generality may assume (R, ǫ) = (C, 1), so that

(F,B) = (F+, B+)⊕ (F−, B−)⊕ (F rad, 0)

(F ′, B′) = (F ′
+, B

′
+)⊕ (F ′

−, B
′
−)⊕ (F ′rad, 0)

with (F+, B+) ⊆ (F ′
+, B

′
+) positive definite, (F−, B−) ⊆ (F ′

−, B
′
−) negative definite, and

F rad ⊆ F ′rad. It follows from dimC F± = r±(F,B), dimC F
′
± = r±(F

′, B′) that

|σ(F ′, B′)− σ(F,B)| + |n(F ′, B′)− n(F,B)|

= dimC(F
′
+/F+)− dimC(F

′
−/F−) + dimC(F

′rad/F rad) 6 dimC(F
′/F ) = dimC(L) = ℓ .

(iii) If L = R then

n(F ′, B′) =

{

1 if B⊥ = 0 ∈ R

0 if B⊥ 6= 0 ∈ R
, σ(F⊥, B⊥) =

{

0 if B⊥ = 0 ∈ R

sign(B⊥) if B⊥ 6= 0 ∈ R

(iv) Consider the commutative braid of exact sequences

0

$$❏
❏❏

❏❏
❏❏

❏❏
❏

$$
F

""❋
❋❋

❋❋
❋❋

❋

B

##
F ∗

''PP
PPP

PPP
PPP

P
&&
0

kerB ∼= kerB⊥

99ssssssssss

%%❏❏
❏❏

❏❏
❏❏

❏❏
❏ F ′ ∼= F ′∗

::✈✈✈✈✈✈✈✈✈

##●
●●

●●
●●

●●
cokerB ∼= cokerB⊥

88qqqqqqqqqqq

%%▲▲
▲▲

▲▲
▲▲

▲▲
▲▲

▲

0

::✉✉✉✉✉✉✉✉✉✉✉
::F

⊥

==③③③③③③③③③

B⊥
;;
(F⊥)∗

77♦♦♦♦♦♦♦♦♦♦♦♦
88 0

(v) follows from (i) and (ii), noting that if (F,B) is metabolic then σ(F,B) = 0, n(F,B) =
0. �

Corollary 2.2.8. Let (R, ǫ) = (Z, 1) or (C,±1), let (F,B) be an ǫ-symmetric form over R,
and let

(F ′, B′) = (F ⊕ L− ⊕ L+,





B 0 C
0 0 D
ǫC∗ ǫD∗ E



)
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be a rank (ℓ−, ℓ+) enlargement.
(i) The signatures of (F,B), (F ′, B′) differ by

σ(F ′, B′)− σ(F,B) = σ(F ′′, B′′) ∈ Z

with

(F ′′, B′′) = (ker

(
B C
0 D

)

/ ker(B), [B′])

= ({x ∈ L+ |D(x) = 0 ∈ L∗
− , C(x) ∈ im(B) ⊆ F ∗}, E|) .

(ii) The nullities and signatures are related by the inequalities

|σ(F ′, B′)− σ(F,B)|+ |n(F ′, B′)− n(F,B)| 6 dimR L− + dimR L+ ,

|σ(F ′, B′)− σ(F,B)| 6 min(n(D), n(F,B) + n(F ′, B′)) .

If (F ′, B′) is an H-enlargement (i.e. if D is an isomorphism) then F ′′ = 0 and

n(F,B) = n(F ′, B′) > 0 , σ(F ′, B′) = σ(F,B) ∈ Z .

(iii) The determinants of B and B′ with respect to bases for F,L−, L+ and the dual bases
for F ∗, L∗

−, L
∗
+ are related by

det(B′) = −ǫ det(B) det(D) det(D∗) ∈ R .

(F ′, B′) is nonsingular if and only if (F,B) is nonsingular and (F ′, B′) is an H-enlargement
of (F,B) (i.e. B′ is an isomorphism if and only if both B and D are isomorphisms), in
which case

σ(F,B) = σ(F ′, B′) ∈ Z .

Thus any H-enlargement of a nonsingular form is a nonsingular form with the same sig-
nature.

Proof. (i) By Proposition 2.2.6 with j = inclusion : (F,B) → (F ′, B′) we have

σ(F ′, B′)− σ(F,B) = σ(F⊥, B⊥) ∈ Z

with

(F⊥, B⊥) = (ker((B 0 C) : F ⊕ L− ⊕ L+ → F ∗), B′|) = (L− ⊕ L′
+,

(
0 C ′

ǫC ′∗ E′

)

) ,

L′
+ = ker((B C) : F ⊕ L+ → F ∗) ,

C ′ : L′
+ → L∗

− ; (x, y) 7→ (z 7→ D(y, z)) ,

E′ : L′
+ → L′∗

+ ; (x′, y′) 7→ ((x2, y2) 7→ B(x′, x2) + E(y′, y2)) .

The annihilator of (ker(B)⊕ L−, 0) ⊆ (F⊥, B⊥) is

((ker(B)⊕ L−)
⊥, 0⊥) = (ker(B)⊕ L−, 0)⊕ (F ′′, B′′)

so that applying Lemma 2.1.7 again

σ(F ′, B′)− σ(F,B) = σ(F⊥, B⊥)

= σ(ker(B)⊕ L−, 0) + σ(F ′′, B′′)

= σ(F ′′, B′′) ∈ Z .

(ii) The inequality

|σ(F ′, B′)− σ(F,B)|+ |n(F ′, B′)− n(F,B)| 6 dimR L− + dimR L+

is a special case of Theorem 2.2.7 (ii). It is immediate from (i) and F ′′ ⊆ ker(D) that

|σ(F ′′, B′′)| 6 dimR F
′′
6 dimR ker(D) = n(D) .
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The ǫ-symmetric form

(H, θ) = (F ⊕ F ∗ ⊕ L+ ⊕ L∗
+,







−B 1 0 0
ǫ 0 0 0
0 0 E 1
0 0 ǫ 0






)

is metabolic. Let (P, φ) ⊆ (H, θ) be the image of the morphism of forms

f =







1 1 0 0
0 B 0 0
0 0 0 1
0 ǫC∗ ǫD∗ 0







: (F,B) = (F ⊕ F ′,−B ⊕B′) → (H, θ)

and let

J = ker(f) ∼= ker(

(
B 0
ǫC∗ ǫD∗

)

: F ⊕ L− → F ∗ ⊕ L∗
+) ,

K = ker(B) = ker(B)⊕ ker(B′) .

By Proposition 2.2.6

σ(F ′, B′)− σ(F,B) = σ(F,B) = σ(P, φ) ∈ Z .

The image of the injection

g =







1 0
B 0
0 1
0 −E







|

: (Q,ψ) = (ker(

(
B C
0 D

)

: F ⊕ L+ → F ∗ ⊕ L∗
−),

(
B 0
0 −E

)

|) → (H, θ)

is such that
(Q,ψ) = (P, φ)⊥ ⊆ (H, θ) ,

so that
dimR P + dimRQ = dimRH

and by Proposition 2.2.6

σ(P, φ) + σ(Q,ψ) = σ(H, θ) = 0 ∈ Z .

Consider the commutative braid of exact sequences

0

��✽
✽✽

✽✽
✽✽

��
J

��❀
❀❀

❀❀
❀❀

��
F

f

##●
●●

●●
●●

●●

B

##
F ∗

��❄
❄❄

❄❄
❄❄

❄

��
J∗

��

��❀
❀❀

❀❀
❀❀

0

0

BB✆✆✆✆✆✆✆

��✽
✽✽

✽✽
✽✽

K

AA✂✂✂✂✂✂✂

��❀
❀❀

❀❀
❀❀

H ∼=θ H
∗

f∗
;;✈✈✈✈✈✈✈✈✈

g∗

##●
●●

●●
●●

●●
K∗

??⑧⑧⑧⑧⑧⑧⑧⑧

��❃
❃❃

❃❃
❃❃

❃

??⑧⑧⑧⑧⑧⑧⑧⑧

��❃
❃❃

❃❃
❃❃

❃ 0

BB✝✝✝✝✝✝✝

0

AA☎☎☎☎☎☎☎☎

AA
Q

g
;;①①①①①①①①①

ψ
;;
Q∗

??⑧⑧⑧⑧⑧⑧⑧⑧

@@ 0

AA☎☎☎☎☎☎☎☎

It follows from the short exact sequences

0 → J → F → P → 0 , 0 → Q→ H → P ∗ → 0 , 0 → J → K → ker(ψ) → 0 ,
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and dimRF = dimRH that

dimR J = dimR F − dimR P = dimRH − dimR P = dimRQ 6 dimRK

so that by Proposition 2.2.6

|σ(F ′, B′)− σ(F,B)| = |σ(Q,ψ)| 6 dimRQ 6 dimRK = n(F,B) + n(F ′, B′) .

(iii) Immediate from (ii). �

3. The intersection form of a manifold with boundary

3.1. Torsion-free homology. The intersection (−1)n-symmetric form (Fn(Σ), B(Σ)) of
a 2n-dimensional manifold with boundary (Σ, ∂Σ) is defined on the torsion-free quotient
Fn(Σ) = Hn(Σ)/torsion. In order to study the behaviour of the intersection form under
cobordism we bring together some of the properties of the torsion-free quotients of homology
groups.

Definition 3.1.1. The torsion subgroup and the torsion-free quotient of an abelian group
A are the abelian groups

T (A) = {a ∈ A | ka = 0 ∈ A for some k 6= 0 ∈ Z} ⊆ A ,

F (A) = A/T (A) .

If A is f.g. then T (A) is finite, and F (A) is f.g. free.

Proposition 3.1.2. (i) The short exact sequence

0 → T (A) → A→ F (A) → 0

is natural. A Z-module morphism f : A → B induces a natural transformation of exact
sequences

0 // T (A) //

T (f)
��

A //

f
��

F (A) //

F (f)
��

0

0 // T (B) // B // F (B) // 0

with a snake lemma exact sequence

0 → ker(T (f)) → ker(f) → ker(F (f)) → coker(T (f)) → coker(f) → coker(F (f)) → 0 .

In particular, if F (f) : F (A) → F (B) is an isomorphism then f : A→ B is an isomorphism
modulo torsion, i.e. ker(f) and coker(f) are both torsion modules, with

ker(f) = ker(T (f)) , coker(f) = coker(T (f)) .

(ii) If

A
f

// B
g

// C

is an exact sequence of Z-modules then

ker(F (g) : F (B) → F (C)) = {x ∈ F (B) | kx ∈ im(F (f)) for some k 6= 0 ∈ Z}

and ker(F (g))/im(F (f)) is a torsion Z-module.
(iii) If B is a f.g. free Z-module and A ⊆ B is a submodule (not necessarily a direct
summand), then A is a f.g. free Z-module, and

A0 = {x ∈ B | kx ∈ A for some k 6= 0 ∈ Z} ⊆ B

is a direct summand such that A0 ⊆ A, A/A0 is finite, dimZA0 = dimZA, and

Q⊗Z A0 = Q⊗Z A ⊆ Q⊗Z B .
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(iv) If f : A → B is a morphism of f.g. free Z-modules then im(f) ⊆ B is a f.g. free
submodule, and ker(f) ⊆ A is a f.g. free submodule which is a direct summand. Furthermore

im(1⊗ f : Q⊗Z A→ Q⊗Z B) ∼= Q⊗Z im(f) ,

ker(1⊗ f : Q⊗Z A→ Q⊗Z B) ∼= Q⊗Z ker(f) .

Proof. Standard homological algebra. �

Definition 3.1.3. Given a Z-module chain complex C let

Fr(C) = F (Hr(C)) , F r(C) = F (Hr(C))

with Hr(C) = H−r(HomZ(C,Z)).

Proposition 3.1.4. (i) For a finite f.g. free Z-module chain complex C the groups Hr(C),
Hr(C) are f.g. Z-modules, and

F (Hr(C)) ∼= Hr(C)∗ ∼= F (Hr(C))∗

Hr(Q⊗Z C) ∼= Q⊗Z Hr(C) ∼= Q⊗Z Fr(C) .

(ii) For a chain map f : C → D of finite f.g. free Z-module chain complexes the following
conditions are equivalent:

(a) the induced Z-module morphisms f∗ : H∗(C) → H∗(D) are isomorphisms modulo
torsion

(b) the induced Z-module morphisms F (f∗) : F (H∗(C)) → F (H∗(D)) are isomorphisms,
(c) the induced Q-module morphisms (1⊗ f)∗ : H∗(Q⊗ZC) → H∗(Q⊗ZD) are isomor-

phisms.

Proof. Standard. �

The homology groups of a CW complex K

Hr(K) = Hr(C(K))

are the homology Z-modules of the cellular chain complex C(K), the Z-module chain com-
plex with

Cr(K) = Hr(K
(r),K(r−1))

the free Z-module generated by the r-cells of K. The cohomology groups

Hr(K) = H−r(HomZ(C(K),Z))

are such that there are defined Z-module morphisms

Hr(K) → Hr(K)∗ = HomZ(Hr(K),Z) ; f 7→ (x 7→ f(x)) ,

Hn(K)⊗Z H
r(K) → Hn−r(K) ; x⊗ y 7→ x ∩ y

and a bilinear pairing

Hr(K)×Hr(K) → Z ; (x, f) 7→ f(x) .

Write the torsion-free quotients as

Fr(K) = F (Hr(K)) , F r(K) = F (Hr(K)) .

Proposition 3.1.5. (i) For a map f : K → L of CW complexes

ker(f∗ : Fn(K) → Fn(L))

∼= {x ∈ Hn(K) | kx ∈ ker(f∗ : Hn(K) → Hn(L)) for some k 6= 0 ∈ Z}/Tn(K) ,

im(f∗ : Fn(K) → Fn(L))

∼= {y ∈ Hn(L) | ℓy ∈ im(f∗ : Hn(K) → Hn(L)) for some ℓ 6= 0 ∈ Z}/Tn(L) .

The following conditions are equivalent:
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(a) the induced Z-module morphisms f∗ : H∗(K) → H∗(L) are isomorphisms modulo
torsion,

(b) the induced Z-module morphisms f∗ : F∗(K) → F∗(L) are isomorphisms,
(c) the induced Q-module morphisms f∗ : H∗(K;Q) → H∗(L;Q) are isomorphisms.

(ii) For a finite CW complex K the groups Hr(K), Hr(K) are f.g. Z-modules, and

F r(K) ∼= Fr(K)∗ , Hr(K;Q) ∼= Q⊗Z Fr(K) , Hr(K;Q) ∼= Q⊗Z F
r(K) .

Proof. Immediate from Propositions 3.1.2, 3.1.4. �

3.2. The intersection form of a manifold with boundary. Let (Σ,M) be an oriented
(m + 1)-dimensional manifold with boundary. Cap product with the fundamental class
[Σ] ∈ Hm+1(Σ,M) defines the Poincaré-Lefschetz duality isomorphisms

[Σ] ∩− : Hr(Σ,M) ∼= Hm+1−r(Σ) , [Σ] ∩ − : Hr(Σ) ∼= Hm+1−r(Σ,M)

in the usual manner.

Definition 3.2.1. The intersection pairing of an (m+1)-dimensional manifold with bound-
ary (Σ,M) is the pairing

B(Σ) : Hr(Σ)×Hm+1−r(Σ) → Z

with adjoint the composite

Hr(Σ) // Hr(Σ,M) ∼= Hm+1−r(Σ) // Hm+1−r(Σ)
∗ ,

corresponding to the evaluation of the cup product pairing on the fundamental class [Σ] ∈
Hm+1(Σ,M)

Hm+1−r(Σ,M)×Hr(Σ,M)
∪ // Hm+1(Σ,M)

〈[Σ],−〉
// Z .

The intersection pairing is such that

B(Σ)(x, y) = (−1)r(m+1−r)B(Σ)(y, x) ∈ Z (x ∈ Hr(Σ), y ∈ Hm+1−r(Σ)) .

The intersection pairing takes 0 values on torsion homology classes, so there is induced an
intersection pairing on the torsion-free quotients

B(Σ) : Fr(Σ)× Fm+1−r(Σ) → Z .

It follows from the exact sequence of Z-modules

· · · → Hr(M) → Hr(Σ) → Hr(Σ,M) → Hr−1(M) → . . .

that there is defined an exact sequence of Q-modules

· · · → Q⊗Z Fr(M) = Hr(M ;Q) → Q⊗Z Fr(Σ) = Hr(Σ;Q)

1⊗B(Σ)
// Q⊗Z Fr(Σ)

∗ = Hr(Σ,M ;Q) → Q⊗Z Fr−1(M) = Hr−1(M ;Q) → . . . .

If M = ∅ or Sm the adjoint Z-module morphisms

B(Σ) : Fr(Σ) → Fm+1−r(Σ)
∗ ; x 7→ (y 7→ B(x, y))

are isomorphisms.

Definition 3.2.2. The intersection form of a 2n-dimensional manifold with boundary
(Σ,M) is the (−1)n-symmetric form (Fn(Σ), B(Σ)) over Z.

Example 3.2.3. The intersection (−1)n-symmetric form (Fn(Σ), B(Σ)) is nonsingular in
either of the following cases

(i) Σ is closed, i.e. M = ∅,
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(ii) M =
⊔

ℓ

S2n−1 for any n, ℓ > 1, with ℓ = 1 if n = 1.

Proposition 3.2.4. Let Σ be a closed 2n-dimensional manifold such that Σ = Σ0 ∪M Σ1

for codimension 0 submanifolds with boundary (Σ0,M), (Σ1,M) ⊂ Σ.

Σ0 M Σ1

Σ

(i) The restrictions of the nonsingular (−1)n-symmetric intersection form (F,B) = (Fn(Σ), B(Σ))
over Z to the direct summands of F

F0 = ker(F → Fn(Σ,Σ0)) = {x ∈ F | kx ∈ im(Fn(Σ0)) for some k 6= 0 ∈ Z} ,

F1 = ker(F → Fn(Σ,Σ1)) = {x ∈ F | kx ∈ im(Fn(Σ1)) for some k 6= 0 ∈ Z}

define (−1)n-symmetric forms (F0, B0), (F1, B1) over Z such that the morphisms of forms
over Z

(Fn(Σ0), B(Σ0)) → (F0, B0) , (Fn(Σ1), B(Σ1)) → (F1, B1)

induce surjections of forms over Q

Q⊗Z (Fn(Σ0), B(Σ0)) // // Q⊗Z (F0, B0) ,

Q⊗Z (Fn(Σ1), B(Σ1)) // // Q⊗Z (F1, B1) .

(ii) There is defined a commutative braid of exact sequences

0

""❊
❊❊

❊❊
❊❊

❊❊
❊

##
F0

��❄
❄❄

❄❄
❄❄

❄

B0   
F ∗
0

%%❑❑
❑❑

❑❑
❑❑

❑❑
❑

$$
0

F0 ∩ F1

;;✇✇✇✇✇✇✇✇✇

##●
●●

●●
●●

●●
F

??⑧⑧⑧⑧⑧⑧⑧⑧

��❄
❄❄

❄❄
❄❄

❄ F/(F0 + F1)

::ttttttttttt

$$❏
❏❏

❏❏
❏❏

❏❏
❏❏

0

<<②②②②②②②②②②
;; F1

??⑧⑧⑧⑧⑧⑧⑧⑧

B1

==
F ∗
1

99sssssssssss
:: 0

so that

(F0, B0)
⊥ = (F1, B1) , (F1, B1)

⊥ = (F0, B0) ⊆ (F,B)

and by Proposition 2.1.7 (iii) there are defined isomorphism of forms

(F1, B1)⊕H0
∼= (F0,−B0)⊕ (F,B) ,

(F0, B0)⊕H1
∼= (F1,−B1)⊕ (F,B)

with Hi metabolic with lagrangian Fi.
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3.3. The signature of a manifold with boundary.

Definition 3.3.1. The signature of a 4k-dimensional manifold with boundary (Σ,M) is
the signature of the intersection symmetric form over Z

σ(Σ) = σ(F2k(Σ), B(Σ)) ∈ Z .

Example 3.3.2. If (Σ,M) = (K × I, ∂(K × I)) for a (4k − 1)-dimensional manifold with
boundary (K,∂K) then the intersection form is

B(Σ) = 0 : F2k(Σ) = F2k(K) → F2k(Σ,M) = F2k−1(K) = F2k(K)∗

and the signature is

σ(Σ) = σ(F2k(Σ), 0) = 0 ∈ Z .

Proposition 3.3.3. (i) (Thom [Th]) For a (2n + 1)-dimensional manifold with boundary
(Ω,Σ) the (−1)n-symmetric intersection form (Fn(Σ), B(Σ)) has a lagrangian ker(Fn(Σ) →
Fn(Ω)). If n = 2k then Σ4k has signature

σ(Σ) = 0 ∈ Z .

(ii) (Novikov additivity) If Σ is a closed 4k-dimensional manifold such that Σ = Σ0∪∂ −Σ1

for codimension 0 submanifolds with boundary (Σ0,M), (Σ1,M) ⊂ Σ with Σ0 ∩ Σ1 = M
then

σ(Σ) = σ(Σ0)− σ(Σ1) ∈ Z .

(iii) If (Ω4k+1; Σ0,Σ1,W ;M0,M1) is a (4k + 1)-dimensional relative cobordism then

σ(Σ0)− σ(Σ1) = σ(W ) ∈ Z .

If (W ;M0,M1) is an H-cobordism then σ(W ) = 0 and

σ(Σ0) = σ(Σ1) ∈ Z .

Proof. (i) ker(F2k(Σ) → F2k(Ω)) is a lagrangian of (F2k(Σ), B(Σ)) (Proposition 2.2.6 (iii)).
(ii) The subforms

(F0, B0) = im(F2k(Σ0), B(Σ0)) , (F1, B1) = im(F2k(Σ1), B(Σ1)) ⊆ (F2k(Σ), B(Σ))

are such that (F⊥
0 , B

⊥
0 ) = (F1, B1), (F

⊥
1 , B

⊥
1 ) = (F0, B0).

(iii) By (i) and (ii) the signature of ∂Ω = Σ0 ∪M0
W ∪M1

−Σ1 is

σ(∂Ω) = σ(Σ0) + σ(W )− σ(Σ1) = 0 ∈ Z .

If (W ;M0,M1) is an H-cobordism then B(W ) = 0 (as in 3.3.2). �

Example 3.3.4. (i) Let Γ = (Ω;Σ,Σ′,W ;M,M ′) be a split (2n + 2)-dimensional relative
cobordism. with Γ = Γ− ∪ Γ+ the union of a left and a right product cobordism

Γ− = (Ω−; Σ,Σ′′,W−;M,M ′′) , Γ+ = (Ω+; Σ′,Σ′′,W+;M ′′,M ′) .

The (−)n-symmetric intersection forms (Fn(M), B(M)), (Fn(M
′), B(M ′)), (Fn(M

′′), B(M ′′))
have lagrangians

L = ker(Fn(M) → Fn(Σ)) ,

L′ = ker(Fn(M
′) → Fn(Σ

′)) ,

L′′ = ker(Fn(M
′′) → Fn(Σ

′′))

and (Fn(M
′′), B(M ′′)) also has lagrangians

L− = ker(Fn(M
′′) → Fn(Σ ∪M W−)) ,

L+ = ker(Fn(M
′′) → Fn(W

+ ∪M ′ Σ′)) .
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The homology group Hn+1(Ω) fits into an exact sequence

0 → coker(Hn+2(W
−,M ′′)⊕Hn+2(W

+,M ′′) → Hn+1(Σ
′′)) → Hn+1(Ω)

→ ker(Hn+1(W
−,M ′′)⊕Hn+1(W

+,M ′′) → Hn(Σ
′′)) → 0 .

If the condition

coker(Hn+2(W
−,M ′′)⊕Hn+2(W

+,M ′′) → Hn+1(Σ
′′)) is torsion (∗)

is satisfied then the (−1)n+1-symmetric intersection form (Fn+1(Ω), B(Ω)) is the form
(F ′′, B′′;L′′, L−, L+) determined (by the even-dimensional algebraic analogue of Remark
1.3.2) by the (−1)n-symmetric intersection form (F ′′, B′′) = (Fn(M

′′), B(M ′′)) and the
inclusions of the three lagrangians

j− : (L−, 0) → (F ′′, B′′) , j′′ : (L′′, 0) → (F ′′, B′′) , j+ : (L+, 0) → (F ′′, B′′) .

The (−1)n+1-symmetric form defined by

(F ′′, B′′;L′′, L−, L+) =

(ker((j− j′′ j+) : L− ⊕ L′′ ⊕ L+ → F ′′),





0 j−
∗
B′′j′′ j−

∗
B′′j+

−j′′∗B′′j− 0 j′′∗B′′j+

−j+
∗
B′′j− −j+

∗
B′′j′′ 0



)

is such that

(Fn+1(Ω), B(Ω)) = (F ′′, B′′;L−, L′′, L+) .

In the case n = 2k− 1 the signature of the 4k-dimensional manifold with boundary (Ω, ∂Ω)
is

σ(Ω) = σ(Ω+) + σ(Ω−) + σ(F ′′, B′′;L−, L′′, L+)

= σ(F ′′, B′′;L−, L′′, L+) ∈ Z

since σ(Ω+) = σ(Ω−) = 0 by Example 3.3.2. The signature σ(F ′′, B′′;L−, L′′, L+) is the
invariant of Wall [Wa] for the non-additivity of the signature.
(ii) Let (Ω, ∂Ω) be a (2n + 2)-dimensional manifold with non-empty boundary, choose an
embeddingD2n+1×{0, 1} ⊂ ∂Ω and let Γ = (Ω;Σ,Σ′,W ;M,M ′) be the (2n+2)-dimensional
relative cobordism defined by

(Σ,M) = (D2n+1, S2n)× {0} ,

(Σ′,M ′) = (D2n+1, S2n)× {1} ,

W = cl.(∂Ω\(D2n+1 × {0, 1}))

Assume that Ω is n-connected, so that Σ′′, M ′′, ∂Ω and W are (n− 1)-connected (meaning
that each component is (n − 1)-connected) and the condition (∗) in (i) is satisfied, since
Hn+1(Σ

′′) = 0 . Write the (−1)n+1-symmetric intersection form as

(Fn+1(Ω), B(Ω)) = (F,B)

with F = Fn+1(Ω) = Hn+1(Ω) a f.g. free Z-module of rank bn+1(Ω), with an exact sequence

0 → Hn+1(∂Ω) = Hn+1(W ) → F
B // F ∗ → Hn(∂Ω) = Hn(W ) → 0 .

The (n − 1)-connected 2n-dimensional ’manifold’ M ′′ has the homological properties of
#bn+1(Ω) S

n × Sn with (−1)n-symmetric intersection form

(F ′′, B′′) = (Hn(M
′′), B(M ′′)) = (F ⊕ F ∗,

(
0 1

(−1)n 0

)

)
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and the inclusions of the three lagrangians in (i) given by

j− =

(
1
B

)

: L− = Hn+1(W
−,M ′′) = F → F ′′ = F ⊕ F ∗ ,

j+ =

(
1
0

)

: L+ = Hn+1(W
+,M ′′) = F → F ′′ = F ⊕ F ∗ ,

j′′ =

(
0
1

)

: L′′ = Hn+1(Σ
′′,M ′′) = F ∗ → F ′′ = F ⊕ F ∗ .

In fact, the construction only makes use of the (−1)n+1-symmetric form (F,B).
(iii) Let n = 2 with

(Ω, ∂Ω) = (cl.(CP2\D4), S3)

in (ii), so that (F,B) = (Z, 1). Now (Ω, ∂Ω) is the total pair of the Hopf bundle

(D2, S1) → (Ω, ∂Ω) → S2 .

The decomposition in (ii) is realized geometrically by the decomposition of Ω as a union of
two contractible spaces given by the inverse images of the upper and lower hemispheres of
S2 = D2 ∪D2, as in Wall [Wa], with signature

σ(CP2) = σ(Ω) = σ(F ′′, B′′;L−, L′′, L+)

= σ(Z⊕ Z,

(
0 1
−1 0

)

; {(x, x) |x ∈ Z}, 0⊕ Z,Z⊕ 0) = 1 ∈ Z .

3.4. The intersection forms of cobordant manifolds. We investigate the intersection
forms in a (2n+ 1)-dimensional relative cobordism:

Proposition 3.4.1. Let (Ω;Σ,Σ′,W ;M,M ′) be a (2n + 1)-dimensional boundary product
relative cobordism, with

(W ;M,M ′) = M × (I; {0}, {1}) , ∂Ω = Σ ∪M W ∪M ′ −Σ′ .

Let (F,B), (F ′, B′) be the restrictions of the (−1)n-symmetric intersection form (Fn(∂Ω), B(∂Ω))
over Z to the direct summands

F = {x ∈ Fn(∂Ω) | kx ∈ im(Fn(Σ)) for some k 6= 0 ∈ Z} ,

F ′ = {x ∈ Fn(∂Ω) | kx ∈ im(Fn(Σ
′)) for some k 6= 0 ∈ Z} ⊆ F (i = 0, 1) ,

with surjections

Q⊗Z (Fn(Σ), B(Σ)) // // Q⊗Z (F,B) ,

Q⊗Z (Fn(Σ
′), B(Σ′)) // // Q⊗Z (F ′, B′) .

(i) The homology groups of Σ,Σ′,Ω fit into the commutative braid of exact sequences

Hn+1(Ω,Σ)

&&◆◆
◆◆

◆◆
◆◆

◆◆
◆

''
Hn(Σ)

  ❅
❅❅

❅❅
❅❅

""
Hn(Ω,Σ

′)

Hn+1(Ω,Σ ⊔ Σ′)

99ssssssssss

%%❑❑
❑❑

❑❑
❑❑

❑❑
Hn(Ω)

<<③③③③③③③③

""❉
❉❉

❉❉
❉❉

❉

Hn+1(Ω,Σ
′)

88

88♣♣♣♣♣♣♣♣♣♣♣
Hn(Σ

′)

>>⑦⑦⑦⑦⑦⑦⑦

<<
Hn(Ω,Σ)
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The (−1)n-symmetric intersection forms (F,B), (F ′, B′) have sublagrangians

L = ker(F → Fn(Ω)) = {x ∈ F | kx ∈ im(Hn+1(Ω,Σ)) for some k 6= 0 ∈ Z} ⊆ F ,

L′ = ker(F ′ → Fn(Ω)) = {x ∈ F ′ | kx ∈ im(Hn+1(Ω,Σ
′)) for some k 6= 0 ∈ Z} ⊆ F ′

such that there are defined isomorphisms

(L⊥/L, [B]) ∼= (L′⊥/L′, [B′]) ,

(F,B) ∼= (L⊥/L, [B])⊕H , (F ′, B′) ∼= (L′⊥/L′, [B′])⊕H′ ,

(F,B)⊕H′ ∼= (F ′, B′)⊕H

with H,H′ metabolic forms with lagrangians L,L′.
(ii) Suppose that there is given a handle decomposition

(Ω;Σ,Σ′) =

2n⋃

r=−1

(Ωr; Σr,Σr+1)

with Ωr the trace of ℓr+1 surgeries of index r + 1 on
⋃

ℓr+1

Sr ×D2n−r ⊂ Σr\M0 , so that

Ωr = Σr × I ∪
⋃

ℓr+1

Dr+1 ×D2n−r .

The boundary product relative cobordisms

(Ω−; Σ,Σn) =

n−1⋃

r=−1

(Ωr; Σr,Σr+1) , (Ω+; Σn,Σ
′) =

2n⋃

r=n

(Ωr; Σr,Σr+1)

are such that

(Ω;Σ,Σ′) = (Ω−; Σ,Σn) ∪ (Ω+; Σn,Σ
′)

with intersection (−1)n-symmetric forms

(Fn(Σ), B(Σ)) = (Fn(Σ−1), B(Σ−1)) = . . . = (Fn(Σn−1), B(Σn−1)) ,

(Fn(Σn+1), B(Σn+1))) = . . . = (Fn(Σ2n+1), B(Σ2n+1)) = (Fn(Σ
′), B(Σ′)) .

The homology groups of Σ,Σn,Σ
′,Ω−,Ω+,Ω fit into commutative braids of exact sequences

0

!!❉
❉❉

❉❉
❉❉

❉❉

&&
Hn(Σ)

&&▼▼
▼▼

▼▼
▼▼

▼▼

&&
Hn(Ω)

""

$$❏
❏❏

❏❏
❏❏

❏❏
0

Hn+1(Ω,Σ)

77♦♦♦♦♦♦♦♦♦♦♦

''◆◆
◆◆

◆◆◆
◆◆◆

◆
Hn(Ω

−)

::✉✉✉✉✉✉✉✉✉

$$■
■■

■■
■■

■■
Hn(Ω,Σ)

>>⑦⑦⑦⑦⑦⑦⑦⑦

��❅
❅❅

❅❅
❅❅

❅

Hn+1(Ω) 88

==④④④④④④④④
Hn+1(Ω

+,Σn) = Zℓn+1

88qqqqqqqqqq

d
88

Hn(Ω
−,Σ) = Zℓn

::ttttttttt

::
Hn−1(Σ)
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0

  ❆
❆❆

❆❆
❆❆

❆❆

%%
Hn(Σ

′)

%%▲▲
▲▲

▲▲
▲▲

▲▲

&&
Hn(Ω)

""

%%❑
❑❑

❑❑
❑❑

❑❑
0

Hn+1(Ω,Σ
′)

77♣♣♣♣♣♣♣♣♣♣♣

&&◆◆
◆◆

◆◆
◆◆

◆◆
Hn(Ω

+)

::✉✉✉✉✉✉✉✉✉

$$■
■■

■■
■■

■■
Hn(Ω,Σ

′)

??⑧⑧⑧⑧⑧⑧⑧⑧

��❃
❃❃

❃❃
❃❃

Hn+1(Ω) 99

>>⑥⑥⑥⑥⑥⑥⑥⑥
Hn+1(Ω

−,Σn+1) = Zℓn

99ssssssssss

d∗
88

Hn(Ω
+,Σ′) = Zℓn+1

99ttttttttt

::
Hn−1(Σ

′)

Hn+1(Σ)

!!❈
❈❈

❈❈
❈❈

❈

!!
Zℓn

""❉
❉❉

❉❉
❉❉

❉❉

$$
Hn(Σn)

��

��❂
❂❂

❂❂
❂❂

Zℓn

  ❆
❆❆

❆❆
❆❆

❆

##
Hn−1(Σ)

Hn+1(Ω
−)

BB☎☎☎☎☎☎☎☎

��✿
✿✿

✿✿
✿✿

Hn+1(Ω
−,Σ ⊔ Σn)

::✉✉✉✉✉✉✉✉✉

$$■
■■

■■
■■

■■
Hn(Ω

−)

DD✠✠✠✠✠✠✠

��✻
✻✻

✻✻
✻✻

Hn(Ω
−,Σ ⊔Σn)

;;✈✈✈✈✈✈✈✈✈

0
::

<<②②②②②②②②②
Hn(Σ) BB

@@�������
0

>>⑥⑥⑥⑥⑥⑥⑥⑥⑥

Hn+1(Σ
′)

!!❉
❉❉

❉❉
❉❉

❉

""
Zℓn+1

##●
●●

●●
●●

●●
●

%%
Hn(Σn)

��

��❂
❂❂

❂❂
❂❂

Zℓn+1

""❉
❉❉

❉❉
❉❉

❉❉

$$
Hn−1(Σ

′)

Hn+1(Ω
+)

@@✁✁✁✁✁✁✁✁

��❂
❂❂

❂❂
❂❂

❂
Hn+1(Ω

+,Σn ⊔ Σ′)

::✉✉✉✉✉✉✉✉✉

$$■
■■

■■
■■

■■
Hn(Ω

+)

BB✆✆✆✆✆✆✆

��✾
✾✾

✾✾
✾✾

Hn(Ω
+,Σn ⊔ Σ′)

::✉✉✉✉✉✉✉✉✉

0
99

;;✇✇✇✇✇✇✇✇✇✇
Hn(Σ

′) AA

@@�������
0

<<②②②②②②②②②

The (−1)n-symmetric intersection form

(F1/2, B1/2) = (Fn(Σn), B(Σn))

has sublagrangians

L1/2 = {x ∈ F1/2 | kx ∈ im(Hn+1(Ω
−,Σn)) = im(Zℓn) for some k 6= 0 ∈ Z} ,

L′
1/2 = {x ∈ F1/2 | kx ∈ im(Hn+1(Ω

+,Σn)) = im(Zℓn+1) for some k 6= 0 ∈ Z} ⊆ F1/2

with isomorphisms

(L⊥
1/2/L1/2, [B1/2]) ∼= (F0, B0) , ((L′

1/2)
⊥/L′

1/2, [B1/2]) ∼= (F1, B1) ,

so that

(F1/2, B1/2) ∼= (F,B)⊕H1/2
∼= (F ′, B′)⊕H′

1/2
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with H1/2,H
′
1/2 metabolic with lagrangians L1/2, L

′
1/2. The sublagrangians in (i) are given

by

L = ker(F → Fn(Ω))

= {x ∈ F | kx ∈ im(Hn+1(Ω,Σ)) = im(ker(d : Zℓn+1 → Zℓn)) for some k 6= 0 ∈ Z} ⊆ F ,

L′ = ker(F ′ → Fn(Ω))

= {x ∈ F ′ | kx ∈ im(Hn+1(Ω,Σ
′)) = im(ker(d∗ : Zℓn → Zℓn+1)) for some k 6= 0 ∈ Z} ⊆ F ′ .

Finally, we have the following compendium of results on the intersection forms in an
odd-dimensional relative cobordism:

Theorem 3.4.2. Let (Ω,Σ,Σ′;W,M,M ′) be a (2n+1)-dimensional relative cobordism with
a half-handle decomposition

(Ω;Σ,Σ′,W ;M,M ′) =

2n⋃

r=−1

(Ωr; Σr,Σr+1,Wr;Mr,Mr+1)

with each

(Ωr; Σr,Σr+1,Wr;Mr,Mr+1)

= (Ω−
r ; Σr,Σr+1/2,W

−
r ;Mr,Mr+1/2) ∪Σr+1/2

(Ω+
r ; Σr+1/2,Σr+1,W

+
r ;Mr+1/2,Mr+1)

an index r + 1 splitting (1.3.3 I(i)), so that

W−
r = Mr × I ∪⋃

ℓ−r

Sr−1×D2n−r

⋃

ℓ−r

Dr ×D2n−r

= Mr+1/2 × I ∪⋃

ℓ−r

Dr×S2n−r−1

⋃

ℓ−r

Dr ×D2n−r ,

W+
r = Mr+1/2 × I ∪ ⋃

ℓ+
r+1

Sr×D2n−r−1

⋃

ℓ+r+1

Dr+1 ×D2n−r−1

= Mr+1 × I ∪ ⋃

ℓ+r+1

Dr+1×S2n−r−2

⋃

ℓ+r+1

Dr+1 ×D2n−r−1 ,

Σr = Σr+1/2 ∪Mr+1/2
W−

r = Σr+1/2 ∪
⋃

ℓ−r

Dr×S2n−r−1

⋃

ℓ−r

Dr ×D2n−r ,

Σr+1 = Σr+1/2 ∪Mr+1/2
W+

r = Σr+1/2 ∪
⋃

ℓ+
r+1

Sr×D2n−r−1

⋃

ℓ+r+1

Dr+1 ×D2n−r−1 ,

Ω−
r = Σr × I = (Σr ∪Mr W

−
r )× I ∪⋃

ℓ−r

Sr×D2n−r

⋃

ℓ−r

Dr+1 ×D2n−r ,

Ω+
r = Σr+1 × I = (W+

r ∪Mr+1
Σr+1)× I ∪ ⋃

ℓ+
r+1

Sr×D2n−r

⋃

ℓ+r+1

Dr+1 ×D2n−r .

(i) The homology groups are such that

Hn(Σ) = Hn(Σ−1) = Hn(Σ−1/2) = . . . = Hn(Σn−1) ,

Hn(Σn+1) = Hn(Σn+3/2) = . . . = Hn(Σ2n) = Hn(Σ
′) ,

so that the (−1)n-symmetric intersection forms are given by

(Fn(Σ), B(Σ)) = (Fn(Σ−1), B(Σ−1)) = (Fn(Σ−1/2), B(Σ−1/2))

= . . . = Fn(Σn−1), B(Σn−1)) ,

(Fn(Σn+1), B(Σn+1)) = (Fn(Σn+3/2), B(Σn+3/2))

= . . . = (Fn(Σ2n, B(Σ2n)) = (Fn(Σ
′), B(Σ′)) .
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(ii) For a relative cobordism with an index n splitting

(Ωn−1; Σn−1,Σn,Wn−1;Mn−1,Mn)

= (Ω−
n−1; Σn−1,Σn−1/2,W

−
n−1;Mn−1,Mn−1/2) ∪Σn−1/2

(Ω+
n−1; Σn−1/2,Σn,W

+
n−1;Mn−1/2,Mn)

we have

W−
n−1 = Mn−1 × I ∪ ⋃

ℓ−
n−1

Sn−2×Dn+1

⋃

ℓ−n−1

Dn−1 ×Dn+1

= Mn−1/2 × I ∪ ⋃

ℓ
−

n−1

Dn−1×Sn

⋃

ℓ−n−1

Dn−1 ×Dn+1 ,

W+
n−1 = Mn−1/2 × I ∪⋃

ℓ+n

Sn−1×Dn

⋃

ℓ+n

Dn ×Dn

= Mn × I ∪⋃

ℓ+n

Dn×Sn−1

⋃

ℓ+n

Dn ×Dn ,

Σn−1 = Σn−1/2 ∪Mn−1/2
W−

n−1 = Σn−1/2 ∪
⋃

ℓ
−

n−1

Dn−1×Sn

⋃

ℓ−n−1

Dn−1 ×Dn+1 ,

Σn = Σn−1/2 ∪Mn−1/2
W+

n−1 = Σn−1/2 ∪
⋃

ℓ+n

Sn−1×Dn

⋃

ℓ+n

Dn ×Dn ,

Ω−
n−1 = Σn−1 × I = (Σn−1 ∪Mn−1

W−
n−1)× I ∪ ⋃

ℓ−
n−1

Sn−1×Dn+1

⋃

ℓ−n−1

Dn ×Dn+1 ,

Ω+
n−1 = Σn × I = (W+

n−1 ∪Mn Σn)× I ∪⋃

ℓ+n

Sn−1×Dn+1

⋃

ℓ+n

Dn ×Dn+1 .

There is defined a commutative braid of exact sequences

Zℓ−n−1

!!❉
❉❉

❉❉
❉❉

❉❉

$$
Hn(Σn)

##●
●●

●●
●●

●●

$$
Zℓ+n

Hn(Σn−1/2)

::✈✈✈✈✈✈✈✈✈✈

$$■
■■

■■
■■

■■
Hn(Ωn−1)

??���������

��❅
❅❅

❅❅
❅❅

❅

0

<<②②②②②②②②②

::
Hn(Σn−1)

;;✈✈✈✈✈✈✈✈✈

<< 0

The intersection form of Σn−1/2 is a rank (ℓ−, 0) enlargement of the intersection form of
Σn−1

(Fn(Σn−1/2), B(Σn−1/2)) = (Fn(Σn−1)⊕ L−
n−1,

(
B(Σn−1) 0

0 0

)

)

and the intersection form of Σn is a rank (0, ℓ+) enlargement of the intersection form of
Σn−1/2

(Fn(Σn), B(Σn)) = (Fn(Σn−1/2)⊕ L+
n ,

(
B(Σn−1/2) An

(−1)nA∗
n En

)

)

with

L−
n−1 = im(Zℓ−n−1) = ker(Fn(Σn−1/2) → Fn(Σn−1)) ⊆ Fn(Σn−1/2) ⊆ Fn(Σn) ,

(L+
n )

∗ = im((Zℓ+n )∗) = ker(Fn(Σn)
∗ → Fn(Σn−1/2)

∗) ⊆ Fn(Σn)
∗ = Fn(Σn)
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f.g. free Z-modules such that dimL−
n−1 6 ℓ−n−1, dimL+

n 6 ℓ+n , for some Z-module morphism

An =

(
Cn

Dn

)

: L+
n → Fn(Σn−1/2)

∗ = Fn(Σn−1)
∗ ⊕ (L−

n−1)
∗ ,

En = (−1)nE∗
n : L+

n → (L+
n )

∗ .

The intersection form of Σn is thus a rank (ℓ−n−1, ℓ
+
n ) enlargement of the intersection form

of Σn−1

(Fn(Σn), B(Σn)) = (Fn(Σn−1)⊕ L−
n−1 ⊕ L+

n ,





B(Σn−1) 0 Cn

0 0 Dn

(−1)nC∗
n (−1)nD∗

n En



) .

The Z-module morphism Dn : L+
n → (L−

n−1)
∗ is related to the boundary map

d : Hn(W
+
n−1,Mn−1/2) = Zℓ+n → Hn−1(W

−
n−1,Mn−1) = Zℓ−n−1

by a commutative diagram

Zℓ−n−1

d∗

��

## ##❋
❋❋

❋❋
❋❋

❋❋
❋

// Fn(Σn)

B(Σn)

��

L−
n−1

::

::✈✈✈✈✈✈✈✈✈

D∗
n

��
(L+

n )
∗
$$

$$■
■■

■■
■■

■■
■

Zℓ+n

;; ;;✇✇✇✇✇✇✇✇✇
// Fn(Σn)

Consider the following conditions

(1) (Wn−1;Mn−1,Mn) is an H-cobordism,
(2) d is an isomorphism,
(3) Dn is an isomorphism,
(4) the intersection form (Fn(Σn), B(Σn)) is an H-enlargement of the intersection form

(Fn(Σn−1), B(Σn−1)).

(1) is equivalent to (2). (3) is equivalent to (4). If (1) holds and

dimZ L
−
n−1 = dimZ L

+
n

then (3) holds. If the Z-module morphisms Zℓ−n−1 → L−
n−1, Z

ℓ+n → (L+
n )

∗ are isomorphisms
then (1) is equivalent to (3). If (1) holds and (Fn(Σn), B(Σn)) is nonsingular then (3) holds.
(iii) The reverse of the (2n+1)-dimensional relative cobordism with an index n+1 splitting

(Ωn; Σn,Σn+1,Wn;Mn,Mn+1)

= (Ω−
n ; Σn,Σn+1/2,W

−
n ;Mn,Mn+1/2) ∪ (Ω+

n ; Σn+1/2,Σn+1,W
+
n ;Mn+1/2,Mn+1)

is a (2n+1)-dimensional relative cobordism (Ωn; Σn+1,Σn,Wn;Mn+1,Mn) with an index n
splitting, so (ii) applies, showing that (Fn(Σn), B(Σn)) is also a rank (ℓ+n+1, ℓ

−
n ) enlargement

of (Fn(Σn+1), B(Σn+1))

(Fn(Σn), B(Σn)) = (Fn(Σn+1)⊕ L+
n+1 ⊕ L−

n ,





B(Σn+1) 0 Cn+1

0 0 Dn+1

(−1)nC∗
n+1 (−1)nD∗

n+1 En+1



) .
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Example 3.4.3. Suppose given a (2n+1)-dimensional relative cobordism with an index n
splitting

(Ωn−1; Σn−1,Σn,Wn−1;Mn−1,Mn)

= (Ω−
n−1; Σn−1,Σn−1/2,W

−
n−1;Mn−1,Mn−1/2) ∪ (Ω+

n−1; Σn−1/2,Σn,W
+
n−1;Mn−1/2,Mn)

as in Theorem 3.4.2. Suppose that

(Wn−1;Mn−1,Mn) ∼= Mn−1 × (I; {0}, {1})

with

d = 1 : Zℓ+n = Z → Zℓ−n−1 = Z ,

so that Σn is obtained from Σn−1 by a surgery on Sn−1×Dn+1 ⊂ Σn−1\Mn−1. Suppose also
that Mn−1 = S2n−1, so that the (−1)n-symmetric intersection forms (Fn(Σn−1), B(Σn−1)),
(Fn(Σn), B(Σn)) are nonsingular. Let α ∈ Hn(Σn) be the homology class of Dn×Sn ⊂ Σn,
the image of the generator 1 ∈ Hn+1(Ωn−1,Σn) = Z. If α is of finite order then

(Fn(Σn−1), B(Σn−1)) = (Fn(Σn), B(Σn))

by Theorem 3.4.2 (ii), exactly as in Levine [Le2, §6], with

dimZ L
−
n−1 = dimZ L

+
n = 0 .

If α is of infinite order then

(Fn(Σn), B(Σn)) = (Fn(Σn−1)⊕ Z⊕ Z,





B(Σn−1) 0 Cn

0 0 1
(−1)nC∗

n (−1)n En



)

is an H-enlargement of (Fn(Σn−1), B(Σn−1)) by Theorem 3.4.2 (ii), exactly as in Levine
[Le2, §7], with

dimZ L
−
n−1 = dimZ L

+
n = 1 .

Example 3.4.4. Let Γ = (Ω;Σ,Σ′,W ;M,M ′) be a split (2n + 1)-dimensional relative
cobordism, with Γ = Γ− ∪ Γ+ the union of a left and a right product cobordism

Γ− = (Ω−; Σ,Σ′′,W−;M,M ′′) , Γ+ = (Ω+; Σ′,Σ′′,W+;M ′′,M ′) .

For simplicity assume that Ω,Σ,Σ′,W are all (n − 1)-connected, so that M,M ′ are also
(n − 1)-connected. We refer to Ranicki [Ra2, §§1.6,1.7] for the glueing of forms using
boundary formations. Write the (−1)n-symmetric intersection forms as

(F,B) = (Fn(Σ), B(Σ)) , (F ′, B′) = (Fn(Σ
′), B(Σ′)) , (F ′′, B′′) = (Fn(Σ

′′), B(Σ′)) ,

(G−, C−) = (Fn(W
−), B(W−)) , (G+, C+) = (Fn(W

+), B(W+)) ,

(G,C) = (Fn(W ), B(W )) .

The corresponding boundary (−1)n−1-symmetric formations are such that

∂(F,B) ⊕ ∂(F ′′−, B′′) ≃ ∂(G−, C−) , ∂(F ′′, B′′)⊕ ∂(F ′,−B′) ≃ ∂(G+, C+) ,

∂(F,B) ⊕ ∂(F ′,−B′) ≃ ∂(G,C) ,

and there are defined isomorphisms of (−1)n-symmetric forms

(F,B) ∼= (F ′′, B′′) ∪ (G−, C−) , (F ′, B′) ∼= (F ′′, B′′) ∪ (G+, C+) ,

(G,C) ∼= (G−, C−) ∪ (G+, C+) .

The nonsingular (−1)n-symmetric intersection form of the geometric union

∂Ω = (Σ ⊔ −Σ′) ∪∂ W
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is the algebraic union

(Fn(∂Ω), B(∂Ω)) = ((F,B)⊕ (F ′, B′)) ∪∂ (G,C)

with lagrangian L = ker(Fn(∂Ω) → Fn(Ω)), such that

(F ′′, B′′) = (ker(F ⊕ F ′ → L∗), (B ⊕−B′)|) .

The (n−1)-connected (2n−1)-dimensional manifoldsM,M ′,M ′′ correspond to the bound-
ary (−1)n-symmetric formations ∂(F,B), ∂(F ′, B′), ∂(F ′′, B′′) respectively, by the odd-
dimensional algebraic analogue of Remark 1.3.2 .

4. The cobordism of algebraic Poincaré complexes

We now apply the algebraic theory of surgery on symmetric Poincaré complexes of [Ra1]
to obtain algebraic half-handle decompositions. The main result of this section is the
Algebraic Poincaré Splitting Theorem 4.5.6 : up to homotopy equivalence every relative
cobordism of symmetric Poincaré pairs is split, i.e. the union of a left product and a right
product. This will be used in Theorem 4.7.1 below to prove that a relative cobordism
(Ω;Σ0,Σ1,W ;M0,M1) has a half-handle decomposition on the chain level, and in Theorem
6.2.6 that a relative cobordism of codimension 2 embeddings has an embedded half-handle
decomposition on the chain level.

4.1. The Q-groups. Let R be a ring with an involution R→ R; a 7→ ā. In our applications
either Z ⊆ R ⊆ R with the identity involution, or R = C with the complex conjugation
involution.

Regard a left R-module as a right R-module by

F ×R→ F ; (x, a) 7→ āx .

The tensor product over R of (left) R-modules F,G is the Z-module

F ⊗R G = F ⊗Z G/{ax⊗ y − x⊗ āy |x ∈ F, y ∈ G, a ∈ R} .

For any R-modules F,G there are defined a transposition isomorphism

TF,G : F ⊗R G→ G⊗R F ; x⊗ y 7→ y ⊗ x .

The dual of an R-module F is the R-module F ∗ = HomR(F,R) with

R× F ∗ → F ∗ ; (a, f) 7→ (x 7→ f(x)ā) .

If F is f.g. free then so is F ∗, and the natural R-module morphism

F → F ∗∗ ; x 7→ (f 7→ f(x))

is an isomorphism, which will be used to identify F ∗∗ = F .
For any R-modules F,G there is defined a Z-module morphism

F ⊗R G→ HomR(F
∗, G) ; x⊗ y 7→ (f 7→ f(x)(y)) .

This morphism is an isomorphism if F is f.g. projective, in which case it will be used as an
identification.

The duality morphism defined for any R-modules F,G by

DF,G : HomR(F,G) → HomR(G
∗, F ∗) ; f 7→ (f∗ : g 7→ (x 7→ g(f(x))))

is an isomorphism for f.g. projective F,G, with

DF,G = TF ∗,G : HomR(F,G) = F ∗ ⊗R G→ HomR(G
∗, F ∗) = G⊗R F

∗ .

Let W be the standard free Z[Z2]-module resolution of Z

. . . // W3 = Z[Z2]
1−T // W2 = Z[Z2]

1+T // W1 = Z[Z2]
1−T // W0 = Z[Z2] // Z .
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The symmetric Q-groups of a f.g. free R-module chain complex C are defined by

Qm(C) = Hm(HomZ[Z2](W,C ⊗R C)) (m > 0) .

An element φ ∈ Qm(C) is represented by a sequence of higher chain homotopies φs+1 : φs ≃
Tφs (s > 0) with

T : HomR(C
p, Cq) → HomR(C

q, Cp) ; θ 7→ (−1)pqθ∗ .

Thus

φs : Cr = C∗
r = HomR(Cr, R) → Cm−r+s

with
dφs + (−1)rφsd

∗ + (−1)m−r+s−1(φs−1 + (−1)sTφs−1) = 0 :

Cm−r+s−1 → Cr (s > 0, φ−1 = 0) .

In particular, there is defined an R-module chain map

φ0 : Cm−∗ = HomR(C,R)m−∗ → C

with Cm−∗ the dual f.g. free R-module chain complex defined by

dCm−∗ = (−1)rd∗ : (Cm−∗)r = Cm−r → (Cm−∗)r−1 = Cm−r+1 .

Proposition 4.1.1. ([Ra1, Prop.I.1.4]) The Q-groups are not additive with respect to the
direct sum. The Q-groups of a direct sum given by

Qm(C ⊕ C ′) = Qm(C)⊕Qm(C ′)⊕Hm(C ⊗R C
′) .

The algebraic mapping cone of an R-module chain map f : C → D is the R-module chain
complex C(f) with

dC(f) =

(
dD (−1)r−1f
0 dC

)

: C(f)r = Dr ⊕ Cr−1 → C(f)r−1 = Dr−1 ⊕Cr−2 .

As usual, the relative homology R-modules are defined by

H∗(f) = H∗(C(f))

with an exact sequence

. . . // Hm+1(C)
f∗ // Hm+1(D) // Hm+1(f) // Hm(C) // . . . .

An R-module chain map f : C → D induces a Z[Z2]-module chain map f⊗f : C⊗RC →
D ⊗R D and hence a Z-module chain map

f% : HomZ[Z2](W,C ⊗R C) → HomZ[Z2](W,D ⊗R D)

inducing a long exact sequence of Q-groups

. . . // Qm+1(C)
f%

// Qm+1(D) // Qm+1(f) // Qm(C) // . . .

withQm+1(f) = Hm+1(f
%) the relative symmetric Q-groups. An element (δφ, φ) ∈ Qm+1(f)

is represented by an element φ ∈ Qm(C), and higher chain homotopies δφs : Dr →
Dm−r+s+1 (s > 1) such that

fφsf
∗ = dDδφs + (−1)rδφsd

∗
D + (−1)m+s(δφs−1 + (−1)sTδφs−1) :

Dm−r+s → Dr (s > 0, δφ−1 = 0) .

In particular, there is defined a chain homotopy

δφ0 : fφ0f
∗ ≃ 0 : Dm−∗ → D .
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Proposition 4.1.2. ([Ra1, Prop I.1.1], [BR, Prop. 18])
(i) The Q-groups are chain homotopy invariant: if f : C → D is an R-module chain
equivalence then the induced morphisms f% : Q∗(C) → Q∗(D) are isomorphisms, and
Q∗(f) = 0.
(ii) The Q-groups of C(f) and the relative Q-groups of f are related by an exact sequence

· · · → Hm(C ⊗R C(f)) → Qm(f) → Qm(C(f)) → Hm−1(C ⊗R C(f)) → . . .

with

Qm(f) → Qm(C(f)) ; (δφ, φ) 7→ δφ/φ , (δφ/φ)s =

(
δφs 0

(−1)n−r−sφsf
∗ (−1)n−r+sTφs−1

)

the algebraic Thom construction.

4.2. The disjoint union. The disjoint union of chain complexes is a construction akin
to (but not the same as) the direct sum, with respect to which the Q-groups are additive.
In working with the algebraic Poincaré version of a manifold cobordism (W ;M,M ′) it is
essential to deal with the Q-groups of the disjoint union C(M) ⊔ C(M ′) rather than the
Q-groups of the direct sum C(M ⊔M ′) = C(M)⊕ C(M ′), to avoid having any terms in

Hm(M ×M ′) ⊆ Qm(C(M)⊕ C(M ′)) = Qm(C(M))⊕Qm(C(M ′))⊕Hm(M ×M ′) .

The product of rings with involution R,S is the ring with involution R× S.

Definition 4.2.1. The disjoint union of an R-module F and an S-module G is

F ⊔G = F ⊕G regarded as an R× S module .

If F is a f.g. projective R-module and G is a f.g. projective S-module then F ⊔ G is a
f.g. projective R× S-module, with a natural R× S-module isomorphism

F ∗ ⊔G∗ → (F ⊔G)∗ ; (f, g) 7→ ((x, y) 7→ (f(x), g(y))) .

(However, if F,G are f.g. free of different rank then F ⊔G is not a f.g. free R×S-module.)
The functor

{f.g. projective R-modules} × {f.g. projective S-module}

→ {f.g. projective R× S-modules} ; (F,G) 7→ F ⊔G

is an equivalence of categories with involution.
We have the obvious but useful property of the disjoint union:

Proposition 4.2.2. For any R-modules F,F ′ and any S-modules G,G′ there is an identity
of Z-modules

(F ⊔G)⊗R×S (F ′ ⊔G′) = (F ⊗R F
′)⊕ (G⊗S G

′) .

We shall only be concerned with the disjoint union in the case R = S. By contrast with
the result of Proposition 4.2.2, for any R-modules F,F ′, G,G′

(F ⊕G)⊗R (F ′ ⊕G′) = (F ⊗R F
′)⊕ (G⊗R G

′)⊕ (F ⊗R G
′)⊕ (G⊗R F

′) .

The symmetric Q-groups of an R×R-module chain complex C are defined by

Qm(C) = Hm(HomZ[Z2](W,C ⊗R×R C)) .

Proposition 4.2.3. (i) The symmetric Q-groups of R × R-module chain complexes are
additive with respect to the disjoint union. For any R-module chain complexes C,C ′

Qm(C ⊔ C ′) = Qm(C)⊕Qm(C ′) .
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(ii) Given R-module chain maps f : C → D, f ′ : C ′ → D there are defined Z[Z2]-module
chain maps

(f ⊕ f ′)% : HomZ[Z2](W, (C ⊕ C ′)⊗R (C ⊕ C ′)) → HomZ[Z2](W,D ⊗R D) ,

(f ⊔ f ′)% = f% ⊕ f ′% : HomZ[Z2](W, (C ⊗R C)⊕ (C ′ ⊗R C
′)) → HomZ[Z2](W,D ⊗R D)

with a commutative braid of exact sequences

Hm+1(C ⊗R C
′)

''◆◆
◆◆◆

◆◆
◆◆◆

◆

0

((
Qm(C)⊕Qm(C ′)

''❖❖
❖❖

❖❖
❖❖

❖❖
❖

(f ⊔ f ′)%

''
Qm(D)

Qm+1(f ⊔ f ′)

77♦♦♦♦♦♦♦♦♦♦♦

''❖❖
❖❖

❖❖
❖❖

❖❖
❖

Qm(C ⊕ C ′)

(f ⊕ f ′)%
88qqqqqqqqqq

&&▲▲
▲▲

▲▲
▲▲

▲▲

Qm+1(D)

77♣♣♣♣♣♣♣♣♣♣♣

66
Qm+1(f ⊕ f ′)

77♣♣♣♣♣♣♣♣♣♣♣

77
Hm(C ⊗R C

′)

Proof. Immediate from the identity

(C ⊔ C ′)⊗R×R (C ⊔C ′) = (C ⊗R C)⊕ (C ′ ⊗R C
′) .

�

It is easy to extend the disjoint union construction to k-fold disjoint unions, for all k > 2.
Define the k-fold product ring

∏

k

R = R×R× · · · ×R

and given R-modules F1, F2, . . . , Fk define the k-fold disjoint union
∏

k R-module

F1 ⊔ F2 ⊔ · · · ⊔ Fk = F1 ⊕ F2 ⊕ · · · ⊕ Fk .

For R-module chain complexes C1, C2, . . . , Ck there is then defined a Z[Z2]-module chain
complex

(C1⊔C2⊔· · ·⊔Ck)⊗∏
k R (C1⊔C2⊔· · ·⊔Ck) = (C1⊗RC1)⊕ (C2⊗RC2)⊕· · ·⊕ (Ck⊗RCk)

such that

Q∗(C1 ⊔ C2 ⊔ · · · ⊔ Ck) = H∗(HomZ[Z2](W, (C1 ⊔C2 ⊔ · · · ⊔ Ck)⊗∏
k R (C1 ⊔ C2 ⊔ · · · ⊔ Ck)))

= Q∗(C1)⊕Q∗(C2)⊕ · · · ⊕Q∗(Ck) .

4.3. Symmetric Poincaré complexes, pairs and triads. Anm-dimensional symmetric
complex (C,φ) over R is a bounded f.g. projective R-module chain complex C together with
an element φ ∈ Qm(C). The symmetric complex (C,φ) is Poincaré if the R-module chain
map φ0 : C

m−∗ → C is a chain equivalence. In the next subsection we recall from [Ra1] how
an m-dimensional manifold M determines an m-dimensional symmetric Poincaré complex
(C(M), φ) over Z.

A homotopy equivalence of symmetric complexes f : (C,φ) → (C ′, φ′) is a chain equiva-

lence f : C → C ′ such that f%(φ) = φ′ ∈ Qm(C ′).
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Example 4.3.1. Given a f.g. free R-module F and n > 0 let C be the 2n-dimensional f.g.
free R-module chain complex defined by

Cr =

{

F ∗ if r = n

0 otherwise .

Then
Q2n(C) = ker(1− (−1)nT : HomR(F,F

∗) → HomR(F,F
∗)) ,

so that a 2n-dimensional symmetric (Poincaré) complex (C,φ) is the same as a (nonsingular)
(−1)n-symmetric form (F,B), with B = φ0. A homotopy equivalence of such complexes is
the same as an isomorphism of forms.

An (m + 1)-dimensional symmetric pair (f : C → D, (δφ, φ)) over R is an R-module
chain map f : C → D together with an element (δφ, φ) ∈ Qm+1(f). The symmetric pair is
Poincaré if the chain map Dm+1−∗ → C(f) given by

(
δφ0
φ0f

∗

)

: Dm−r+1 → C(f)r = Dr ⊕ Cr−1

is a chain equivalence. We refer to [Ra2, p.45] for the homotopy equivalence of symmet-
ric pairs. We refer to [Ra1, Prop.I.3.4] for the proof that the algebraic Thom complex
construction

(f : C → D, (δφ, φ)) 7→ (C(f), δφ/φ)

defines a one-one correspondence between the homotopy equivalence classes of (m + 1)-
dimensional symmetric Poincaré pairs and (m+ 1)-dimensional symmetric complexes.

An (m+1)-dimensional symmetric (Poincaré) cobordism is an (m+1)-dimensional sym-
metric (Poincaré) pair of the type

(f ⊔ f ′ : C ⊔ C ′ → D, (δφ, φ ⊔ −φ′) ∈ Qm+1(f ⊔ f ′)) .

In [Ra1, §I.3] the relative Q-groupsQm+1(f⊕f ′) were used instead of Qm+1(f⊔f ′); although
the difference is slight, it is significant here. In the following subsection we recall how a
cobordism of manifolds determines a cobordism of symmetric Poincaré complexes.

Definition 4.3.2. The union of chain complexes D,D′ along chain maps f : C → D,
f ′ : C → D′ is the chain complex

D ∪C D
′ = C(

(
f
f ′

)

: C → D ⊕D′) .

We refer to [Ra2, §1.7] for the construction of the union of adjoining (m+1)-dimensional
symmetric Poincaré cobordisms, the (m+ 1)-dimensional symmetric Poincaré cobordism

(fC ⊔ fC′ : C ⊔ C ′ → D, (δφ, φ ⊔ −φ′)) ∪ (f ′C′ ⊔ f ′C′′ : C ′ ⊔ C ′′ → D′, (δφ′, φ′ ⊔ −φ′′))

= (f ′′C ⊔ f ′′C′′ : C ⊔ C ′′ → D′′, (δφ′′, φ ⊔−φ′′))

with D′′ = D ∪C′ D′.
The theory of chain complex triads is developed in [Ra2, §§1.3,2.1].

Definition 4.3.3. A chain complex triad Γ is a commutative square of R-module chain
complexes and chain maps

B //

��

E

��

Γ

C // D
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In the general theory Γ is a chain homotopy commutative diagram, with an explicit chain
homotopy, but we only consider the commutative case here.

The homology R-modules of Γ are defined by

H∗(Γ) = H∗(C(Γ))

with C(Γ) = C(E ∪B C → D), to fit into the exact sequence

· · · → Hm(E ∪B C) → Hm(D) → Hm(Γ) → Hm−1(E ∪B C) → . . . .

We shall also use C(Γ) to denote the R×R-module chain complex

C(Γ) = C(C(B → E ⊔ C) → D) .

The symmetric Q-groups of Γ

Q∗(Γ) = H∗(HomZ[Z2](W,C(Γ)⊗R×R C(Γ)))

fit into the exact sequence

· · · → Qm(B → E ⊔ C) → Qm(D) → Qm(Γ) → Qm−1(B → E ⊔C) → . . . .

An (m+ 2)-dimensional symmetric triad (Γ,Φ) over R is a triad Γ of bounded f.g. pro-
jective R-module chain complexes, together with an element Φ ∈ Qm+2(Γ). The symmetric
triad is Poincaré if Φ determines abstract Poincaré-Lefschetz duality isomorphisms

Hm−∗(B) ∼= H∗(B) , Hm+1−∗(B → C) ∼= H∗(C) ,

Hm+1−∗(B → E) ∼= H∗(E) , Hm+2−∗(C → D) ∼= H∗(E → D) .

An (m + 2)-dimensional relative symmetric Poincaré cobordism (Γ,Φ) is an (m + 2)-
dimensional symmetric Poincaré triad with Γ of the form

B ⊔B′ //

��

E

��

Γ

C ⊔C ′ // D

with

Φ ∈ Qm+2(Γ) = Hm+2(HomZ[Z2](W,C(Γ)⊗R×R C(Γ))) .

There are defined abstract Poincaré-Lefschetz duality isomorphisms

Hm−∗(B) ∼= H∗(B) , Hm−∗(B′) ∼= H∗(B
′) ,

Hm+1−∗(B → C) ∼= H∗(B
′ → C) , Hm+1−∗(B → E) ∼= H∗(B

′ → E) ,

Hm+2−∗(C ⊕C ′ → D) ∼= H∗(E → D) .

This is just a cobordism of symmetric Poincaré pairs in the sense of [Ra2, §2.1], with a
corresponding union construction. In the following subsection we recall how an (m + 2)-
dimensional relative cobordism of manifolds determines an (m + 2)-dimensional relative
symmetric Poincaré cobordism over Z.
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4.4. The symmetric construction. We refer to [Ra1, §II.1] for the symmetric construc-
tion on a space X, the natural transformation induced by the Alexander-Whitney-Steenrod
diagonal chain approximation

φX : H∗(X) → Q∗(C(X))

with R = Z, such that for any homology class [X] ∈ Hm(X)

φX [X]0 = [X] ∩ − : C(X)m−∗ → C(X) .

In general, X is an arbitrary space and C(X) is the singular Z-module chain complex. We
shall only be concerned with spaces X which are finite CW complexes, with C(X) the
cellular chain complex.

Example 4.4.1. An m-dimensional manifold M determines an m-dimensional symmetric
Poincaré complex (C(M), φM [M ] ∈ Qm(C(M))), with [M ] ∈ Hm(M) the fundamental class
of M and φM [M ]0 = [M ] ∩− : C(M)m−∗ → C(M) the Poincaré duality chain equivalence.

We shall abbreviate φM [M ] to φM .
There is also a relative symmetric construction for a map of spaces f : X → Y

φf : H∗(f) → Q∗(f : C(X) → C(Y ))

such that the symmetric construction on the geometric mapping cone C(f) = X × I ∪f Y
is given by the composite with the algebraic Thom construction

φC(f) : H∗(C(f)) = H∗(f)
φf // Q∗(f)

// Q∗(C(C(f))) = Q∗(C(f : C(X) → C(Y ))) .

For the inclusion of a subspace f : X ⊆ Y and a homology class [Y ] ∈ Hm+1(f) =
Hm+1(Y,X) with image [X] = ∂[Y ] ∈ Hm(X), we have a relative Q-group class

φf [Y ] = (φY [Y ], φX [X]) ∈ Qm+1(f)

with image

φY/X [Y ] = φY [Y ]/φX [X] ∈ Qm+1(C(f)) = Qm+1(C(Y,X)) .

Example 4.4.2. An (m + 1)-dimensional manifold with boundary (Σ,M) determines an
(m+ 1)-dimensional symmetric Poincaré pair

(i : C(M) → C(Σ), (φΣ, φM ) ∈ Qm+1(i))

with i : M → Σ the inclusion, and with a Poincaré-Lefschetz chain equivalence C(i)m−∗ ≃
C(Σ).

In order to deal with cobordisms we need to know the symmetric construction on a
disjoint union:

Proposition 4.4.3. The symmetric construction on a disjoint union of spaces X ⊔ Y is
the disjoint union of the symmetric constructions on X and Y

φX⊔Y = φX ⊔ φY : H∗(X ⊔ Y ) = H∗(X)⊕H∗(Y )

φX ⊕ φY // Q∗(C(X) ⊔ C(Y )) = Q∗(C(X)) ⊕Q∗(C(Y ))

⊆ Q∗(C(X ⊔ Y )) = Q∗(C(X)⊕ C(Y )) = Q∗(C(X)) ⊕Q∗(C(Y ))⊕H∗(X × Y ) .
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Example 4.4.4. An (m+ 1)-dimensional absolute cobordism (W ;M0,M1) determines an
(m+ 1)-dimensional symmetric Poincaré pair

(i : C(M0) ⊔C(M1) → C(W ), (φW , φM0
⊔ −φM1

) ∈ Qm+1(i))

with i :M0 ⊔M1 →W the inclusion.

There is also a triad symmetric construction φΓ : H∗(Γ) → Q∗(C(Γ)) for a commutative
square of spaces and maps Γ.

Example 4.4.5. An (m+2)-dimensional relative manifold cobordism (Ω;Σ0,Σ1,W ;M0,M1)
determines an (m+ 2)-dimensional symmetric Poincaré triad

(C(Γ), φΓ) =

( C(M0) ⊔ C(M1) //

��

C(W )

��
C(Σ0) ⊔ C(Σ1) // C(Ω)

,

φM0
⊔−φM1

//

��

φW

��
φΣ0

⊔−φΣ1
// φΩ

)

.

4.5. The Algebraic Poincaré Splitting Theorem. We shall now prove a splitting the-
orem for relative cobordisms of symmetric Poincaré pairs which is an algebraic converse
to the following construction of split relative cobordisms of manifolds with boundary. We
start by recalling the standard thickening construction of a manifold with boundary.

Definition 4.5.1. (i) An (m + 1)-dimensional trinity (W1,W2,W3;M0,M1,M2,M3) is a
stratified set W1 ∪W2 ∪W3 which is the union at M0 of (m + 1)-dimensional cobordisms
(Wk;Mk,M0) (k = 1, 2, 3).

•

M0

•M1 •M2

W3

W2W1

M3

(ii) The trinity has strata M0 ⊔ M1 ⊔ M2 ⊔ M3 and int(W1) ⊔ int(W2) ⊔ int(W3). The
thickening of the trinity is the (m+2)-dimensional manifold with boundary (Ω, ∂Ω) defined
by choosing disjoint closed arcs A1, A2, A3 ⊂ S1 and setting

Ω = (M0 ×D2) ∪M0×(A1⊔A2⊔A3) ((W1 ×A1) ⊔ (W2 ×A2) ⊔ (W3 ×A3)) ,

so that

∂Ω = (W1 ∪M0
W2) ∪ (W2 ∪M0

W3) ∪ (W1 ∪M0
W3) .
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The inclusion W → Ω is a homotopy equivalence.

W3 ×A3

M3 ×A3

W1 ×A1

M1 ×A1

W2 ×A2

M2 ×A2

M0 ×A3

M0 ×A1 M0 ×A2

M0 ×D2

W2 ∪M0
W3W1 ∪M0

W3

W1 ∪M0
W2

Remark 4.5.2. (i) Trinities first appeared in the work of Wall [Wa] on the nonadditivity
of the signature. If V is an (m + 2)-dimensional manifold with boundary expressed as a
union V = V1 ∪ V2 ∪ V3 of transverse codimension 0 submanifolds V1, V2, V3 ⊂ V then there
is defined an (m+ 1)-dimensional trinity

(W1,W2,W3;M0,M1,M2,M3) = (V2 ∩ V3, V3 ∩ V1, V1 ∩ V2;V1 ∩ V2 ∩ V3, ∅, ∅, ∅)

with thickening Ω ⊂ V such that cl.(V \Ω) ∼= V1 ⊔ V2 ⊔ V3. If m = 4k − 2 the signature of
V is given by Novikov additivity (3.3.3 (ii)) to be

σ(V ) = σ(V1) + σ(V2) + σ(V3) + σ(Ω) ∈ Z

with σ(Ω) the nonadditivity invariant (= Maslov index) determined by the three lagrangians

Lj = ker(F2k−1(M0) → F2k−1(Wj)) ⊂ F2k−1(M0) (j = 1, 2, 3)

of the (−1)-symmetric intersection form (F2k−1(M0), B(M0)) (cf. Example 3.3.4).
(ii) The thickening Ω of the 1-dimensional trinity

(W1,W2,W3;M0,M1,M2,M3) = (I, I, I; {0, 1}, ∅, ∅, ∅)

is the 2-dimensional ‘pair of pants’ cobordism, with boundary S1 ⊔ S1 ⊔ S1.

We now formalize Remark 1.3.2, that a trinity with M3 = ∅ determines a split relative
cobordism.

Proposition 4.5.3. Let (W0,W1,W2;M0,M1,M2,M3) be an (m + 1)-dimensional trinity
such that M3 = ∅, writing

(W0;M1,M0) = (W−;M,M ′′) , (W1;M2,M0) = (W+;M ′,M ′′) ,

(W2;M3,M0) = (Σ′′; ∅,M ′′) .
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•M
′′

•M •M ′

Σ′′

W+W−

Then the thickening of the trinity W− ∪ Σ′′ ∪W+ is a split (m + 2)-dimensional relative
cobordism (Ω;Σ,Σ′,W ;M,M ′) given by

Σ = W− ∪M ′′ Σ′′ , Σ′ = Σ′′ ∪M ′′ W+ ,

Ω = Σ× [0, 1/2] ∪Σ′′×{1/2} Σ
′ × [1/2, 1] , W = W− ∪M ′′×{1/2} W

+ .

Σ× {0} Σ′′ × {1/2}Ω− = Σ× [0, 1/2] Ω+ = Σ′ × [1/2, 1] Σ′ × {1}

M M ′′W− W+ M ′

W
︸ ︷︷ ︸

︷ ︸︸ ︷

Ω

Proof. By inspection. �

From now on, we shall only consider trinities with M3 = ∅.
We shall now prove that up to homotopy equivalence every relative symmetric Poincaré

cobordism is the thickening of an algebraic trinity.

Definition 4.5.4. An (m+ 1)-dimensional symmetric Poincaré trinity is defined by three
(m+ 1)-dimensional symmetric Poincaré cobordisms of the type

(C0 ⊕Ck → Dk, (δφk , φ0 ⊕−φk)) (k = 1, 2, 3) .

The thickening of the trinity is the (m + 2)-dimensional symmetric Poincaré pair (∂D →
D, (φ, ∂φ)) defined by algebraic mimicry of the thickening of a geometric trinity in Definition
4.5.1, using the glueing construction of [Ra1, p.135], with D = C(C0 → D1 ⊕D2 ⊕D3).

Again, we shall only be concerned with algebraic trinities with D3 = 0, in which case the
thickening is a split relative symmetric Poincaré cobordism, exactly as in Proposition 4.5.3.

Let (Γ,Φ) be an (m+ 2)-dimensional relative symmetric Poincaré cobordism, with

Γ =

B ⊔B′ //

��

E

��
C ⊔ C ′ // D

We can draw this as if it were a relative cobordism of manifolds:
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C C ′D

B B′E

Definition 4.5.5. (i) (Γ,Φ) is a left product if the chain map C → D is a chain equivalence,
in which case E ∪B′ C ′ → D is also a chain equivalence.
(ii) (Γ,Φ) is a right product if the chain map C ′ → D is a chain equivalence, in which case
C ∪B E → D is also a chain equivalence.
(iii) (Γ,Φ) is split if it is homotopy equivalent to the union (Γ−,Φ−) ∪ (Γ+,Φ+) of a left
product and a right product, with

Γ− =

B ⊔B′′ //

��

E−

��
C ⊔ C ′′ // D−

, Γ+ =

B′′ ⊔B′ //

��

E+

��
C ′′ ⊔ C ′ // D+

.

C C ′′D− D+ C ′

B B′′E− E+ B′

E
︸ ︷︷ ︸

︷ ︸︸ ︷

D

Theorem 4.5.6. (Algebraic Poincaré Splitting)
Every relative symmetric Poincaré cobordism (Γ,Φ) is homotopy equivalent to a split relative
cobordism

(Γ,Φ) ≃ (Γ−,Φ−) ∪ (Γ+,Φ+) ,

the thickening of an algebraic trinity.

Proof. The chain complex triads Γ−,Γ+ are defined by

C ′′ = C(C ⊕ C ′ → D)∗+1 , B
′′ = C(C ⊕ E ⊕ C ′ → D ⊕D)∗+1 ,

D− = C , E− = C(C ⊕ E → D)∗+1 , D
+ = C ′ , E+ = C(E ⊕ C ′ → D)∗+1

with

D ≃ C ∪C′′ C ′ , E ≃ E− ∪B′′ E+ , C ≃ E− ∪B′′ C ′′ , C ′ ≃ C ′′ ∪B′′ E+ .

It follows from the identity

C(Γ)⊗Z×Z C(Γ)

= C((B ⊔B′′ ⊔B′)⊗Z×Z (B ⊔B′′ ⊔B′) → (E− ⊔ C ′′ ⊔ E+)⊗Z×Z (E− ⊔ C ′′ ⊔ E+))∗−1

that

Qm+2(Γ) = Qm+1(B ⊔B′′ ⊔B′ → E− ⊔C ′′ ⊔E+) ,
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and so

Φ = Φ− ∪ Φ+ ∈ Qm+2(Γ)

for Φ− ∈ Qm+2(Γ−), Φ+ ∈ Qm+2(Γ+) determined uniquely by Φ. The (m+2)-dimensional
relative symmetric Poincaré cobordism (Γ,Φ) thus determines an algebraic trinity, consist-
ing of

(i) an (m+ 1)-dimensional symmetric Poincaré pair (B′′ → C ′′, (φC′′ , φB′′))
(ii) (m+ 1)-dimensional symmetric Poincaré cobordisms

(B ⊕B′′ → E−, (φE− , φB ⊕−φB′′)) , (B′′ ⊕B′ → E+, (φE+ , φB′′ ⊕−φB′)) .

with union (Γ,Φ).

• B
′′

•B • B′

C ′′

E+E−

�

4.6. Algebraic surgery. We recall from [Ra1, §I.4] the essentials of the algebraic theory
of surgery. An algebraic surgery on an m-dimensional symmetric Poincaré complex (C,φ)
has input an (m + 1)-dimensional symmetric pair (e : C → δC, (δφ, φ)). The trace is the
(m+ 1)-dimensional symmetric Poincaré cobordism (C ⊔ C ′ → δC ′, (0, φ ⊔−φ′)) with

dC′ =





dC 0 (−1)m+1φ0e
∗

(−1)re dδC (−)rδφ0
0 0 (−1)rd∗δC



 :

C ′
r = Cr ⊕ δCr+1 ⊕ δCm−r+1 → C ′

r−1 = Cr−1 ⊕ δCr ⊕ δCm−r+2 ,

dδC′ =

(
dC (−1)m+1φ0e

∗

0 (−1)rd∗δC

)

: δC ′
r = Cr ⊕ δCm−r+1 → δC ′

r−1 = Cr−1 ⊕ δCm−r+2 .

The effect of the algebraic surgery is them-dimensional symmetric Poincaré complex (C ′, φ′)
cobordant to (C,φ). By definition, the surgery is of rank ℓ and index r + 1 if

δCs =

{

Zℓ for s = m− r

0 for s 6= m− r .

An (m+1)-dimensional manifold cobordism (W ;M0,M1) determines an (m+1)-dimensional
symmetric Poincaré cobordism

Γ = (C(M0) ⊔ C(M1) → C(W ), (φW , φM0
⊔ −φM1

))

such that (C(M1), φM1
) is homotopy equivalent to the effect of algebraic surgery on (C(M0), φM0

)
by the symmetric pair (C(M0) → C(W,M1), (φW /φM1

, φM0
)). If (W ;M0,M1) is the trace

of ℓ index r + 1 surgeries on
⋃

ℓ

Dr+1 × Dm−r ⊂ M0 then Γ is the trace of an algebraic

surgery of rank ℓ and index r + 1.
By [Ra1, Prop.I.4.3] every algebraic surgery is composed of a sequence of surgeries of

varying ranks, and increasing index, by analogy with the Thom-Milnor geometric handle-
body theorem (1.2.1).
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There is a corresponding algebraic theory of relative surgery on algebraic Poincaré pairs.
Given an (m + 1)-dimensional symmetric Poincaré pair (f : C → D, (δφ, φ)) and an input
(m+ 2)-dimensional symmetric triad

(
C

e //

f
��

δC

δf
��

D
g

// δD

,

φ //

��

δφ

��
φδ // δφδ

)

the effect of the algebraic relative surgery is an (m + 1)-dimensional symmetric Poincaré
pair (f ′ : C ′ → D′, (δφ′, φ′)) with

f ′ =







f 0 0
0 δf 0
0 0 0
0 0 1







:

C ′
r = Cr ⊕ δCr+1 ⊕ δCm−r+1 → D′

r = Dr ⊕ δDr+1 ⊕ δDm−r+2 ⊕ δCm−r+1 ,

dD′ =







dD 0 (−1)m+2φδ0g
∗ 0

(−1)re dδD (−)rδφδ0 0
0 0 (−1)rd∗δD 0
0 0 δf∗ (−1)rd∗δC







:

D′
r = Dr ⊕ δDr+1 ⊕ δDm−r+2 ⊕ δCm−r+1 → D′

r−1 = Dr−1 ⊕ δDr ⊕ δDm−r+3 ⊕ δCm−r+2

The algebraic effect of a half-surgery on a manifold with boundary is an algebraic surgery
on a symmetric Poincaré pair, as follows. (See also [BNR1, Section2]).

As in Example 4.4.5 an (m+2)-dimensional relative manifold cobordism (Ω;Σ0,Σ1,W ;M0,M1)
determines an (m+ 2)-dimensional relative symmetric Poincaré cobordism

(
C(M0) ⊔ C(M1) //

��

C(W )

��
C(Σ0) ⊔ C(Σ1) // C(Ω)

,

φM0
⊔ −φM1

//

��

φW

��
φΣ0

⊔ −φΣ1
// φΩ

)

.

The (m+1)-dimensional symmetric Poincaré pair (C(M1) → C(Σ1), (φΣ1
, φM1

)) is obtained
from (C(M0) → C(Σ0), (φΣ0

, φM0
)) by a sequence of algebraic half-surgeries, corresponding

to a relative algebraic surgery on the (m+ 2)-dimensional symmetric triad

(
C(M0) //

��

C(W,M1)

��
C(Σ0) // C(Ω,Σ1)

,

φM0
//

��

φW /φM1

��
φΣ0

// φΩ/φΣ1

)

(non-Poincaré in general) with

C(M1)r = C(M0)r ⊕ C(W,M1)r+1 ⊕ C(W,M1)
m+1−r ,

C(Σ1)r = C(Σ0)r ⊕ C(Ω,Σ1)r+1 ⊕ C(Ω,Σ1)
m+2−r ⊕ C(W,M1)

m+1−r .

If (Ω;Σ0,Σ1,W ;M0,M1) is a boundary product then C(W,M1) is chain contractible. If
(Ω;Σ0,Σ1,W ;M0,M1) is a left product then C(W,M1) → C(Ω,Σ1) is a chain equiva-
lence. If (Ω;Σ0,Σ1,W ;M0,M1) is a right product then C(Ω,Σ1) is chain contractible. If
C(W,M1)m−r = Zℓr then (C(M1), φM1

) is obtained from (C(M0), φM0
) by a sequence of
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algebraic surgeries, with ℓr index r + 1 surgeries on
⋃

ℓr

Sr ×Dm−r ⊂ result of surgeries of index 6 r on M0 (−1 6 r 6 m) .

Furthermore, if C(Ω,Σ1)m+1−r = Zkr then (C(Σ1), φΣ1
) is obtained from (C(Σ0 ∪M0

W ), φΣ0∪M0
W ) by a sequence of algebraic surgeries, with kr index r + 1 surgeries on

⋃

kr

Sr ×Dm+1−r ⊂ result of surgeries of index 6 r on Σ0 ∪M0
W\M1 (−1 6 r 6 m+ 1) .

Let (Σ0,M0) be an (m+ 1)-dimensional manifold with boundary. Given an embedding

(
⋃

ℓ−r

Dr ×Dm−r+1,
⋃

ℓ−r

Sr−1 ×Dm−r+1) ⊂ (Σ0,M0)

there is defined a left product cobordism (Ω0; Σ0,Σ1/2,W
−;M0,M1/2) as in Proposition

1.1.5 (ii), with

Ω0 = Σ0 × I ,

(W0;M0,M1/2) = (M0 × I ∪
⋃

ℓ−r

Dr ×Dm−r+1;

M0 × {0}, cl.(M0\
⋃

ℓ−r

Sr−1 ×Dm−r+1) ∪
⋃

ℓ−r

Dr × Sm−r) ,

Σ1/2 = cl.(Σ0\
⋃

ℓ−r

Dr ×Dm−r+1) .

Given also an embedding
⋃

ℓ+r+1

Sr×Dm−r ⊂M1/2 there is defined a right product cobordism

(Ω1; Σ1/2,Σ1,W1;M1/2,M1) as in Proposition 1.1.5 (iii), with

Ω1 = Σ1 × I ,

(W1;M1/2,M1) = (M1/2 × I ∪
⋃

ℓ+r+1

Dr+1 ×Dm−r;

M1/2 × {0}, cl.(M1/2\
⋃

ℓ+r+1

Sr ×Dm−r) ∪
⋃

ℓ+r+1

Dr+1 × Sm−r−1) .

The (m+ 2)-dimensional relative cobordism

(Ω;Σ0,Σ1,W ;M0,M1) = (Ω0; Σ0,Σ1/2,W0;M0,M1/2) ∪ (Ω1; Σ1/2,Σ1,W1;M1/2,M1)

is an index r+ 1 elementary splitting (Definition 1.3.3 (i)) realizing geometrically the alge-
braic splitting of Theorem 4.5.6. The corresponding (m+ 2)-dimensional symmetric triad

(
C(M0) //

��

C(W,M1)

��
C(Σ0) // C(Ω,Σ1)

,

φM0
//

��

φW /φM1

��
φΣ0

// φΩ/φΣ1

)

has

C(W,M1) : . . . //

��

0 // Zℓ−r d∗ //

1
��

Zℓ+r+1 //

��

0 // . . .

C(Ω,Σ1) : . . . // 0 // Zℓ−r // 0 // 0 // . . .

with
C(W,M1)m−r+1 = C(Ω,Σ1)m−r+1 = Zℓ−r , C(W,M1)m−r = Zℓ+r+1 .
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For an (m + 2)-dimensional relative cobordism with a half-handle decomposition as in
1.3.3 (ii)

(Ω;Σ,Σ′,W ;M,M ′) =

m+1⋃

r=0

(Ωr; Σr,Σr+1,Wr;Mr,Mr+1)

the (m+ 2)-dimensional symmetric triad

(
C(M) //

��

C(W,M ′)

��
C(Σ) // C(Ω,Σ′)

,

φM //

��

φW/φM ′

��
φΣ // φΩ/φΣ′

)

has

C(W,M ′) : . . . //

��

Zℓ+r ⊕ Zℓ−r

(

(d+)∗ ±d∗

0 (d−)∗

)

//

(0 1)
��

Zℓ+r+1 ⊕ Zℓ−r+1 //

(0 1)
��

. . .

C(Ω,Σ′) : . . . // Zℓ−r
(d−)∗

// Zℓ−r+1 // . . .

with

C(W,M ′)m−r+1 = C(W,M)r = (C+)r ⊕ (C−)r = Zℓ+r ⊕ Zℓ−r ,

C(Ω,Σ′)m−r+1 = C(Ω,Σ ∪M W )r+1 = (C−)r = Zℓ−r .

4.7. Homological half-handle decompositions. We now study the half-handle decom-
positions of relative cobordisms. The basic idea is that a manifold determines a symmetric
Poincaré complex, a cobordism of manifolds determines a cobordism of symmetric Poincaré
complexes, and similarly for relative cobordism. In each case, the handle (or half-handle)
decompositions in topology determine symmetric Poincaré analogues in algebra. In fact,
algebraic handle and half-handle decompositions can be constructed purely algebraically,
as in :

Theorem 4.7.1. Let Γ = (Ω;Σ,Σ′,W ;M,M ′) be an (m + 2)-dimensional relative cobor-
dism.
(i) The relative cobordism of (m+ 1)-dimensional symmetric Poincaré pairs

C(Γ) =

C(M)

��

// C(W )

k
��

C(M ′)oo

��
C(Σ)

j
// C(Ω) C(Σ′)

j′
oo

is split in an essentially canonical manner, in the sense that there is a chain equivalence

C(Γ) ≃ C(Γ−) ∪ C(Γ+)
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of left and right product relative symmetric Poincaré cobordisms C(Γ−), C(Γ+) with the
algebraic properties of

C(Γ−) =

C(M)

��

// C(W−)

��

C(M ′′)oo

��
C(Σ) C(Σ) C(Σ′′)oo

C(Γ+) =

C(M ′′)

��

// C(W+)

��

C(M ′)oo

��
C(Σ′′) // C(Σ′) C(Σ′)

(even though there may not be actual left and right product cobordisms Γ− = (Ω−; Σ,Σ′′,W−;
M,M ′′), Γ+ = (Ω+; Σ′′,Σ′,W+;M ′′,M ′)). The chain complexes in C(Γ−), C(Γ+) are de-
fined by

C(Σ′′) = C((j j′) : C(Σ)⊕ C(Σ′) → C(Ω))∗+1 ,

C(M ′′) = C(

(
j k 0
0 k j′

)

: C(Σ)⊕ C(W )⊕ C(Σ′) → C(Ω)⊕ C(Ω))∗+1 ,

C(W−) = C((j k) : C(Σ)⊕C(W ) → C(Ω))∗+1 ,

C(W+) = C((k j′) : C(W )⊕ C(Σ′) → C(Ω))∗+1

with

C(Ω) ≃ C(C(Σ′′) → C(Σ)⊕ C(Σ′)) , C(W ) ≃ C(C(M ′′) → C(W−)⊕ C(W+)) ,

C(Σ) ≃ C(C(M ′′) → C(W−)⊕ C(Σ′′)) , C(Σ′) ≃ C(C(M ′′) → C(Σ′′)⊕ C(W+)) ,

C(Ω,Σ) ≃ C(W+,M ′′) , C(Ω,Σ′) ≃ C(W−,M ′′) , C(Ω,Σ ∪M W ) ≃ C(W−,M)∗−1 .

(ii) Let d : (C+, d+) → (C−, d−)∗−1 be a chain map of finite f.g. free Z-module chain
complexes such that

d : (C+, d+) ≃ C(Ω,Σ) → (C−, d−)∗−1 ≃ C(Ω,Σ ∪M W )

is in the chain homotopy class of the chain map induced by the inclusion (Ω,Σ) ⊂ (Ω,Σ∪M

W ). Then C(Γ) has an algebraic half-handle decomposition

C(Γ) =
m+1⋃

r=−1

(C(Ωr);C(Σr), C(Σr+1), C(Wr);C(Mr), C(Mr+1))

with
(C(Ωr);C(Σr), C(Σr+1), C(Wr);C(Mr), C(Mr+1))

= (C(Ω+
r );C(Σr), C(Σr+1/2), C(W−

r );C(Mr), C(Mr+1/2))

∪(C(Ω−
r );C(Σr+1/2), C(Σr+1), C(W+

r );C(Mr+1/2), C(Mr+1))

the canonical splitting given by (i), elementary of index r + 1 and rank

(ℓ−r , ℓ
+
r+1) = (dimZC

−
r ,dimZC

+
r+1) ,

with

Hq(W
−
r ,Mr) = Hq+1(Ωr,Σr ∪Mr Wr) = Hm−q+1(Ωr,Σr+1) =

{

Zℓ−r if q = r

0 if q 6= r ,

Hq(W
+
r ,Mr+1/2) = Hq(Ωr,Σr) =

{

Zℓ+r+1 if q = r + 1

0 if q 6= r + 1 .
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(iii) The relative homology groups of (W,M) are given by

H∗(W,M) = H∗+1(d : (C+, d+) → (C−, d−)∗−1)

so that (W ;M,M ′) is an H-cobordism if and only if d is a chain equivalence.
(iv) The relative homology groups of (Wr,Mr) are given by

Hq(Wr,Mr) =







ker(d : Zℓ+r+1 → Zℓ−r ) if q = r + 1

coker(d : Zℓ+r+1 → Zℓ−r ) if q = r

0 otherwise

so that (C(Wr);C(Mr), C(Mr+1)) is an H-cobordism if and only if the Z-module morphism

d : C+
r+1 = Zℓ+r+1 → C−

r = Zℓ−r is an isomorphism. In particular, if (W ;M,M ′) ∼= M ×
(I; {0}, {1}) it is possible to realize the chain map d : (C+, d+) → (C−, d−)∗−1 by an
isomorphism, and each (C(Wr);C(Mr), C(Mr+1)) is an H-cobordism.

Proof. This is a direct application of the Algebraic Poincaré Splitting Theorem 4.5.6. Every
cobordism of symmetric Poincaré pairs is the union of traces of algebraic half-surgeries. �

Remark 4.7.2. (i) In general, the algebraic splitting of Theorem 4.7.1 (i) is not realized
geometrically. For example, if Γ = (Ω; ∅, ∅, ∅; ∅, ∅) is the relative cobordism determined by a
non-empty closed (m+2)-dimensional manifold Ω there do not exist left and right product
relative cobordisms

Γ− = (Ω−; Σ,Σ′′,W−;M,M ′′) , Γ+ = (Ω+; Σ′′,Σ′,W+;M ′′,M ′)

such that Γ = Γ− ∪ Γ+, with homology groups

H∗(Σ
′′) = H∗(W

−) = H∗(W
+) = H∗+1(Ω) , H∗(M

′′) = H∗+1(Ω)⊕H∗+1(Ω) .

(ii) See Example 3.3.4 below for even m = 2n (resp. 3.4.4 for odd m = 2n+1) for the alge-
braic splitting of Theorem 4.7.1 (i) for the relative (m+2)-dimensional symmetric Poincaré
cobordism C(Γ) = (D; 0, 0, C; 0, 0) determined by an n-connectedm-dimensional symmetric
Poincaré pair (D,C), corresponding to a (−1)n+1-symmetric form (resp. formation).
(iii) By [BNR1, Theorem 4.18] every relative cobordism (Ω;Σ,Σ′,W ;M,M ′) consisting of
non-empty connected manifolds admits a half-handle decomposition, as a union of right and
left product cobordisms. We shall not actually need geometric half-handle decompositions
in this paper, only the algebraic half-handle decompositions of Theorem 4.7.1 (ii).

5. Codimension q embeddings, especially for q = 2.

5.1. Codimension q embeddings.

Definition 5.1.1. Let q > 0.
(i) A codimension q embedding Mm ⊂ Nn is a proper embedding of an m-dimensional
manifold M in an n-dimensional manifold N , such that n−m = q.
(ii) The normal bundle of M ⊂ N is the normal q-plane bundle ν = νM⊂N :M → BSO(q).
By the tubular neighbourhood theorem M ⊂ N extends to a codimension 0 embedding
D(ν) ⊂ N , with

(Dq, Sq−1) // (D(ν), S(ν))
(p,∂p)

// M

the total (Dq, Sq−1)-pair of ν, and M ⊂ D(ν) the zero section.
(iii) The complement of M ⊂ N is the n-dimensional manifold with boundary

(K,∂K) = (cl.(N\D(ν)), S(ν)) .
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The inclusion K ⊂ N\M is a homotopy equivalence.

K

D(ν)

S(ν)

N = D(ν) ∪S(ν) K

(iv) The Thom class U ∈ Hq(D(ν), S(ν)) of ν is characterized by the property that for
every x ∈M the restriction of U along the inclusion of the fibre

(ix, ∂ix) : (p, ∂p)−1(x) = (Dq, Sq−1) ⊂ (D(ν), S(ν))

is the generator

(ix, ∂ix)
∗(U) = 1 ∈ Hq(Dq, Sq−1) = Z .

The Thom isomorphism

U ∪ − : Hr(M) ∼= Hr+q(D(ν), S(ν))

sends the canonical element (1, 1, . . . , 1) ∈ H0(M) = Z[π0(M)] to U ∈ Hq(D(ν), S(ν)).
(v) The Euler class of ν is the image

e = [U ] ∈ Hq(D(ν)) = Hq(M)

of the Thom class U ∈ Hq(D(ν), S(ν)). This is also the image of the fundamental class
[M ] ∈ Hm(M) under the composite

Hm(M)
inclusion∗// Hm(N) ∼= Hq(N)

inclusion∗// Hq(M) .

(vi) The embedding M ⊂ N is framed if there is given a trivialization δν : ν ∼= ǫq, in which
case

(D(ν), S(ν)) ∼= (M ×Dq,M × Sq−1) , e = 0 ∈ Hq(M) .

Note that if Mm ⊂ Nn is a codimension q embedding such that [M ] = 0 ∈ Hm(N) then
e = 0 ∈ Hq(M).

Proposition 5.1.2. For a codimension q embedding Mm ⊂ Nn with complement K the
homology groups are such that

Hr(N,K) ∼= Hr(D(ν), S(ν)) ∼= Hr−q(M) , Hr(N,M) ∼= Hr(K,S(ν)) .

The Umkehr morphisms

Hr(N) ∼= Hn−r(N)
inclusion∗// Hn−r(M) ∼= Hr−q(M) (n− q = m)

fit into a commutative braid of exact sequences
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Hr(M)

  ❅
❅❅

❅❅
❅❅

❅

e ∩ −

""
Hr−q(M)

$$❏
❏❏

❏❏
❏❏

❏❏

%%
Hr−1(K)

Hr(N)

<<②②②②②②②②

""❊
❊❊

❊❊
❊❊

❊
Hr−1(S(ν))

::✉✉✉✉✉✉✉✉✉

$$■
■■

■■
■■

■■

Hr(K)

>>⑥⑥⑥⑥⑥⑥⑥

<<
Hr(N,M)

::ttttttttt

99
Hr−1(M)

Similarly for cohomology, with a commutative braid of exact sequences

Hr−1(K)

$$■
■■

■■
■■

■■

%%
Hr−q(M)

""❊
❊❊

❊❊
❊❊

❊

e ∪ −

""
Hr(M)

Hr−1(S(ν))

::✉✉✉✉✉✉✉✉✉

$$❏
❏❏

❏❏
❏❏

❏❏
Hr(N)

>>⑥⑥⑥⑥⑥⑥⑥⑥

  ❆
❆❆

❆❆
❆❆

❆

Hr−1(M)

::✉✉✉✉✉✉✉✉✉

99
Hr(N,M)

<<②②②②②②②②

<<
Hr(K)

5.2. Cobordism and surgery for codimension q embeddings.

Definition 5.2.1. Let M0,M1 ⊂ N be framed codimension q embeddings.
(i) A cobordism of M0,M1 ⊂ N is a framed codimension q embedding

(W ;M0,M1) ⊂ N × (I; {0}, {1})

such that W ∩ (N × {j}) =Mj (j = 0, 1). The complements

(J ;K0,K1) = (cl.(N × I\W ×Dq), cl.(N × {0}\M0 ×Dq), cl.(N × {1}\M1 ×Dq))

are such that

∂J = K0 ∪M0×Sq−1 W × Sq−1 ∪M1×Sq−1 K1 ,

and

N × (I; {0}, {1}) = (W ;M0,M1)×Dq ∪(W ;M0,M1)×Sq−1 (J ;K0,K1) .

(ii) An h-cobordism of M0,M1 ⊂ N is a cobordism (W ;M0,M1) ⊂ N × (I; {0}, {1}) such
that (W ;M0,M1) is an h-cobordism.
(iii) An isotopy of M0,M1 ⊂ N is a level-preserving h-cobordism of the type

(W ;M0,M1) = M × (I; {0}, {1}) ⊂ N × (I; {0}, {1}) ,

so that for each s ∈ I there is defined a framed codimension q embedding

Ms = M × {s} ⊂ N × {s} .
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M0 ×Dq M1 ×DqW ×Dq

N × {0} N × {1}N × I

K0 K1J

Proposition 5.2.2. Let N be a closed n-dimensional manifold, and let 1 6 q 6 n.
(i) The Pontrjagin-Thom map of a framed codimension q submanifold Mm ⊂ Nn (m =
n− q)

UM : N → N/cl.(N\M ×Dq) = M ×Dq/M × Sq−1 → Dq/Sq−1 = Sq

is transverse regular at 0 ∈ Sq, with U−1
M (0) =M .

(ii) A cobordism of framed codimension q submanifolds (W ;M,M ′) ⊂ N × (I; {0}, {1})
determines a homotopy UW : UM ≃ UM ′ : N → Sq.
(iii) Every map U : N → Sq is homotopic to a map which is transverse regular at 0 ∈ Sq,
with Mm = U−1(0) ⊂ Nn a framed codimension q submanifold. Homotopic maps determine
cobordant submanifolds.
(iv) The Pontrjagin-Thom construction defines a bijection between the set of cobordism
classes of framed codimension q submanifoldsM ⊂ N and the qth cohomotopy group [N,Sq].

Proof. Standard (e.g. [Ra4, 6.10]), noting that Sq = T (ǫq) is the Thom space of the unique
q-plane bundle ǫq = Rq over a point. �

Remark 5.2.3. There is also a rel ∂ version of Pontrjagin-Thom theory, with (K,∂K) an
(m + q)-dimensional manifold with boundary ∂K = Mm × Sq−1, such as the complement
of a framed codimension q embedding Mm ⊂ Nm+q.
(i) There exists a framed codimension (q − 1) embedding Σm+1 ⊂ K with

M = Σ ∩ ∂K = M × {∗}

for some ∗ ∈ Sq−1 if and only if the projection ∂K → Sq−1 extends to a map U : K → Sq−1,
in which case U may be taken to be regular at ∗ ∈ Sq−1 and Σ = U−1(∗) ⊂ K will do.
(ii) For any framed codimension (q − 1) embedding Σm+1 ⊂ K with M =M ×{∗} there is
a rel ∂ Pontrjagin-Thom map

U : K → K/cl.(K\Σ×Dq−1) = (Σ ×Dq−1)/(Σ × Sq−1) → Dq−1/Sq−1 = Sq−1 .

For two such embeddings Σ0,Σ1 ⊂ K there exists a framed codimension (q− 1) embedding
(Ωm+2; Σ0,Σ1) ⊂ K × (I; {0}, {1}) with ∂Ω = Σ0 ∪ (M × I) ∪ Σ1 if and only if the rel ∂
Pontrjagin-Thom maps are homotopic, U0 = U1 ∈ [K,Sq−1].

5.3. Embedded split relative cobordisms. We shall now extend the splitting theory of
relative cobordisms in §1.3 to relative cobordisms which are embedded in N × (I; {0}, {1}),
for use in §6.

Definition 5.3.1. An embedded splitting of a framed codimension q − 1 embedding of an
(m+ 2)-dimensional relative cobordism

Γ = (Ω;Σ0,Σ1,W ;M0,M1) ⊂ N × (I; {0}, {1})
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is a splitting (in the sense of Definition 1.3.1) as a union Γ = Γ− ∪ Γ+ of left and right
relative cobordisms

Γ− = (Ω−; Σ0,Σ1/2,W
−;M0,M1/2) , Γ

+ = (Ω+; Σ1/2,Σ1,W
+;M1/2,M1)

together with framed codimension q − 1 embeddings

Γ− ⊂ N × ([0, 1/2]; {0}, {1/2}) , Γ+ ⊂ N × ([1/2, 1]; {1/2}, {1})

involving the same embedding (Σ1/2,M1/2) ⊂ N × {1/2}.

We shall construct embedded split relative cobordisms using the following general method:

Lemma 5.3.2. Let N be a closed n-dimensional manifold which is a union

N = A ∪B ∪ C

with (A, ∂A), (C, ∂C) n-dimensional manifolds with boundary, and (B; ∂A, ∂C) an n-dimensional
cobordism. Given a Morse function f : (B; ∂A, ∂C) → (I; {0}, {1}) define submanifolds

(B × I)6 = {(x, y) ∈ B × I | f(x) 6 y} ,

(B × I)> = {(x, y) ∈ B × I | f(x) > y} ,

(B × I)= = {(x, y) ∈ B × I | f(x) = y}

such that

B × I = (B × I)6 ∪(B×I)= (B × I)> ,

N × I = (A× I ∪∂A×I (B × I)6) ∪(B×I)= ((B × I)> ∪∂C×I C × I)

C × {0}

B × {0}

A× {0}

C × {1}

B × {1}

A× {1}

∂A× {1}∂A× {0}

∂C × {1}∂C × {0}

C × I

(B × I)=

A× I

(B × I)>

(B × I)6

∂A× I

∂C × I

The right and left product relative cobordisms

Γ6 = (A× I ∪ (B × I)6;A× {0}, (A ∪B)× {1}, (B × I)=; ∂A× {0}, ∂C × {1}) ,

Γ> = ((B × I)> ∪C × I; (B ∪C)× {0}, C × {1}, (B × I)=; ∂A× {0}, ∂C × {1})

are such that

N × (I; {0}, {1}) = Γ6 ∪Γ=
Γ>

with Γ= = ((B × I)=; ∂A× {0}, ∂C × {1}).
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Proposition 5.3.3. (i) Suppose given an (m + 1)-dimensional manifold with boundary
(Σ0,M0) with a decomposition

Σ0 = W− ∪M−

1/2
Σ1/2

for an (m+1)-dimensional manifold with boundary (Σ−
1/2,M

−
1/2) and an (m+1)-dimensional

cobordism (W−;M0,M
−
1/2). Let Γ− = (Ω−; Σ0,Σ

−
1/2,W

−;M0,M
−
1/2) be the corresponding

(m + 2)-dimensional left product relative cobordism defined by Ω− = Σ0 × [0, 1/2], and
define the (m+ q + 1)-dimensional left product relative cobordism

Γ− ×Dq−1 = (Ω− ×Dq−1; Σ0 ×Dq−1,Σ−
1/2 ×Dq−1,Ω− × Sq−2 ∪W− ×Dq−1;

(Σ0 × Sq−2 ∪M0 ×Dq−1), (Σ−
1/2 × Sq−2 ∪M−

1/2 ×Dq−1)) .

A framed codimension q − 1 embedding Σ0 ⊂ Nm+q extends to a framed codimension q − 1
embedding Γ− ⊂ N × ([0, 1/2]; {0}, {1/2}) with complements

JΩ− = cl.(N × [0, 1/2]\Ω− ×Dq−1) , JW− = cl.(N × [0, 1/2]\W− ×Dq) ,

KΣ0
= cl.(N × {0}\Σ0 ×Dq−1) , KΣ−

1/2
= cl.(N × {1/2}\Σ−

1/2 ×Dq−1)

such that

∆− = (JΩ− ;KΣ0
,KΣ−

1/2
,Ω− × Sq−2 ∪W− ×Dq−1;

(Σ0 × Sq−2 ∪M0 ×Dq−1), (Σ−
1/2 × Sq−2 ∪M−

1/2 ×Dq−1))

is an (m+ q + 1)-dimensional right product cobordism with

(Γ− ×Dq−1) ∪∆− = N × ([0, 1/2]; {0}, {1/2}) .

(ii) Suppose given an (m+ 1)-dimensional manifold with boundary (Σ1,M1) with a decom-
position

Σ1 = Σ+
1/2 ∪W

+

for an (m+1)-dimensional manifold with boundary (Σ+
1/2,M

+
1/2) and an (m+1)-dimensional

cobordism (W+;M+
1/2,M1). Let Γ+ = (Ω+; Σ+

1/2,Σ1,W
+;M+

1/2,M1) be the corresponding

(m + 2)-dimensional right product relative cobordism, with Ω+ = Σ1 × [1/2, 1], and define
the (m+ q + 1)-dimensional left product relative cobordism

Γ+ ×Dq−1 = (Ω+ ×Dq−1; Σ+
1/2 ×Dq−1,Σ1 ×Dq−1,Ω+ × Sq−2 ∪W+ ×Dq−1;

(Σ+
1/2

× Sq−2 ∪M+
1/2

×Dq−1), (Σ1 × Sq−2 ∪M1 ×Dq−1)) .

Given a framed codimension q − 1 embedding Σ1 ⊂ N there is defined an extension to a
framed codimension q − 1 embedding Γ− ⊂ N × ([1/2, 1]; {1/2}, {1}) with complements

JΩ+ = cl.(N × [1/2, 1]\Ω+ ×Dq−1) , JW+ = cl.(N × [1/2, 1]\W+ ×Dq) ,

KΣ0
= cl.(N × {1/2}\Σ+

1/2
×Dq−1) , KΣ1

= cl.(N × {1}\Σ1 ×Dq−1)

such that

∆+ = (JΩ+ ;KΣ+

1/2
,KΣ1

,Ω+ × Sq−1 ∪W+ ×Dq;

(Σ1 × Sq−2 ∪M1 ×Dq−1)m, (Σ+
1/2 × Sq−2 ∪M+

1/2 ×Dq−1))

is an (m+ q + 1)-dimensional left product cobordism with

(Γ+ ×Dq−1) ∪∆+ = N × ([1/2, 1]; {1/2}, {1}) .
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(iii) If Γ = (Ω;Σ0,Σ1,W ;M0,M1) is an (m + 2)-dimensional relative cobordism which is
split, i.e. expressed as a union of a left and a right product cobordism

Γ = Γ− ∪ Γ+ = (Ω−; Σ0,Σ1/2,W
−;M0,M1/2) ∪ (Ω+; Σ1/2,Σ1,W

+;M1/2,M1)

restricting to the same embedding Σ1/2 ⊂ N , and ∆−,∆+ are obtained from Γ−,Γ+ as in

(i) and (ii) then ∆ = ∆− ∪∆+ is a union of a right and a left product cobordism such that

(Γ×Dq−1) ∪∆ = N × (I; {0}, {1}) ,

so that Γ ⊂ N × (I; {0}, {1} is embedded split.

Proof. (i) Apply Lemma 5.3.2 with N = A− ∪B− ∪ C− for

A− = KΣ0
, B− = W− ×Dq−1 , C− = Σ−

1/2 ×Dq−1 .

(ii) Apply Lemma 5.3.2 with N = A+ ∪B+ ∪ C+ for

A+ = KΣ1
, B+ = W+ ×Dq−1 , C+ = Σ+

1/2 ×Dq−1 .

(iii) Combine (i) and (ii). �

Proposition 5.3.4. Let (Σ,M) be an (m + 1)-dimensional manifold with boundary. The
complement of a framed codimension q − 1 embedding (Σ,M) ⊂ Nm+q is the (m + q)-
dimensional manifold with boundary

(KΣ, ∂KΣ) = (cl.(N\Σ×Dq−1), ∂(Σ ×Dq−1))

such that there are defined chain equivalences

C(C(∂(Σ ×Dq−1)) → C(Σ×Dq−1)⊕ C(KΣ)) ≃ C(N) ,

C(KΣ) ≃ C(C(N) → C(Σ,M)∗−q+1)∗+1 .

Proof. Immediate from the excision chain equivalence

C(N,KΣ) ≃ C(Σ×Dq−1, ∂(Σ ×Dq−1)) = C(Σ,M)∗−q+1 .

�

We do not actually need topological embedded half-handle decompositions in this paper,
relying instead on algebraic half-handle decompositions.

Using the language of algebraic surgery recalled in §4 we formulate:

Definition 5.3.5. An (m+1)-dimensional symmetric Poincaré pair (A,B) has an algebraic
codimension q − 1 embedding (A,B) ⊂ C in an (m + q)-dimensional symmetric Poincaré
complex C if there are given a complement (m + q)-dimensional symmetric Poincaré pair
(D, ∂D) with boundary (m+ q − 1)-dimensional symmetric Poincaré complex

∂D = (A⊗ C(Sq−2)) ∪ (B ⊗ C(Dq−1))

= C(B ⊗ C(Sq−2) → (A⊗ C(Sq−2))⊕ (B ⊗ C(Dq−1)))

and a chain equivalence

(A⊗ C(Dq−1)) ∪D = C(B ⊗ C(Sq−2) → (A⊗ C(Dq−1))⊕D)
≃ // C .

Proposition 5.3.4 gives the prime example of an algebraic codimension q − 1 embedding

(A,B) = (C(Σ), C(M)) ⊂ C = C(N)

with complement D = C(KΣ).
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The algebraic theory of surgery extends to symmetric Poincaré complexes with a sub-
complex modelled on a framed codimension q embedding Mm ⊂ Nm+q with complement
K = cl.(N\M ×Dq), so that

N = M ×Dq ∪M×Sq−1 K

(cf. [Ra3, §7]). The (m+q)-dimensional symmetric Poincaré complex of N has an algebraic
decomposition as a union

(C(N), φN ) = (C(M ×Dq) ∪C(M×Sq−1) C(K), φM×Dq ∪φ
M×Sq−1

φK) (∗)

of the (m+ q)-dimensional symmetric Poincaré pairs of (M ×Dq,M × Sq−1) and (K,M ×
Sq−1), with

(C(M × Sq−1) → C(M ×Dq), (φM×Dq , φM×Sq−1))

= (C(M), φM )⊗ (C(Sq−1) → C(Dq), (φDq , φSq−1))

For an (m + q)-dimensional symmetric pair (f : C(N) → D, (φD, φN )) there is defined
an algebraic surgery with trace an (m + q)-dimensional symmetric Poincaré cobordism
(C(N)⊕C ′ → D′, (φD′ , φN ⊕−φC). If f , D and φD have codimension q decompositions as
(algebraic) unions compatible with (∗) then so does (C(N)⊕ C ′ → D′, (φD′ , φN ⊕−φC).

Theorem 5.3.6. For any framed codimension q − 1 embedding

Γ = (Ω;Σ,Σ′,W ;M,M ′) ⊂ N × (I; {0}, {1})

the algebraic half-handle decomposition of the relative symmetric Poincaré cobordism C(Γ)
given by Theorem 4.7.1 can be realized by a union of algebraic codimension q−1 embeddings

C(Γ) =

m+1⋃

r=−1

(C(Ωr);C(Σr), C(Σr+1), C(Wr);C(Mr), C(Mr+1)) ⊂ C(N)⊗C(I; {0}, {1}) .

Proof. Given a splitting of Γ as a union of left and right product cobordisms

(Ω;Σ,Σ′,W ;M,M ′) = (Ω−; Σ,Σ1/2,W
−;M,M1/2) ∪ (Ω+; Σ1/2,Σ

′,W+;M1/2,M
′)

Proposition 5.3.3 (i) and (ii) gives extensions to framed codimension q − 1 embeddings

Γ− = (Ω−; Σ,Σ1/2,W
−;M,M1/2) ⊂ N × ([0, 1/2]; {0}, {1/2}) ,

Γ+ = (Ω+; Σ1/2,Σ
′,W+;M1/2,M

′) ⊂ N × ([1/2, 1]; {1/2}, {1})

with right and left product complements

∆− = (JΩ− ;KΣ,KΣ−

1/2
,Ω− × Sq−2 ∪W− ×Dq−1;

(Σ× Sq−2 ∪M ×Dq−1), (Σ1/2 × Sq−2 ∪M1/2 ×Dq−1)) ⊂ N × ([0, 1/2]; {0}, {1/2}) ,

∆+ = (JΩ+ ;KΣ1/2
,KΣ′ ,Ω+ × Sq−2 ∪W+ ×Dq−1;

(Σ1/2 × Sq−2 ∪M1/2 ×Dq−1), (Σ′ × Sq−2 ∪M ′ ×Dq−1)) ⊂ N × ([1/2, 1]; {1/2}, {1})

such that
(Γ− ×Dq−1) ∪∆− = N × ([0, 1/2]; {0}, {1/2}) ,

(Γ+ ×Dq−1) ∪∆+ = N × ([1/2, 1]; {1/2}, {1}) .

Next, recall the terminology of 4.7.1, and the relative cobordism of (m + 1)-dimensional
symmetric Poincaré pairs

C(Γ) =

C(M)

��

// C(W )

k
��

C(M ′)oo

��
C(Σ)

j
// C(Ω) C(Σ′)

j′
oo
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involving chain complexes with Poincaré duality. There is defined a chain equivalence

C(Γ) ≃ C(Γ−) ∪ C(Γ+)

with C(Γ−), C(Γ+) the left and right product symmetric Poincaré cobordisms defined by

C(Γ−) =

C(M)

��

// C(W−)

��

C(M1/2)oo

��
C(Σ) C(Σ) C(Σ1/2)oo

C(Γ+) =

C(M1/2)

��

// C(W+)

��

C(M ′)oo

��
C(Σ1/2) // C(Σ′) C(Σ′)

with

C(Σ1/2) = C((j j′) : C(Σ)⊕ C(Σ′) → C(Ω))∗+1 ,

C(M1/2) = C(

(
j k 0
0 k j′

)

: C(Σ)⊕ C(W )⊕ C(Σ′) → C(Ω)⊕ C(Ω))∗+1 ,

C(W−) = C((j k) : C(Σ)⊕ C(W ) → C(Ω))∗+1 ,

C(W+) = C((k j′) : C(W )⊕C(Σ′) → C(Ω))∗+1

such that

C(Ω) ≃ C(C(Σ1/2) → C(Σ)⊕ C(Σ′)) , C(W ) ≃ C(C(M1/2) → C(W−)⊕ C(W+)) ,

C(Σ) ≃ C(C(M1/2) → C(W−)⊕ C(Σ1/2)) , C(Σ′) ≃ C(C(M1/2) → C(Σ1/2)⊕C(W+)) ,

C(Ω,Σ) ≃ C(W+,M1/2) , C(Ω,Σ′) ≃ C(W−,M1/2) , C(Ω,Σ ∪M W ) ≃ C(W−,M)∗−1 .

(Again, there may not be actual left and right product cobordisms (Ω−; Σ,Σ1/2,W
−;M,M1/2),

(Ω+; Σ1/2,Σ
′,W+;M1/2,M

′)). Define right and left (m + q + 1)-dimensional symmetric
Poincaré relative cobordisms

∆− =

C(KΣ) // C(JΩ−) C(KΣ1/2
)oo

D //

OO

E−

OO

D1/2
oo

OO
, ∆+ =

C(KΣ1/2
) // C(JΩ+) C(KΣ′)oo

D1/2

OO

// E+

OO

D′oo

OO

by
C(JΩ−) = C(JΩ+) = C(KΣ1/2

) = C(C(N) → C(Σ1/2,M1/2)∗−q+1)∗+1

≃ C(C(N) → C(Ω,W )∗−q)∗+1 ,

Di = C(∂(Σi ×Dq−1)) = C(Σi × Sq−2 ∪Mi ×Dq−1) (i = 0, 1/2, 1) ,

E± = C(Ω± × Sq−2 ∪W± ×Dq−1) .

By Proposition 5.3.3 (iii) the unions

C(Γ) = C(Γ−) ∪C(Γ+) , ∆ = ∆− ∪∆+

are such that there is defined a chain equivalence

∆⊗ C(Dq−1) ∪ C(Γ) ≃ C(N)⊗ C(I; {0}, {1})

giving an embedded splitting of C(Γ). This gives the embedded analogue of Theorem 4.7.1
(i). Apply the analogue successively to the relative cobordisms in the algebraic half-handle
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decomposition of 4.7.1 (ii), to obtain an algebraic codimension q− 1 embedded half-handle
decomposition. �

5.4. Codimension 2 embeddings.

We shall be mainly concerned with codimension 2 embeddings Mm ⊂ Nm+2, particularly
for N = Sm+2. We shall assume that N is connected, but not that M is connected, so the
theory will apply to links as well as knots.

Example 5.4.1. (i) An m-dimensional knot is a codimension 2 embedding Sm ⊂ Sm+2.
(ii) An m-dimensional link is a codimension 2 embedding Sm ∪ Sm ∪ · · · ∪ Sm ⊂ Sm+2.

We shall make much use of Seifert surfaces for a codimension 2 embeddingMm ⊂ Nm+2,
which are the codimension 1 framed embeddings Σm+1 ⊂ Nm+2 with ∂Σ =M . In Theorem
5.4.8 below we shall prove that a codimension 2 embeddingM ⊂ N admits a Seifert surface
if and only if [M ] = 0 ∈ Hm(N), in which case the embedding can be framed.

Proposition 5.4.2. Let Mm ⊂ Nm+2 be a codimension 2 embedding, with normal 2-plane
bundle ν = νM⊂N :M → BSO(2) = CP∞ = K(Z, 2).
(i) The Thom class of ν is

(1, 1, . . . , 1) ∈ H2(D(ν), S(ν)) = H0(M) = Z[π0(M)] ,

and ν is classified by the Euler class

e = [1, 1, . . . , 1] ∈ H2(D(ν)) = H2(M) = [M,BSO(2)] .

The Euler class e is the image of the fundamental class [M ] ∈ Hm(M) under the composite

Hm(M)
inclusion∗// Hm(N) ∼= H2(N)

inclusion∗// H2(M) .

In particular, M ⊂ N can be framed (i.e. ν is trivial) if and only if e = 0 ∈ H2(M).
(ii) There is defined a commutative braid of exact sequences

H1(K)

""❉
❉❉

❉❉
❉❉

❉

%%
H0(M)

##●
●●

●●
●●

●●

e ∪ −

##
H2(M)

H1(S(ν))

::✉✉✉✉✉✉✉✉✉

$$■
■■

■■
■■

■■
H2(N)

>>⑥⑥⑥⑥⑥⑥⑥

  ❆
❆❆

❆❆
❆❆

H1(M)

<<③③③③③③③③

::
H2(K,S(ν))

;;✇✇✇✇✇✇✇✇✇

;;
H2(K)

noting that H∗(N,M) = H∗(N,D(ν)) = H∗(K,S(ν)). In particular

ker(H0(M) → H2(N)) = im(H1(K) → H0(M)) ,

ker(e ∪− : H0(M) → H2(M)) = im(H1(S(ν)) → H0(M)) .

(iii) The Euler class e ∈ H2(D(ν)) = H2(M) is the image of the Thom class

(1, 1, . . . , 1) ∈ H2(N,K) = H2(D(ν), S(ν)) = H0(M) ,

so that a framing δν : ν ∼= ǫ2 corresponds to a lift of (1, 1, . . . , 1) ∈ H0(M) to an element
Uδν ∈ H1(S(ν)) = [S(ν), S1]. The map

Uδν = projection : ∂K = S(ν) ∼= M × S1 → S1
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induces the surjection

(Uδν)∗ : H1(S(ν)) = H1(M)⊕H0(M)
projection // H0(M) = Z[π0(M)]

augmentation // H1(S
1) = Z .

The section s :M → S(ν) corresponding to ǫ⊕ 0 ⊂ ν is such that

s∗(Uδν) = Uδν ◦ s ∈ H1(M) = [M,S1] ,

Uδν = s∗[M ] = ([M ], s∗(Uδν) ∩ [M ])

∈ H1(S(ν)) = Hm(S(ν)) = Hm(M × S1) = Hm(M)⊕Hm−1(M) .

Proof. (i) This follows from the commutative square

Hm(M)

∼=
��

inclusion∗ // Hm(N)

∼=
��

H0(M)
Umkehr //

∼=

��

H2(N)

inclusion∗

��
H2(M)

∼=
��

H2(D(ν), S(ν))
inclusion∗ // H2(D(ν))

(ii)+(iii) By construction. �

Definition 5.4.3. The canonical framing of a codimension 2 embeddingMm ⊂ Nm+2 with
e = 0 ∈ H2(M) is the unique framing δν : ν ∼= ǫ2 with s∗(Uδν) = 0 ∈ H1(M) and

s∗ =

(
1
0

)

: Hm(M) → Hm(S(ν)) = Hm(M)⊕Hm−1(M) .

The canonical framing is obtained from an arbitrary framing δν by subtracting

s∗(Uδν) ∈ H1(M) = [M,SO(2)] .

Remark 5.4.4. For a knot M = S1 ⊂ N = S3 the canonical framing of Proposition 5.4.3
corresponds to choosing a preferred longitude with linking number 0 with the knot itself.
This is the preferred framing of Rolfsen [Ro, p.31].

Definition 5.4.5. A Seifert surface for a codimension 2 embedding Mm ⊂ Nm+2 is a
framed codimension 1 embedding Σm+1 ⊂ N such that ∂Σ =M .

Proposition 5.4.6. Let Mm ⊂ Nm+2 be a codimension 2 embedding with a Seifert surface
Σm+1 ⊂ Nm+2.
(i) The fundamental class [M ] ∈ Hm(M) has image [M ] = 0 ∈ Hm(N), so that e = 0 ∈
H2(M) (by 5.4.2 (i)) and M ⊂ N is framed.
(ii) The composite M ⊂ Σ ⊂ N expresses the normal 2-plane bundle ν = νM⊂N as a sum
of two line bundles

ν = νM⊂Σ ⊕ νΣ⊂N |M : M → BSO(2) .

The framings νM⊂Σ
∼= ǫ, νΣ⊂N

∼= ǫ given by the orientations add up to the canonical framing
δν : ν ∼= ǫ2, with the section

s : M → S(νM⊂Σ) ∼= M × S0 → S(ν) ∼= M × S1

such that s∗[M ] = ([M ], 0) ∈ Hm(M × S1) = Hm(M)⊕Hm−1(M).
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There is no loss of generality in assuming that

(Σ ∩D(ν); ∂Σ, s(M)) = M × (I; {0}, {1})

is a collar of ∂Σ = M ⊂ Σ, so that (cl.(Σ\Σ ∩ D(ν)), s(M)) is a copy of (Σ,M). From
now on we identify D(ν) = M ×D2 using the canonical framing, and denote the copy by
(Σ,M), so that Σ ⊂ K with

∂Σ = s(M) = M × {∗} ⊂ ∂K = S(ν) = M × S1 .

We shall denote the ‘preferred longitude’ s(M) by M also, as in the figure:

Σ

M

K

M ×D2

M × S1

N =M ×D2 ∪M×S1 K

Definition 5.4.7. (i) A Seifert class for a canonically framed codimension 2 embedding
Mm ⊂ Nm+2 is a lift of Uδν ∈ H1(S(ν)) to a cohomology class U ∈ H1(K) = [K,S1].
(ii) A Seifert map U : K → S1 is a map representing a Seifert class U ∈ H1(K).

There is no loss of generality in assuming that the Seifert map U : K → S1 restricts to
the projection

Uδν : ∂K = S(ν) = M × S1 → S1 .

Theorem 5.4.8. The following conditions on a codimension 2 embedding Mm ⊂ Nm+2

are equivalent:

1. [M ] = 0 ∈ Hm(N).
2. M ⊂ N admits a Seifert surface Σm+1 ⊂ Nm+2.
3. M ⊂ N is framed and admits a Seifert class U ∈ H1(K).
4. M ⊂ N is framed and

Uδν ∈ ker(H1(M × S1) → H2(K,M × S1)) = im(H1(K) → H1(M × S1)) .

Proof. 1. =⇒ 3. Immediate form the exact sequence

H1(K) → H2(N,K) = H0(M) → H2(N) = Hm(N) ,

noting that Uδν = (1, 1, . . . , 1) ∈ H0(M) = Z[π0(M)] has image [M ] ∈ Hm(N).

2. =⇒ 1. Obvious.

2. =⇒ 3. The Euler class e ∈ H2(M) is the image of [M ] ∈ Hm(M) under the composite
Hm(M) → Hm(N) ∼= H2(N) → H2(M). If there exists a Seifert surface Σm+1 ⊂ N then
[M ] = 0 ∈ H2(N), so that e = 0 and ν can be framed. The Pontrjagin-Thom construction
gives a Seifert map

U : K → K/cl.(K\Σ×D1) = Σ×D1/Σ× S0 → D1/S0 = S1 .

3. =⇒ 2. It may be assumed that the Seifert map U : K → S1 is smooth and transverse
regular at ∗ ∈ S1, in which case Σm+1 = U−1(∗) is a Seifert surface for M ⊂ N .

3. ⇐⇒ 4. Immediate from the exact sequenceH1(K) → H1(M×S1) → H2(K,M×S1). �
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Corollary 5.4.9. Let Mm ⊂ Nm+2 be a canonically framed codimension 2 embedding, with
complement K.
(i) The Pontrjagin-Thom map (5.2.2 (i))

UM : N → N/cl.(N\M ×D2) = M ×D2/M × S1 → D2/S1 = S2

has inverse image (UM )−1(∗) =M ⊂ N . The composite

H1(M × S1) → H2(K,M × S1) = H2(N,M) → H2(N)

sends the canonical class Uδν = (0, 1) ∈ H1(M × S1) = H1(M) ⊕H0(M) to the Hurewicz
image in H2(N) of the cohomotopy class UM ∈ [N,S2]. There exists a framed codimension
2 embedding (Σm+1;M, ∅) ⊂ N × (I; {0}, {1}) if and only if UM = 0 ∈ [N,S2].
(ii) The rel ∂ homotopy classes of Seifert maps are in one-one correspondence with the
cobordism classes of Seifert surfaces, corresponding to the cosets of

im(H1(N) → H1(K)) = ker(H1(K) → H2(N,K)) ⊆ H1(K)

defined by the inverse image of (1, 1, . . . , 1) ∈ H2(N,K), noting the exact sequence

H1(N,K) = H−1(M) = 0 → H1(N) → H1(K)

→ H2(N,K) = H0(M) → H2(N) = Hm(N)

and that (1, 1, . . . , 1) ∈ H0(M) has image [M ] ∈ Hm(N).
(iii) A Seifert surface Σ = U−1(∗) ⊂ K can be pushed into N × I rel M × {0} to obtain a
framed codimension 2 embedding (Σ;M, ∅) ⊂ N × (I; {0}, {1}) as in (i), so that UM = 0 ∈
[N,S2].
(iv) A Seifert map U ∈ H1(K) = [K,S1] determines an infinite cyclic cover K = U∗R

of K, and a cobordism class of Seifert surfaces (as in 5.2.2 (iv)), namely all the inverse
images Σm+1 = U−1(∗) ⊂ K of regular values ∗ ∈ S1 of all representative smooth maps
U : K → S1.
(v) If H1(N) = 0 there is a unique homotopy class of Seifert maps U ∈ H1(K), and all the
Seifert surfaces Σ ⊂ K for M ⊂ N are cobordant (in the sense of Definition 5.2.1 (i)).

Proof. Immediate from Theorem 5.4.8. �

Remark 5.4.10. For m > 1 every codimension 2 embedding Mm ⊂ Nm+2 = Sm+2 is
framed, since the Euler number e ∈ H2(M) is the image of [M ] ∈ Hm(M) under the
composite

Hm(M) → Hm(Sm+2) ∼= H2(Sm+2) = 0 → H2(M) .

In this case, the existence of Seifert surfaces obtained in Theorem 5.4.8 goes back to Erle
[Er].

Remark 5.4.11. (Continuation of Remark 4.7.2). Let Σm+1 be a Seifert surface forMm ⊂
Nm+2, corresponding to a Seifert map U : K → S1. Suppose that Σ is disconnected, and
that Σ1 is a closed connected component of Σ. Then Σ = Σ0 ⊔Σ1 with Σ0 a Seifert surface
with the same Seifert map U0 = U ∈ [K,S1] = H1(K). The Pontrjagin-Thom map of
Σ1 ⊂ K\∂K is

U1 = [U − U0] = 0 ∈ im(H1(K) → H1(K\∂K)) ,

so that Σ1 = ∂Ω1 is the boundary of a codimension 1 submanifold Ω1 ⊂ K\∂K. In dealing
with Seifert surfaces, there is thus no loss of generality in assuming that Σ has no closed
components.
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5.5. Infinite cyclic covers.

Definition 5.5.1. (i) Let Λ = Z[t, t−1] be the Laurent polynomial extension ring of Z,
with elements the finite polynomials

∑

j
ajt

j (aj ∈ Z). Use t = t−1 to define the canonical

involution

¯ : Λ → Λ ; p(t) =
∑

j

ajt
j 7→ p(t) =

∑

j

ajt
−j .

Use the involution to regard a right Λ-module K as a left Λ-module by

K × Λ → K : (x, p(t)) 7→ p(t)x .

(ii) The Λ-dual of a (left) Λ-module L is the Λ-module

L∗ = HomΛ(L,Λ) , Λ× L∗ → L∗ ; (p(t), f) 7→ (x 7→ f(x)p(t))

with a pairing

〈 , 〉 : L⊗Λ L
∗ → Λ ; x⊗ f 7→ f(x) .

such that

〈p(t)x, q(t)y〉 = p(t)q(t)〈x, y〉 ∈ Λ .

Proposition 5.5.2. (Reidemeister [Re], Blanchfield [Bl], Levine [Le3])
Let K be a CW complex with an infinite cyclic cover K, and let t : K → K be a generating
covering translation.
(i) C(K) is a free Λ-module chain complex, and the homology groups H∗(K) = H∗(C(K))
are Λ-modules.
(ii) The Λ-cohomology modules

Hr
Λ(K) = H−r(HomΛ(C(K),Λ))

are such that there are defined Λ-module morphisms

Hr
Λ(K) → Hr(K)∗ = HomΛ(Hr(K),Λ) ; f 7→ (x 7→ f(x)) ,

Hn(K)⊗Z H
r
Λ(K) → Hn−r(K) ; x⊗ y 7→ x ∩ y

and a Λ-hermitian pairing

Hr(K)⊗Λ H
r
Λ(K) → Λ ; x⊗ f 7→ f(x) .

(iii) The augmentation Λ → Z; t 7→ 1 is such that

Z⊗Λ C(K) = coker(t− 1 : C(K) → C(K)) = C(K) ,

with an exact sequence

. . . // Hr(K)
t− 1 // Hr(K) // Hr(K) // Hr−1(K) // . . . .

(iv) If K is finite, the homology H∗(K) and the cohomology H∗
Λ(K) are f.g. Λ-modules.

(v) If (K,∂K) is an (oriented) n-dimensional manifold with boundary and (K,∂K) is an
infinite cyclic cover, cap product with the fundamental class [K] ∈ Hn(K,∂K) defines the
Poincaré-Lefschetz Λ-module duality isomorphisms

[K] ∩− : Hr
Λ(K,∂K) ∼= Hn−r(K) , [K] ∩ − : Hr

Λ(K) ∼= Hn−r(K,∂K)

in the usual manner. The natural Λ-module morphism B : Hr(K) → Hr(K,∂K) is such
that the composite

Hr(K)
B // Hr(K,∂K) ∼= Hn−r

Λ (K) // Hn−r(K)∗
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is the adjoint of the hermitian (up to sign) intersection pairing

B : Hr(K)×Hn−r(K) → Λ ; (x, y) 7→ B(x, y)

with
B(x, y) = (−1)r(n−r)B(y, x) ∈ Λ (x ∈ Hr(K), y ∈ Hn−r(K)) ,

B(λx, µy) = λµB(x, y) ∈ Λ (λ, µ ∈ Λ) .

Remark 5.5.3. We shall call the Λ-module intersection pairing of 5.5.2

B : Hr(K)×Hn−r(K) → Λ

the Blanchfield pairing, even though it was first introduced by Reidemeister [Re]. The
closely related Λ-module linking pairing of Blanchfield [Bl] is defined for the canonical
infinite cyclic cover K of the complement K of a knot Sn−2 ⊂ Sn

Bl : Hr(K)×Hn−r−1(K) → S−1Λ/Λ (1 6 r 6 n− 2)

with S−1Λ the localization of Λ inverting the multiplicative subset

S = {p(t) | p(1) = ±1} ⊂ Λ .

The natural Λ-module morphisms

Hr+1
Λ (K) → HomΛ(Hr(K), S−1Λ/Λ)

are isomorphisms, by [Le3, Corollary 4.4].

The pullback along any map U : K → S1 of the universal cover R → S1; y 7→ e2πiy is an
infinite cyclic cover of K

K = U∗R = {(x, y) ∈ K × R |U(x) = e2πiy ∈ S1} → K ; (x, y) 7→ x ,

with generating covering translation

t : K → K ; (x, y) 7→ (x, y + 1)

and a Z-equivariant lift of U

U : K → R ; (x, y) 7→ y .

Proposition 5.5.4. Let Mm ⊂ Nm+2 be a framed codimension 2 embedding with a Seifert
map U : K = cl.(N\M ×D2) → S1 which is transverse regular at ∗ ∈ S1 with

U | = projection : ∂K = M × S1 → S1 ,

so that

(Σ, ∂Σ) = (U−1(∗), (U |)−1(∗)) ⊂ Nm+2

is a Seifert surface for ∂Σ =M ⊂ N with trivial normal bundle Σ×I ⊂ N . It is convenient
to remove a collar neighbourhood from M , so that Σ× I ⊂ K with

(Σ × I) ∩ (M ×D2) = M × {(x, y) ∈ S1 | y > 0} .

The complement of Σ ⊂ K

KΣ = cl.(K\(Σ× I))

has boundary

∂KΣ = ∂(Σ× I) = Σ× {0} ∪M × I ∪ Σ× {1} ,

and
N = (M ×D2) ∪M×S1 K

= (M ×D2) ∪ (Σ × I) ∪KΣ
∼= (Σ× I) ∪∂(Σ×I) KΣ

with a commutative braid of exact sequences
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Hr(Σ× ∂I)

&&▲▲
▲▲

▲▲
▲▲

▲▲

((
Hr(Σ× I)⊕Hr(KΣ)

&&◆◆
◆◆

◆◆
◆◆

◆◆
◆

&&
Hr(N)

Hr(∂(Σ × I))

66♠♠♠♠♠♠♠♠♠♠♠♠

((◗◗
◗◗◗

◗◗◗
◗◗◗

◗
Hr(K)

::✉✉✉✉✉✉✉✉✉

$$■
■■

■■
■■

■■

Hr+1(N)

88rrrrrrrrrr

66
Hr−1(M)

88♣♣♣♣♣♣♣♣♣♣♣

88
Hr−1(Σ× ∂I)

Σ× {1}Σ× {0}

KΣ

Σ× I

M ×D2

Cutting K along Σ there is obtained a fundamental domain (KΣ; Σ, tΣ) for the infinite cyclic
cover K of K, with

K =
∞⋃

r=−∞

tr(KΣ; Σ, tΣ) , ∂K = M × R .

· · ·

· · ·

· · ·

· · ·

• • • •

• • • •

KΣt−1KΣ tKΣt−1Σ Σ tΣ t2ΣK

M × {−1} M × {0} M × {1} M × {2}

M × [−1, 0] M × I M × [1, 2]

5.6. Alexander modules and variation maps. The Alexander modules and the varia-
tion maps are defined for framed codimension 2 embeddings Mm ⊂ Nm+2, with a view to
applying them in §6 in the special case N = Sm+2.

Definition 5.6.1. The Alexander modules of a framed codimension 2 embedding Mm ⊂
Nm+2 with a Seifert class U ∈ H1(K) are the homology Λ-modules H∗(K) of the corre-
sponding infinite cyclic cover K = U∗R of the complement K.

Proposition 5.6.2. For a Seifert surface Σm+1 ⊂ N the two inclusions

ij : Σ → KΣ ; x 7→ (x, j) (j = 0, 1)

are such that there are defined Mayer-Vietoris exact sequences in homology

. . . // Hr(Σ)[t, t
−1]

ti1 − i0// Hr(KΣ)[t, t
−1] // Hr(K) // Hr−1(Σ)[t, t

−1] // . . . ,

. . . // Hr(Σ)
i1 − i0 // Hr(KΣ) // Hr(K) // Hr−1(Σ) // . . .
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and also in cohomology

. . . // Hr(KΣ)[t, t
−1]

ti∗0 − i∗1// Hr(Σ)[t, t−1] // Hr+1
Λ (K) // Hr+1(KΣ)[t, t

−1] // . . . ,

. . . // Hr(KΣ)
i∗0 − i∗1 // Hr(Σ) // Hr+1(K) // Hr+1(KΣ) // . . . .

The inclusion

f : M × S1 = ∂K → K

lifts to a Z-equivariant inclusion

f : M × R = ∂K → K .

The homotopy V : f ≃ f :M × S1 → K defined by

V : M × S1 × I → K ; (x, e2πiy , z) 7→ f(x, e2πi(y+z)).

lifts to the Z-equivariant homotopy V : f ≃ tf defined by

V : M × R× I → K ; (x, y, z) 7→ f(x, y + z) .

The restriction of f

VΣ = f | = V | : M × I = M × {0} × I → KΣ ;

(x, z) = (x, 0, z) 7→ f(x, z) = V (x, 0, z)

defines a homotopy VΣ : i0|M ≃ i1|M between the restrictions

ij |M : M // Σ
ij // KΣ (j = 0, 1)

such that there is defined a commutative diagram

M × I
VΣ //

��

KΣ

��

M × R× I
V // K

The following variation chain maps are motivated by the variation maps in homology
constructed by Lamotke [La].

Definition 5.6.3. (i) The Blanchfield variation chain map ofMm ⊂ Nm+2 is the Λ-module
chain map

V : C(K,∂K) → C(K)

induced by V : f ≃ tf .
(ii) The Seifert variation chain map of Mm ⊂ Nm+2 with respect to a Seifert surface Σ is
the Z-module chain map

VΣ : C(Σ,M) → C(KΣ)

induced by VΣ : i0|M ≃ i1|M .
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Proposition 5.6.4. (i) The Blanchfield and Seifert variation chain maps are such that
there are defined chain homotopy commutative diagrams of Z-module chain maps

C(Σ)

i1 − i0

&&

��

// C(Σ,M)
VΣ //

��

C(KΣ)

��

C(K) //

t− 1
88

C(K,∂K)
V // C(K)

C(KΣ)
m+1−∗

i∗j //

V ∗
Σ

��

C(Σ)m+1−∗ ≃ C(Σ,M)

VΣ
��

C(Σ,M)m+1−∗ ≃ C(Σ)
−i1−j // C(KΣ)

and also a chain homotopy commutative diagram of Λ-module chain maps

C(K)m+2−∗
≃

[K] ∩−
//

V
∗

��

C(K,∂K)

V
��

C(K,∂K)m+2−∗
−t([K] ∩ −)

≃
// C(K)

(ii) The Blanchfield and Seifert variation morphisms fit into commutative braids of exact
sequences

Hr(K)

B

##❍
❍❍

❍❍
❍❍

❍❍

t− 1

%%
Hr(K)

!!❈
❈❈

❈❈
❈❈

❈

##
Hr(N)

Hr(K,∂K)

V
;;✈✈✈✈✈✈✈✈✈

$$❍
❍❍

❍❍
❍❍

❍❍
Hr(K)

==⑤⑤⑤⑤⑤⑤⑤⑤

!!❇
❇❇

❇❇
❇❇

❇

Hr+1(N)

;;✈✈✈✈✈✈✈✈✈

99
Hr−1(M)

==④④④④④④④④

<<
Hr−1(K)

Hr(K,∂K)

V

""❊
❊❊

❊❊
❊❊

❊

t− 1

$$

Hr(K,∂K)

$$■
■■

■■
■■

■■
■

&&
Hr−1(M)

Hr(K)

B
<<②②②②②②②②

""❊
❊❊

❊❊
❊❊

❊❊
Hr(K,∂K)

99ssssssssss

%%❑❑
❑❑

❑❑
❑❑

❑❑

Hr(M)

<<②②②②②②②②②

;;
Hr(N)

::✉✉✉✉✉✉✉✉✉✉

88
Hr−1(K,∂K)
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Hr(Σ)
BΣ

##●
●●

●●
●●

●●

i1 − i0

$$
Hr(KΣ)

!!❉
❉❉

❉❉
❉❉

❉

""
Hr(N)

Hr(Σ,M)

VΣ
;;✇✇✇✇✇✇✇✇✇

##●
●●

●●
●●

●●
Hr(K)

==④④④④④④④④

!!❈
❈❈

❈❈
❈❈

❈

Hr+1(N)

;;✇✇✇✇✇✇✇✇✇

::
Hr−1(M)

==③③③③③③③③

<<
Hr−1(Σ)

Hr+1(K,Σ)

$$■
■■

■■
■■

■■

%%
Hr(KΣ)

""❊
❊❊

❊❊
❊❊

❊

##
Hr(N)

Hr(Σ,M)

VΣ
::✈✈✈✈✈✈✈✈✈

$$❍
❍❍

❍❍
❍❍

❍❍
Hr(K)

==④④④④④④④④

!!❈
❈❈

❈❈
❈❈

❈

Hr+1(N)

::✉✉✉✉✉✉✉✉✉

99
Hr(K,∂K)

V
<<②②②②②②②②

;;
Hr(K,Σ)

identifying H∗(K,∂K) = H∗(K,M ×R) = H∗(K,M).
(iii) The Mayer-Vietoris exact sequences of (ii) and the Blanchfield and Seifert variation
morphisms fit into the following commutative diagrams of exact sequences of Λ-modules

...

��

...

��

...

��

. . . // Hm+1−r(KΣ)[t, t
−1]

V ∗
Σ

��

−ti∗0 + i∗1// Hm+1−r(Σ)[t, t−1] //

VΣ
��

Hm+2−r
Λ (K) //

V
��

. . .

. . . // Hr(Σ)[t, t
−1]

��

ti1 − i0 // Hr(KΣ)[t, t
−1] //

��

Hr(K) //

��

. . .

. . . // Hr(N)[t, t−1]

��

t− 1 // Hr(N)[t, t−1] //

��

Hr(N) //

��

. . .

...
...

...
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...

��

...

��

...

��

. . . // Hr(Σ)[t, t
−1]

��

ti1 − i0 // Hr(KΣ)[t, t
−1] //

��

Hm+2−r
Λ (K,∂K) //

[K] ∩−
��

. . .

. . . // Hr(Σ,M)[t, t−1]

��

ti1 − i0 // Hr(KΣ,M)[t, t−1] //

��

Hr(K,∂K) //

��

. . .

. . . // Hr−1(M)[t, t−1]

��

t− 1 // Hr−1(M)[t, t−1] //

��

Hr−1(M) //

��

. . .

...
...

...

Hm+2−r
Λ (K,∂K)

[K] ∩ −

&&▼▼
▼▼

▼▼
▼▼

▼▼

(t− 1)[K] ∩ −

''

Hr(K,∂K)

$$❍
❍❍

❍❍
❍❍

❍❍
❍

&&
Hr(K,∂K)

Hr(K,∂K)

t− 1
::✉✉✉✉✉✉✉✉✉

$$■
■■

■■
■■

■■
■

Hr(K,M)

88rrrrrrrrrrr

&&▲▲
▲▲

▲▲
▲▲

▲▲

Hr+1(K,∂K)

88qqqqqqqqqqq

88
Hr−1(M)

0
::✈✈✈✈✈✈✈✈✈✈

88
Hm+3−r

Λ (K,∂K)

Hr(K,∂K)

""❊
❊❊

❊❊
❊❊

❊

t− 1

$$

Hr(K,∂K)

$$■
■■

■■
■■

■■
■

&&
Hr−1(M)

Hr(K)

<<②②②②②②②②

""❊
❊❊

❊❊
❊❊

❊❊
Hr(K,∂K)

99ssssssssss

%%❑❑
❑❑

❑❑
❑❑

❑❑

Hr(M)

<<②②②②②②②②②

;;
Hr(N)

::✉✉✉✉✉✉✉✉✉✉

88
Hr−1(K,∂K)

(iv) The following conditions are equivalent:

(a) H∗(N) = H∗(S
m+2),

(b) V : Hr(K,M) → Hr(K) is an isomorphism for 0 < r < m+ 1,
(c) VΣ : Hr(Σ,M) → Hr(KΣ) is an isomorphism for 0 < r < m+ 1.

�
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Definition 5.6.5. (i) The mapping torus of a map h : Σ → Σ is the identification space

T (h) = (Σ× I)/{(x, 0) ∼ (h(x), 1) |x ∈ Σ} .

If h is an automorphism there is defined a fibre bundle Σ → T (h) → S1 with projection

U : T (h) → S1 ; (x, y) 7→ e2πiy .

If M ⊂ Σ is a subspace such that h| = 1 :M →M write

t(h) = M ×D2 ∪M×S1 T (h) .

(ii) For an (m + 1)-dimensional manifold with boundary (Σ,M) and an automorphism
(h, 1) : (Σ,M) → (Σ,M) there is a defined a framed codimension 2 embedding

Mm = M × {0} ⊂ Nm+2 = t(h)

with complement K = T (h), Seifert surface Σ, and Seifert map U : K → S1 as in (i). The
(m+ 2)-dimensional manifold N has an open book decomposition with page Σ, monodromy
h and binding M .

Remark 5.6.6. (i) See Winkelnkemper’s Appendix to [Ra3] for a historical account of open
book decompositions.
(ii) For the codimension 2 embedding of the binding of an open book

Mm ⊂ Nm+2 = t(h : Σ → Σ)

the complement (K,∂K) = (T (h),M × S1) is the mapping torus of the monodromy, and
the corresponding infinite cyclic cover is given by

t : K = Σ× R → Σ× R ; (x, y) 7→ (h(x), y + 1) ,

with
t| : ∂K = M × R →M × R ; (x, y) 7→ (x, y + 1)

and
i0 : Σ → KΣ = Σ× I ; x 7→ (x, 0) ,

i1 : Σ → KΣ = Σ× I ; x 7→ (h(x), 1) .

The Blanchfield and Seifert variation maps coincide

V = VΣ : H∗(K,∂K) = H∗(Σ,M) → H∗(K) = H∗(Σ)

See Lamotke [La] (and also [BNR3]) for the application of this variation map to the classical
Picard-Lefschetz theory.

5.7. Cobordism of framed codimension 2 embeddings. Recall from Theorem 5.4.8
that to every framed codimension 2 embeddingMm ⊂ Nm+2 with [M ] = 0 ∈ Hm(M) there
are associated an infinite cyclic cover K of the complement K, and an equivalence class
of Seifert surfaces Σm+1 ⊂ K. This also applies to a cobordism of framed codimension 2
embeddings (W ;M0,M1) ⊂ N × (I; {0}, {1}), as follows.

Proposition 5.7.1. Let (Wm+1;M,M ′) ⊂ Nm+2 × (I; {0}, {1}) be a cobordism of canoni-
cally framed codimension 2 embeddings.
(i) The complement of the cobordism is the cobordism of the complements K,K ′ ⊂ N

(J ;K,K ′) = (cl.(N × I\W ×D2); cl.(N × {0}\M ×D2), cl.(N × {1}\M ′ ×D2))

⊂ N × (I; {0}, {1})

such that

(a) ∂J = K ∪M×S1 W × S1 ∪M ′×S1 K ′.
(b) N × (I; {0}, {1}) = (W ;M,M ′)×D2 ∪(W ;M,M ′)×S1 (J ;K,K ′).
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(c) The fundamental classes have the same images

[W ] = [M ] = [M ′] ∈ Hm+1(N × I,N × {0, 1}) = Hm(N) .

If these images are all 0 there exists a Seifert map U ∈ H1(J) = [J, S1] of J ⊂ N×I,
a lift of the canonical class

Uδν = (0, 1) ∈ H1(S(ν)) = H1(J × S1) = H1(J)⊕H0(J)

of ν = νJ⊂N×I , which restricts to Seifert maps U ∈ H1(K), U ′ ∈ H1(K ′).
(d) If (W ;M,M ′) is an isotopy then the inclusions K → J , K ′ → J are homotopy

equivalences, inducing isomorphisms in homotopy groups

π∗(K) ∼= π∗(J) , π∗(K
′) ∼= π∗(J)

and also in the homology Λ-modules

H∗(K) ∼= H∗(J) , H∗(K
′
) ∼= H∗(J) .

(e) If (W ;M,M ′) is an h-cobordism then the inclusions K → J ,K ′ → J are homology
equivalences, inducing isomorphisms in the homology Z-modules

H∗(K) ∼= H∗(J) , H∗(K
′) ∼= H∗(J) .

M ×D2 M ′ ×D2W ×D2

K K ′J

N × {0} N × {1}N × I

(ii) A Seifert map V ∈ H1(J) = [J, S1] is represented by a smooth map (V ;U,U ′) :

(J ;K,K ′) → S1 classifying an infinite cyclic cover (J ;K,K
′
) of (J ;K,K ′), with

(V ;U,U ′)| = projection : (W ;M,M ′)× S1 → S1 .

The inverse image of a regular value ∗ ∈ S1

(V ;U,U ′)−1(∗) = (Ω;Σ,Σ′) ⊂ (J ;K,K ′)

is a Seifert surface for (W ;M,M ′), such that

∂Ω = Σ ∪M W ∪M ′ −Σ′ ⊂ N × I , Ω ∩ (N × {0}) = Σ , Ω ∩ (N × {1}) = Σ′ .

Σ

M M ′W

Σ′Ω

N × {0} N × {1}N × I
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Cutting the complement (J ;K,K ′) along (Ω;Σ,Σ′) there is obtained a fundamental domain

(JΩ;KΣ,K
′
Σ′) for the infinite cyclic cover (J ;K,K

′
) of (J ;K,K ′).

· · ·

· · ·

K

K
′

· · ·

· · ·

• •

• •

J

Σ× {0} KΣ

K ′
Σ′

tΣ× {0}

Σ′ × {1} tΣ′ × {1}

Ω JΩ tΩ

The various homology Λ-modules fit into a commutative diagram of exact rows and columns

. . . // Hr(Σ)[t, t
−1]

��

ti1 − i0 // Hr(KΣ)[t, t
−1] //

��

Hr(K) //

��

. . .

. . . // Hr(Ω)[t, t
−1]

tj1 − j0 //

��

Hr(JΩ)[t, t
−1] //

��

Hr(J) //

��

. . .

. . . // Hr(Ω,Σ)[t, t
−1] // Hr(JΩ,KΣ)[t, t

−1] // Hr(J,K) // . . .

Define the (m+ 3)-dimensional cobordism of manifolds with boundary

(P ;Q,Q′) =
(
JΩ ; Ω ∪Σ×{0} KΣ × {0} , K ′

Σ′ × {1} ∪tΣ′×{1} tΩ ) .

If (W ;M,M ′) is an isotopy then (P ;Q,Q′) is an h-cobordism (i.e. π∗(Q) = π∗(P ) =
π∗(Q

′)), and the Λ-module morphisms

H∗(K) → H∗(J) , t(j1, i1)− (j0, i0) : H∗(Ω,Σ)[t, t
−1] → H∗(JΩ,KΣ)[t, t

−1]

are isomorphisms.
If (W ;M,M ′) is an h-cobordism then (P ;Q,Q′) is an H-cobordism (i.e. H∗(Q) = H∗(P ) =
H∗(Q

′)), and the Z-module morphisms

H∗(K) → H∗(J) , (j1, i1)− (j0, i0) : H∗(Ω,Σ) → H∗(JΩ,KΣ)

are isomorphisms.
(iii) Any two Seifert surfaces Σ,Σ′ ⊂ N for M ⊂ N are cobordant: there exists a Seifert
surface (Ω;Σ,Σ′) for (W ;M0,M

′) =M × (I; {0}, {1}) ⊂ N × I.

6. Codimension 2 embeddings Mm ⊂ Sm+2

We generalize the Seifert forms, Blanchfield forms and Alexander polynomials familiar in
the spherical case Sm ⊂ Sm+2 to arbitrary framed codimension 2 embeddingsMm ⊂ Sm+2.

6.1. The Seifert and Blanchfield pairings.

Proposition 6.1.1. Let Mm ⊂ Sm+2 be a codimension 2 embedding with complement K
and normal bundle ν. Suppose that either m > 1 or m = 0 with [M ] = 0 ∈ H0(S

2) = Z.
(i) The Thom class of ν determines a unique Seifert map for the embedding

U = (1, 1, ..., 1) ∈ H2(D(ν), S(ν)) = H0(M) = H1(K) = Z[π0(M)] ,
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so that ν ∼= ǫ2 and

Sm+2 = M ×D2 ∪M×S1 K .

The Pontrjagin-Thom construction for the Seifert map determines a cobordism class of
Seifert surfaces Σ ⊂ K for M ⊂ Sm+2.
(ii) The homology groups of K are given by

Hr(K) =







Hr+1(D(ν), S(ν)) = Hr−1(M) if r 6= 0,m+ 1

Z if r = 0

Hm(M)/Z if r = m+ 1 ,

with Z ⊆ Hm(M) = Z[π0(M)] the infinite cyclic subgroup generated by (1, 1, . . . , 1) ∈
Z[π0(M)]. In particular, K is connected, and the composite

U∗ : π1(K)
Hurewicz // H1(K) = H0(M) = Z[π0(M)]

augmentation // π1(S
1) = Z

is surjective, so that the infinite cyclic cover K = U∗R of K is also connected. For any
Seifert surface Σ ⊂ K there is an isomorphism H0(Σ,M) ∼= H1(S

m+2,KΣ), so that KΣ is
connected if and only if Σ has one component for each component of M (i.e. M ⊂ Sm+2 is
a boundary link).
(iii) The Blanchfield variation morphisms V are such that

V : Hr(K,M) → Hr(K) is an isomorphism for 0 < r < m+ 1,

0 → H0(K,M) = 0
V // H0(K) → H0(S

m+2) = Z → 0 is exact,

0 → Hm+2(S
m+2) = Z → Hm+1(K,M)

V // Hm+1(K) → 0 is exact

and the Seifert variation morphisms VΣ are such that

VΣ : Hr(Σ,M) → Hr(KΣ) is an isomorphism for 0 < r < m+ 1,

0 → H0(Σ,M)
VΣ // H0(KΣ) → H0(S

m+2) = Z → 0 is exact,

0 → Hm+2(S
m+2) = Z → Hm+1(Σ,M)

VΣ // Hm+1(KΣ) → 0 is exact.

There are defined commutative braids of exact sequences

Hr(K)

B

$$❏
❏❏

❏❏
❏❏

❏❏

t− 1

%%

Hr(K)

!!❈
❈❈

❈❈
❈❈

❈

##
Hr(S

m+2)

Hr(K,M)

V
;;✇✇✇✇✇✇✇✇✇

##●
●●

●●
●●

●●
Hr(K)

==③③③③③③③③

""❉
❉❉

❉❉
❉❉

❉

Hr+1(S
m+2)

::ttttttttt

99
Hr−1(M)

==④④④④④④④④

;;
Hr−1(K)
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Hr(Σ)
BΣ

$$❏
❏❏

❏❏
❏❏

❏❏

i1 − i0

%%
Hr(KΣ)

!!❉
❉❉

❉❉
❉❉

❉

##
Hr(S

m+2)

Hr(Σ,M)

VΣ
;;✇✇✇✇✇✇✇✇✇

##●
●●

●●
●●

●●
Hr(K)

<<②②②②②②②②

""❊
❊❊

❊❊
❊❊

❊

Hr+1(S
m+2)

::ttttttttt

99
Hr−1(M)

==③③③③③③③③

;;
Hr−1(Σ)

Hr+1(K,Σ)

$$■
■■

■■
■■

■■
■

%%
Hr(KΣ)

""❉
❉❉

❉❉
❉❉

❉

##
Hr(S

m+2)

Hr(Σ,M)

VΣ
;;✇✇✇✇✇✇✇✇✇

##●
●●

●●
●●

●●
Hr(K)

==③③③③③③③③

""❉
❉❉

❉❉
❉❉

❉

Hr+1(S
m+2)

::✉✉✉✉✉✉✉✉✉

99
Hr(K,M)

V
<<③③③③③③③③

;;
Hr(K,Σ)

Proof. Apply Propositions 5.4.2 and 5.6.4, noting that

[M ] = 0 ∈ Hm(Sm+2) (= 0 for m > 1)

and that there is a Mayer-Vietoris exact sequence

· · · → Hr+1(S
m+2) → Hr(S(ν)) → Hr(K)⊕Hr(D(ν)) → Hr(S

m+2) → . . . .

�

Example 6.1.2. The complement K of a spherical knot M = Sm ⊂ Sm+2 is a homology
circle, with U : K → S1 inducing isomorphisms U∗ : H∗(K) ∼= H∗(S

1).

Remark 6.1.3. Proposition 6.1.1 works also for codimension 2 embeddingsMm ⊂ Sm+1×I
with essentially the same proof.

Definition 6.1.4. The Seifert morphisms A(Σ)0, A(Σ)1 of a framed codimension 2 embed-
ding Mm ⊂ Sm+2 with respect to a Seifert surface Σm+1 ⊂ Sm+2 are the composites

A(Σ)j : Hr(Σ)
ij // Hr(KΣ)

(VΣ)
−1

∼=
// Hr(Σ,M) ∼= Hm+1−r(Σ) (j = 0, 1)

for 0 < r < m+ 1. The Seifert pairings are the adjoint bilinear pairings on the torsion-free
quotients

A(Σ)j : Fr(Σ)× Fm+1−r(Σ) → Z (j = 0, 1) .

Proposition 6.1.5. (i) The Seifert morphisms A(Σ)0, A(Σ)1 are such that

A(Σ)1 −A(Σ)0 = B(Σ) : Fr(Σ) → Fr(Σ,M) ∼= Fm+1−r(Σ)
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with B(Σ) the natural map induced by the inclusion (Σ, ∅) ⊂ (Σ,M) with adjoint the inter-
section pairing. There is an exact sequence of Z-modules

· · · → Hr(M) → Hr(Σ)
A(Σ)1 −A(Σ)0 // Hm+1−r(Σ) → Hr−1(M) → . . .

and also an exact sequence of Λ-modules

· · · → Hr+1(K) → Hr(Σ)[t, t
−1]

tA(Σ)1 −A(Σ)0// Hm+1−r(Σ)[t, t−1] → Hr(K) → . . .

(ii) The Seifert pairings are such that A(Σ)0 is the transpose of A(Σ)1 up to sign

A(Σ)0 = −(−1)r(m+1−r)A(Σ)∗1 : Fr(Σ)× Fm+1−r(Σ) → Z ,

so that
B(Σ)(x, y) = (A(Σ)1 −A(Σ)0)(x, y)

= A(Σ)1(x, y) + (−1)r(m+1−r)A(Σ)1(y, x) ∈ Z.

for x ∈ Fr(Σ), y ∈ Fm+1−r(Σ).

From now on, we shall write A(Σ)1 = A(Σ).

6.2. The Seifert form and Alexander polynomial of a codimension 2 embedding

M2n−1 ⊂ S2n+1. For us, a Seifert form (F,A) is a f.g. free Z-module together with a Z-
module morphism A : F → F ∗ (or equivalently a bilinear pairing A : F × F → A) together
with a choice of sign ǫ = 1 or −1. This is more general than the usual notion of a Seifert
form in which it is also required that A+ ǫA∗ : F → F ∗ be an isomorphism, such as arises
for a Seifert surface Σ of a spherical knot S2n−1 ⊂ S2n+1 with F = Fn(Σ), ǫ = (−1)n.

We consider equivalence relations on Seifert forms called S-equivalence andH-equivalence.
We shall also define such equivalence relations on the Laurent polynomial extension ring
Λ = Z[t, t−1]. For a framed codimension 2 embedding M2n−1 ⊂ S2n+1 a choice of Seifert
surface Σ2n ⊂ S2n+1 determines a Seifert form (Fn(Σ), A(Σ)) with sign ǫ = (−1)n, and
hence an Alexander polynomial

∆M,Σ(t) = ∆A(Σ)(t) = det(tA(Σ) + (−1)nA(Σ)∗) ∈ Λ .

We shall prove that

(i) the S-equivalence classes of (Fn(Σ), A(Σ)) and ∆M,Σ(t) are isotopy invariants of
M ⊂ S2n+1,

(ii) the H-equivalence classes of (Fn(Σ), A(Σ)) and ∆M,Σ(t) are h-cobordism invariants
of M ⊂ S2n+1

generalizing the results of Levine [Le1, Le2] for spherical knots M = S2n−1 ⊂ S2n+1. In
the next section we shall consider the Levine–Tristram signatures for an arbitrary framed
codimension 2 embedding M ⊂ S2n+1, and investigate their cobordism properties.

We now proceed to define Seifert forms, and the S- and H-equivalence relations.

Definition 6.2.1. Fix a sign ǫ = 1 or −1.
(i) A Seifert form (F,A) is a f.g. free Z-module F with a bilinear pairing

A : F × F → Z ; (x, y) 7→ A(x, y) .

An isomorphism h : (F,A) → (F ′, A′) of Seifert forms (F,A), (F ′, A′) is a Z-module iso-
morphism h : F → F ′ such that

A = h∗A′h : F → F ∗ .

(ii) A Seifert form (F,A) is ǫ-nonsingular if the Z-module morphism

B = A+ ǫA∗ : F = F ∗∗ → F ∗
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is an isomorphism.
(iii) A sublagrangian L of a Seifert form (F,A) is a sublagrangian of the ǫ-symmetric form
(F,A+ ǫA∗) such that

A(x, y) = 0 for all x, y ∈ L .

The sublagrangian quotient is the Seifert form (L⊥/L, [A]). A lagrangian L is a subla-
grangian such that L⊥ = L.
(iv) A rank (ℓ−, ℓ+) enlargement of a Seifert form (F,A) is a Seifert form (F ′, A′) of the
type

A′ =





A 0 α
0 0 x
β y z



 : F ′ = F ⊕ Zℓ− ⊕ Zℓ+ → F ′∗ = F ∗ ⊕ Zℓ− ⊕ Zℓ+ .

The submodule

L′ = 0⊕ Zℓ− ⊕ 0 ⊂ F ′ = F ⊕ Zℓ− ⊕ Zℓ+ (where F = Zk)

is such that

L′ ⊆ L′⊥ = F ⊕ Zℓ− ⊕ ker(x+ ǫy∗ : Zℓ+ → Zℓ−) ⊆ F ′ ,

inclusion∗(A′ + ǫA′∗) = (0 0 x+ ǫy∗) : F ′ = F ⊕ Zℓ− ⊕ Zℓ+ → L′∗ = Zℓ− .

The ǫ-symmetric form (F ′, A′ + ǫA′∗) with

A′ + ǫA′∗ =





A+ ǫA∗ 0 α+ ǫβ∗

0 0 x+ ǫy∗

β + ǫα∗ y + ǫx∗ z + ǫz∗





is then a rank (ℓ−, ℓ+) enlargement of (F,A+ ǫA∗) in the sense of 2.1.8 (ii).
(v) An H-enlargement of (F,A) is a rank (ℓ−, ℓ+) enlargement (F ′, A′) such that x + ǫy∗

is an invertible ℓ+ × ℓ+ matrix, or equivalently if L′ is a sublagrangian of (F ′, A′), in which
case

(L′⊥/L′, [A′]) = (F,A)

and the ǫ-symmetric form (F ′, A′ + ǫA′∗) is an H-enlargement of (F,A+ ǫA∗) in the sense
of 2.1.8. Two Seifert forms (F0, A0), (F1, A1) are H-equivalent if they have isomorphic
H-enlargements (F ′

0, A
′
0), (F

′
1, A

′
1).

(vi) An S-enlargement of (F,A) is a rank (1, 1) H-enlargement (F ′, A′) with (x, y) = (±1, 0)
or (0,±1). (F,A) is an S-reduction of any of its S-enlargements. Two Seifert forms are
S-equivalent if they can be connected by a chain of S-enlargements, reductions and congru-
ences.

Remark 6.2.2. For a fixed sign ǫ = ±1 Seifert forms (F0, A0), (F1, A1) are S-equivalent if
and only if they have isomorphic H-enlargements (F ′

0, A
′
0), (F

′
1, A

′
1) such that

A′
j =





Aj 0 αj

0 0 xj
βj yj zj



 (j = 0, 1)

with txj + ǫyj invertible over Λ. We shall not actually need this result, which makes use
of the Higman [Hi] computation Wh(Z) = 0 of the Whitehead group of an infinite cyclic
group Z; it follows from τ(txj + ǫyj) = 0 ∈ Wh(Z) = 0 that txj + ǫyj is stably a product
of elementary matrices over Λ. This is the algebraic analogue of the following special case
of the s-cobordism theorem: if (W ;M0,M1) ⊂ Nm+2 × (I; {0}, {1}) is an h-cobordism
of framed codimension 2 embeddings with complement an h-cobordism (J ;K0,K1), and
m > 4, π1(W ) = {1}, π1(J) = Z then (W ;M0,M1) ⊂ N × (I; {0}, {1}) can be deformed rel
∂ to an isotopy.
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Definition 6.2.3. The Seifert form (Fn(Σ), A(Σ)) of a framed codimension 2 embedding
M2n−1 ⊂ S2n+1 with respect to a Seifert surface Σ is the Seifert pairing

A(Σ) : Fn(Σ)× Fn(Σ) → Z

of Definition 6.1.4.

By Proposition 6.1.5 the Seifert from A(Σ) determines the intersection pairing by

B(Σ) = A(Σ) + (−1)nA(Σ)∗ : Fn(Σ) → Fn(Σ)
∗ .

The linking number interpretation of the Seifert form of a spherical knot S2n−1 ⊂
S2n+1 ([Le2]) extends to the Seifert form of an arbitrary framed codimension 2 embed-
ding M2n−1 ⊂ S2n+1 :

Proposition 6.2.4. (i) Let M2n−1 ⊂ S2n+1 be a framed codimension 2 embedding with
Seifert surface Σ2n ⊂ S2n+1. If x, y ∈ Cn(Σ) are cycles then

A(Σ)(x, y) = lk(x, y+) ∈ Z

is the linking number in S2n+1 of x and the disjoint cycle y+ ∈ Cn(S
2n+1\Σ) defined by y

pushed slightly off Σ in the positive normal direction.
(ii) For a framed codimension 1 embedding

(Ω2n+1,Σ,Σ′;W 2n,M,M ′) ⊂ S2n+1 × (I; {0}, {1})

the subgroup L = ker(Fn(Σ)⊕ Fn(Σ
′) → Fn(Ω)) ⊆ Fn(Σ)⊕ Fn(Σ

′) is such that

(A(Σ)⊕−A(Σ′))(x, y) = 0 ∈ Z for all x , y ∈ L .

Proof. (i) Exactly as for the spherical case in [Le2].
(ii) For any x, y ∈ L there exist chains Γx, Γy ∈ Cn+1(Ω) such that

∂Γx = x , ∂Γy = y ∈ Cn(Σ)⊕ Cn(Σ
′) .

By pushing Γy along the normal vector to Ω in a positive direction, we get a chain Γ+
y ∈

Cn+1(S
2n+1 × I\Ω) such that

∂Γ+
y = y+ , Γx ∩ Γ+

y = ∅ .

It follows that

(A(Σ)⊕−A(Σ′))(x, y) = lk(x, y+) = Γx · Γ
+
y = 0 ∈ Z .

�

Remark 6.2.5. The Seifert form (Fn(Σ), A(Σ)) for a spherical knot K : S2n−1 ⊂ S2n+1

with respect to a Seifert surface Σ2n ⊂ S2n+1 is (−1)n-nonsingular, with

B(Σ) = A(Σ) + (−1)nA(Σ)∗ : Fn(Σ) → Fn(Σ)
∗

an isomorphism. We have the following classic results of Levine [Le1, Le2] for spherical
knots K.

(i) The S-equivalence class of (Fn(Σ), A(Σ)) is an isotopy invariant of K, and in particular
independent of the choice of Seifert surface Σ. The function

{isotopy classes of simple knots K : S2n−1 ⊂ S2n+1} →

{S-equivalence classes of (−1)n-nonsingular Seifert forms} ; K 7→ A(Σ)
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is a bijection for n > 1. By definition, a knot K is simple if the knot complement K is such
that πr(K) = 0 for 1 6 r 6 n− 1.
(ii) The S-equivalence relation of 6.2.1 (vi) is generated by the S-enlargements of the type

A′ =





A 0 α
0 0 0
0 1 0



 or





A 0 0
0 0 1
β 0 0





proved exactly as in [Le1]. This is immediate from the congruences




1 ∓β 0
0 ±1 0
0 ∓z 1









A 0 α
0 0 0
β ±1 z









1 0 0
∓β ±1 ∓z
0 0 1



 =





A 0 α
0 0 0
0 1 0









1 ∓α 0
0 ±1 0
0 ∓z 1









A 0 α
0 0 ±1
β 0 z









1 0 0
∓α ±1 ∓z
0 0 1



 =





A 0 0
0 0 1
β 0 0



 .

(iii) The H-equivalence class of A(Σ) is an h-cobordism invariant of K : S2n−1 ⊂ S2n+1. If
K is h-cobordant to the trivial knot K0 : S

2n−1 ⊂ S2n+1, via an h-cobordism

(W 2n;K(S2n−1),K0(S
2n−1)) ⊂ S2n+1 × (I; {0}, {1}) ,

then for any Seifert surface Σ2n ⊂ S2n+1 for K there exists a cobordism of framed codimen-
sion 1 embeddings

(Ω2n+1; Σ2n,D2n) ⊂ S2n+1 × (I; {0}, {1}) .

The closed 2n-dimensional submanifold

∂Ω = Σ2n ∪K(S2n−1) W ∪K0(S2n−1) D
2n ⊂ S2n+1 × I

is such that Fn(∂Ω) = Fn(Σ) and

L = ker(Fn(Σ) → Fn(Ω)) ⊂ Fn(Σ)

is a lagrangian of the Seifert form (Fn(Σ), A(Σ)). Thus

A(Σ) =

(
0 x
y z

)

: Fn(Σ) = L⊕ L∗ → Fn(Σ)
∗ = L∗ ⊕ L

with x + (−1)ny∗ : L∗ → L∗ an isomorphism, so that (Fn(Σ), A(Σ)) is H-equivalent to
(0, 0). The function

C2n−1 = {h-cobordism classes of knots K : S2n−1 ⊂ S2n+1} →

{H-equivalence classes of (−1)n-nonsingular Seifert forms} ; K 7→ A

is a bijection for n > 1.

We now generalize (ii) and (iii) in Remark 6.2.5 to arbitrary framed codimension 2
embeddings M2n−1 ⊂ S2n+1.

Theorem 6.2.6. Let (W ;M,M ′) ⊂ S2n+1 × (I; {0}, {1}) be a cobordism of framed codi-
mension 2 embeddings, with a relative cobordism of Seifert surfaces

Γ = (Ω;Σ,Σ′) ⊂ S2n+1 × (I; {0}, {1}) .

(i) A decomposition of C(Γ) as union of algebraic codimension 1 embeddings

C(Γ) =

m+1⋃

r=−1

(C(Ωr);C(Σr), C(Σr+1), C(Wr);C(Mr), C(Mr+1)) ⊂ C(N)⊗ C(I; {0}, {1})
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given by Theorem 5.3.6 determines a sequence of enlargements and reductions taking the
Seifert form (Fn(Σ), A(Σ)) to the Seifert form (Fn(Σ

′), A(Σ′)).
(ii) If (W ;M,M ′) is an H-cobordism the Seifert forms (Fn(Σ), A(Σ)), (Fn(Σ

′), A(Σ′)) are
H-equivalent.
(iii) If (W ;M,M ′) is an isotopy the Seifert forms (Fn(Σ), A(Σ)), (Fn(Σ

′), A(Σ′)) are S-
equivalent.

Proof. (i) We extend to the Seifert forms (Fn(Σq), A(Σq)) the computation in Theorem
3.4.2 of the intersection forms (Fn(Σq), B(Σq)) of the Seifert surfaces Σq of the framed
codimension 2 embeddings Mq ⊂ S2n+1 which arise in a half-handle decomposition

(Ω;Σ,Σ′,W ;M,M ′) =

m+1⋃

r=−1

(Ωr; Σr,Σr+1,Wr;Mr,Mr+1)

(noting that we only need an embedded algebraic decomposition), with each

(Ωr; Σr,Σr+1,Wr;Mr,Mr+1)

= (Ω−
r ; Σr,Σr+1/2,W

−
r ;Mr,Mr+1/2) ∪Σr+1/2

(Ω+
r ; Σr+1/2,Σr+1,W

+
r ;Mr+1/2,Mr+1)

an elementary embedded splitting of index r + 1 and index (ℓ−r , ℓ
+
r+1). As in 3.4.2 only the

case r = n− 1 need be considered, so we identify

(Ω;Σ,Σ′,W ;M,M ′) = (Ωn−1; Σn−1,Σn,Wn−1;Mn−1,Mn)

and write
(Σ′′,M ′′) = (Σn−1/2,Mn−1/2) .

By 3.4.2 the intersection forms

(Fn(Σ
′′), B(Σ′′)) = (Fn(Σ)⊕ L−,

(
B(Σ) 0
0 0

)

) ,

(Fn(Σ
′), B(Σ′)) = (Fn(Σ

′′)⊕ L+,

(
B(Σ′) A

(−1)nA∗ E

)

)

are enlargements of rank (ℓ−, 0), (0, ℓ+), with

L− = im(Zℓ−) = ker(Fn(Σ
′′) → Fn(Σ)) ⊆ Fn(Σ

′′) ⊆ Fn(Σ) ,

(L+)∗ = im((Zℓ+)∗) = ker(Fn(Σ
′)∗ → Fn(Σ

′′)∗) ⊆ Fn(Σ
′)∗ = Fn(Σ′) ,

ℓ− = dimZ L
− , ℓ+ = dimZ L

+ .

Let (J ;K,K ′) be the complement of (Ω;Σ,Σ′) ⊂ Sn+2× (I; {0}, {1}), and as in Proposition
5.7.1 let (JΩ;KΣ,K

′
Σ′) be the fundamental domain for the canonical infinite cyclic cover

(J ;K,K
′
). The inclusions induce a commutative diagram of homology groups with exact

rows and columns

Fn(Σ)

i0
��

(

1
0

)

// Fn(Ω) = Fn(Σ)⊕ L−

j0
��

Fn(Σ
′) = Fn(Σ)⊕ L− ⊕ L+

i′0
��

(

1 0 0
0 0 1

)

oo

Fn(KΣ) = Fn(Σ)

(

1
0

)

// Fn(JΩ) = Fn(Σ)⊕ L− Fn(K
′
Σ′) = Fn(Σ)⊕ L− ⊕ L+

(

1 0 0
0 1 0

)

oo

Fn(tΣ) = tFn(Σ)

(

1
0

)

//

i1

OO

Fn(tΩ) = t(Fn(Σ)⊕ L−)

j1

OO

Fn(tΣ
′) = t(Fn(Σ)⊕ L− ⊕ L+)

(

1 0 0
0 0 1

)

oo

i′1

OO
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with

i0 = A(Σ) , i1 = (−1)n+1A(Σ)∗ ,

j0 =

(
A(Σ) α
0 x

)

, j1 = (−1)n+1

(
A(Σ)∗ β∗

0 y∗

)

,

i′0 = A(Σ′) =





A(Σ) 0 α
0 0 x
β y z



 , i′1 = (−1)n+1A(Σ′)∗ = (−1)n+1





A(Σ)∗ 0 β∗

0 0 y∗

α∗ x∗ z∗



 .

The Seifert form (Fn(Σ
′), A(Σ′)) is a rank (ℓ−, ℓ+) enlargement of the Seifert form (Fn(Σ), A(Σ)).

(ii) It follows from the exact sequence

0 → Hn(W,M) → Hn(Ω,Σ) = Zℓ−
x+ (−1)ny∗

//

Hn(Ω,Σ ∪M W ) = Hn+1(Ω,Σ′) = Zℓ+ → Hn−1(W,M) → 0

that (W ;M,M ′) is an H-cobordism if and only if x+ (−1)ny∗ is an invertible ℓ× ℓ matrix
(with ℓ = ℓ+ = ℓ−) if and only if (Fn(Σ

′), A(Σ′)) is an H-enlargement of (Fn(Σ), A(Σ)).
(iii) If (W ;M,M ′) is an isotopy then the trace of each of the ℓ individual surgeries is an
isotopy, and we can assume ℓ = 1. Consider the commutative diagram of Λ-modules with
exact rows and columns

. . . // Hr(Σ)[t, t
−1]

��

ti0 − i1// Hr(KΣ)[t, t
−1] //

��

Hr(K) //

��

. . .

. . . // Hr(Ω)[t, t
−1]

tj0 − j1//

��

Hr(JΩ)[t, t
−1] //

��

Hr(J) //

��

. . .

. . . // Hr(Ω,Σ)[t, t
−1] // Hr(JΩ,KΣ)[t, t

−1] // Hr(J,K) = 0 // . . .

The Λ-module morphism

t(j0, i0)− (j1, i1) = tx+ (−1)ny∗ :

Hn(Ω,Σ)[t, t
−1] = Λ → Hn((K × I)Ω,KΣ)[t, t

−1] = Λ

is an isomorphism, with (x, y) = either (0,±1) or (±1, 0), so that (Fn(Σ
′), A(Σ′)) is an

S-enlargement of (Fn(Σ), A(Σ)). �

6.3. The Alexander polynomial. We now define the Alexander polynomial of a Seifert
form, and the S- and H-equivalence relations for polynomials.

Definition 6.3.1. The Alexander polynomial of a Seifert form (F,A) is

∆A(t) = det(tA+ ǫA∗ : F [t, t−1] → F ∗[t, t−1]) ∈ Λ

using any choice of basis for F .

Remark 6.3.2. By convention, the Alexander polynomial of the zero matrix A = 0 is
∆0(t) = 1.

Definition 6.3.3. (i) Two polynomials p0(t), p1(t) ∈ Λ are H-equivalent if

p0(t)q0(t)q0(t
−1) ∼S p1(t)q1(t)q1(t

−1)
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for some q0(t), q1(t) ∈ Λ with q0(1), q1(1) ∈ {−1, 1}. Written as p0(t) ∼H p1(t).
(ii) Two polynomials p0(t), p1(t) ∈ Λ are S-equivalent if

p1(t) = ±tkp0(t) ∈ Λ

for some k ∈ Z. Written as p0(t) ∼S p1(t).

Example 6.3.4. A Seifert form (Zℓ ⊕ Zℓ, A) with

A =

(
0 x
y z

)

and x+(−1)ny∗ an invertible ℓ× ℓ matrix is H-equivalent to 0, with Alexander polynomial

∆A(t) = −det(tx+ (−1)ny∗)det(ty + (−1)nx∗) ∼H ∆0(t) = 1 .

Proposition 6.3.5. (i) The Alexander polynomial of the transpose A∗ of a Seifert k × k
matrix A is such that

∆A∗(t) = (ǫt)k∆A(t
−1) ∼S ∆A(t

−1) .

For any ℓ× ℓ matrices x, y

det(ty + ǫx∗) = det(ty∗ + ǫx) = (ǫt)ℓdet(t−1x+ ǫy∗) ∼S det(t−1x+ ǫy∗) .

(ii) The Alexander polynomial of an enlargement (F ′, A′) of a Seifert form (F,A) is

∆A′(t) = −det(tx+ ǫy∗)det(ty + ǫx∗)∆A(t) .

(iii) If A0, A1 are H-equivalent then ∆A0
(t) ∼H ∆A1

(t).
(iv) If A0, A1 are S-equivalent then ∆A0

(t) ∼S ∆A1
(t).

Proof. (i) The Alexander polynomial of a k × k matrix A is of the form

∆A(t) = det(tA∗ + ǫA) =

k∑

j=0

ajt
j ∈ Λ

and
∆A∗(t) = det(tA∗ + ǫA) = (ǫt)kdet(t−1A+ ǫA∗)

= (ǫt)k
k∑

j=0
ajt

−j = (ǫt)k∆A(t
−1) ∈ Λ .

(ii)+(iii)+(iv) By construction. �

Definition 6.3.6. TheAlexander polynomial of a framed codimension 2 embeddingM2n−1 ⊂
S2n+1 with respect to a Seifert surface Σ is

∆M,Σ(t) = ∆A(Σ)(t) = det(tA(Σ) + (−1)nA(Σ)∗) ∈ Λ

with (Fn(Σ), A(Σ)) the Seifert form.

Proposition 6.3.7. (i) The Alexander polynomials ∆M,Σ(t),∆M ′,Σ′(t) of h-cobordant framed

codimension 2 embeddings M2n−1,M ′2n−1 ⊂ S2n+1 with respect to Seifert surfaces Σ,Σ′ ⊂
S2n+1 are H-equivalent (6.3.3). The H-equivalence class ∆M,Σ(t) is thus an isotopy invari-
ant of M2n−1 ⊂ S2n+1.
(ii) The Alexander polynomials ∆M,Σ(t),∆M ′,Σ′(t) of isotopic framed codimension 2 em-

beddings M2n−1,M ′2n−1 ⊂ S2n+1 with respect to Seifert surfaces Σ,Σ′ ⊂ S2n+1 are S-
equivalent (6.3.3). The S-equivalence class of ∆M,Σ(t) is thus an isotopy invariant of
M2n−1 ⊂ S2n+1.

Proof. Immediate from Theorem 6.2.6 (ii)+(iii) and Proposition 6.3.5 (iii)+(iv). �

In view of Proposition 6.3.7 (ii) we set:
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Definition 6.3.8. TheAlexander polynomial of a framed codimension 2 embeddingM2n−1 ⊂
S2n+1 is

∆M (t) = ∆M,Σ(t) ∈ Λ/S-equivalence

for any Seifert surface Σ.

Remark 6.3.9. Let M be a closed m-dimensional manifold, and let (K,∂K) be an m+2-
dimensional manifold with boundary ∂K = M × S1, such that the projection ∂K → S1

extends to a map U : K → S1 transverse regular at ∗ ∈ S1. Then Σm+1 = U−1(∗) ⊂ N
is a framed codimension 1 submanifold, and cutting K along Σ there is obtained a relative
cobordism

(KΣ; Σ, tΣ,M × I;M × {0},M × {1})

which is a fundamental domain for the infinite cyclic cover K = U∗R of K. The Mayer-
Vietoris exact sequence of

K =
∞⋃

j=−∞

tjKΣ

is an exact sequence of Λ-modules

· · · → Hn(Σ)[t, t
−1]

ti0 − i1 // Hn(KΣ)[t, t
−1] → Hn(K)

∂ // Hn−1(Σ)[t, t
−1] → . . . ,

with i0, i1 : Σ → KΣ the two inclusions. For the complement K of a spherical knot
S2n−1 ⊂ S2n+1 with Seifert surface Σ and Seifert form A(Σ) = A we can identify

i0 = A , i1 = (−1)n+1A∗ : Hn(Σ) → Hn(Σ) = Hn(KΣ) ,

so the exact sequence can be written as

· · · → Hn(Σ)[t, t
−1]

tA+ (−1)nA∗

// Hn(Σ)[t, t−1] → Hn(K)
∂ // Hn−1(Σ)[t, t

−1] → . . . ,

The Z-module morphism A+(−1)nA∗ : Hn(Σ) → Hn(Σ) is an isomorphism. The Alexander
polynomial

∆A(t) = det(tA+ (−1)nA∗) ∈ Λ/S-equivalence

is an isotopy invariant of the knot such that ∆A(1) = ±1 and ∆A(t)Hn(K) = 0. In the
non–spherical case M2n−1 ⊂ S2n+1 the exact sequence (∗) and ∆A(t)Hn(K) = 0 are known
only under additional assumptions which ensure that ∂ = 0 : Hr(K) → Hr−1(Σ)[t, t

−1] for
r = n, n+ 1 (see [Er]).

6.4. The generalized Levine–Tristram signatures. Having defined the Seifert form we
pass to the definition of the generalized Levine–Tristram signatures σξ(M) ∈ Z (ξ ∈ S1) of
a framed codimension 2 embeddingM2n−1 ⊂ S2n+1, using the ξ-twisted (−1)n+1-hermitian
intersection form (Hn+1(X; ξ), B(X; ξ)) on the ξ-twisted homology of the complement X =
cl.(D2n+2\Σ ×D2) of a Seifert surface Σ2n ⊂ S2n+1 pushed into D2n+2.

Definition 6.4.1. For any spaceX with infinite cyclic coverX and ξ ∈ S1 use the morphism
of rings with involution

C[t, t−1] → C ; t 7→ ξ (t = t−1)

to define the ξ-twisted C-coefficient homology

H∗(X; ξ) = H∗(C⊗C[t,t−1] C(X;C)) .

Example 6.4.2. For ξ = 1 ∈ S1

H∗(X; 1) = H∗(X;C) .
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Proposition 6.4.3. For any ξ ∈ S1 the short exact sequence of C-module chain complexes

0 // C(X;C)
t− ξ

// C(X;C) // C(X; ξ) // 0

induces a long exact sequence of homology C-modules

. . . // Hr(X;C)
t− ξ

// Hr(X ;C) // Hr(X; ξ) // Hr−1(X ;C) // . . . .

Example 6.4.4. For ξ 6= 1 ∈ S1 and X = Y × S1, X = Y × R

H∗(X; ξ) = H∗(1− ξ : C(Y ;C) → C(Y ;C)) = 0 .

Definition 6.4.5. Let (X, ∂X) be am-dimensional manifold with boundary and an infinite
cyclic cover (X, ∂X).
(i) The C[t, t−1]-module chain map

C(X;C) → C(X, ∂X ;C)
([X]∩−)−1

≃
// C(X ;C)m−∗ = HomC[t,t−1](C(X),C[t, t−1])m−∗

induces the Blanchfield intersection pairings (Remark 5.5.3)

B(X) : Hr(X ;C)×Hm−r(X ;C) → C[t, t−1]

such that

B(X)(x, y) = (−1)r(m−r)B(X)(y, x) ∈ C[t, t−1] ,

with an exact sequence

. . . // Hr(∂X ;C) // Hr(X ;C)
B(X)

// Hm−r(X;C)∗ // Hr−1(∂X ;C) // . . . .

(ii) For ξ ∈ S1 there is also induced the ξ-twisted intersection pairings

B(X; ξ) : Hr(X; ξ) ×Hm−r(X; ξ) → C

such that

B(X; ξ)(x, y) = (−1)r(m−r)B(X; ξ)(y, x) ∈ C ,

with an exact sequence

. . . // Hr(∂X; ξ) // Hr(X; ξ)
B(X; ξ)

// Hm−r(X; ξ)∗ // Hr−1(∂X; ξ) // . . . .

Example 6.4.6. Form = 2n there is defined a (−1)n-hermitian intersection form (Hn(X; ξ),
B(X; ξ)) over C, which is nonsingular if ∂X = ∅. In particular, if ∂X = ∅, X = ∂Y for a
(2n+1)-dimensional manifold Y with infinite cyclic cover Y ⊃ X, then im(Hn+1(Y,X; ξ) →
Hn(X; ξ)) is a lagrangian of (Hn(X; ξ), B(X; ξ)).

Given a framed codimension 2 embeddingMm ⊂ Sm+2 with complement K and a Seifert
surface Σm+1 ⊂ Sm+2 push Σ rel ∂ into a framed codimension 2 embedding (Σ,M) ⊂
(Dm+3, Sm+2) (cf. [Ra3, Proposition 27.8]). The complement

(L;K,Σ × S1) = (cl.(Dm+3\Σ×D2); cl.(Sm+2\M ×D2),Σ × S1)

has boundary the closed (m+ 2)-dimensional manifold

∂L = K ∪M×S1 −Σ× S1 .

The canonical infinite cyclic cover (L;K,Σ×R) of (L;K,Σ×S1) is classified by the Seifert
map U : L→ S1, and

Hr(L;C) = Hr−1(Σ;C)[t, t
−1] , Hr(∂L; ξ) = Hr(K; ξ) (1 6 r 6 m) .
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The map U has regular inverse image U−1(∗) = Σ × I, and cutting along the codimension
1 framed embedding

Σ× (I; {0}, {1}) ⊂ (L;K,Σ × S1)

gives a fundamental domain

(LΣ×I ;KΣ, (Σ × S1)Σ) ∼= (Dm+3;KΣ,Σ× I)

for the canonical infinite cyclic cover (L;K,Σ×R) of (L;K,Σ×S1), with an exact sequence
of C[t, t−1]-modules

· · · → Hr+1(L;C) = Hr(Σ;C)[t, t
−1]

(1− t)A+ (−1)(r+1)(m+2−r)(1− t−1)A∗

//

Hr+1(L, ∂L;C) = Hm+1−r(Σ;C)
∗[t, t−1]) → Hr(∂L;C) → Hr(L;C) = Hr−1(Σ;C)[t, t

−1] → . . .

with A : Hr(Σ;C) → Hm+1−r(Σ;C)
∗ the Seifert form.

Lemma 6.4.7. For m = 2n − 1 the (−1)n+1-hermitian intersection form over C[t, t−1] of
L is determined by the Seifert form (Fn(Σ), A(Σ))

(Hn+1(L;C), B(L)) = (Hn(Σ;C)[t, t
−1], BA(Σ)(t))

with
BA(Σ)(t) = (1− t)A(Σ) + (−1)n+1(1− t−1)A(Σ)∗ ,

and an exact sequence of C[t, t−1]-modules

· · · → Hn+1(L;C) = Hn(Σ;C)[t, t
−1]

BA(Σ)(t)// Hn+1(L, ∂L;C) = Hn(Σ;C)
∗[t, t−1])

→ Hn(∂L;C) → Hn(L;C) = Hn−1(Σ;C)[t, t
−1] → . . . .

The ξ-twisted (−1)n+1-hermitian intersection form over C is

(Hn+1(L; ξ), B(L; ξ)) = (Hn(Σ;C), BA(Σ)(ξ)) .

For ξ 6= 1 there is an exact sequence

· · · → Hn+1(K; ξ) = Hn+1(∂L; ξ) → Hn+1(L; ξ) = Hn(Σ;C)

BA(Σ)(ξ)
// Hn+1(L,K; ξ) = Hn(Σ;C)

∗ → . . .

Definition 6.4.8. Let ǫ = 1 or −1, let (F,A) be a Seifert form, and let ξ 6= 1 ∈ S1 ⊂ C.
(i) The −ǫ-hermitian form (C ⊗Z F,BA(ξ)) over C is defined by

BA(ξ) = (1− ξ)A− ǫ(1− ξ)A∗ .

(ii) The nullity of (F,A) at ξ is

nA(ξ) = nullity(BA(ξ)) = dimC

(
ker(ξA+ ǫA∗)

)
> 0 .

(iii) The signature of (F,A) at ξ is

σA(ξ) = σ(C⊗Z F,BA(ξ)) ∈ Z .

(iv) Given a framed codimension 2 embedding M2n−1 ⊂ S2n+1 with a choice of Seifert
surface Σ and Seifert form (Fn(Σ), A(Σ)), set ǫ = (−1)n and define the nullity and Levine–
Tristram signature to be

nM,Σ(ξ) = nA(Σ)(ξ) > 0 , σM,Σ(ξ) = σA(Σ)(ξ) ∈ Z .

We shall now investigate the behaviour of the nullities and signatures under the h-
cobordism and isotopy of framed codimension 2 embeddings, using the following algebraic
lemma.
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Proposition 6.4.9. Let (F0, A0) be a Seifert form, and let

(F1, A1) = (F0 ⊕ Zℓ ⊕ Zℓ,





A0 0 α
0 0 x
β y z



)

be a rank (ℓ, ℓ) enlargement of (F0, A0). Set ǫ = (−1)n.
(i) The evaluations of the Alexander polynomials of (F0, A0), (F1, A1) at ξ ∈ C are related
by

∆A1
(ξ) = det(ξA1 + (−1)nA∗

1)

= −det(ξx+ (−1)ny∗) det(ξy + (−1)nx∗)det(ξA0 + (−1)nA∗
0) ∈ C .

(ii) If ξ 6= 1 ∈ S1 is such that det(ξx + (−1)ny∗) 6= 0 ∈ C (e.g. if ∆A1
(ξ) 6= 0 ∈ C), the

nullities and signatures of the (−1)n+1-hermitian forms (C⊗ZF0, BA0
(ξ)), (C⊗ZF1, BA1

(ξ))
are the same

nA0
(ξ) = nA1

(ξ) > 0 , σA0
(ξ) = σA1

(ξ) ∈ Z .

In particular, this is the case if ξ − 1 ∈ C is not an algebraic integer.
(iii) For any ξ 6= 1 ∈ S1

σA1
(ξ)− σA0

(ξ) = σ(F,B) ∈ Z

with

F = {w ∈ Cℓ | (ξx+ (−1)ny∗)(w) = 0 ∈ Cℓ , (ξα+ (−1)nβ∗)(w) ∈ im(BA0
(ξ)) ⊆ Ck} ,

B = (1− ξ)z + (−1)n+1(1− ξ)z∗| .

Proof. Apply Theorem 2.2.7 to

BA1
(ξ) =





BA0
(ξ) 0 C
0 0 D

(−1)n+1C∗ (−1)n+1D∗ E



 ,

C = (1− ξ)α+ (−1)n+1(1− ξ)β∗ = (ξ − 1)(ξα+ (−1)nβ∗) ,

D = (1− ξ)x+ (−1)n+1(1− ξ)y∗ = (ξ − 1)(ξx+ (−1)ny∗) ,

E = (1− ξ)z + (−1)n+1(1− ξ)z∗ .

�

Corollary 6.4.10. Let M2n−1 ⊂ S2n+1 be a framed codimension 2 embedding, with a
Seifert surface Σ2n ⊂ S2n+1 and Seifert form (Fn(Σ), A(Σ)).
(i) For any ξ 6= 1 ∈ S1 the nullities nM,Σ(ξ) and the Levine–Tristram signatures σM,Σ(ξ)
are isotopy invariants, meaning that if there exists an isotopy (W ;M,M ′) ⊂ S2n+1 ×
(I; {0}, {1}) then for any Seifert surfaces Σ,Σ′ for M,M ′ ⊂ S2n+1

nM,Σ(ξ) = nM ′,Σ′(ξ) , σM,Σ(ξ) = σM ′,Σ′(ξ) .

(ii) For any ξ 6= 1 ∈ S1 such that det(ξA(Σ) + (−1)nA(Σ)∗) 6= 0 the nullities nM,Σ(ξ) and
the Levine–Tristram signatures σM,Σ(ξ) are h-cobordism invariants, meaning that if there
exists an h-cobordism (W ;M,M ′) ⊂ S2n+1×(I; {0}, {1}) then for any Seifert surfaces Σ,Σ′

for M,M ′ ⊂ S2n+1

nM,Σ(ξ) = nM ′,Σ′(ξ) , σM,Σ(ξ) = σM ′,Σ′(ξ) .

Proof. Immediate from Theorem 6.2.6 and Proposition 6.4.9. �
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Definition 6.4.11. Let M2n−1 ⊂ S2n+1 be a framed codimension 2 embedding.
(i) The nullity of M for ξ 6= 1 ∈ S1 is

nM (ξ) = nM,Σ(ξ) > 0

defined using any Seifert surface Σ2n ⊂ S2n+1. This is an isotopy invariant of M ⊂ S2n+1,
independent of the choice of Σ, by 6.4.10 (i).
(ii) The Levine–Tristram signature of M for ξ 6= 1 ∈ S1 is

σM (ξ) = σM,Σ(ξ) ∈ Z

defined using any Seifert surface Σ2n ⊂ S2n+1. This is an isotopy invariant of M ⊂ S2n+1,
independent of the choice of Σ, by 6.4.10 (i). For ∆M,Σ(ξ) 6= 0 it is an h-cobordism invariant,
by 6.4.10 (ii).

The Levine–Tristram signatures of a framed codimension 2 embedding satisfy the same
algebraic properties as the signatures of knots.

Definition 6.4.12. (i) Two complex numbers z0, z1 ∈ C are S-equivalent if |z0| = |z1|. The
function

C/{S-equivalence} → [0,∞) ; z 7→ |z|

is a bijection.
(ii) Given a framed codimension 2 embedding M2n−1 ⊂ S2n+1 and ξ 6= 1 ∈ S1 let

∆M (ξ) = ∆A(ξ) = det(ξA+ (−1)nA∗) ∈ C/{S-equivalence} = [0,∞)

be the evaluation of the Alexander polynomial ∆M (t) ∈ Λ/{S-equivalence} at t = ξ. This
is an isotopy invariant of M ⊂ S2n+1, by Proposition 6.3.6.

Lemma 6.4.13. nM (ξ) > 0 if and only if ∆M (ξ) = 0. In particular, if dim(kerA∩kerA∗) =
0, the nullity is equal to zero for all but finitely many values of ξ ∈ S1.

Proof. As ξξ = 1, we can rewrite BA(ξ) = (ξ − 1) (ξA+ (−1)nA∗), hence detBA(ξ) = 0
if and only if ∆M(ξ) = 0. If dim(kerA ∩ kerA∗) > 0, then ∆M (ξ) = 0 and nM(ξ) >
0. So assume that dim(kerA ∩ kerA∗) = 0. By the result of Keef [Keef] (see also [Ka,
Theorem 12.2.9] and [BN, Section 3.1]), A is S-equivalent over Q to a matrix with det(A) 6=
0 ∈ Q, and we can write

BA(ξ) = (ξ − 1)
(
ξI + (−1)nA∗A−1

)
A ,

and so detBA(ξ) = 0 ∈ C if and only if det(ξI + (−1)nA∗A−1) = 0 ∈ C. �

6.5. The Murasugi–Kawauchi inequality in higher dimensions. We obtain a Murasugi–
Kawauchi like theorem giving an upper bound for the difference between the Levine–
Tristram signatures σM0

(ξ), σM1
(ξ) of cobordant framed codimension 2 embeddingsM2n−1

0 ,

M2n−1
1 ⊂ S2n+1. See Kawauchi [Ka, Theorem 12.3.1] for the classical case of signatures for

links Mk =
⋃

µk

S1 ⊂ S3 (k = 0, 1), the special case ξ = −1, n = 1.

Theorem 6.5.1. Let (W 2n;M0,M1) ⊂ S2n+1 × (I; {0}, {1}) be a cobordism of framed
codimension 2 embeddings M0, M1 ⊂ S2n+1, let Σ0,Σ1 be Seifert surfaces for M0, M1, so
that

Σ2n = Σ0 ∪M0
W ∪M1

−Σ1 ⊂ S2n+1 × I

is a closed 2n-dimensional manifold. For any ξ 6= 1 ∈ S1

|σM0
(ξ)− σM1

(ξ)| 6 bn(Σ)− bn(Σ0)− bn(Σ1) + nM0
(ξ) + nM1

(ξ) ,

where bn(X) denotes the n-th Betti number of a topological space X.
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Proof. The complement

(J ;K0,K1) = (cl.(S2n+1×I\W×D2); cl.(S2n+1×{0}\M0×D
2), cl.(S2n+1×{1}\M1×D

2))

has boundary the closed (2n + 1)-dimensional manifold

∂J = K0 ∪M0×S1 W × S1 ∪M1×S1 −K1 .

The Seifert map V : J → S1 (Proposition 5.7.1) has regular inverse image V −1(∗) =
Ω2n+1 ⊂ J for a cobordism of framed codimension 1 embeddings

(Ω2n+1; Σ0,Σ1) ⊂ S2n+1 × (I; {0}, {1})

with boundary ∂Ω = Σ. It is possible to push Ω rel Σ into a cobordism of framed codimen-
sion 2 embeddings

(Ω2n+1; Σ0,Σ1) ⊂ D2n+2 × (I; {0}, {1}) ,

which restricts to a framed codimension 2 embedding

Σ2n ⊂ D2n+2 × {0} ∪ S2n+1 × I ∪ −D2n+2 × {1} = S2n+2 .

The complement

(Y ;L0, L1) = (cl.(D2n+2×I\Ω×D2); cl.(D2n+2×{0}\Σ0×D
2); cl.(D2n+2×{1}\Σ1×D

2))

has boundary the closed (2n + 2)-dimensional manifold

X = ∂Y = cl.(S2n+2\Σ ×D2) ∪ −Ω× S1 = (L0 ∪K0
J ∪K1

−L1) ∪Σ×S1 −Ω× S1

with canonical infinite cyclic cover X such that

Hn+1(X;C) = Hn(Σ;C)[t, t
−1] , Hn+1(Y ;C) = Hn(Ω;C)[t, t

−1] .

Let Σ01 = Σ0 ⊔ −Σ1, and use the inclusion j : Σ01 → Σ to induce a morphism of
(−1)n+1-hermitian forms over C

j : (F ′, B′) = (Hn(Σ01;C), B(Σ01; ξ)) = (Hn(Σ0;C), BA0
(ξ))⊕ (Hn(Σ1;C),−BA1

(ξ))

→ (F,B) = (Hn(Σ;C), B(Σ; ξ)) .

The (−1)n+1-hermitian intersection form over C[t, t−1] (Hn+1(X), B(X)) is metabolic, with
lagrangian ker(Hn+1(X ;C) → Hn+1(Y ;C)). Use the morphism C[t, t−1] → C; t 7→ ξ to
induce a (−1)n+1-hermitian form C ⊗C[t,t−1] (Hn+1(X ;C), B(X)) = (F,B) over C which is
also metabolic. By Proposition 2.2.6 (v)

|σ(F ′, B′)| 6 dimC F − dimC F
′ + n(F ′, B′)

which is precisely

|σM0
(ξ)− σM1

(ξ)| 6 bn(Σ)− bn(Σ0)− bn(Σ1) + nM0
(ξ) + nM1

(ξ) .

�
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[Le1] J. Levine, Knot cobordism groups in codimension two, Comment. Math. Helv. 44 (1969), 229–244.
[Le2] J. Levine, An algebraic classification of some knots of codimension two, Comment. Math. Helv. 45

(1970), 185–198.
[Le3] J. Levine, Knot modules I., Trans. A.M.S. 229 (1977), 1–50.
[Mu] K. Murasugi, On a certain numerical invariant of link types, Trans. Amer. Math. Soc. 117 (1965),

387–422.
[Ra1] A. Ranicki, The algebraic theory of surgery, Proc. L.M.S. (3) 40 (1980) I. 87–192, II. 193–283.
[Ra2] A. Ranicki, Exact sequences in the algebraic theory of surgery. Mathematical Notes 26 (1980), Prince-

ton University Press.
[Ra3] A. Ranicki, High-dimensional knot theory. Algebraic surgery in codimension 2. Springer, 1998.
[Ra4] A. Ranicki, Algebraic and Geometric Surgery. Oxford University Press, 2002.
[Re] K. Reidemeister, Durchschnitt und Schnitt von Homotopieketten, Monatsh. Math. Phys. 48 (1939),

226–239.
[Ro] D. Rolfsen, Knots and Links. Publish or Perish (1976)
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