ADVANCES IN
Mathematics

Generalized Arf invariants in algebraic L-theory

Markus Banagl ${ }^{\mathrm{a}, 1}$, Andrew Ranicki ${ }^{\mathrm{b}, *}$
${ }^{a}$ Mathematisches Institut, Universität Heidelberg, 69120 Heidelberg, Germany
${ }^{\mathrm{b}}$ School of Mathematics, University of Edinburgh, King's Buildings, Edinburgh EH9 3JZ, Scotland, UK

Received 23 April 2003; accepted 3 August 2005
Communicated by Michael Hopkins
Available online 3 October 2005

Abstract

The difference between the quadratic L-groups $L_{*}(A)$ and the symmetric L-groups $L^{*}(A)$ of a ring with involution A is detected by generalized Arf invariants. The special case $A=$ $\mathbb{Z}[x]$ gives a complete set of invariants for the Cappell UNil-groups UNil $(\mathbb{Z} ; \mathbb{Z}, \mathbb{Z})$ for the infinite dihedral group $D_{\infty}=\mathbb{Z}_{2} * \mathbb{Z}_{2}$, extending the results of Connolly and Ranicki [Adv. Math. 195 (2005) 205-258], Connolly and Davis [Geom. Topol. 8 (2004) 1043-1078, e-print http://arXiv.org/abs/math/0306054].

© 2005 Elsevier Inc. All rights reserved.
MSC: 57R67; 10C05; 19J25
Keywords: Arf invariant; L-theory; Q-groups; UNil-groups

0. Introduction

The invariant of Arf [1] is a basic ingredient in the isomorphism classification of quadratic forms over a field of characteristic 2 . The algebraic L-groups of a ring with involution A are Witt groups of quadratic structures on A-modules and A-module chain complexes, or equivalently the cobordism groups of algebraic Poincaré complexes over A.

[^0]The cobordism formulation of algebraic L-theory is used here to obtain generalized Arf invariants detecting the difference between the quadratic and symmetric L-groups of an arbitrary ring with involution A, with applications to the computation of the Cappell UNil-groups.

The (projective) quadratic L-groups of Wall [20] are 4-periodic groups

$$
L_{n}(A)=L_{n+4}(A)
$$

The $2 k$-dimensional L-group $L_{2 k}(A)$ is the Witt group of nonsingular $(-1)^{k}$-quadratic forms (K, ψ) over A, where K is a f.g. projective A-module and ψ is an equivalence class of A-module morphisms

$$
\psi: K \rightarrow K^{*}=\operatorname{Hom}_{A}(K, A)
$$

such that $\psi+(-1)^{k} \psi^{*}: K \rightarrow K^{*}$ is an isomorphism, with

$$
\psi \sim \psi+\chi+(-1)^{k+1} \chi^{*} \quad \text { for } \chi \in \operatorname{Hom}_{A}\left(K, K^{*}\right)
$$

A lagrangian L for (K, ψ) is a direct summand $L \subset K$ such that $L^{\perp}=L$, where

$$
\begin{aligned}
& L^{\perp}=\left\{x \in K \mid\left(\psi+(-1)^{k} \psi^{*}\right)(x)(y)=0 \text { for all } y \in L\right\}, \\
& \psi(x)(x) \in\left\{a+(-1)^{k+1} \bar{a} \mid a \in A\right\} \text { for all } x \in L
\end{aligned}
$$

A form (K, ψ) admits a lagrangian L if and only if it is isomorphic to the hyperbolic form $H_{(-1)^{k}}(L)=\left(L \oplus L^{*},\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)\right)$, in which case

$$
(K, \psi)=H_{(-1)^{k}}(L)=0 \in L_{2 k}(A) .
$$

The $(2 k+1)$-dimensional L-group $L_{2 k+1}(A)$ is the Witt group of $(-1)^{k}$-quadratic formations $\left(K, \psi ; L, L^{\prime}\right)$ over A, with $L, L^{\prime} \subset K$ lagrangians for (K, ψ).

The symmetric L-groups $L^{n}(A)$ of Mishchenko [13] are the cobordism groups of n-dimensional symmetric Poincaré complexes (C, ϕ) over A, with C an n-dimensional f.g. projective A-module chain complex

$$
C: \cdots \rightarrow 0 \rightarrow C_{n} \rightarrow C_{n-1} \rightarrow \cdots \rightarrow C_{1} \rightarrow C_{0} \rightarrow 0 \rightarrow \cdots
$$

and $\phi \in Q^{n}(C)$ an element of the n-dimensional symmetric Q-group of C (about which more in $\S 1$ below) such that $\phi_{0}: C^{n-*} \rightarrow C$ is a chain equivalence. In particular, $L^{0}(A)$ is the Witt group of nonsingular symmetric forms (K, ϕ) over A, with

$$
\phi=\phi^{*}: K \rightarrow K^{*}
$$

an isomorphism, and $L^{1}(A)$ is the Witt group of symmetric formations $\left(K, \phi ; L, L^{\prime}\right)$ over A. An analogous cobordism formulation of the quadratic L-groups was obtained in [15], expressing $L_{n}(A)$ as the cobordism group of n-dimensional quadratic Poincaré complexes (C, ψ), with $\psi \in Q_{n}(C)$ an element of the n-dimensional quadratic Q-group of C such that $(1+T) \psi_{0}: C^{n-*} \rightarrow C$ is a chain equivalence. The hyperquadratic L groups $\widehat{L}^{n}(A)$ of [15] are the cobordism groups of n-dimensional (symmetric, quadratic) Poincaré pairs $(f: C \rightarrow D,(\delta \phi, \psi))$ over A such that

$$
\left(\delta \phi_{0},(1+T) \psi_{0}\right): D^{n-*} \rightarrow \mathcal{C}(f)
$$

is a chain equivalence, with $\mathcal{C}(f)$ the algebraic mapping cone of f. The various L-groups are related by an exact sequence

$$
\cdots \longrightarrow L_{n}(A) \xrightarrow{1+T} L^{n}(A) \longrightarrow \widehat{L}^{n}(A) \xrightarrow{\partial} L_{n-1}(A) \longrightarrow \cdots
$$

The symmetrization maps $1+T: L_{*}(A) \rightarrow L^{*}(A)$ are isomorphisms modulo 8torsion, so that the hyperquadratic L-groups $\widehat{L}^{*}(A)$ are of exponent 8 . The symmetric and hyperquadratic L-groups are not 4 -periodic in general. However, there are defined natural maps

$$
L^{n}(A) \rightarrow L^{n+4}(A), \widehat{L}^{n}(A) \rightarrow \widehat{L}^{n+4}(A)
$$

(which are isomorphisms modulo 8-torsion), and there are 4-periodic versions of the L-groups

$$
L^{n+4 *}(A)=\lim _{k \rightarrow \infty} L^{n+4 k}(A), \widehat{L}^{n+4 *}(A)=\lim _{k \rightarrow \infty} \widehat{L}^{n+4 k}(A)
$$

The 4-periodic symmetric L-group $L^{n+4 *}(A)$ is the cobordism group of n-dimensional symmetric Poincaré complexes (C, ϕ) over A with C a finite (but not necessarily n dimensional) f.g. projective A-module chain complex, and similarly for $\widehat{L}^{n+4 *}(A)$.

The Tate \mathbb{Z}_{2}-cohomology groups of a ring with involution A,

$$
\widehat{H}^{n}\left(\mathbb{Z}_{2} ; A\right)=\frac{\left\{x \in A \mid \bar{x}=(-1)^{n} x\right\}}{\left\{y+(-1)^{n} \bar{y} \mid y \in A\right\}} \quad(n(\bmod 2))
$$

are A-modules via

$$
A \times \widehat{H}^{n}\left(\mathbb{Z}_{2} ; A\right) \rightarrow \widehat{H}^{n}\left(\mathbb{Z}_{2} ; A\right) ; \quad(a, x) \mapsto a x \bar{a}
$$

The Tate \mathbb{Z}_{2}-cohomology A-modules give an indication of the difference between the quadratic and symmetric L-groups of A. If $\widehat{H}^{*}\left(\mathbb{Z}_{2} ; A\right)=0$ (e.g. if $\frac{1}{2} \in A$) then the symmetrization maps $1+T: L_{*}(A) \rightarrow L^{*}(A)$ are isomorphisms and $\widehat{L}^{*}(A)=0$. If A is such that $\widehat{H}^{0}\left(\mathbb{Z}_{2} ; A\right)$ and $\widehat{H}^{1}\left(\mathbb{Z}_{2} ; A\right)$ have one-dimensional f.g. projective A module resolutions then the symmetric and hyperquadratic L-groups of A are 4-periodic (Proposition 30).

For any ring A define

$$
A_{2}=A / 2 A,
$$

an additive group of exponent 2 .
We shall say that a ring with the involution A is r-even for some $r \geqslant 1$ if
(i) A is commutative with the identity involution, so that $\widehat{H}^{0}\left(\mathbb{Z}_{2} ; A\right)=A_{2}$ as an additive group with

$$
A \times \widehat{H}^{0}\left(\mathbb{Z}_{2} ; A\right) \rightarrow \widehat{H}^{0}\left(\mathbb{Z}_{2} ; A\right) ; \quad(a, x) \mapsto a^{2} x
$$

and

$$
\widehat{H}^{1}\left(\mathbb{Z}_{2} ; A\right)=\{a \in A \mid 2 a=0\}
$$

(ii) $2 \in A$ is a nonzero divisor, so that $\widehat{H}^{1}\left(\mathbb{Z}_{2} ; A\right)=0$,
(iii) $\widehat{H}^{0}\left(\mathbb{Z}_{2} ; A\right)$ is a f.g. free A_{2}-module of rank r with a basis $\left\{x_{1}=1, x_{2}, \ldots, x_{r}\right\}$. If A is r-even then $\widehat{H}^{0}\left(\mathbb{Z}_{2} ; A\right)$ has a one-dimensional f.g. free A-module resolution

$$
0 \rightarrow A^{r} \quad \xrightarrow{2} A^{r} \quad \xrightarrow{x} \widehat{H}^{0}\left(\mathbb{Z}_{2} ; A\right) \rightarrow 0,
$$

so that the symmetric and hyperquadratic L-groups of A are 4-periodic (30).
Theorem A. The hyperquadratic L-groups of a 1-even ring with involution A are given by

$$
\widehat{L}^{n}(A)= \begin{cases}\frac{\left\{a \in A \mid a-a^{2} \in 2 A\right\}}{\left\{8 b+4\left(c-c^{2}\right) \mid b, c \in A\right\}} & \text { if } n \equiv 0(\bmod 4), \\ \frac{\left\{a \in A \mid a-a^{2} \in 2 A\right\}}{2 A} & \text { if } n \equiv 1(\bmod 4), \\ 0 & \text { if } n \equiv 2(\bmod 4), \\ \frac{A}{\left\{2 a+b-b^{2} \mid a, b \in A\right\}} & \text { if } n \equiv 3(\bmod 4)\end{cases}
$$

The boundary maps $\partial: \widehat{L}^{n}(A) \rightarrow L_{n-1}(A)$ are given by

$$
\begin{aligned}
& \partial: \widehat{L}^{0}(A) \rightarrow L_{-1}(A) ; a \mapsto\left(A \oplus A,\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) ; A, \operatorname{im}\left(\binom{1-a}{a}: A \rightarrow A \oplus A\right)\right), \\
& \partial: \widehat{L}^{1}(A) \rightarrow L_{0}(A) ; a \mapsto\left(A \oplus A,\left(\begin{array}{cc}
\left(a-a^{2}\right) / 2 & 1-2 a \\
0 & -2
\end{array}\right)\right), \\
& \partial: \widehat{L}^{3}(A) \rightarrow L_{2}(A) ; a \mapsto\left(A \oplus A,\left(\begin{array}{ll}
a & 1 \\
0 & 1
\end{array}\right)\right) .
\end{aligned}
$$

The map

$$
L^{0}(A) \rightarrow \widehat{L}^{0}(A) ; \quad(K, \phi) \mapsto \phi(v, v)
$$

is defined using any element $v \in K$ such that

$$
\phi(u, u)=\phi(u, v) \in A_{2} \quad(u \in K) .
$$

For any commutative ring A the squaring function on A_{2} :

$$
\psi^{2}: A_{2} \rightarrow A_{2} ; a \mapsto a^{2}
$$

is a morphism of additive groups. If $2 \in A$ is a nonzero divisor than A is 1 -even if and only if ψ^{2} is an isomorphism, with

$$
\begin{aligned}
& \widehat{L}^{1}(A)=\operatorname{ker}\left(\psi^{2}-1: A_{2} \rightarrow A_{2}\right) \\
& \widehat{L}^{3}(A)=\operatorname{coker}\left(\psi^{2}-1: A_{2} \rightarrow A_{2}\right)
\end{aligned}
$$

In particular, if $2 \in A$ is a nonzero divisor and $\psi^{2}=1: A_{2} \rightarrow A_{2}$ (or equivalently $a-a^{2} \in 2 A$ for all $a \in A$) then A is 1 -even. In this case Theorem A gives

$$
\widehat{L}^{n}(A)= \begin{cases}A_{8} & \text { if } n \equiv 0(\bmod 4) \\ A_{2} & \text { if } n \equiv 1,3(\bmod 4) \\ 0 & \text { if } n \equiv 2(\bmod 4)\end{cases}
$$

Thanks to Liam O'Carroll and Frans Clauwens for examples of 1-even rings A such that $\psi^{2} \neq 1$, e.g. $A=\mathbb{Z}[x] /\left(x^{3}-1\right)$ with

$$
\psi^{2}: A_{2}=\mathbb{Z}_{2}[x] /\left(x^{3}-1\right) \rightarrow A_{2} ; a+b x+c x^{2} \mapsto\left(a+b x+c x^{2}\right)^{2}=a+c x+b x^{2} .
$$

Theorem A is proved in $\S 2$ (Corollary 61). In particular, $A=\mathbb{Z}$ is 1 -even with $\psi^{2}=1$, and in this case Theorem A recovers the computation of $\widehat{L}^{*}(\mathbb{Z})$ obtained in [15]-the algebraic L-theory of \mathbb{Z} is recalled further below in the Introduction.

Theorem B. If A is 1-even with $\psi^{2}=1$ then the polynomial ring $A[x]$ is 2 -even, with $A[x]_{2}$-module basis $\{1, x\}$ for $\widehat{H}^{0}\left(\mathbb{Z}_{2} ; A[x]\right)$. The hyperquadratic L-groups of $A[x]$ are given by

$$
\widehat{L}^{n}(A[x])= \begin{cases}A_{8} \oplus A_{4}[x] \oplus A_{2}[x]^{3} & \text { if } n \equiv 0(\bmod 4), \\ A_{2} & \text { if } n \equiv 1(\bmod 4), \\ 0 & \text { if } n \equiv 2(\bmod 4), \\ A_{2}[x] & \text { if } n \equiv 3(\bmod 4)\end{cases}
$$

Theorems A and B are special cases of the following computation:
Theorem C. The hyperquadratic L-groups of an r-even ring with involution A are given by

$$
\widehat{L}^{n}(A)= \begin{cases}\frac{\left\{M \in \operatorname{Sym}_{r}(A) \mid M-M X M \in \operatorname{Quad}_{r}(A)\right\}}{4 \operatorname{Quad}_{r}(A)+\left\{2\left(N+N^{t}\right)-4 N^{t} X N \mid N \in M_{r}(A)\right\}} & \text { if } n=0, \\ \frac{\left\{N \in M_{r}(A) \mid N+N^{t}-2 N^{t} X N \in 2 \operatorname{Quad}_{r}(A)\right\}}{2 M_{r}(A)} & \text { if } n=1, \\ 0 & \text { if } n=2, \\ \frac{\operatorname{Sym}_{r}(A)}{\operatorname{Quad}_{r}(A)+\left\{L-L X L \mid L \in \operatorname{Sym}_{r}(A)\right\}} & \text { if } n=3,\end{cases}
$$

with $\operatorname{Sym}_{r}(A)$ the additive group of symmetric $r \times r$ matrices $\left(a_{i j}\right)=\left(a_{j i}\right)$ in A, $\operatorname{Quad}_{r}(A) \subset \operatorname{Sym}_{r}(A)$ the subgroup of the matrices such that $a_{i i} \in 2 A$, and

$$
X=\left(\begin{array}{cccc}
x_{1} & 0 & \ldots & 0 \\
0 & x_{2} & \ldots & 0 \\
\vdots & \vdots & \ddots & 0 \\
0 & 0 & \ldots & x_{r}
\end{array}\right) \in \operatorname{Sym}_{r}(A)
$$

for an A_{2}-module basis $\left\{x_{1}=1, x_{2}, \ldots, x_{r}\right\}$ of $\widehat{H}^{0}\left(\mathbb{Z}_{2} ; A\right)$. The boundary maps ∂ : $\widehat{L}^{n}(A) \rightarrow L_{n-1}(A)$ are given by

$$
\begin{aligned}
& \partial: \widehat{L}^{0}(A) \rightarrow L_{-1}(A) ; \quad M \mapsto\left(H_{-}\left(A^{r}\right) ; A^{r}, \operatorname{im}\left(\binom{1-X M}{M}: A^{r} \rightarrow A^{r} \oplus\left(A^{r}\right)^{*}\right)\right), \\
& \partial: \widehat{L}^{1}(A) \rightarrow L_{0}(A) ; \quad N \mapsto\left(A^{r} \oplus A^{r},\left(\begin{array}{cc}
\frac{1}{4}\left(N+N^{t}-2 N^{t} X N\right) & 1-2 N X \\
0 & -2 X
\end{array}\right)\right), \\
& \partial: \widehat{L}^{3}(A) \rightarrow L_{2}(A) ; \quad M \mapsto\left(A^{r} \oplus\left(A^{r}\right)^{*},\left(\begin{array}{cc}
M & 1 \\
0 & X
\end{array}\right)\right) .
\end{aligned}
$$

In $\S 1,2$ we recall and extend the Q-groups and algebraic chain bundles of Ranicki [15,18] and Weiss [21]. Theorem C is proved in Theorem 60.

We shall be dealing with two types of generalized Arf invariant: for forms on f.g. projective modules, and for linking forms on homological dimension 1 torsion modules, which we shall be considering separately.

In $\S 3$ we define the generalized Arf invariant of a nonsingular $(-1)^{k}$-quadratic form (K, ψ) over an arbitrary ring with involution A with a lagrangian $L \subset K$ for $(K, \psi+$ $\left.(-)^{k} \psi^{*}\right)$ to be an element

$$
(K, \psi ; L) \in \widehat{L}^{4 *+2 k+1}(A)
$$

with image

$$
\begin{aligned}
(K, \psi) \in & \operatorname{im}\left(\partial: \widehat{L}^{4 *+2 k+1}(A) \rightarrow L_{2 k}(A)\right) \\
& =\operatorname{ker}\left(1+T: L_{2 k}(A) \rightarrow L^{4 *+2 k}(A)\right)
\end{aligned}
$$

Theorem 70 gives an explicit formula for the generalized Arf invariant $(K, \psi ; L) \in$ $\widehat{L}^{3}(A)$ for an r-even A. Generalizations of the Arf invariants in L-theory have been previously studied by Clauwens [7], Bak [2] and Wolters [22].

In $\S 4$ we consider a ring with involution A with a localization $S^{-1} A$ inverting a multiplicative subset $S \subset A$ of central nonzero divisors such that $\widehat{H}^{*}\left(\mathbb{Z}_{2} ; S^{-1} A\right)=0$ (e.g. if $2 \in S$). The relative L-group $L_{2 k}(A, S)$ in the localization exact sequence

$$
\cdots \rightarrow L_{2 k}(A) \rightarrow L_{2 k}\left(S^{-1} A\right) \rightarrow L_{2 k}(A, S) \rightarrow L_{2 k-1}(A) \rightarrow L_{2 k-1}\left(S^{-1} A\right) \rightarrow \cdots
$$

is the Witt group of nonsingular $(-1)^{k}$-quadratic linking forms (T, λ, μ) over (A, S), with T a homological dimension $1 S$-torsion A-module, λ an A-module isomorphism

$$
\lambda=(-1)^{k} \imath^{\wedge}: T \rightarrow T=\operatorname{Ext}_{A}^{1}(T, A)=\operatorname{Hom}_{A}\left(T, S^{-1} A / A\right)
$$

and

$$
\mu: T \rightarrow Q_{(-1)^{k}}(A, S)=\frac{\left\{b \in S^{-1} A \mid \bar{b}=(-1)^{k} b\right\}}{\left\{a+(-1)^{k} \bar{a} \mid a \in A\right\}}
$$

a $(-1)^{k}$-quadratic function for λ. The linking Arf invariant of a nonsingular $(-1)^{k}$ quadratic linking form (T, λ, μ) over (A, S) with a lagrangian $U \subset T$ for (T, λ) is defined to be an element

$$
(T, \lambda, \mu ; U) \in \widehat{L}^{4 *+2 k}(A)
$$

with properties analogous to the generalized Arf invariant defined for forms in §3. Theorem 80 gives an explicit formula for the linking Arf invariant $(T, \lambda, \mu ; U) \in \widehat{L}^{2 k}(A)$
for an r-even A, using

$$
S=(2)^{\infty}=\left\{2^{i} \mid i \geqslant 0\right\} \subset A, \quad S^{-1} A=A[1 / 2] .
$$

In §5 we apply the generalized and linking Arf invariants to the algebraic L-groups of a polynomial extension $A[x](\bar{x}=x)$ of a ring with involution A, using the exact sequence

$$
\cdots \longrightarrow L_{n}(A[x]) \xrightarrow{1+T} L^{n}(A[x]) \longrightarrow \widehat{L}^{n}(A[x]) \longrightarrow L_{n-1}(A[x]) \longrightarrow \cdots
$$

For a Dedekind ring A the quadratic L-groups of $A[x]$ are related to the UNil-groups $\mathrm{UNil}_{*}(A)$ of Cappell [4] by the splitting formula of Connolly and Ranicki [10]

$$
L_{n}(A[x])=L_{n}(A) \oplus \operatorname{UNil}_{n}(A)
$$

and the symmetric and hyperquadratic L-groups of $A[x]$ are 4-periodic, and such that

$$
L^{n}(A[x])=L^{n}(A), \widehat{L}^{n+1}(A[x])=\widehat{L}^{n+1}(A) \oplus \operatorname{UNil}_{n}(A)
$$

Any computation of $\widehat{L}^{*}(A)$ and $\widehat{L}^{*}(A[x])$ thus gives a computation of $\mathrm{UNil}_{*}(A)$. Combining the splitting formula with Theorems A, B gives:

Theorem D. If A is a 1-even Dedekind ring with $\psi^{2}=1$ then

$$
\begin{aligned}
\operatorname{UNil}_{n}(A) & =\widehat{L}^{n+1}(A[x]) / \widehat{L}^{n+1}(A) \\
& = \begin{cases}0 & \text { if } n \equiv 0,1(\bmod 4), \\
x A_{2}[x] & \text { if } n \equiv 2(\bmod 4) \\
A_{4}[x] \oplus A_{2}[x]^{3} & \text { if } n \equiv 3(\bmod 4)\end{cases}
\end{aligned}
$$

In particular, Theorem D applies to $A=\mathbb{Z}$. The twisted quadratic Q-groups were first used in the partial computation of

$$
\operatorname{UNil}_{n}(\mathbb{Z})=\widehat{L}^{n+1}(\mathbb{Z}[x]) / \widehat{L}^{n+1}(\mathbb{Z})
$$

by Connolly and Ranicki [10]. The calculation in [10] was almost complete, except that $\mathrm{UNil}_{3}(\mathbb{Z})$ was only obtained up to extensions. The calculation was first completed by Connolly and Davis [8], using linking forms. We are grateful to them for sending us a preliminary version of their paper. The calculation of $\mathrm{UNil}_{3}(\mathbb{Z})$ in [8] uses the results of [10] and the classifications of quadratic and symmetric linking forms over $\left(\mathbb{Z}[x],(2)^{\infty}\right)$. The calculation of $\mathrm{UNil}_{3}(\mathbb{Z})$ here uses the linking Arf invariant measuring
the difference between the Witt groups of quadratic and symmetric linking forms over $\left(\mathbb{Z}[x],(2)^{\infty}\right)$, developing further the Q-group strategy of [10].

The algebraic L-groups of $A=\mathbb{Z}_{2}$ are given by

$$
\begin{aligned}
& L^{n}\left(\mathbb{Z}_{2}\right)= \begin{cases}\mathbb{Z}_{2}(\operatorname{rank}(\bmod 2)) & \text { if } n \equiv 0(\bmod 2), \\
0 & \text { if } n \equiv 1(\bmod 2),\end{cases} \\
& L_{n}\left(\mathbb{Z}_{2}\right)= \begin{cases}\mathbb{Z}_{2}(\text { Arf invariant }) & \text { if } n \equiv 0(\bmod 2), \\
0 & \text { if } n \equiv 1(\bmod 2),\end{cases} \\
& \widehat{L}^{n}\left(\mathbb{Z}_{2}\right)=\mathbb{Z}_{2},
\end{aligned}
$$

with $1+T=0: L_{n}\left(\mathbb{Z}_{2}\right) \rightarrow L^{n}\left(\mathbb{Z}_{2}\right)$. The classical Arf invariant is defined for a nonsingular quadratic form (K, ψ) over \mathbb{Z}_{2} and a lagrangian $L \subset K$ for the symmetric form $\left(K, \psi+\psi^{*}\right)$ to be

$$
(K, \psi ; L)=\sum_{i=1}^{\ell} \psi\left(e_{i}, e_{i}\right) \cdot \psi\left(e_{i}^{*}, e_{i}^{*}\right) \in \widehat{L}^{1}\left(\mathbb{Z}_{2}\right)=L_{0}\left(\mathbb{Z}_{2}\right)=\mathbb{Z}_{2},
$$

with $e_{1}, e_{2}, \ldots, e_{\ell}$ any basis for $L \subset K$, and $e_{1}^{*}, e_{2}^{*}, \ldots, e_{\ell}^{*}$ a basis for a direct summand $L^{*} \subset K$ such that

$$
\left(\psi+\psi^{*}\right)\left(e_{i}^{*}, e_{j}^{*}\right)=0, \quad\left(\psi+\psi^{*}\right)\left(e_{i}^{*}, e_{j}\right)= \begin{cases}1 & \text { if } i=j \\ 0 & \text { if } i \neq j\end{cases}
$$

The Arf invariant is independent of the choices of L and L^{*}.
The algebraic L-groups of $A=\mathbb{Z}$ are given by

$$
\begin{aligned}
& L^{n}(\mathbb{Z})= \begin{cases}\mathbb{Z}(\text { signature }) & \text { if } n \equiv 0(\bmod 4), \\
\mathbb{Z}_{2}(\text { de Rham invariant }) & \text { if } n \equiv 1(\bmod 4), \\
0 & \text { otherwise, }\end{cases} \\
& L_{n}(\mathbb{Z})= \begin{cases}\mathbb{Z}(\text { signature } 8) & \text { if } n \equiv 0(\bmod 4), \\
\mathbb{Z}_{2}(\text { Arf invariant }) & \text { if } n \equiv 2(\bmod 4), \\
0 & \text { otherwise },\end{cases} \\
& \widehat{L}^{n}(\mathbb{Z})= \begin{cases}\mathbb{Z}_{8}(\text { signature }(\bmod 8)) & \text { if } n \equiv 0(\bmod 4), \\
\mathbb{Z}_{2}(\text { de Rham invariant }) & \text { if } n \equiv 1(\bmod 4), \\
0 & \text { if } n \equiv 2(\bmod 4), \\
\mathbb{Z}_{2}(\text { Arf invariant }) & \text { if } n \equiv 3(\bmod 4) .\end{cases}
\end{aligned}
$$

Given a nonsingular symmetric form (K, ϕ) over \mathbb{Z} there is a congruence $[19,12$, Theorem 3.10]

$$
\text { signature }(K, \phi) \equiv \phi(v, v)(\bmod 8),
$$

with $v \in K$ any element such that

$$
\phi(u, v) \equiv \phi(u, u)(\bmod 2) \quad(u \in K),
$$

so that

$$
\begin{aligned}
(K, \phi) & =\operatorname{signature}(K, \phi)=\phi(v, v) \\
& \in \operatorname{coker}\left(1+T: L_{0}(\mathbb{Z}) \rightarrow L^{0}(\mathbb{Z})\right)=\widehat{L}^{0}(\mathbb{Z})=\operatorname{coker}(8: \mathbb{Z} \rightarrow \mathbb{Z}) \\
& =\mathbb{Z}_{8} .
\end{aligned}
$$

The projection $\mathbb{Z} \rightarrow \mathbb{Z}_{2}$ induces an isomorphism $L_{2}(\mathbb{Z}) \cong L_{2}\left(\mathbb{Z}_{2}\right)$, so that the Witt class of a nonsingular (-1)-quadratic form (K, ψ) over \mathbb{Z} is given by the Arf invariant of the $\bmod 2$ reduction

$$
(K, \psi ; L)=\mathbb{Z}_{2} \otimes_{\mathbb{Z}}(K, \psi ; L) \in L_{2}(\mathbb{Z})=L_{2}\left(\mathbb{Z}_{2}\right)=\mathbb{Z}_{2}
$$

with $L \subset K$ a lagrangian for the (-1)-symmetric form $\left(K, \psi-\psi^{*}\right)$. Again, this is independent of the choice of L.

The Q-groups are defined for an A-module chain complex C to be \mathbb{Z}_{2}-hyperhomology invariants of the $\mathbb{Z}\left[\mathbb{Z}_{2}\right]$-module chain complex $C \otimes_{A} C$. The involution on A is used to define the tensor product over A of left A-module chain complexes C, D, the abelian group chain complex

$$
C \otimes_{A} D=\frac{C \otimes_{\mathbb{Z}} D}{\{a x \otimes y-x \otimes \bar{a} y \mid a \in A, x \in C, y \in D\}}
$$

Let $C \otimes_{A} C$ denote the $\mathbb{Z}\left[\mathbb{Z}_{2}\right]$-module chain complex defined by $C \otimes_{A} C$ via the transposition involution

$$
T: C_{p} \otimes_{A} C_{q} \rightarrow C_{q} \otimes_{A} C_{p} ; x \otimes y \mapsto(-1)^{p q} y \otimes x
$$

The $\left\{\begin{array}{l}\text { symmetric } \\ \text { quadratic } \\ \text { hyperquadratic }\end{array} \quad Q\right.$-groups of C are defined by

$$
\left\{\begin{array}{l}
Q^{n}(C)=H^{n}\left(\mathbb{Z}_{2} ; C \otimes_{A} C\right), \\
Q_{n}(C)=H_{n}\left(\mathbb{Z}_{2} ; C \otimes_{A} C\right), \\
\widehat{Q}^{n}(C)=\widehat{H}^{n}\left(\mathbb{Z}_{2} ; C \otimes_{A} C\right) .
\end{array}\right.
$$

The Q-groups are covariant in C, and are chain homotopy invariant. The Q-groups are related by an exact sequence

$$
\cdots \longrightarrow Q_{n}(C) \xrightarrow{1+T} Q^{n}(C) \xrightarrow{J} \widehat{Q}^{n}(C) \xrightarrow{H} Q_{n-1}(C) \longrightarrow \cdots .
$$

A chain bundle (C, γ) over A is an A-module chain complex C together with an element $\gamma \in \widehat{Q}^{0}\left(C^{-*}\right)$. The twisted quadratic Q-groups $Q_{*}(C, \gamma)$ were defined in [21] using simplicial abelian groups, to fit into an exact sequence

$$
\cdots \longrightarrow Q_{n}(C, \gamma) \stackrel{N_{\gamma}}{\longrightarrow} Q^{n}(C) \xrightarrow{J_{\gamma}} \widehat{Q}^{n}(C) \stackrel{H_{\gamma}}{\longrightarrow} Q_{n-1}(C, \gamma) \longrightarrow \cdots,
$$

with

$$
J_{\gamma}: Q^{n}(C) \rightarrow \widehat{Q}^{n}(C) ; \quad \phi \mapsto J(\phi)-\left(\widehat{\phi}_{0}\right)^{\%}(\gamma) .
$$

An n-dimensional algebraic normal complex $(C, \phi, \gamma, \theta)$ over A is an n-dimensional symmetric complex (C, ϕ) together with a chain bundle $\gamma \in \widehat{Q}^{0}\left(C^{-*}\right)$ and an element $(\phi, \theta) \in Q_{n}(C, \gamma)$ with image $\phi \in Q^{n}(C)$. Every n-dimensional symmetric Poincaré complex (C, ϕ) has the structure of an algebraic normal complex (C, ϕ, γ, θ): the Spivak normal chain bundle (C, γ) is characterized by

$$
\left(\widehat{\phi}_{0}\right)^{\%}(\gamma)=J(\phi) \in Q^{n}(C),
$$

with

$$
\left(\widehat{\phi}_{0}\right)^{\%}: \widehat{Q}^{0}\left(C^{-*}\right)=\widehat{Q}^{n}\left(C^{n-*}\right) \rightarrow \widehat{Q}^{n}(C)
$$

the isomorphism induced by the Poincaré duality chain equivalence $\phi_{0}: C^{n-*} \rightarrow C$, and the algebraic normal invariant $(\phi, \theta) \in Q_{n}(C, \gamma)$ is such that

$$
N_{\gamma}(\phi, \theta)=\phi \in Q^{n}(C) .
$$

See $[18, \S 7]$ for the one-one correspondence between the homotopy equivalence classes of n-dimensional (symmetric, quadratic) Poincaré pairs and n-dimensional algebraic normal complexes. Specifically, an n-dimensional algebraic normal complex (C, ϕ, γ, θ) determines an n-dimensional (symmetric, quadratic) Poincaré pair $\left(\partial C \rightarrow C^{n-*},(\delta \phi, \psi)\right)$ with

$$
\partial C=\mathcal{C}\left(\phi_{0}: C^{n-*} \rightarrow C\right)_{*+1}
$$

Conversely, an n-dimensional (symmetric, quadratic) Poincaré pair ($f: C \rightarrow D$, $(\delta \phi, \psi))$ determines an n-dimensional algebraic normal complex $(\mathcal{C}(f), \phi, \gamma, \theta)$, with $\gamma \in \widehat{Q}^{0}\left(\mathcal{C}(f)^{-*}\right)$ the Spivak normal chain bundle and $\phi=\delta \phi /(1+T) \psi ;$ the class $(\phi, \theta) \in Q_{n}(\mathcal{C}(f), \gamma)$ is the algebraic normal invariant of $(f: C \rightarrow D,(\delta \phi, \psi))$. Thus $\widehat{L}^{n}(A)$ is the cobordism group of n-dimensional normal complexes over A.

Weiss [21] established that for any ring with involution A there exists a universal chain bundle $\left(B^{A}, \beta^{A}\right)$ over A, such that every chain bundle (C, γ) is classified by a chain bundle map

$$
(g, \chi):(C, \gamma) \rightarrow\left(B^{A}, \beta^{A}\right),
$$

with

$$
H_{*}\left(B^{A}\right)=\widehat{H}^{*}\left(\mathbb{Z}_{2} ; A\right) .
$$

The function

$$
\widehat{L}^{n+4 *}(A) \rightarrow Q_{n}\left(B^{A}, \beta^{A}\right) ; \quad(C, \phi, \gamma, \theta) \mapsto(g, \chi) \%(\phi, \theta)
$$

was shown in [21] to be an isomorphism. Since the Q-groups are homological in nature (rather than of the Witt type) they are in principle effectively computable. The algebraic normal invariant defines the isomorphism

$$
\begin{aligned}
& \operatorname{ker}\left(1+T: L_{n}(A) \rightarrow L^{n+4 *}(A)\right) \cong \\
&(C, \psi) \mapsto(g, \chi) \%(\phi, \theta),
\end{aligned}
$$

with $(\phi, \theta) \in Q_{n+1}(\mathcal{C}(f), \gamma)$ the algebraic normal invariant of any $(n+1)$-dimensional (symmetric, quadratic) Poincaré pair ($f: C \rightarrow D,(\delta \phi, \psi)$), with classifying chain bundle map $(g, \chi):(\mathcal{C}(f), \gamma) \rightarrow\left(B^{A}, \beta^{A}\right)$. For $n=2 k$ such a pair with $H_{i}(C)=$ $H_{i}(D)=0$ for $i \neq k$ is just a nonsingular $(-1)^{k}$-quadratic form $\left(K=H^{k}(C), \psi\right)$ with a lagrangian

$$
L=\operatorname{im}\left(f^{*}: H^{k}(D) \rightarrow H^{k}(C)\right) \subset K=H^{k}(C)
$$

for $\left(K, \psi+(-1)^{k} \psi^{*}\right)$, such that the generalized Arf invariant is the image of the algebraic normal invariant

$$
(K, \psi ; L)=(g, \chi) \%(\phi, \theta) \in \widehat{L}^{4 *+2 k+1}(A)=Q_{2 k+1}\left(B^{A}, \beta^{A}\right)
$$

For $A=\mathbb{Z}_{2}$ and $n=0$ this is just the classical Arf invariant isomorphism

$$
\begin{aligned}
& L_{0}\left(\mathbb{Z}_{2}\right) \quad=\quad \operatorname{ker}\left(1+T=0: L_{0}\left(\mathbb{Z}_{2}\right) \rightarrow L^{0}\left(\mathbb{Z}_{2}\right)\right) \\
& \cong \\
& \cong \quad \operatorname{coker}\left(L^{1}\left(\mathbb{Z}_{2}\right)=0 \rightarrow Q_{1}\left(B^{\mathbb{Z}_{2}}, \beta^{\mathbb{Z}_{2}}\right)\right)=\mathbb{Z}_{2}, \\
&(K, \psi) \mapsto(K, \psi ; L),
\end{aligned}
$$

with $L \subset K$ an arbitrary lagrangian of $\left(K, \psi+\psi^{*}\right)$. The isomorphism

$$
\operatorname{coker}\left(1+T: L_{n}(A) \rightarrow L^{n+4 *}(A)\right) \quad \stackrel{\cong}{\longrightarrow} \operatorname{ker}\left(\partial: Q_{n}\left(B^{A}, \beta^{A}\right) \rightarrow L_{n-1}(A)\right)
$$

is a generalization from $A=\mathbb{Z}, n=0$ to arbitrary A, n of the identity signature $(K, \phi) \equiv$ $\phi(v, v)(\bmod 8)$ described above.
(Here is some of the geometric background. Chain bundles are algebraic analogues of vector bundles and spherical fibrations, and the twisted Q-groups are the analogues of the homotopy groups of the Thom spaces. A $(k-1)$-spherical fibration $v: X \rightarrow B G(k)$ over a connected $C W$ complex X determines a chain bundle $(C(\widetilde{X}), \gamma)$ over $\mathbb{Z}\left[\pi_{\sim}^{1}(X)\right]$, with $C(\widetilde{X})$ the cellular $\mathbb{Z}\left[\pi_{1}(X)\right]$-module chain complex of the universal cover \widetilde{X}, and there are defined Hurewicz-type morphisms

$$
\pi_{n+k}(T(v)) \rightarrow Q_{n}(C(\tilde{X}), \gamma)
$$

with $T(v)$ the Thom space. An n-dimensional normal space $(X, v: X \rightarrow B G(k), \rho$: $\left.S^{n+k} \rightarrow T(v)\right)$ [14] determines an n-dimensional algebraic normal complex $(C(\widetilde{X}), \phi, \gamma$, θ) over $\mathbb{Z}\left[\pi_{1}(X)\right]$. An n-dimensional geometric Poincaré complex X has a Spivak normal structure (v, ρ) such that the composite of the Hurewicz map and the Thom isomorphism

$$
\pi_{n+k}(T(v)) \rightarrow \widetilde{H}_{n+k}(T(v)) \cong H_{n}(X)
$$

sends ρ to the fundamental class $[X] \in H_{n}(X)$, and there is defined an n-dimensional symmetric Poincaré complex $(C(\widetilde{X}), \phi)$ over $\mathbb{Z}\left[\pi_{1}(X)\right]$, with

$$
\phi_{0}=[X] \cap-: C(\tilde{X})^{n-*} \rightarrow C(\tilde{X})
$$

The symmetric signature of X is the symmetric Poincaré cobordism class

$$
\sigma^{*}(X)=(C(\tilde{X}), \phi) \in L^{n}\left(\mathbb{Z}\left[\pi_{1}(X)\right]\right),
$$

which is both a homotopy and a $K\left(\pi_{1}(X), 1\right)$-bordism invariant. The algebraic normal invariant of a normal space (X, ν, ρ),

$$
[\rho]=(\phi, \theta) \in Q_{n}(C(\widetilde{X}), \gamma)
$$

is a homotopy invariant. The classifying chain bundle map

$$
(g, \chi):(C(\widetilde{X}), \gamma) \rightarrow\left(B^{\mathbb{Z}\left[\pi_{1}(X)\right]}, \beta^{\mathbb{Z}\left[\pi_{1}(X)\right]}\right)
$$

sends $[\rho$] to the hyperquadratic signature of X :

$$
\widehat{\sigma}^{*}(X)=[\phi, \theta] \in Q_{n}\left(B^{\mathbb{Z}\left[\pi_{1}(X)\right]}, \beta^{\mathbb{Z}\left[\pi_{1}(X)\right]}\right)=\widehat{L}^{n+4 *}\left(\mathbb{Z}\left[\pi_{1}(X)\right]\right),
$$

which is both a homotopy and a $K\left(\pi_{1}(X), 1\right)$-bordism invariant. The (simply-connected) symmetric signature of a $4 k$-dimensional geometric Poincaré complex X is just the signature

$$
\sigma^{*}(X)=\operatorname{signature}(X) \in L^{4 k}(\mathbb{Z})=\mathbb{Z}
$$

and the hyperquadratic signature is the $\bmod 8$ reduction of the signature

$$
\widehat{\sigma}^{*}(X)=\operatorname{signature}(X) \in \widehat{L}^{4 k}(\mathbb{Z})=\mathbb{Z}_{8} .
$$

See [18] for a more extended discussion of the connections between chain bundles and their geometric models.)

1. The Q - and L-groups

1.1. Duality

Let $T \in \mathbb{Z}_{2}$ be the generator. The Tate \mathbb{Z}_{2}-cohomology groups of a $\mathbb{Z}\left[\mathbb{Z}_{2}\right]$-module M are given by

$$
\widehat{H}^{n}\left(\mathbb{Z}_{2} ; M\right)=\frac{\left\{x \in M \mid T(x)=(-1)^{n} x\right\}}{\left\{y+(-1)^{n} T(y) \mid y \in M\right\}}
$$

and the $\left\{\begin{array}{l}\mathbb{Z}_{2} \text {-cohomology } \\ \mathbb{Z}_{2} \text {-homology }\end{array}\right.$ groups are given by

$$
\begin{aligned}
& H^{n}\left(\mathbb{Z}_{2} ; M\right)= \begin{cases}\{x \in M \mid T(x)=x\} & \text { if } n=0, \\
\widehat{H}^{n}\left(\mathbb{Z}_{2} ; M\right) & \text { if } n>0, \\
0 & \text { if } n<0,\end{cases} \\
& H_{n}\left(\mathbb{Z}_{2} ; M\right)= \begin{cases}M /\{y-T(y) \mid y \in M\} & \text { if } n=0, \\
\widehat{H}^{n+1}\left(\mathbb{Z}_{2} ; M\right) & \text { if } n>0, \\
0 & \text { if } n<0\end{cases}
\end{aligned}
$$

We recall some standard properties of \mathbb{Z}_{2}-(co)homology:
Proposition 1. Let M be a $\mathbb{Z}\left[\mathbb{Z}_{2}\right]$-module.
(i) There is defined an exact sequence

$$
\cdots \rightarrow H_{n}\left(\mathbb{Z}_{2} ; M\right) \quad \xrightarrow{N} \quad H^{-n}\left(\mathbb{Z}_{2} ; M\right) \rightarrow \widehat{H}^{n}\left(\mathbb{Z}_{2} ; M\right) \rightarrow H_{n-1}\left(\mathbb{Z}_{2} ; M\right) \rightarrow \cdots,
$$

with

$$
N=1+T: H_{0}\left(\mathbb{Z}_{2} ; M\right) \rightarrow H^{0}\left(\mathbb{Z}_{2} ; M\right) ; \quad x \mapsto x+T(x)
$$

(ii) The Tate \mathbb{Z}_{2}-cohomology groups are 2 -periodic and of exponent 2 ,

$$
\widehat{H}^{*}\left(\mathbb{Z}_{2} ; M\right)=\widehat{H}^{*+2}\left(\mathbb{Z}_{2} ; M\right), \quad 2 \widehat{H}^{*}\left(\mathbb{Z}_{2} ; M\right)=0
$$

(iii) $\widehat{H}^{*}\left(\mathbb{Z}_{2} ; M\right)=0$ if M is a free $\mathbb{Z}\left[\mathbb{Z}_{2}\right]$-module.

Let A be an associative ring with 1 , and with an involution

$$
{ }^{-}: A \rightarrow A ; a \mapsto \bar{a},
$$

such that

$$
\overline{a+b}=\bar{a}+\bar{b}, \overline{a b}=\bar{b} \cdot \bar{a}, \overline{1}=1, \quad \overline{\bar{a}}=a
$$

When a ring A is declared to be commutative it is given the identity involution.

Definition 2. For a ring with involution A and $\varepsilon= \pm 1$ let (A, ε) denote the $\mathbb{Z}\left[\mathbb{Z}_{2}\right]$ module given by A with $T \in \mathbb{Z}_{2}$ acting by

$$
T_{\varepsilon}: A \rightarrow A ; \quad a \mapsto \varepsilon \bar{a} .
$$

For $\varepsilon=1$ we shall write

$$
\begin{aligned}
& \widehat{H}^{*}\left(\mathbb{Z}_{2} ; A, 1\right)=\widehat{H}^{*}\left(\mathbb{Z}_{2} ; A\right), \\
& H^{*}\left(\mathbb{Z}_{2} ; A, 1\right)=H^{*}\left(\mathbb{Z}_{2} ; A\right), \quad H_{*}\left(\mathbb{Z}_{2} ; A, 1\right)=H_{*}\left(\mathbb{Z}_{2} ; A\right) .
\end{aligned}
$$

The dual of a f.g. projective (left) A-module P is the f.g. projective A-module

$$
P^{*}=\operatorname{Hom}_{A}(P, A), \quad A \times P^{*} \rightarrow P^{*} ; \quad(a, f) \mapsto(x \mapsto f(x) \bar{a}) .
$$

The natural A-module isomorphism

$$
P \rightarrow P^{* *} ; \quad x \mapsto(f \mapsto \overline{f(x)})
$$

is used to identify

$$
P^{* *}=P .
$$

For any f.g. projective A-modules P, Q there is defined an isomorphism

$$
P \otimes_{A} Q \rightarrow \operatorname{Hom}_{A}\left(P^{*}, Q\right) ; \quad x \otimes y \mapsto(f \mapsto \overline{f(x)} y)
$$

regarding Q as a right A-module by

$$
Q \times A \rightarrow Q ; \quad(y, a) \mapsto \bar{a} y .
$$

There is also a duality isomorphism

$$
T: \operatorname{Hom}_{A}(P, Q) \rightarrow \operatorname{Hom}_{A}\left(Q^{*}, P^{*}\right) ; \quad f \mapsto f^{*},
$$

with

$$
f^{*}: Q^{*} \rightarrow P^{*} ; \quad g \mapsto(x \mapsto g(f(x))) .
$$

Definition 3. For any f.g. projective A-module P and $\varepsilon= \pm 1$ let $\left(S(P), T_{\varepsilon}\right)$ denote the $\mathbb{Z}\left[\mathbb{Z}_{2}\right]$-module given by the abelian group

$$
S(P)=\operatorname{Hom}_{A}\left(P, P^{*}\right),
$$

with \mathbb{Z}_{2}-action by the ε-duality involution

$$
T_{\varepsilon}: S(P) \rightarrow S(P) ; \quad \phi \mapsto \varepsilon \phi^{*}
$$

Furthermore, let

$$
\begin{aligned}
& \operatorname{Sym}(P, \varepsilon)=H^{0}\left(\mathbb{Z}_{2} ; S(P), T_{\varepsilon}\right)=\left\{\phi \in S(P) \mid T_{\varepsilon}(\phi)=\phi\right\} \\
& \operatorname{Quad}(P, \varepsilon)=H_{0}\left(\mathbb{Z}_{2} ; S(P), T_{\varepsilon}\right)=\frac{S(P)}{\left\{\theta \in S(P) \mid \theta-T_{\varepsilon}(\theta)\right\}}
\end{aligned}
$$

An element $\phi \in S(P)$ can be regarded as a sesquilinear form

$$
\phi: P \times P \rightarrow A ; \quad(x, y) \mapsto\langle x, y\rangle_{\phi}=\phi(x)(y)
$$

such that

$$
\langle a x, b y\rangle_{\phi}=b\langle x, y\rangle_{\phi} \bar{a} \in A \quad(x, y \in P, a, b \in A),
$$

with

$$
\langle x, y\rangle_{T_{\varepsilon}(\phi)}=\varepsilon \overline{\langle y, x\rangle}_{\phi} \in A .
$$

An A-module morphism $f: P \rightarrow Q$ induces contravariantly a $\mathbb{Z}\left[\mathbb{Z}_{2}\right]$-module morphism

$$
S(f):\left(S(Q), T_{\varepsilon}\right) \rightarrow\left(S(P), T_{\varepsilon}\right) ; \quad \theta \mapsto f^{*} \theta f
$$

For a f.g. free A-module $P=A^{r}$ we shall use the A-module isomorphism

$$
A^{r} \rightarrow\left(A^{r}\right)^{*} ; \quad\left(a_{1}, a_{2}, \ldots, a_{r}\right) \mapsto\left(\left(b_{1}, b_{2}, \ldots, b_{r}\right) \mapsto \sum_{i=1}^{r} b_{i} \bar{a}_{i}\right)
$$

to identify

$$
\left(A^{r}\right)^{*}=A^{r}, \operatorname{Hom}_{A}\left(A^{r},\left(A^{r}\right)^{*}\right)=M_{r}(A),
$$

noting that the duality involution T corresponds to the conjugate transposition of a matrix. We can thus identify
$M_{r}(A)=S\left(A^{r}\right)=$ additive group of $r \times r$ matrices $\left(a_{i j}\right)$ with $a_{i j} \in A$, $T: M_{r}(A) \rightarrow M_{r}(A) ; \quad M=\left(a_{i j}\right) \mapsto M^{t}=\left(\bar{a}_{j i}\right)$, $\operatorname{Sym}_{r}(A, \varepsilon)=\operatorname{Sym}\left(A^{r}, \varepsilon\right)=\left\{\left(a_{i j}\right) \in M_{r}(A) \mid a_{i j}=\varepsilon \bar{a}_{j i}\right\}$,
$\operatorname{Quad}_{r}(A, \varepsilon)=\operatorname{Quad}\left(A^{r}, \varepsilon\right)=\frac{M_{r}(A)}{\left\{\left(a_{i j}-\varepsilon \bar{a}_{j i}\right) \mid\left(a_{i j}\right) \in M_{r}(A)\right\}}$,
$1+T_{\varepsilon}: \operatorname{Quad}_{r}(A, \varepsilon) \rightarrow \operatorname{Sym}_{r}(A, \varepsilon) ; M \mapsto M+\varepsilon M^{t}$.

The homology of the chain complex

$$
\cdots \longrightarrow M_{r}(A) \xrightarrow{1-T} M_{r}(A) \xrightarrow{1+T} M_{r}(A) \xrightarrow{1-T} M_{r}(A) \longrightarrow \cdots
$$

is given by

$$
\frac{\operatorname{ker}\left(1-(-1)^{n} T: M_{r}(A) \rightarrow M_{r}(A)\right)}{\operatorname{im}\left(1+(-1)^{n} T: M_{r}(A) \rightarrow M_{r}(A)\right)}=\widehat{H}^{n}\left(\mathbb{Z}_{2} ; M_{r}(A)\right)=\bigoplus_{r} \widehat{H}^{n}\left(\mathbb{Z}_{2} ; A\right) .
$$

The $(-1)^{n}$-symmetrization map $1+(-1)^{n} T: \operatorname{Sym}_{r}(A) \rightarrow \operatorname{Quad}_{r}(A)$ fits into an exact sequence

$$
\begin{array}{rll}
0 \rightarrow \bigoplus_{r} \widehat{H}^{n+1}\left(\mathbb{Z}_{2} ; A\right) & \rightarrow & \operatorname{Quad}_{r}\left(A,(-1)^{n}\right) \\
& \xrightarrow{1+(-1)^{n} T} & \operatorname{Sym}_{r}\left(A,(-1)^{n}\right) \rightarrow \bigoplus_{r} \widehat{H}^{n}\left(\mathbb{Z}_{2} ; A\right) \rightarrow 0 .
\end{array}
$$

For $\varepsilon=1$ we abbreviate

$$
\begin{aligned}
& \operatorname{Sym}(P, 1)=\operatorname{Sym}(P), \quad \operatorname{Quad}(P, 1)=\operatorname{Quad}(P), \\
& \operatorname{Sym}_{r}(A, 1)=\operatorname{Sym}_{r}(A), \quad \operatorname{Quad}_{r}(A, 1)=\operatorname{Quad}_{r}(A) .
\end{aligned}
$$

Definition 4. An involution on a ring A is even if

$$
\widehat{H}^{1}\left(\mathbb{Z}_{2} ; A\right)=0,
$$

that is if

$$
\{a \in A \mid a+\bar{a}=0\}=\{b-\bar{b} \mid b \in A\} .
$$

Proposition 5. (i) For any f.g. projective A-module P there is defined an exact sequence

$$
0 \rightarrow \widehat{H}^{1}\left(\mathbb{Z}_{2} ; S(P), T\right) \rightarrow \operatorname{Quad}(P) \xrightarrow{1+T} \operatorname{Sym}(P)
$$

with

$$
1+T: \operatorname{Quad}(P) \rightarrow \operatorname{Sym}(P) ; \psi \mapsto \psi+\psi^{*}
$$

(ii) If the involution on A is even the symmetrization $1+T: \operatorname{Quad}(P) \rightarrow \operatorname{Sym}(P)$ is injective, and

$$
\widehat{H}^{n}\left(\mathbb{Z}_{2} ; S(P), T\right)= \begin{cases}\frac{\operatorname{Sym}(P)}{\operatorname{Quad}(P)} & \text { if } n \text { is even } \\ 0 & \text { if } n \text { is odd }\end{cases}
$$

identifying $\operatorname{Quad}(P)$ with $\operatorname{im}(1+T) \subseteq \operatorname{Sym}(P)$.
Proof. (i) This is a special case of 1(i).
(ii) If Q is a f.g. projective A-module such that $P \oplus Q=A^{r}$ is f.g. free then

$$
\begin{aligned}
\widehat{H}^{1}\left(\mathbb{Z}_{2} ; S(P), T\right) \oplus \widehat{H}^{1}\left(\mathbb{Z}_{2} ; S(Q), T\right) & =\widehat{H}^{1}\left(\mathbb{Z}_{2} ; S(P \oplus Q), T\right) \\
& =\bigoplus_{r} \widehat{H}^{1}\left(\mathbb{Z}_{2} ; A,-T\right)=0
\end{aligned}
$$

and so $\widehat{H}^{1}\left(\mathbb{Z}_{2} ; S(P), T\right)=0$.
In particular, if the involution on A is even there is defined an exact sequence

$$
0 \rightarrow \operatorname{Quad}_{r}(A) \quad \xrightarrow{1+T} \operatorname{Sym}_{r}(A) \rightarrow \bigoplus_{r} \widehat{H}^{0}\left(\mathbb{Z}_{2} ; A\right) \rightarrow 0
$$

with

$$
\operatorname{Sym}_{r}(A) \rightarrow \bigoplus_{r} \widehat{H}^{0}\left(\mathbb{Z}_{2} ; A\right) ; \quad\left(a_{i j}\right) \mapsto\left(a_{i i}\right)
$$

For any involution on $A, \operatorname{Sym}_{r}(A)$ is the additive group of symmetric $r \times r$ matrices $\left(a_{i j}\right)=\left(\bar{a}_{j i}\right)$ with $a_{i j} \in A$. For an even involution $\operatorname{Quad}_{r}(A) \subseteq \operatorname{Sym}_{r}(A)$ is the subgroup of the matrices such that the diagonal terms are of the form $a_{i i}=b_{i}+\bar{b}_{i}$
for some $b_{i} \in A$, with

$$
\frac{\operatorname{Sym}_{r}(A)}{\operatorname{Quad}_{r}(A)}=\bigoplus_{r} \widehat{H}^{0}\left(\mathbb{Z}_{2} ; A\right)
$$

Definition 6. A ring A is even if $2 \in A$ is a nonzero divisor, i.e. $2: A \rightarrow A$ is injective.

Example 7. (i) An integral domain A is even if and only if it has characteristic $\neq 2$.
(ii) The identity involution on a commutative ring A is even (4) if and only if the ring A is even (6), in which case

$$
\widehat{H}^{n}\left(\mathbb{Z}_{2} ; A\right)= \begin{cases}A_{2} & \text { if } n \equiv 0(\bmod 2) \\ 0 & \text { if } n \equiv 1(\bmod 2)\end{cases}
$$

and

$$
\operatorname{Quad}_{r}(A)=\left\{\left(a_{i j}\right) \in \operatorname{Sym}_{r}(A) \mid a_{i i} \in 2 A\right\} .
$$

Example 8. For any group π there is defined an involution on the group ring $\mathbb{Z}[\pi]$:

$$
-: \mathbb{Z}[\pi] \rightarrow \mathbb{Z}[\pi] ; \quad \sum_{g \in \pi} n_{g} g \mapsto \sum_{g \in \pi} n_{g} g^{-1} .
$$

If π has no 2 -torsion this involution is even.

1.2. The hyperquadratic Q-groups

Let C be a finite (left) f.g. projective A-module chain complex. The dual of the f.g. projective A-module C_{p} is written

$$
C^{p}=\left(C_{p}\right)^{*}=\operatorname{Hom}_{A}\left(C_{p}, A\right) .
$$

The dual A-module chain complex C^{-*} is defined by

$$
d_{C^{-*}}=\left(d_{C}\right)^{*}:\left(C^{-*}\right)_{r}=C^{-r} \rightarrow\left(C^{-*}\right)_{r-1}=C^{-r+1}
$$

The n-dual A-module chain complex C^{n-*} is defined by

$$
d_{C^{n-*}}=(-1)^{r}\left(d_{C}\right)^{*}:\left(C^{n-*}\right)_{r}=C^{n-r} \rightarrow\left(C^{n-*}\right)_{r-1}=C^{n-r+1}
$$

Identify

$$
C \otimes_{A} C=\operatorname{Hom}_{A}\left(C^{-*}, C\right)
$$

noting that a cycle $\phi \in\left(C \otimes_{A} C\right)_{n}$ is a chain map $\phi: C^{n-*} \rightarrow C$. For $\varepsilon= \pm 1$ the ε-transposition involution T_{ε} on $C \otimes_{A} C$ corresponds to the ε-duality involution on $\operatorname{Hom}_{A}\left(C^{-*}, C\right)$,

$$
T_{\varepsilon}: \operatorname{Hom}_{A}\left(C^{p}, C_{q}\right) \rightarrow \operatorname{Hom}_{A}\left(C^{q}, C_{p}\right) ; \quad \phi \mapsto(-1)^{p q} \varepsilon \phi^{*}
$$

Let \widehat{W} be the complete resolution of the $\mathbb{Z}\left[\mathbb{Z}_{2}\right]$-module \mathbb{Z} :

$$
\widehat{W}: \cdots \rightarrow \widehat{W}_{1}=\mathbb{Z}\left[\mathbb{Z}_{2}\right] \xrightarrow{1-T} \widehat{W}_{0}=\mathbb{Z}\left[\mathbb{Z}_{2}\right] \xrightarrow{1+T} \widehat{W}_{-1}=\mathbb{Z}\left[\mathbb{Z}_{2}\right] \xrightarrow{1-T} \widehat{W}_{-2}=\mathbb{Z}\left[\mathbb{Z}_{2}\right] \rightarrow \cdots .
$$

If we set

$$
\widehat{W}^{\%} C=\operatorname{Hom}_{\mathbb{Z}\left[\mathbb{Z}_{2}\right]}\left(\widehat{W}, \operatorname{Hom}_{A}\left(C^{-*}, C\right)\right)
$$

then an n-dimensional ε-hyperquadratic structure on C is a cycle $\theta \in\left(\widehat{W}^{\%} C\right)_{n}$, which is just a collection $\left\{\theta_{s} \in \operatorname{Hom}_{A}\left(C^{n-r+s}, C_{r}\right) \mid r, s \in \mathbb{Z}\right\}$ such that

$$
d \theta_{s}+(-1)^{r} \theta_{s} d^{*}+(-1)^{n+s-1}\left(\theta_{s-1}+(-1)^{s} T_{\varepsilon} \theta_{s-1}\right)=0: C^{n-r+s-1} \rightarrow C_{r}
$$

Definition 9. The n-dimensional ε-hyperquadratic Q-group $\widehat{Q}^{n}(C, \varepsilon)$ is the abelian group of equivalence classes of n-dimensional ε-hyperquadratic structures on C, that is,

$$
\widehat{Q}^{n}(C, \varepsilon)=H_{n}\left(\widehat{W}^{\%} C\right)
$$

The ε-hyperquadratic Q-groups are 2-periodic and of exponent 2

$$
\widehat{Q}^{*}(C, \varepsilon) \cong \widehat{Q}^{*+2}(C, \varepsilon), \quad 2 \widehat{Q}^{*}(C, \varepsilon)=0
$$

More precisely, there are defined isomorphisms

$$
\widehat{Q}^{n}(C, \varepsilon) \quad \cong \quad \widehat{Q}^{n+2}(C, \varepsilon) ;\left\{\theta_{s}\right\} \mapsto\left\{\theta_{s+2}\right\}
$$

and for any n-dimensional ε-hyperquadratic structure $\left\{\theta_{s}\right\}$,

$$
2 \theta_{s}=d \chi_{s}+(-1)^{r} \chi_{s} d^{*}+(-1)^{n+s}\left(\chi_{s-1}+(-1)^{s} T_{\varepsilon} \chi_{s-1}\right): C^{n-r+s} \rightarrow C_{r},
$$

with $\chi_{s}=(-1)^{n+s-1} \theta_{s+1}$. There are also defined suspension isomorphisms

$$
S: \widehat{Q}^{n}(C, \varepsilon) \quad \cong \quad \widehat{Q}^{n+1}\left(C_{*-1}, \varepsilon\right) ;\left\{\theta_{s}\right\} \mapsto\left\{\theta_{s-1}\right\}
$$

and skew-suspension isomorphisms

$$
\bar{S}: \widehat{Q}^{n}(C, \varepsilon) \xrightarrow{\cong} \widehat{Q}^{n+2}\left(C_{*-1},-\varepsilon\right) ;\left\{\theta_{s}\right\} \mapsto\left\{\theta_{s}\right\} .
$$

Proposition 10. Let C be a f.g. projective A-module chain complex which is concentrated in degree k

$$
C: \cdots \rightarrow 0 \rightarrow C_{k} \rightarrow 0 \rightarrow \cdots .
$$

The ε-hyperquadratic Q-groups of C are given by

$$
\widehat{Q}^{n}(C, \varepsilon)=\widehat{H}^{n-2 k}\left(\mathbb{Z}_{2} ; S\left(C^{k}\right),(-1)^{k} T_{\varepsilon}\right)
$$

(with $S\left(C^{k}\right)=\operatorname{Hom}_{A}\left(C^{k}, C_{k}\right)$).

Proof. The $\mathbb{Z}\left[\mathbb{Z}_{2}\right]$-module chain complex $V=\operatorname{Hom}_{A}\left(C^{-*}, C\right)$ is given by

$$
V: \cdots \rightarrow V_{2 k+1}=0 \rightarrow V_{2 k}=S\left(C^{k}\right) \rightarrow V_{2 k-1}=0 \rightarrow \cdots
$$

and

$$
\left(\widehat{W}^{\%} C\right)_{j}=\operatorname{Hom}_{\mathbb{Z}\left[\mathbb{Z}_{2}\right]}\left(\widehat{W}_{2 k-j}, V_{2 k}\right)=\operatorname{Hom}_{\mathbb{Z}\left[\mathbb{Z}_{2}\right]}\left(\widehat{W}_{2 k-j}, S\left(C^{k}\right)\right) .
$$

Thus the chain complex $\widehat{W}^{\%} C$ is of the form

$$
\begin{array}{ll}
\left(\widehat{W}^{\%} C\right)_{2 k+1} & =\operatorname{Hom}_{\mathbb{Z}\left[\mathbb{Z}_{2}\right]}\left(\widehat{W}_{-1}, V_{2 k}\right)=S\left(C^{k}\right), \\
\downarrow d_{2 k+1}=1+(-1)^{k} T_{\varepsilon} & \\
\left(\widehat{W}^{\%} C\right)_{2 k} & =\operatorname{Hom}_{\mathbb{Z}\left[\mathbb{Z}_{2}\right]}\left(\widehat{W}_{0}, V_{2 k}\right)=S\left(C^{k}\right), \\
\downarrow d_{2 k}=1+(-1)^{k+1} T_{\varepsilon} & \\
\left(\widehat{W}^{\%} C\right)_{2 k-1} & =\operatorname{Hom}_{\mathbb{Z}\left[\mathbb{Z}_{2}\right]}\left(\widehat{W}_{1}, V_{2 k}\right)=S\left(C^{k}\right), \\
\downarrow d_{2 k-1}=1+(-1)^{k} T_{\varepsilon} & \\
\left(\widehat{W}^{\%} C\right)_{2 k-2} & =\operatorname{Hom}_{\mathbb{Z}\left[\mathbb{Z}_{2}\right]}\left(\widehat{W}_{2}, V_{2 k}\right)=S\left(C^{k}\right) \\
\downarrow
\end{array}
$$

and

$$
\widehat{Q}^{n}(C, \varepsilon)=H_{n}\left(\widehat{W}^{\%} C\right)=\widehat{H}^{n-2 k}\left(\mathbb{Z}_{2} ; S\left(C^{k}\right),(-1)^{k} T_{\varepsilon}\right)
$$

Example 11. The ε-hyperquadratic Q-groups of a zero-dimensional f.g. free A-module chain complex

$$
C: \cdots \rightarrow 0 \rightarrow C_{0}=A^{r} \rightarrow 0 \rightarrow \cdots
$$

are given by

$$
\widehat{Q}^{n}(C, \varepsilon)=\bigoplus_{r} \widehat{H}^{n}\left(\mathbb{Z}_{2} ; A, \varepsilon\right)
$$

The algebraic mapping cone $\mathcal{C}(f)$ of a chain map $f: C \rightarrow D$ is the chain complex defined as usual by

$$
d_{\mathcal{C}(f)}=\left(\begin{array}{cc}
d_{D} & (-1)^{r-1} f \\
0 & d_{C}
\end{array}\right): \mathcal{C}(f)_{r}=D_{r} \oplus C_{r-1} \rightarrow \mathcal{C}(f)_{r-1}=D_{r-1} \oplus C_{r-2}
$$

The relative homology groups

$$
H_{n}(f)=H_{n}(\mathcal{C}(f))
$$

fit into an exact sequence

$$
\cdots \rightarrow H_{n}(C) \xrightarrow{f_{*}} H_{n}(D) \rightarrow H_{n}(f) \rightarrow H_{n-1}(C) \rightarrow \cdots
$$

An A-module chain map $f: C \rightarrow D$ induces a $\mathbb{Z}\left[\mathbb{Z}_{2}\right]$-module chain map

$$
\begin{aligned}
f \otimes f & =\operatorname{Hom}_{A}\left(f^{*}, f\right): C \otimes_{A} C=\operatorname{Hom}_{A}\left(C^{-*}, C\right) \rightarrow D \otimes_{A} D \\
& =\operatorname{Hom}_{A}\left(D^{-*}, D\right)
\end{aligned}
$$

and hence a \mathbb{Z}-module chain map

$$
\widehat{f}^{\%}=\operatorname{Hom}_{\mathbb{Z}\left[\mathbb{Z}_{2}\right]}\left(1_{\widehat{W}}, f \otimes_{A} f\right): \widehat{W}^{\%} C \longrightarrow \widehat{W}^{\%} D
$$

which induces

$$
\widehat{f}^{\%}: \widehat{Q}^{n}(C, \varepsilon) \longrightarrow \widehat{Q}^{n}(D, \varepsilon)
$$

on homology. The relative ε-hyperquadratic Q-group

$$
\widehat{Q}^{n}(f, \varepsilon)=H_{n}\left(\widehat{f}^{\%}: \widehat{W}^{\%} C \rightarrow \widehat{W}^{\%} D\right)
$$

fits into a long exact sequence

$$
\cdots \longrightarrow \widehat{Q}^{n}(C, \varepsilon) \xrightarrow{\widehat{f}^{\%}} \widehat{Q}^{n}(D, \varepsilon) \longrightarrow \widehat{Q}^{n}(f, \varepsilon) \longrightarrow \widehat{Q}^{n-1}(C, \varepsilon) \longrightarrow \cdots .
$$

As in $[15, \S 1]$ define a \mathbb{Z}_{2}-isovariant chain map $f: C \rightarrow D$ of $\mathbb{Z}\left[\mathbb{Z}_{2}\right]$-module chain complexes C, D to be a collection

$$
\left\{f_{s} \in \operatorname{Hom}_{\mathbb{Z}}\left(C_{r}, D_{r+s}\right) \mid r \in \mathbb{Z}, s \geqslant 0\right\}
$$

such that

$$
\begin{aligned}
& d_{D} f_{s}+(-1)^{s-1} f_{s} d_{C}+(-1)^{s-1}\left(f_{s-1}+(-1)^{s} T_{D} f_{s-1} T_{C}\right) \\
& \quad=0: C_{r} \rightarrow D_{r+s-1} \quad\left(f_{-1}=0\right),
\end{aligned}
$$

so that $f_{0}: C \rightarrow D$ is a \mathbb{Z}-module chain map, $f_{1}: f_{0} \simeq T_{D} f_{0}: C \rightarrow D$ is a \mathbb{Z}-module chain map, etc. There is a corresponding notion of \mathbb{Z}_{2}-isovariant chain homotopy.

For any A-module chain complexes C, D a \mathbb{Z}_{2}-isovariant chain map $F: C \otimes_{A} C \rightarrow$ $D \otimes_{A} D$ induces morphisms of the ε-hyperquadratic Q-groups

$$
\widehat{F}^{\%}: \widehat{Q}^{n}(C, \varepsilon) \rightarrow \widehat{Q}^{n}(D, \varepsilon) ; \quad \theta \mapsto \widehat{F}^{\%}(\theta), \quad \widehat{F}^{\%}(\theta)_{s}=\sum_{r=0}^{\infty} \pm F_{r}\left(T^{r} \theta_{s-r}\right)
$$

If F_{0} is a chain equivalence the morphisms $\widehat{F}^{\%}$ are isomorphisms. An A-module chain map $f: C \rightarrow D$ determines a \mathbb{Z}_{2}-isovariant chain map

$$
f \otimes_{A} f: C \otimes_{A} C \rightarrow D \otimes_{A} D
$$

with $\left(f \otimes_{A} f\right)_{s}=0$ for $s \geqslant 1$.
Proposition 12 (Ranicki [15, Propositions 1.1,1.4] Weiss [21, Theorem 1.1]). (i) The relative ε-hyperquadratic Q-groups of an A-module chain map $f: C \rightarrow D$ are isomorphic to the absolute ε-hyperquadratic Q-groups of the algebraic mapping cone $\mathcal{C}(f)$,

$$
\widehat{Q}^{*}(f, \varepsilon) \cong \widehat{Q}^{*}(\mathcal{C}(f), \varepsilon) .
$$

(ii) The ε-hyperquadratic Q-groups are additive: for any collection $\{C(i) \mid i \in \mathbb{Z}\}$ of f.g. projective A-module chain complexes $C(i)$,

$$
\widehat{Q}^{n}\left(\sum_{i} C(i), \varepsilon\right)=\bigoplus_{i} \widehat{Q}^{n}(C(i), \varepsilon)
$$

(iii) If $f: C \rightarrow D$ is a chain equivalence the morphisms $\widehat{f}^{\%}: \widehat{Q}^{*}(C, \varepsilon) \rightarrow \widehat{Q}^{*}(D, \varepsilon)$ are isomorphisms, and

$$
\widehat{Q}^{*}(f, \varepsilon)=0 .
$$

Proof. (i) The \mathbb{Z}_{2}-isovariant chain map $t: \mathcal{C}\left(f \otimes_{A} f\right) \rightarrow \mathcal{C}(f) \otimes_{A} \mathcal{C}(f)$ defined by

$$
t_{0}(\theta, \partial \theta)=\theta+(f \otimes 1) \partial \theta, \quad t_{1}(\theta, \partial \theta)=\partial \theta, \quad t_{s}=0(s \geqslant 2)
$$

induces the algebraic Thom construction maps

$$
\widehat{t}^{\%}: \widehat{Q}^{n}(f, \varepsilon) \rightarrow \widehat{Q}^{n}(\mathcal{C}(f), \varepsilon) ; \quad(\theta, \partial \theta) \mapsto \theta / \partial \theta
$$

with

$$
\begin{aligned}
(\theta / \partial \theta)_{s} & =\left(\begin{array}{cc}
\theta_{s} & 0 \\
\pm \partial \theta_{s} f^{*} & \pm T_{\varepsilon} \partial \theta_{s-1}
\end{array}\right): \\
\mathcal{C}(f)^{n-r+s} & =D^{n-r+s} \oplus C^{n-r+s-1} \rightarrow \mathcal{C}(f)_{r}=D_{r} \oplus C_{r-1} \quad(r, s \in \mathbb{Z}) .
\end{aligned}
$$

Define a free $\mathbb{Z}\left[\mathbb{Z}_{2}\right]$-module chain complex

$$
E=\left(C_{*-1} \otimes_{A} \mathcal{C}(f)\right) \oplus\left(\mathcal{C}(f) \otimes_{A} C_{*-1}\right)
$$

with

$$
T: E \rightarrow E ; \quad(a \otimes b, x \otimes y) \mapsto(y \otimes x, b \otimes a)
$$

such that

$$
H_{*}\left(\widehat{W} \otimes_{\mathbb{Z}\left[\mathbb{Z}_{2}\right]} E\right)=H_{*}\left(\operatorname{Hom}_{\mathbb{Z}\left[\mathbb{Z}_{2}\right]}(\widehat{W}, E)\right)=0
$$

Let $p: \mathcal{C}(f) \rightarrow C_{*-1}$ be the projection. The chain map

$$
\binom{p \otimes 1}{1 \otimes p}: \mathcal{C}(f) \otimes_{A} \mathcal{C}(f) \rightarrow E
$$

induces a chain equivalence

$$
\mathcal{C}\left(t_{0}: \mathcal{C}(f \otimes f) \rightarrow \mathcal{C}(f) \otimes_{A} \mathcal{C}(f)\right) \simeq E
$$

so that the morphisms $\widehat{t}^{\%}: \widehat{Q}^{*}(f, \varepsilon) \cong \widehat{Q}^{*}(\mathcal{C}(f), \varepsilon)$ are isomorphisms.
(ii) $\widehat{Q}^{*}(C(1) \oplus C(2))=\widehat{Q}^{*}(C(1)) \oplus \widehat{Q}^{*}(C(2))$ is the special case of (i) with $f=$ $0: C(1)_{*+1} \rightarrow C(2)$.
(iii) An A-module chain homotopy $g: f \simeq f^{\prime}: C \rightarrow D$ determines a \mathbb{Z}_{2}-isovariant chain homotopy

$$
h: f \otimes_{A} f \simeq f^{\prime} \otimes_{A} f^{\prime}: C \otimes_{A} C \rightarrow D \otimes_{A} D
$$

with

$$
h_{0}=f \otimes_{A} g \pm g \otimes_{A} f, h_{1}= \pm g \otimes_{A} g, h_{s}=0(s \geqslant 2)
$$

so that

$$
\widehat{f}^{\%}=\widehat{f}^{\prime \%}: \widehat{Q}^{n}(C, \varepsilon) \rightarrow \widehat{Q}^{n}(D, \varepsilon) .
$$

(See the proof of [15, Proposition 1.1(ii)] for the signs.) In particular, if f is a chain equivalence the morphisms $\widehat{f}^{\%}$ are isomorphisms.

Proposition 13. Let C be a f.g. projective A-module chain complex which is concentrated in degrees $k, k+1$,

$$
C: \cdots \rightarrow 0 \rightarrow C_{k+1} \quad \stackrel{d}{\longrightarrow} C_{k} \rightarrow 0 \rightarrow \cdots
$$

(i) The ε-hyperquadratic Q-groups of C are the relative Tate \mathbb{Z}_{2}-cohomology groups in the exact sequence

$$
\begin{aligned}
\cdots \rightarrow \widehat{H}^{n-2 k}\left(\mathbb{Z}_{2} ; S\left(C^{k+1}\right),(-1)^{k} T_{\varepsilon}\right) \quad \xrightarrow{\widehat{d}^{\%}} \\
\rightarrow \widehat{Q}^{n}(C, \varepsilon) \rightarrow \widehat{H}^{n-2 k-1}\left(\mathbb{Z}_{2} ; S\left(C^{k+1}\right),(-1)^{k} T_{\varepsilon}\right) \rightarrow \cdots
\end{aligned}
$$

that is

$$
\widehat{Q}^{n}(C, \varepsilon)=\frac{\left\{(\phi, \theta) \in S\left(C^{k+1}\right) \oplus S\left(C^{k}\right) \mid \phi^{*}=(-1)^{n+k-1} \varepsilon \phi, d \phi d^{*}=\theta+(-1)^{n+k-1} \varepsilon \theta^{*}\right\}}{\left\{\left(\sigma+(-1)^{n+k-1} \varepsilon \sigma^{*}, d \sigma d^{*}+\tau+(-1)^{n+k} \varepsilon \tau^{*}\right) \mid(\sigma, \tau) \in S\left(C^{k+1}\right) \oplus S\left(C^{k}\right)\right\}}
$$

with (ϕ, θ) corresponding to the cycle $\beta \in\left(\widehat{W}^{\%} C\right)_{n}$ given by

$$
\begin{aligned}
& \beta_{2 k-n+2}=\theta: C^{k+1} \rightarrow C_{k+1}, \beta_{2 k-n}=\phi: C^{k} \rightarrow C_{k} \\
& \beta_{2 k-n+1}=\left\{\begin{array}{l}
d \phi: C^{k+1} \rightarrow C_{k}, \\
0: C^{k} \rightarrow C_{k+1}
\end{array}\right.
\end{aligned}
$$

(ii) If the involution on A is even then

$$
\widehat{Q}^{n}(C)= \begin{cases}\operatorname{coker}\left(\widehat{d}^{\%}: \frac{\operatorname{Sym}\left(C^{k+1}\right)}{\operatorname{Quad}\left(C^{k+1}\right)} \rightarrow \frac{\operatorname{Sym}\left(C^{k}\right)}{\operatorname{Quad}\left(C^{k}\right)}\right) & \text { if } n-k \text { is even }, \\ \operatorname{ker}\left(\widehat{d}^{\%}: \frac{\operatorname{Sym}\left(C^{k+1}\right)}{\operatorname{Quad}\left(C^{k+1}\right)} \rightarrow \frac{\operatorname{Sym}\left(C^{k}\right)}{\operatorname{Quad}\left(C^{k}\right)}\right) \quad \text { if } n-k \text { is odd }\end{cases}
$$

Proof. (i) Immediate from Proposition 12.
(ii) Combine (i) and the vanishing $\widehat{H}^{1}\left(\mathbb{Z}_{2} ; S(P), T\right)=0$ given by Proposition 5 (ii).

For $\varepsilon=1$ we write

$$
T_{\varepsilon}=T, \quad \widehat{Q}^{n}(C, \varepsilon)=\widehat{Q}^{n}(C), \quad \varepsilon \text {-hyperquadratic }=\text { hyperquadratic. }
$$

Example 14. Let A be a ring with an involution which is even (6), i.e. such that $2 \in A$ is a nonzero divisor.
(i) The hyperquadratic Q-groups of a one-dimensional f.g. free A-module chain complex

$$
C: \cdots \rightarrow 0 \rightarrow C_{1}=A^{q} \quad \xrightarrow{d} \quad C_{0}=A^{r} \rightarrow 0 \rightarrow \cdots
$$

are given by

$$
\widehat{Q}^{n}(C)=\frac{\left\{(\phi, \theta) \in M_{q}(A) \oplus M_{r}(A) \mid \phi^{*}=(-1)^{n-1} \phi, d \phi d^{*}=\theta+(-1)^{n-1} \theta^{*}\right\}}{\left\{\left(\sigma+(-1)^{n-1} \sigma^{*}, d \sigma d^{*}+\tau+(-1)^{n} \tau^{*} \mid(\sigma, \tau) \in M_{q}(A) \oplus M_{r}(A)\right\}\right.} .
$$

Example 11 and Proposition 13 give an exact sequence

$$
\begin{aligned}
\widehat{H}^{1}\left(\mathbb{Z}_{2} ; S\left(C^{1}\right), T\right) & =0 \rightarrow \widehat{Q}^{1}(C) \\
& \longrightarrow \widehat{H}^{0}\left(\mathbb{Z}_{2} ; S\left(C^{1}\right), T\right)=\bigoplus_{q} \widehat{H}^{0}\left(\mathbb{Z}_{2} ; A\right) \\
& \xrightarrow{\widehat{d}^{\sigma}} \widehat{H}^{0}\left(\mathbb{Z}_{2} ; S\left(C^{0}\right), T\right)=\bigoplus_{r} \widehat{H}^{0}\left(\mathbb{Z}_{2} ; A\right) \\
& \longrightarrow \widehat{Q}^{0}(C) \rightarrow \widehat{H}^{-1}\left(\mathbb{Z}_{2} ; S\left(C^{1}\right), T\right)=0 .
\end{aligned}
$$

(ii) If A is an even commutative ring and

$$
d=2: C_{1}=A^{r} \rightarrow C_{0}=A^{r}
$$

then $\widehat{d}^{\%}=0$ and there are defined isomorphisms

$$
\begin{aligned}
\widehat{Q}^{0}(C) & \cong \quad \frac{\operatorname{Sym}_{r}(A)}{\operatorname{Quad}_{r}(A)}=\oplus_{r} A_{2} ; \quad(\phi, \theta) \mapsto \theta=\left(\theta_{i i}\right)_{1 \leqslant i \leqslant r}, \\
\widehat{Q}^{1}(C) & \cong \\
{\cline { 6 - 6 }_{r}(A)} } \operatorname{Quad}_{r}(A) } & \bigoplus_{r} A_{2} ; \quad(\phi, \theta) \mapsto \phi=\left(\phi_{i i}\right)_{1 \leqslant i \leqslant r} .
\end{aligned}
$$

1.3. The symmetric Q-groups

Let W be the standard free $\mathbb{Z}\left[\mathbb{Z}_{2}\right]$-module resolution of \mathbb{Z} :

$$
W: \cdots \longrightarrow W_{3}=\mathbb{Z}\left[\mathbb{Z}_{2}\right] \xrightarrow{1-T} W_{2}=\mathbb{Z}\left[\mathbb{Z}_{2}\right] \xrightarrow{1+T} W_{1}=\mathbb{Z}\left[\mathbb{Z}_{2}\right] \xrightarrow{1-T} W_{0}=\mathbb{Z}\left[\mathbb{Z}_{2}\right] \longrightarrow 0 .
$$

Given a f.g. projective A-module chain complex C we set

$$
W^{\%} C=\operatorname{Hom}_{\mathbb{Z}\left[\mathbb{Z}_{2}\right]}\left(W, \operatorname{Hom}_{A}\left(C^{-*}, C\right)\right),
$$

with $T \in \mathbb{Z}_{2}$ acting on $C \otimes_{A} C=\operatorname{Hom}_{A}\left(C^{-*}, C\right)$ by the ε-duality involution T_{ε}. An n-dimensional ε-symmetric structure on C is a cycle $\phi \in\left(W^{\%} C\right)_{n}$, which is just a collection $\left\{\phi_{s} \in \operatorname{Hom}_{A}\left(C^{r}, C_{n-r+s}\right) \mid r \in \mathbb{Z}, s \geqslant 0\right\}$ such that

$$
\begin{gathered}
d \phi_{s}+(-1)^{r} \phi_{s} d^{*}+(-1)^{n+s-1}\left(\phi_{s-1}+(-1)^{s} T_{\varepsilon} \phi_{s-1}\right)=0: C^{r} \rightarrow C_{n-r+s-1} \\
\left(r \in \mathbb{Z}, s \geqslant 0, \phi_{-1}=0\right) .
\end{gathered}
$$

Definition 15. The n-dimensional ε-symmetric Q-group $Q^{n}(C, \varepsilon)$ is the abelian group of equivalence classes of n-dimensional ε-symmetric structures on C, that is,

$$
Q^{n}(C, \varepsilon)=H_{n}\left(W^{\%} C\right)
$$

Note that there are defined skew-suspension isomorphisms

$$
\bar{S}: Q^{n}(C, \varepsilon) \quad \stackrel{\cong}{\Longrightarrow} Q^{n+2}\left(C_{*-1},-\varepsilon\right) ;\left\{\phi_{s}\right\} \mapsto\left\{\phi_{s}\right\} .
$$

Proposition 16. The ε-symmetric Q-groups of a f.g. projective A-module chain complex concentrated in degree k,

$$
C: \cdots \rightarrow 0 \rightarrow C_{k} \rightarrow 0 \rightarrow \cdots
$$

are given by

$$
\begin{aligned}
Q^{n}(C, \varepsilon) & =H^{2 k-n}\left(\mathbb{Z}_{2} ; S\left(C^{k}\right),(-1)^{k} T_{\varepsilon}\right) \\
& = \begin{cases}\widehat{H}^{2 k-n}\left(\mathbb{Z}_{2} ; S\left(C^{k}\right),(-1)^{k} T_{\varepsilon}\right) & \text { if } n \leqslant 2 k-1, \\
H^{0}\left(\mathbb{Z}_{2} ; S\left(C^{k}\right),(-1)^{k} T_{\varepsilon}\right) & \text { if } n=2 k, \\
0 & \text { if } n \geqslant 2 k+1 .\end{cases}
\end{aligned}
$$

Proof. The $\mathbb{Z}\left[\mathbb{Z}_{2}\right]$-module chain complex $V=\operatorname{Hom}_{A}\left(C^{-*}, C\right)$ is given by

$$
V: \cdots \rightarrow V_{2 k+1}=0 \rightarrow V_{2 k}=S\left(C^{k}\right) \rightarrow V_{2 k-1}=0 \rightarrow \cdots
$$

and

$$
\left(W^{\%} C\right)_{j}=\operatorname{Hom}_{\mathbb{Z}\left[\mathbb{Z}_{2}\right]}\left(W_{2 k-j}, V_{2 k}\right)=\operatorname{Hom}_{\mathbb{Z}\left[\mathbb{Z}_{2}\right]}\left(W_{2 k-j}, S\left(C^{k}\right)\right)
$$

which vanishes for $j>2 k$. Thus the chain complex $W^{\%} C$ is of the form

$$
\begin{array}{ll}
\left(W^{\%} C\right)_{2 k+1} & =0, \\
\downarrow{ }^{d_{2 k+1}} & \\
\left(W^{\%} C\right)_{2 k} & =\operatorname{Hom}_{\mathbb{Z}\left[\mathbb{Z}_{2}\right]}\left(W_{0}, V_{2 k}\right)=S\left(C^{k}\right), \\
\downarrow{ }^{d_{2 k}=1+(-1)^{k+1} T_{\varepsilon}} & \\
\left(W^{\%} C\right)_{2 k-1} & =\operatorname{Hom}_{\mathbb{Z}\left[\mathbb{Z}_{2}\right]}\left(W_{1}, V_{2 k}\right)=S\left(C^{k}\right), \\
\downarrow{ }^{d_{2 k-1}=1+(-1)^{k} T_{\varepsilon}} & \\
\left(W^{\%} C\right)_{2 k-2} & =\operatorname{Hom}_{\mathbb{Z}\left[\mathbb{Z}_{2}\right]}\left(W_{2}, V_{2 k}\right)=S\left(C^{k}\right) \\
\downarrow
\end{array}
$$

and

$$
Q^{n}(C, \varepsilon)=H_{n}\left(W^{\%} C\right)=H^{2 k-n}\left(\mathbb{Z}_{2} ; S\left(C^{k}\right),(-1)^{k} T_{\varepsilon}\right)
$$

For $\varepsilon=1$ we write

$$
T_{\varepsilon}=T, Q^{n}(C, \varepsilon)=Q^{n}(C), \varepsilon \text {-symmetric }=\text { symmetric. }
$$

Example 17. The symmetric Q-groups of a zero-dimensional f.g. free A-module chain complex

$$
C: \cdots \rightarrow 0 \rightarrow C_{0}=A^{r} \rightarrow 0 \rightarrow \cdots
$$

are given by

$$
Q^{n}(C)= \begin{cases}\bigoplus_{r} \widehat{H}^{n}\left(\mathbb{Z}_{2} ; A\right) & \text { if } n<0 \\ \operatorname{Sym}_{r}(A) & \text { if } n=0, \\ 0 & \text { otherwise }\end{cases}
$$

An A-module chain map $f: C \rightarrow D$ induces a chain map

$$
\operatorname{Hom}_{A}\left(f^{*}, f\right): \operatorname{Hom}_{A}\left(C^{-*}, C\right) \rightarrow \operatorname{Hom}_{A}\left(D^{-*}, D\right) ; \phi \mapsto f \phi f^{*}
$$

and thus a chain map

$$
f^{\%}=\operatorname{Hom}_{\mathbb{Z}\left[\mathbb{Z}_{2}\right]}\left(1_{W}, \operatorname{Hom}_{A}\left(f^{*}, f\right)\right): W^{\%} C \longrightarrow W^{\%} D
$$

which induces

$$
f^{\%}: Q^{n}(C, \varepsilon) \longrightarrow Q^{n}(D, \varepsilon)
$$

on homology. The relative ε-symmetric Q-group

$$
Q^{n}(f, \varepsilon)=H_{n}\left(f^{\%}: W^{\%} C \rightarrow W^{\%} D\right)
$$

fits into a long exact sequence

$$
\cdots \longrightarrow Q^{n}(C, \varepsilon) \xrightarrow{f^{\%}} Q^{n}(D, \varepsilon) \longrightarrow Q^{n}(f, \varepsilon) \longrightarrow Q^{n-1}(C, \varepsilon) \longrightarrow \cdots
$$

Proposition 18. (i) The relative ε-symmetric Q-groups of an A-module chain map f : $C \rightarrow D$ are related to the absolute ε-symmetric Q-groups of the algebraic mapping cone $\mathcal{C}(f)$ by a long exact sequence

$$
\cdots \rightarrow H_{n}\left(\mathcal{C}(f) \otimes_{A} C\right) \quad \stackrel{F}{\longrightarrow} \quad Q^{n}(f, \varepsilon) \quad \xrightarrow{t} \quad Q^{n}(\mathcal{C}(f), \varepsilon) \rightarrow H_{n-1}\left(\mathcal{C}(f) \otimes_{A} C\right) \rightarrow \cdots,
$$

with

$$
t: Q^{n}(f, \varepsilon) \rightarrow Q^{n}(\mathcal{C}(f), \varepsilon) ; \quad(\phi, \partial \phi) \mapsto \phi / \partial \phi
$$

the algebraic Thom construction

$$
\begin{aligned}
& (\phi / \partial \phi)_{s}=\left(\begin{array}{ll}
\phi_{s} & 0 \\
\pm \partial \phi_{s} f^{*} & \pm T_{\varepsilon} \partial \phi_{s-1}
\end{array}\right): \\
& \mathcal{C}(f)^{n-r+s}=D^{n-r+s} \oplus C^{n-r+s-1} \rightarrow \mathcal{C}(f)_{r}=D_{r} \oplus C_{r-1} \quad\left(r \in \mathbb{Z}, s \geqslant 0, \phi_{-1}=0\right)
\end{aligned}
$$

An element $(g, h) \in H_{n}\left(\mathcal{C}(f) \otimes_{A} C\right)$ is represented by a chain map $g: C^{n-1-*} \rightarrow C$ together with a chain homotopy $h: f g \simeq 0: C^{n-1-*} \rightarrow D$, and

$$
F: H_{n}\left(\mathcal{C}(f) \otimes_{A} C\right) \rightarrow Q^{n}(f, \varepsilon) ; \quad(g, h) \mapsto(\phi, \partial \phi)
$$

with

$$
\partial \phi_{s}=\left\{\begin{array}{ll}
\left(1+T_{\varepsilon}\right) g & \text { if } s=0, \\
0 & \text { if } s \geqslant 1,
\end{array} \quad \phi_{s}= \begin{cases}\left(1+T_{\varepsilon}\right) h f^{*} & \text { if } s=0, \\
0 & \text { if } s \geqslant 1 .\end{cases}\right.
$$

The map

$$
Q^{n}(\mathcal{C}(f), \varepsilon) \rightarrow H_{n-1}\left(\mathcal{C}(f) \otimes_{A} C\right) ; \quad \phi \mapsto p \phi_{0}
$$

is defined using $p=$ projection : $\mathcal{C}(f) \rightarrow C_{*-1}$
(ii) If $f: C \rightarrow D$ is a chain equivalence the morphisms $f^{\%}: Q^{*}(C, \varepsilon) \rightarrow Q^{*}(D, \varepsilon)$ are isomorphisms, and

$$
Q^{*}(\mathcal{C}(f), \varepsilon)=Q^{*}(f, \varepsilon)=0
$$

(iii) For any collection $\{C(i) \mid i \in \mathbb{Z}\}$ of f.g. projective A-module chain complexes $C(i)$

$$
Q^{n}\left(\sum_{i} C(i), \varepsilon\right)=\bigoplus_{i} Q^{n}(C(i), \varepsilon) \oplus \bigoplus_{i<j} H_{n}\left(C(i) \otimes_{A} C(j)\right)
$$

Proof. (i) As in Proposition 12 there is defined a chain equivalence

$$
\mathcal{C}\left(t_{0}: \mathcal{C}(f \otimes f) \rightarrow \mathcal{C}(f) \otimes_{A} \mathcal{C}(f)\right) \simeq E,
$$

with

$$
\begin{aligned}
& E=\left(C_{*-1} \otimes_{A} \mathcal{C}(f)\right) \oplus\left(\mathcal{C}(f) \otimes_{A} C_{*-1}\right), \\
& H_{*}\left(W^{\%} E\right)=H_{*}\left(\operatorname{Hom}_{\mathbb{Z}\left[\mathbb{Z}_{2}\right]}(W, E)\right)=H_{*-1}\left(C \otimes_{A} \mathcal{C}(f)\right) .
\end{aligned}
$$

(ii)+(iii) See [15, Propositions 1.1,1.4].

Proposition 19. Let C be a f.g. projective A-module chain complex which is concentrated in degrees $k, k+1$:

$$
C: \cdots \rightarrow 0 \rightarrow C_{k+1} \quad \xrightarrow{d} \quad C_{k} \rightarrow 0 \rightarrow \cdots
$$

The absolute ε-symmetric Q-groups $Q^{*}(C, \varepsilon)$ and the relative ε-symmetric Q-groups $Q^{*}(d, \varepsilon)$ of $d: C_{k+1} \rightarrow C_{k}$ regarded as a morphism of chain complexes concentrated
in degree k are given as follows:
(i) For $n \neq 2 k, 2 k+1,2 k+2$:

$$
Q^{n}(C, \varepsilon)=Q^{n}(d, \varepsilon)= \begin{cases}\widehat{Q}^{n}(d, \varepsilon)=\widehat{Q}^{n}(C, \varepsilon) & \text { if } n \leqslant 2 k-1, \\ 0 & \text { if } n \geqslant 2 k+3,\end{cases}
$$

with $\widehat{Q}^{n}(C, \varepsilon)$ as given by Proposition 13.
(ii) For $n=2 k, 2 k+1,2 k+2$ there are exact sequences

$$
\begin{aligned}
0 & \rightarrow Q^{2 k+1}(d, \varepsilon) \quad \longrightarrow \quad Q^{2 k}\left(C_{k+1}, \varepsilon\right)=H^{0}\left(\mathbb{Z}_{2} ; S\left(C^{k+1}\right),(-1)^{k} T_{\varepsilon}\right) \\
& \xrightarrow{d^{\%}} \quad Q^{2 k}\left(C_{k}, \varepsilon\right)=H^{0}\left(\mathbb{Z}_{2} ; S\left(C^{k}\right),(-1)^{k} T_{\varepsilon}\right) \quad \longrightarrow \quad Q^{2 k}(d, \varepsilon) \\
& \longrightarrow Q^{2 k-1}\left(C_{k+1}, \varepsilon\right)=\widehat{H}^{1}\left(\mathbb{Z}_{2} ; S\left(C^{k+1}\right),(-1)^{k} T_{\varepsilon}\right) \\
& \xrightarrow{d^{\%}} Q^{2 k-1}\left(C_{k}, \varepsilon\right)=\widehat{H}^{1}\left(\mathbb{Z}_{2} ; S\left(C^{k}\right),(-1)^{k} T_{\varepsilon}\right), \\
Q^{2 k+2}(d, \varepsilon) & =0 \rightarrow Q^{2 k+2}(C, \varepsilon) \rightarrow C_{k+1} \otimes_{A} H_{k+1}(C) \quad \xrightarrow{\longrightarrow} \quad Q^{2 k+1}(d, \varepsilon) \\
& \xrightarrow{t} \quad Q^{2 k+1}(C, \varepsilon) \rightarrow C_{k+1} \otimes_{A} H_{k}(C) \quad \xrightarrow{\longrightarrow} \quad Q^{2 k}(d, \varepsilon) \\
& \xrightarrow{t} Q^{2 k}(C, \varepsilon) \rightarrow 0 .
\end{aligned}
$$

Proof. The $\mathbb{Z}\left[\mathbb{Z}_{2}\right]$-module chain complex $V=\operatorname{Hom}_{A}\left(C^{-*}, C\right)$ is such that

$$
V_{n}= \begin{cases}S\left(C^{k}\right) & \text { if } n=2 k \\ \operatorname{Hom}_{A}\left(C^{k}, C_{k+1}\right) \oplus \operatorname{Hom}_{A}\left(C^{k+1}, C_{k}\right) & \text { if } n=2 k+1, \\ S\left(C^{k+1}\right) & \text { if } n=2 k+2, \\ 0 & \text { otherwise }\end{cases}
$$

and

$$
\left(W^{\%} C\right)_{n}=\sum_{s=0}^{\infty} \operatorname{Hom}_{A}\left(W_{s}, V_{n+s}\right)=0 \quad \text { for } n \geqslant 2 k+3 .
$$

Example 20. Let C be a one-dimensional f.g. free A-module chain complex

$$
C: \cdots \rightarrow 0 \rightarrow C_{1}=A^{q} \quad \xrightarrow{d} \quad C_{0}=A^{r} \rightarrow 0 \rightarrow \cdots,
$$

so that $C=\mathcal{C}(d)$ is the algebraic mapping cone of the chain map $d: C_{1} \rightarrow C_{0}$ of zero-dimensional complexes, with

$$
d^{\%}: \operatorname{Hom}_{A}\left(C^{1}, C_{1}\right)=M_{q}(A) \rightarrow \operatorname{Hom}_{A}\left(C^{0}, C_{0}\right)=M_{r}(A) ; \phi \mapsto d \phi d^{*} .
$$

Example 17 and Proposition 19 give exact sequences

$$
\begin{aligned}
& Q^{1}\left(C_{0}\right)=0 \rightarrow Q^{1}(d) \quad \longrightarrow \quad Q^{0}\left(C_{1}\right)=\operatorname{Sym}_{q}(A) \quad \xrightarrow{d^{\%}} \quad Q^{0}\left(C_{0}\right)=\operatorname{Sym}_{r}(A) \\
& \longrightarrow Q^{0}(d) \quad Q^{-1}\left(C_{1}\right)=\underset{q}{\oplus} \widehat{H}^{1}\left(\mathbb{Z}_{2} ; A\right) \quad \xrightarrow{d^{\%}} \quad Q^{-1}\left(C_{0}\right)=\underset{r}{\oplus} \widehat{H}^{1}\left(\mathbb{Z}_{2} ; A\right) \\
& H_{1}(C) \otimes_{A} C_{1} \quad \xrightarrow{F} Q^{1}(d) \quad \xrightarrow{t} \quad Q^{1}(C) \rightarrow H_{0}(C) \otimes_{A} C_{1} \quad \xrightarrow{F} \quad Q^{0}(d) \quad \xrightarrow{t} \\
& Q^{0}(C) \rightarrow 0 \text {. }
\end{aligned}
$$

In particular, if A is an even commutative ring and

$$
d=2: C_{1}=A^{r} \rightarrow C_{0}=A^{r}
$$

then $d^{\%}=4$ and

$$
\begin{aligned}
Q^{0}(d) & =\frac{\operatorname{Sym}_{r}(A)}{4 \operatorname{Sym}_{r}(A)}, Q^{1}(d)=0, \\
Q^{0}(C) & =\operatorname{coker}\left(2(1+T): M_{r}(A) \rightarrow \frac{\operatorname{Sym}_{r}(A)}{4 \operatorname{Sym}_{r}(A)}\right)=\frac{\operatorname{Sym}_{r}(A)}{2 \operatorname{Quad}_{r}(A)}, \\
Q^{1}(C) & =\operatorname{ker}\left(2(1+T): \frac{M_{r}(A)}{2 M_{r}(A)} \rightarrow \frac{\operatorname{Sym}_{r}(A)}{4 \operatorname{Sym}_{r}(A)}\right) \\
& =\frac{\left\{\left(a_{i j}\right) \in M_{r}(A) \mid a_{i j}+a_{j i} \in 2 A\right\}}{2 M_{r}(A)}=\frac{\operatorname{Sym}_{r}(A)}{2 \operatorname{Sym}_{r}(A)} .
\end{aligned}
$$

We refer to [15] for the one-one correspondence between highly-connected algebraic Poincaré complexes/pairs and forms, lagrangians and formations.

1.4. The quadratic Q-groups

Given a f.g. projective A-module chain complex C we set

$$
W_{\%} C=W \otimes_{\mathbb{Z}\left[\mathbb{Z}_{2}\right]} \operatorname{Hom}_{A}\left(C^{-*}, C\right),
$$

with $T \in \mathbb{Z}_{2}$ acting on $C \otimes_{A} C=\operatorname{Hom}_{A}\left(C^{-*}, C\right)$ by the ε-duality involution T_{ε}. An n-dimensional ε-quadratic structure on C is a cycle $\psi \in\left(W_{\%} C\right)_{n}$, a collection
$\left\{\psi_{s} \in \operatorname{Hom}_{A}\left(C^{r}, C_{n-r-s}\right) \mid r \in \mathbb{Z}, s \geqslant 0\right\}$ such that

$$
d \psi_{s}+(-1)^{r} \psi_{s} d^{*}+(-1)^{n-s-1}\left(\psi_{s+1}+(-1)^{s+1} T_{\varepsilon} \psi_{s+1}\right)=0: C^{r} \rightarrow C_{n-r-s-1}
$$

Definition 21. The n-dimensional ε-quadratic Q-group $Q_{n}(C, \varepsilon)$ is the abelian group of equivalence classes of n-dimensional ε-quadratic structures on C, that is,

$$
Q_{n}(C, \varepsilon)=H_{n}\left(W_{\%} C\right)
$$

Note that there are defined skew-suspension isomorphisms

$$
\bar{S}: Q_{n}(C, \varepsilon) \quad \stackrel{\cong}{\Longrightarrow} Q_{n+2}\left(C_{*-1},-\varepsilon\right) ;\left\{\psi_{s}\right\} \mapsto\left\{\psi_{s}\right\} .
$$

Proposition 22. The ε-quadratic Q-groups of a f.g. projective A-module chain complex concentrated in degree k,

$$
C: \cdots \rightarrow 0 \rightarrow C_{k} \rightarrow 0 \rightarrow \cdots
$$

are given by

$$
\begin{aligned}
Q_{n}(C, \varepsilon) & =H_{n-2 k}\left(\mathbb{Z}_{2} ; S\left(C^{k}\right),(-1)^{k} T_{\varepsilon}\right) \\
& = \begin{cases}\widehat{H}^{n-2 k+1}\left(\mathbb{Z}_{2} ; S\left(C^{k}\right),(-1)^{k} T_{\varepsilon}\right) & \text { if } n \geqslant 2 k+1, \\
H_{0}\left(\mathbb{Z}_{2} ; S\left(C^{k}\right),(-1)^{k} T_{\varepsilon}\right) & \text { if } n=2 k, \\
0 & \text { if } n \leqslant 2 k-1 .\end{cases}
\end{aligned}
$$

Proof. The $\mathbb{Z}\left[\mathbb{Z}_{2}\right]$-module chain complex $V=\operatorname{Hom}_{A}\left(C^{-*}, C\right)$ is given by

$$
V: \cdots \rightarrow V_{2 k+1}=0 \rightarrow V_{2 k}=\operatorname{Hom}_{A}\left(C^{k}, C_{k}\right) \rightarrow V_{2 k-1}=0 \rightarrow \cdots
$$

and

$$
\left(W_{\%} C\right)_{j}=W_{j-2 k} \otimes_{\mathbb{Z}\left[\mathbb{Z}_{2}\right]} V_{2 k}=\operatorname{Hom}_{\mathbb{Z}\left[\mathbb{Z}_{2}\right]}\left(W_{2 k-j}, S\left(C^{k}\right)\right)
$$

which vanishes for $j<2 k$. Thus the chain complex $W_{\%} C$ is of the form

$$
\begin{array}{ll}
\left(W_{\%} C\right)_{2 k+2} & =W_{2} \otimes_{\mathbb{Z}\left[\mathbb{Z}_{2}\right]} V_{2 k}=S\left(C^{k}\right), \\
\forall d_{2 k+2}=1+(-1)^{k} T_{\varepsilon} & \\
\left(W_{\%} C\right)_{2 k+1} & =W_{1} \otimes_{\mathbb{Z}\left[\mathbb{Z}_{2}\right]} V_{2 k}=S\left(C^{k}\right), \\
\forall d_{2 k+1}=1+(-1)^{k+1} T_{\varepsilon} & \\
\left(W_{\%} C\right)_{2 k} & =W_{0} \otimes_{\mathbb{Z}\left[\mathbb{Z}_{2}\right]} V_{2 k}=S\left(C^{k}\right), \\
\forall & =0
\end{array}
$$

and

$$
Q_{n}(C, \varepsilon)=H_{n}\left(W_{\%} C\right)=H_{n-2 k}\left(\mathbb{Z}_{2} ; S\left(C^{k}\right),(-1)^{k} T_{\varepsilon}\right)
$$

Example 23. The ε-quadratic Q-groups of the zero-dimensional f.g. free A-module chain complex

$$
C: \cdots \rightarrow 0 \rightarrow C_{0}=A^{r} \rightarrow 0 \rightarrow \cdots
$$

are given by

$$
Q_{n}(C)= \begin{cases}\bigoplus_{r} \widehat{H}^{n+1}\left(\mathbb{Z}_{2} ; A\right) & \text { if } n>0 \\ \text { Quad }_{r}(A) & \text { if } n=0 \\ 0 & \text { otherwise }\end{cases}
$$

An A-module chain map $f: C \rightarrow D$ induces a chain map

$$
f_{\%}=1_{W} \otimes_{\mathbb{Z}\left[\mathbb{Z}_{2}\right]} \operatorname{Hom}_{A}\left(f^{*}, f\right): W_{\%} C \longrightarrow W_{\%} D,
$$

which induces

$$
f_{\%}: Q_{n}(C, \varepsilon) \longrightarrow Q_{n}(D, \varepsilon)
$$

on homology. The relative ε-quadratic Q-group $Q_{n}(f, \varepsilon)$ is designed to fit into a long exact sequence

$$
\cdots \longrightarrow Q_{n}(C, \varepsilon) \xrightarrow{f_{f_{6}}} Q_{n}(D, \varepsilon) \longrightarrow Q_{n}(f, \varepsilon) \longrightarrow Q_{n-1}(C, \varepsilon) \longrightarrow \cdots,
$$

that is, $Q_{n}(f, \varepsilon)$ is defined as the nth homology group of the mapping cone of $f_{\%}$,

$$
Q_{n}(f, \varepsilon)=H_{n}\left(f_{\%}: W_{\%} C \longrightarrow W_{\%} D\right)
$$

Proposition 24. (i) The relative ε-quadratic Q-groups of $f: C \rightarrow D$ are related to the absolute ε-quadratic Q-groups of the algebraic mapping cone $\mathcal{C}(f)$ by a long exact sequence
$\cdots \rightarrow H_{n}\left(\mathcal{C}(f) \otimes_{A} C\right) \quad \stackrel{F}{\longrightarrow} Q_{n}(f, \varepsilon) \quad \stackrel{t}{\longrightarrow} \quad Q_{n}(\mathcal{C}(f), \varepsilon) \rightarrow H_{n-1}\left(\mathcal{C}(f) \otimes_{A} C\right) \rightarrow \cdots$.
(ii) If $f: C \rightarrow D$ is a chain equivalence the morphisms $f_{\%}: Q_{*}(C) \rightarrow Q_{*}(D)$ are isomorphisms, and

$$
Q_{*}(\mathcal{C}(f), \varepsilon)=Q_{*}(f, \varepsilon)=0
$$

(iii) For any collection $\{C(i) \mid i \in \mathbb{Z}\}$ of f.g. projective A-module chain complexes C (i)

$$
Q_{n}\left(\sum_{i} C(i), \varepsilon\right)=\bigoplus_{i} Q_{n}(C(i), \varepsilon) \oplus \bigoplus_{i<j} H_{n}\left(C(i) \otimes_{A} C(j)\right) .
$$

Proposition 25. Let C be a f.g. projective A-module chain complex which is concentrated in degrees $k, k+1$:

$$
C: \cdots \rightarrow 0 \rightarrow C_{k+1} \quad \xrightarrow{d} \quad C_{k} \rightarrow 0 \rightarrow \cdots
$$

The absolute ε-quadratic Q-groups $Q_{*}(C, \varepsilon)$ and the relative ε-quadratic Q-groups $Q_{*}(d, \varepsilon)$ of $d: C_{k+1} \rightarrow C_{k}$ regarded as a morphism of chain complexes concentrated in degree k are given as follows:
(i) For $n \neq 2 k, 2 k+1,2 k+2$

$$
Q_{n}(C, \varepsilon)=Q_{n}(d, \varepsilon)= \begin{cases}\widehat{Q}^{n+1}(d, \varepsilon)=\widehat{Q}^{n+1}(C, \varepsilon) & \text { if } n \geqslant 2 k+3 \\ 0 & \text { if } n \leqslant 2 k-1\end{cases}
$$

with $\widehat{Q}^{n}(C, \varepsilon)$ as given by Proposition 13.
(ii) For $n=2 k, 2 k+1,2 k+2$ there are exact sequences

$$
\begin{aligned}
& Q_{2 k+2}\left(C_{k+1}, \varepsilon\right)=\widehat{H}^{1}\left(\mathbb{Z}_{2} ; S\left(C^{k+1}\right),(-1)^{k} T_{\varepsilon}\right) \quad \xrightarrow{d_{\%}} \quad Q_{2 k+2}\left(C_{k}, \varepsilon\right)=\widehat{H}^{1}\left(\mathbb{Z}_{2} ; S\left(C^{k}\right),(-1)^{k} T_{\varepsilon}\right) \\
& \longrightarrow Q_{2 k+2}(d, \varepsilon)=\widehat{Q}^{2 k+3}(C, \varepsilon) \quad \xrightarrow{d \%} \quad Q_{2 k+1}\left(C_{k+1}, \varepsilon\right) \\
& =\widehat{H}^{0}\left(\mathbb{Z}_{2} ; S\left(C^{k+1}\right),(-1)^{k} T_{\varepsilon}\right) \\
& \xrightarrow{d \%_{\%}} Q_{2 k+1}\left(C_{k}, \varepsilon\right)=\widehat{H}^{0}\left(\mathbb{Z}_{2} ; S\left(C^{k}\right),(-1)^{k} T_{\varepsilon}\right) \quad \longrightarrow \quad Q_{2 k+1}(d, \varepsilon) \\
& \longrightarrow \quad Q_{2 k}\left(C_{k+1}, \varepsilon\right)=H_{0}\left(\mathbb{Z}_{2} ; S\left(C^{k+1}\right),(-1)^{k} T_{\varepsilon}\right) \\
& \xrightarrow{d \%} Q_{2 k}\left(C_{k}, \varepsilon\right)=H_{0}\left(\mathbb{Z}_{2} ; S\left(C^{k}\right),(-1)^{k} T_{\varepsilon}\right) \quad \longrightarrow \quad Q_{2 k}(d, \varepsilon) \\
& \longrightarrow \quad Q_{2 k-1}\left(C_{k+1}\right)=0, \\
& 0 \rightarrow Q_{2 k+2}(d, \varepsilon) \quad \xrightarrow{t} Q_{2 k+2}(C, \varepsilon) \quad \longrightarrow \quad H_{k+1}(C) \otimes_{A} C_{k+1} \\
& \xrightarrow{F} Q_{2 k+1}(d, \varepsilon) \\
& \xrightarrow{t} Q_{2 k+1}(C, \varepsilon) \quad \longrightarrow \quad C_{k+1} \otimes_{A} H_{k}(C) \quad \xrightarrow{F} \quad Q_{2 k}(d, \varepsilon) \\
& \xrightarrow{t} Q_{2 k}(C, \varepsilon) \rightarrow 0 .
\end{aligned}
$$

For $\varepsilon=1$ we write

$$
T_{\varepsilon}=T, \quad Q_{n}(C, \varepsilon)=Q_{n}(C), \varepsilon \text {-quadratic }=\text { quadratic. }
$$

Example 26. Let C be a one-dimensional f.g. free A-module chain complex

$$
C: \cdots \rightarrow 0 \rightarrow C_{1}=A^{q} \quad \xrightarrow{d} \quad C_{0}=A^{r} \rightarrow 0 \rightarrow \cdots,
$$

so that $C=\mathcal{C}(d)$ is the algebraic mapping cone of the chain map $d: C_{1} \rightarrow C_{0}$ of zero-dimensional complexes, with

$$
d^{\%}: \operatorname{Hom}_{A}\left(C^{1}, C_{1}\right)=M_{q}(A) \rightarrow \operatorname{Hom}_{A}\left(C^{0}, C_{0}\right)=M_{r}(A) ; \phi \mapsto d \phi d^{*} .
$$

Example 23 and Proposition 25 give exact sequences

$$
\begin{aligned}
Q_{1}\left(C_{1}\right) & ={\underset{q}{ }}_{\oplus_{0}}^{\widehat{H}^{0}\left(\mathbb{Z}_{2} ; A\right)} \xrightarrow{\widehat{d}^{\%}} Q_{1}\left(C_{0}\right)=\underset{r}{\oplus} \widehat{H}^{0}\left(\mathbb{Z}_{2} ; A\right) \rightarrow Q_{1}(d) \\
& \rightarrow Q_{0}\left(C_{1}\right)=\operatorname{Quad}_{q}(A) \xrightarrow{d \%} \quad Q_{0}\left(C_{0}\right)=\operatorname{Quad}_{r}(A) \quad Q_{0}(d) \\
& \rightarrow Q_{-1}\left(C_{1}\right)=0, H_{1}(C) \otimes_{A} C_{1} \rightarrow Q_{1}(d) \\
& \rightarrow Q_{1}(C) \rightarrow H_{0}(C) \otimes_{A} C_{1} \rightarrow Q_{0}(d) \rightarrow Q_{0}(C) \rightarrow 0 .
\end{aligned}
$$

In particular, if A is an even commutative ring and

$$
d=2: C_{1}=A^{r} \rightarrow C_{0}=A^{r},
$$

then $d \%=4$ and

$$
\begin{aligned}
Q_{0}(d) & =\frac{\operatorname{Quad}_{r}(A)}{4 \operatorname{Quad}_{r}(A)}, \\
Q_{1}(d) & =\frac{\operatorname{Sym}_{r}(A)}{\operatorname{Quad}_{r}(A)+4 \operatorname{Sym}_{r}(A)}, \\
Q_{0}(C) & =\operatorname{coker}\left(2(1+T): \frac{M_{r}(A)}{2 M_{r}(A)} \rightarrow \frac{\operatorname{Quad}_{r}(A)}{4 \operatorname{Quad}_{r}(A)}\right)=\frac{\operatorname{Quad}_{r}(A)}{2 \operatorname{Quad}_{r}(A)}, \\
Q_{1}(C) & =\frac{\left\{\left(\psi_{0}, \psi_{1}\right) \in M_{r}(A) \oplus M_{r}(A) \mid 2 \psi_{0}=\psi_{1}-\psi_{1}^{*}\right\}}{\left\{\left(2\left(\chi_{0}-\chi_{0}^{*}\right), 4 \chi_{0}+\chi_{2}+\chi_{2}^{*}\right) \mid\left(\chi_{0}, \chi_{2}\right) \in M_{r}(A) \oplus M_{r}(A)\right\}}=\bigoplus_{\frac{r(r+1)}{2}} A_{2} .
\end{aligned}
$$

1.5. L-groups

An n-dimensional $\left\{\begin{array}{l}\varepsilon \text {-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ Poincaré complex $\left\{\begin{array}{l}(C, \phi) \\ (C, \psi)\end{array}\right.$ over A is an n dimensional f.g. projective A-module chain complex

$$
C: \cdots \rightarrow 0 \rightarrow C_{n} \rightarrow C_{n-1} \rightarrow \cdots \rightarrow C_{1} \rightarrow C_{0} \rightarrow 0 \rightarrow \cdots
$$

together with an element $\left\{\begin{array}{l}\phi \in Q^{n}(C, \varepsilon) \\ \psi \in Q_{n}(C, \varepsilon)\end{array}\right.$ such that the A-module chain map

$$
\left\{\begin{array}{l}
\phi_{0}: C^{n-*} \rightarrow C \\
\left(1+T_{\varepsilon}\right) \psi_{0}: C^{n-*} \rightarrow C
\end{array}\right.
$$

is a chain equivalence. We refer to [18] for the detailed definition of the n-dimensional $\left\{\begin{array}{l}\varepsilon \text {-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ L-group $\left\{\begin{array}{l}L^{n}(A, \varepsilon) \\ L_{n}(A, \varepsilon)\end{array}\right.$ as the cobordism group of n-dimensional $\left\{\begin{array}{l}\varepsilon \text {-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ Poincaré complexes over A.

Definition 27. (i) The relative (ε-symmetric, ε-quadratic) Q-group $Q_{n}^{n}(f, \varepsilon)$ of a chain map $f: C \rightarrow D$ of f.g. projective A-module chain complexes is the relative group in the exact sequence

$$
\cdots \rightarrow Q_{n}(C, \varepsilon) \xrightarrow{\left(1+T_{\varepsilon}\right) f_{\%}} \quad Q^{n}(D, \varepsilon) \rightarrow Q_{n}^{n}(f, \varepsilon) \rightarrow Q_{n-1}(C, \varepsilon) \rightarrow \cdots .
$$

An element $(\delta \phi, \psi) \in Q_{n}^{n}(f, \varepsilon)$ is an equivalence class of pairs

$$
(\delta \phi, \psi) \in\left(W^{\%} D\right)_{n} \oplus\left(W_{\%} C\right)_{n-1},
$$

such that

$$
d(\psi)=0 \in\left(W_{\%} C\right)_{n-2}, \quad\left(1+T_{\varepsilon}\right) f_{\%} \psi=d(\delta \phi) \in\left(W^{\%} D\right)_{n-1}
$$

(ii) An n-dimensional (ε-symmetric, ε-quadratic) pair over $A(f: C \rightarrow D,(\delta \phi, \psi))$ is a chain map f together with a class $(\delta \phi, \psi) \in Q_{n}^{n}(f, \varepsilon)$ such that the chain map

$$
\left(\delta \phi,\left(1+T_{\varepsilon}\right) \psi\right)_{0}: D^{n-*} \rightarrow \mathcal{C}(f)
$$

defined by

$$
\left(\delta \phi,\left(1+T_{\varepsilon}\right) \psi\right)_{0}=\binom{\delta \phi_{0}}{\left(1+T_{\varepsilon}\right) \psi_{0} f^{*}}: D^{n-r} \rightarrow \mathcal{C}(f)_{r}=D_{r} \oplus C_{r-1}
$$

is a chain equivalence.
Proposition 28. The relative (ε-symmetric, ε-quadratic) Q-groups $Q_{n}^{n}(f, \varepsilon$) of a chain map $f: C \rightarrow D$ fit into a commutative braid of exact sequences

with

$$
\begin{aligned}
& J_{f}: Q_{n}^{n}(f, \varepsilon) \rightarrow \widehat{Q}^{n}(D, \varepsilon) ; \quad(\delta \phi, \psi) \mapsto \alpha \\
& \alpha_{s}=\left\{\begin{array}{ll}
\delta \phi_{s} & \text { if } s \geqslant 0 \\
f \psi_{-s-1} f^{*} & \text { if } s \leqslant-1
\end{array}: D^{r} \rightarrow D_{n-r+s}\right.
\end{aligned}
$$

The n-dimensional ε-hyperquadratic L-group $\widehat{L}^{n}(A, \varepsilon)$ is the cobordism group of n dimensional (ε-symmetric, ε-quadratic) Poincaré pairs $(f: C \rightarrow D,(\phi, \psi)$) over A. As in [15], there is defined an exact sequence

$$
\cdots \longrightarrow L_{n}(A, \varepsilon) \xrightarrow{1+T_{\varepsilon}} L^{n}(A, \varepsilon) \longrightarrow \widehat{L}^{n}(A, \varepsilon) \longrightarrow L_{n-1}(A, \varepsilon) \longrightarrow \cdots
$$

The skew-suspension maps in the $\pm \varepsilon$-quadratic L-groups are isomorphisms

$$
\bar{S}: L_{n}(A, \varepsilon) \quad \stackrel{\cong}{\Longrightarrow} L_{n+2}(A,-\varepsilon) ;\left(C,\left\{\psi_{s}\right\}\right) \mapsto\left(C_{*-1},\left\{\psi_{s}\right\}\right),
$$

so the ε-quadratic L-groups are 4 -periodic

$$
L_{n}(A, \varepsilon)=L_{n+2}(A,-\varepsilon)=L_{n+4}(A, \varepsilon)
$$

The skew-suspension maps in ε-symmetric and ε-hyperquadratic L-groups and $\pm \varepsilon$ hyperquadratic L-groups

$$
\begin{aligned}
& \bar{S}: L^{n}(A, \varepsilon) \rightarrow L^{n+2}(A,-\varepsilon) ; \quad\left(C,\left\{\phi_{s}\right\}\right) \mapsto\left(C_{*-1},\left\{\phi_{s}\right\}\right), \\
& \bar{S}: \widehat{L}^{n}(A, \varepsilon) \rightarrow \widehat{L}^{n+2}(A,-\varepsilon) ;\left(f: C \rightarrow D,\left\{\psi_{s}, \phi_{s}\right\}\right) \\
& \quad \mapsto\left(f: C_{*-1} \rightarrow D_{*-1},\left\{\left(\psi_{s}, \phi_{s}\right)\right\}\right)
\end{aligned}
$$

are not isomorphisms in general, so the ε-symmetric and ε-hyperquadratic L-groups need not be 4 -periodic. We shall write the 4 -periodic versions of the ε-symmetric and ε-hyperquadratic L-groups of A as

$$
L^{n+4 *}(A, \varepsilon)=\lim _{k \rightarrow \infty} L^{n+4 k}(A, \varepsilon), \widehat{L}^{n+4 *}(A, \varepsilon)=\lim _{k \rightarrow \infty} \widehat{L}^{n+4 k}(A, \varepsilon),
$$

noting that there is defined an exact sequence

$$
\cdots \rightarrow L_{n}(A, \varepsilon) \rightarrow L^{n+4 *}(A, \varepsilon) \rightarrow \widehat{L}^{n+4 *}(A, \varepsilon) \rightarrow L_{n-1}(A, \varepsilon) \rightarrow \cdots
$$

Definition 29. The Wu classes of an n-dimensional ε-symmetric complex (C, ϕ) over A are the A-module morphisms

$$
\widehat{v}_{k}(\phi): H^{n-k}(C) \rightarrow \widehat{H}^{k}\left(\mathbb{Z}_{2} ; A, \varepsilon\right) ; \quad x \mapsto \phi_{n-2 k}(x)(x) \quad(k \in \mathbb{Z}) .
$$

For an n-dimensional ε-symmetric Poincaré complex (C, ϕ) over A the evaluation of the Wu class $\widehat{v}_{k}(\phi)(x) \in \widehat{H}^{k}\left(\mathbb{Z}_{2} ; A, \varepsilon\right)$ is the obstruction to killing $x \in$ $H^{n-k}(C) \cong H_{k}(C)$ by algebraic surgery [15, §4].

Proposition 30. (i) If $\widehat{H}^{0}\left(\mathbb{Z}_{2} ; A, \varepsilon\right)$ has a one-dimensional f.g. projective A-module resolution then the skew-suspension maps

$$
\bar{S}: L^{n-2}(A,-\varepsilon) \rightarrow L^{n}(A, \varepsilon), \bar{S}: \widehat{L}^{n-2}(A,-\varepsilon) \rightarrow \widehat{L}^{n}(A, \varepsilon) \quad(n \geqslant 2)
$$

are isomorphisms. Thus if $\widehat{H}^{1}\left(\mathbb{Z}_{2} ; A, \varepsilon\right)$ also has a one-dimensional f.g. projective A module resolution the ε-symmetric and ε-hyperquadratic L-groups of A are 4-periodic

$$
\begin{aligned}
& L^{n}(A, \varepsilon)=L^{n+2}(A,-\varepsilon)=L^{n+4}(A, \varepsilon), \\
& \widehat{L}^{n}(A, \varepsilon)=\widehat{L}^{n+2}(A,-\varepsilon)=\widehat{L}^{n+4}(A, \varepsilon) .
\end{aligned}
$$

(ii) If A is a Dedekind ring then the ε-symmetric L-groups are 'homotopy invariant'

$$
L^{n}(A[x], \varepsilon)=L^{n}(A, \varepsilon)
$$

and the ε-symmetric and ε-hyperquadratic L-groups of A and $A[x]$ are 4-periodic.
Proof. (i) Let D be a one-dimensional f.g. projective A-module resolution of \widehat{H}^{0} $\left(\mathbb{Z}_{2} ; A, \varepsilon\right)$:

$$
0 \rightarrow D_{1} \rightarrow D_{0} \rightarrow \widehat{H}^{0}\left(\mathbb{Z}_{2} ; A\right) \rightarrow 0
$$

Given an n-dimensional ε-symmetric Poincaré complex (C, ϕ) over A resolve the A-module morphism

$$
\widehat{v}_{n}(\phi)\left(\phi_{0}\right)^{-1}: H_{0}(C) \cong H^{n}(C) \rightarrow H_{0}(D)=\widehat{H}^{0}\left(\mathbb{Z}_{2} ; A, \varepsilon\right) ; u \mapsto\left(\phi_{0}\right)^{-1}(u)(u)
$$

by an A-module chain map $f: C \rightarrow D$, defining an $(n+1)$-dimensional ε-symmetric pair $(f: C \rightarrow D,(\delta \phi, \phi)$). The effect of algebraic surgery on (C, ϕ) using ($f: C \rightarrow$ $D,(\delta \phi, \phi)$) is a cobordant n-dimensional ε-symmetric Poincaré complex ($C^{\prime}, \phi^{\prime}$) such that there are defined an exact sequence:

$$
0 \rightarrow H^{n}\left(C^{\prime}\right) \rightarrow H^{n}(C) \quad \xrightarrow{\widehat{v}_{n}(\phi)} \quad \widehat{H}^{0}\left(\mathbb{Z}_{2} ; A, \varepsilon\right) \rightarrow H^{n+1}\left(C^{\prime}\right) \rightarrow 0
$$

and an $(n+1)$-dimensional ε-symmetric pair $\left(f^{\prime}: C^{\prime} \rightarrow D^{\prime},\left(\delta \phi^{\prime}, \phi^{\prime}\right)\right)$ with f^{\prime} the projection onto the quotient complex of C^{\prime} defined by

$$
D^{\prime}: \cdots \rightarrow 0 \rightarrow D_{n+1}^{\prime}=C_{n+1}^{\prime} \rightarrow D_{n}^{\prime}=C_{n}^{\prime} \rightarrow 0 \rightarrow \cdots
$$

The effect of algebraic surgery on ($C^{\prime}, \phi^{\prime}$) using ($f^{\prime}: C^{\prime} \rightarrow D^{\prime},\left(\delta \phi^{\prime}, \phi^{\prime}\right)$) is a cobordant n-dimensional ε-symmetric Poincaré complex ($C^{\prime \prime}, \phi^{\prime \prime}$) with $H_{n}\left(C^{\prime \prime}\right)=0$, so that it is (homotopy equivalent to) the skew-suspension of an ($n-2$)-dimensional ($-\varepsilon$)symmetric Poincaré complex.
(ii) The 4-periodicity $L^{*}(A, \varepsilon)=L^{*+4}(A, \varepsilon)$ was proved in [15, §7]. The 'homotopy invariance' $L^{*}(A[x], \varepsilon)=L^{*}(A, \varepsilon)$ was proved in [17, 41.3]; [10, 2.1]. The 4-periodicity of the ε-symmetric and ε-hyperquadratic L-groups for A and $A[x]$ now follows from the 4 -periodicity of the ε-quadratic L-groups $L_{*}(A, \varepsilon)=L_{*+4}(A, \varepsilon)$.

2. Chain bundle theory

2.1. Chain bundles

Definition 31. (i) An ε-bundle over an A-module chain complex C is a zero-dimensional ε-hyperquadratic structure γ on C^{0-*}, that is, a cycle

$$
\gamma \in\left(\widehat{W}^{\%} C^{0-*}\right)_{0}
$$

as given by a collection of A-module morphisms

$$
\left\{\gamma_{s} \in \operatorname{Hom}_{A}\left(C_{r-s}, C^{-r}\right) \mid r, s \in \mathbb{Z}\right\},
$$

such that

$$
(-1)^{r+1} d^{*} \gamma_{s}+(-1)^{s} \gamma_{s} d+(-1)^{s-1}\left(\gamma_{s-1}+(-1)^{s} T_{\varepsilon} \gamma_{s-1}\right)=0: C_{r-s+1} \rightarrow C^{-r}
$$

(ii) An equivalence of ε-bundles over C,

$$
\chi: \gamma \longrightarrow \gamma^{\prime}
$$

is an equivalence of ε-hyperquadratic structures.
(iii) A chain ε-bundle (C, γ) over A is an A-module chain complex C together with an ε-bundle $\gamma \in\left(\widehat{W}^{\%} C^{0-*}\right)_{0}$.

Let (D, δ) be a chain ε-bundle and $f: C \rightarrow D$ a chain map. The dual of f

$$
f^{*}: D^{0-*} \longrightarrow C^{0-*}
$$

induces a map

$$
\left(\widehat{f^{*}}\right)_{0}^{\%}:\left(\widehat{W}^{\%} D^{0-*}\right)_{0} \longrightarrow\left(\widehat{W}^{\%} C^{0-*}\right)_{0}
$$

Definition 32. (i) The pullback chain ε-bundle ($C, f^{*} \delta$) is defined to be

$$
f^{*} \delta=\left(\widehat{f^{*}}\right)_{0}^{\%}(\delta) \in\left(\widehat{W}^{\%} C^{0-*}\right)_{0} .
$$

(ii) A map of chain ε-bundles

$$
(f, \chi):(C, \gamma) \longrightarrow(D, \delta)
$$

is a chain map $f: C \rightarrow D$ together with an equivalence of ε-bundles over C :

$$
\chi: \gamma \longrightarrow f^{*} \delta
$$

The ε-hyperquadratic Q-group $\widehat{Q}^{0}\left(C^{0-*}, \varepsilon\right)$ is thus the group of equivalence classes of chain ε-bundles on the chain complex C, the algebraic analogue of the topological K-group of a space. The Tate \mathbb{Z}_{2}-cohomology groups

$$
\widehat{H}^{n}\left(\mathbb{Z}_{2} ; A, \varepsilon\right)=\frac{\left\{a \in A \mid \bar{a}=(-1)^{n} \varepsilon a\right\}}{\left\{b+(-1)^{n} \varepsilon \bar{b} \mid b \in A\right\}}
$$

are A-modules via

$$
A \times \widehat{H}^{n}\left(\mathbb{Z}_{2} ; A, \varepsilon\right) \rightarrow \widehat{H}^{n}\left(\mathbb{Z}_{2} ; A, \varepsilon\right) ; \quad(a, x) \mapsto a x \bar{a}
$$

Definition 33. The Wu classes of a chain ε-bundle (C, γ) are the A-module morphisms

$$
\widehat{v}_{k}(\gamma): H_{k}(C) \rightarrow \widehat{H}^{k}\left(\mathbb{Z}_{2} ; A, \varepsilon\right) ; \quad x \mapsto \gamma_{-2 k}(x)(x) \quad(k \in \mathbb{Z}) .
$$

An n-dimensional ε-symmetric Poincaré complex (C, ϕ) with Wu classes (29)

$$
\widehat{v}_{k}(\phi): H^{n-k}(C) \rightarrow \widehat{H}^{k}\left(\mathbb{Z}_{2} ; A, \varepsilon\right) ; \quad y \mapsto \phi_{n-2 k}(y)(y) \quad(k \in \mathbb{Z})
$$

has a Spivak normal ε-bundle [15]

$$
\gamma=S^{-n}\left(\phi_{0}^{\%}\right)^{-1}(J(\phi)) \in \widehat{Q}^{0}\left(C^{0-*}, \varepsilon\right)
$$

such that

$$
\widehat{v}_{k}(\phi)=\widehat{v}_{k}(\gamma) \phi_{0}: H^{n-k}(C) \cong H_{k}(C) \rightarrow \widehat{H}^{k}\left(\mathbb{Z}_{2} ; A, \varepsilon\right) \quad(k \in \mathbb{Z})
$$

the abstract analogue of the formulae of Wu and Thom.
For any A-module chain map $f: C \rightarrow D$ Proposition 12(i) gives an exact sequence

$$
\cdots \rightarrow \widehat{Q}^{1}\left(C^{0-*}, \varepsilon\right) \rightarrow \widehat{Q}^{0}\left(\mathcal{C}(f)^{0-*}, \varepsilon\right) \rightarrow \widehat{Q}^{0}\left(D^{0-*}, \varepsilon\right) \quad \xrightarrow{\left(\widehat{f^{*}}\right)^{\%}} \quad \widehat{Q}^{0}\left(C^{0-*}, \varepsilon\right) \rightarrow \cdots,
$$

motivating the following construction of chain ε-bundles:
Definition 34. The cone of a chain ε-bundle map $(f, \chi):(C, 0) \rightarrow(D, \delta)$ is the chain ع-bundle

$$
(B, \beta)=\mathcal{C}(f, \chi)
$$

with $B=\mathcal{C}(f)$ the algebraic mapping cone of $f: C \rightarrow D$ and

$$
\beta_{s}=\left(\begin{array}{cc}
\delta_{s} & 0 \\
f^{*} \delta_{s+1} & \chi_{s+1}
\end{array}\right): B_{r-s}=D_{r-s} \oplus C_{r-s-1} \rightarrow B^{-r}=D^{-r} \oplus C^{-r-1}
$$

Note that $(D, \delta)=g^{*}(B, \beta)$ is the pullback of (B, β) along the inclusion $g: D \rightarrow B$.
Proposition 35. For a f.g. projective A-module chain complex concentrated in degree k :

$$
C: \cdots \rightarrow 0 \rightarrow C_{k} \rightarrow 0 \rightarrow \cdots,
$$

the kth Wu class defines an isomorphism

$$
\widehat{v}_{k}: \widehat{Q}^{0}\left(C^{0-*}, \varepsilon\right) \quad \cong \quad \operatorname{Hom}_{A}\left(C_{k}, \widehat{H}^{k}\left(\mathbb{Z}_{2} ; A, \varepsilon\right)\right) ; \gamma \mapsto \widehat{v}_{k}(\gamma)
$$

Proof. By construction.
Proposition 36. For a f.g. projective A-module chain complex concentrated in degrees $k, k+1$,

$$
C: \cdots \rightarrow 0 \rightarrow C_{k+1} \quad \xrightarrow{d} \quad C_{k} \rightarrow 0 \rightarrow \cdots
$$

there is defined an exact sequence

$$
\begin{aligned}
& \operatorname{Hom}_{A}\left(C_{k}, \widehat{H}^{k+1}\left(\mathbb{Z}_{2} ; A, \varepsilon\right)\right) \xrightarrow{d^{*}} \operatorname{Hom}_{A}\left(C_{k+1}, \widehat{H}^{k+1}\left(\mathbb{Z}_{2} ; A, \varepsilon\right)\right) \\
& \xrightarrow{\longrightarrow} \widehat{Q}^{0}\left(C^{0-*}, \varepsilon\right) \xrightarrow{p^{*} \widehat{v}_{k}} \operatorname{Hom}_{A}\left(C_{k}, \widehat{H}^{k}\left(\mathbb{Z}_{2} ; A, \varepsilon\right)\right) \\
& \xrightarrow{d^{*}} \operatorname{Hom}_{A}\left(C_{k+1}, \widehat{H}^{k}\left(\mathbb{Z}_{2} ; A, \varepsilon\right)\right),
\end{aligned}
$$

with $p: C_{k} \rightarrow H_{k}(C)$ the projection. Thus every chain ε-bundle (C, γ) is equivalent to the cone $\mathcal{C}(d, \chi)$ (34) of a chain ε-bundle map $(d, \chi):\left(C_{k+1}, 0\right) \rightarrow\left(C_{k}, \delta\right)$, regarding $d: C_{k+1} \rightarrow C_{k}$ as a map of chain complexes concentrated in degree k, with

$$
\begin{aligned}
& \delta^{*}=(-1)^{k} \delta: C_{k} \rightarrow C^{k}, d^{*} \delta d=\chi+(-1)^{k} \chi^{*}: C_{k+1} \rightarrow C^{k+1}, \\
& \gamma_{-2 k}=\delta: C_{k} \rightarrow C^{k}, \gamma_{-2 k-1}=\left\{\begin{array}{l}
d^{*} \delta: C_{k} \rightarrow C^{k+1} \\
0: C_{k+1} \rightarrow C^{k} \\
\gamma_{-2 k-2}
\end{array}\right. \\
&=\chi: C_{k+1} \rightarrow C^{k+1} .
\end{aligned}
$$

Proof. This follows from Proposition 35 and the algebraic Thom isomorphisms

$$
\widehat{t}: \widehat{Q}^{*}(d, \varepsilon) \cong \widehat{Q}^{*}(C, \varepsilon)
$$

of Proposition 12.

2.2. The twisted quadratic Q-groups

For any f.g. projective A-module chain complex C there is defined a \mathbb{Z}-module chain map

$$
\begin{aligned}
& 1+T_{\varepsilon}: W^{\%} C ; \quad \psi \mapsto\left(1+T_{\varepsilon}\right) \psi, \\
& \left(\left(1+T_{\varepsilon}\right) \psi\right)_{s}= \begin{cases}\left(1+T_{\varepsilon}\right)\left(\psi_{0}\right) & \text { if } s=0, \\
0 & \text { if } s \geqslant 1,\end{cases}
\end{aligned}
$$

with algebraic mapping cone

$$
\mathcal{C}\left(1+T_{\varepsilon}\right)=\widehat{W}^{\%} C .
$$

Write the inclusion as

$$
J: W^{\%} C \rightarrow \widehat{W}^{\%} C ; \quad \phi \mapsto J \phi, \quad(J \phi)_{s}= \begin{cases}\phi_{s} & \text { if } s \geqslant 0, \\ 0 & \text { if } s \leqslant-1 .\end{cases}
$$

The sequence of \mathbb{Z}-module chain complexes

$$
0 \rightarrow W_{\%} C \quad \xrightarrow{1+T_{\varepsilon}} W^{\%} C \quad \xrightarrow{J} \widehat{W}^{\%} C \rightarrow 0
$$

induces the long exact sequence of Ranicki [15] relating the ε-symmetric, ε-quadratic and ε-hyperquadratic Q-groups of C,

$$
\cdots \rightarrow \widehat{Q}^{n+1}(C, \varepsilon) \quad \xrightarrow{H} Q_{n}(C, \varepsilon) \quad \xrightarrow{1+T_{\varepsilon}} Q^{n}(C, \varepsilon) \quad \xrightarrow{J} \widehat{Q}^{n}(C, \varepsilon) \rightarrow \cdots,
$$

with

$$
H: \widehat{W}^{\%} C \rightarrow\left(W_{\%} C\right)_{*-1} ; \quad \theta \mapsto H \theta, \quad(H \theta)_{s}=\theta_{-s-1} \quad(s \geqslant 0) .
$$

Weiss [21] used simplicial abelian groups to defined the twisted quadratic Q-groups $Q_{*}(C, \gamma, \varepsilon)$ of a chain ε-bundle (C, γ), to fit into the exact sequence

$$
\cdots \rightarrow \widehat{Q}^{n+1}(C, \varepsilon) \quad \xrightarrow{H_{\gamma}} Q_{n}(C, \gamma, \varepsilon) \quad \xrightarrow{N_{\gamma}} Q^{n}(C, \varepsilon) \quad \xrightarrow{J_{\gamma}} \quad \widehat{Q}^{n}(C, \varepsilon) \rightarrow \cdots
$$

The morphisms

$$
J_{\gamma}: Q^{n}(C, \varepsilon) \longrightarrow \widehat{Q}^{n}(C, \varepsilon) ; \quad \phi \mapsto J_{\gamma} \phi,\left(J_{\gamma} \phi\right)_{s}=J(\phi)-\left(\phi_{0}\right)^{\%}\left(S^{n} \gamma\right)
$$

are induced by a morphism of simplicial abelian groups, where

$$
S^{n}: \widehat{Q}^{0}\left(C^{0-*}, \varepsilon\right) \quad \cong \widehat{Q}^{n}\left(C^{n-*}, \varepsilon\right) ;\left\{\theta_{s}\right\} \mapsto\left\{\left(S^{n} \theta\right)_{s}=\theta_{s-n}\right\}
$$

are the n-fold suspension isomorphisms.
The Kan-Dold theory associates to a chain complex C a simplicial abelian group $K(C)$ such that

$$
\pi_{*}(K(C))=H_{*}(C)
$$

For any chain complexes C, D a simplicial map $f: K(C) \rightarrow K(D)$ has a mapping fibre $K(f)$. The relative homology groups of f are defined by

$$
H_{*}(f)=\pi_{*-1}(K(f))
$$

and the fibration sequence of simplicial abelian groups

$$
K(f) \longrightarrow K(C) \xrightarrow{f} K(D)
$$

induces a long exact sequence in homology

$$
\cdots \rightarrow H_{n}(C) \rightarrow H_{n}(D) \rightarrow H_{n}(f) \rightarrow H_{n-1}(C) \rightarrow \cdots .
$$

For a chain map $f: C \rightarrow D$,

$$
K(f)=K(\mathcal{C}(f))
$$

The applications involve simplicial maps which are not chain maps, and the triad homology groups: given a homotopy-commutative square of simplicial abelian groups

(with $\sim \sim$ denoting an explicit homotopy) the triad homology groups of Φ are the homotopy groups of the mapping fibre of the map of mapping fibres

$$
H_{*}(\Phi)=\pi_{*-1}(K(C \rightarrow D) \rightarrow K(E \rightarrow F)),
$$

which fit into a commutative diagram of exact sequences

If $H_{*}(\Phi)=0$ there is a commutative braid of exact sequences

The twisted ε-quadratic Q-groups were defined in [21] to be the relative homology groups of a simplicial map

$$
J_{\gamma}: K\left(W^{\%} C\right) \rightarrow K\left(\widehat{W}^{\%} C\right)
$$

with

$$
Q_{n}(C, \gamma, \varepsilon)=\pi_{n+1}\left(J_{\gamma}\right)
$$

A more explicit description of the twisted quadratic Q-groups was then obtained in [18], as equivalence classes of ε-symmetric structures on the chain ε-bundle.

Definition 37. (i) An ε-symmetric structure on a chain ε-bundle (C, γ) is a pair (ϕ, θ) with $\phi \in\left(W^{\%} C\right)_{n}$ a cycle and $\theta \in\left(\widehat{W}^{\%} C\right)_{n+1}$ such that

$$
d \theta=J_{\gamma}(\phi)
$$

or equivalently

$$
\begin{gathered}
d \phi_{s}+(-1)^{r} \phi_{s} d^{*}+(-1)^{n+s-1}\left(\phi_{s-1}+(-1)^{s} T_{\varepsilon} \phi_{s-1}\right)=0: C^{r} \rightarrow C_{n-r+s-1}, \\
\phi_{s}-\phi_{0}^{*} \gamma_{s-n} \phi_{0}=d \theta_{s}+(-1)^{r} \theta_{s} d^{*}+(-1)^{n+s}\left(\theta_{s-1}+(-1)^{s} T_{\varepsilon} \theta_{s-1}\right): C^{r} \rightarrow C_{n-r+s} \\
\left(r, s \in \mathbb{Z}, \phi_{s}=0 \text { for } s \leqslant-1\right) .
\end{gathered}
$$

(ii) Two structures (ϕ, θ) and $\left(\phi^{\prime}, \theta^{\prime}\right)$ are equivalent if there exist $\xi \in\left(W^{\%} C\right)_{n+1}$, $\eta \in\left(\widehat{W}^{\%} C\right)_{n+2}$ such that

$$
d \xi=\phi^{\prime}-\phi, d \eta=\theta^{\prime}-\theta+J(\xi)+\left(\xi_{0}, \phi_{0}, \phi_{0}^{\prime}\right)^{\%}\left(S^{n} \gamma\right)
$$

where $\left(\xi_{0}, \phi_{0}, \phi_{0}^{\prime}\right)^{\%}:\left(\widehat{W}^{\%} C^{-*}\right)_{n} \rightarrow\left(\widehat{W}^{\%} C\right)_{n+1}$ is the chain homotopy from $\left(\phi_{0}\right)^{\%}$ to $\left(\phi_{0}^{\prime}\right) \%$ induced by ξ_{0}. (See [15, 1.1] for the precise formula.)
(iii) The n-dimensional twisted ε-quadratic Q-group $Q_{n}(C, \gamma, \varepsilon)$ is the abelian group of equivalence classes of n-dimensional ε-symmetric structures on (C, γ) with addition by

$$
(\phi, \theta)+\left(\phi^{\prime}, \theta^{\prime}\right)=\left(\phi+\phi^{\prime}, \theta+\theta^{\prime}+\zeta\right), \text { where } \zeta_{s}=\phi_{0} \gamma_{s-n+1} \phi_{0}^{\prime} .
$$

As for the $\pm \varepsilon$-symmetric and $\pm \varepsilon$-quadratic Q-groups, there are defined skewsuspension isomorphisms of twisted $\pm \varepsilon$-quadratic Q-groups

$$
\bar{S}: Q_{n}(C, \gamma, \varepsilon) \quad \cong \quad Q_{n+2}\left(C_{*-1}, \gamma,-\varepsilon\right) ; \quad\left(\left\{\phi_{s}\right\},\left\{\theta_{s}\right\}\right) \mapsto\left(\left\{\phi_{s}\right\},\left\{\theta_{s}\right\}\right) .
$$

Proposition 38. (i) The twisted ε-quadratic Q-groups $Q_{*}(C, \gamma, \varepsilon)$ are related to the ε-symmetric Q-groups $Q^{*}(C, \varepsilon)$ and the ε-hyperquadratic Q-groups $\widehat{Q}^{*}(C, \varepsilon)$ by the exact sequence

$$
\cdots \rightarrow \widehat{Q}^{n+1}(C, \varepsilon) \xrightarrow{H_{\gamma}} Q_{n}(C, \gamma, \varepsilon) \xrightarrow{N_{\gamma}} Q^{n}(C, \varepsilon) \xrightarrow{J_{\gamma}} \widehat{Q}^{n}(C, \varepsilon) \rightarrow \cdots,
$$

with

$$
\begin{aligned}
& H_{\gamma}: \widehat{Q}^{n+1}(C, \varepsilon) \rightarrow Q_{n}(C, \gamma, \varepsilon) ; \quad \theta \mapsto(0, \theta), \\
& N_{\gamma}: Q_{n}(C, \gamma, \varepsilon) \rightarrow Q^{n}(C, \varepsilon) ; \quad(\phi, \theta) \mapsto \phi .
\end{aligned}
$$

(ii) For a chain ε-bundle (C, γ) such that C splits as

$$
C=\sum_{i=-\infty}^{\infty} C(i)
$$

the ε-hyperquadratic Q-groups split as

$$
\widehat{Q}^{n}(C, \varepsilon)=\sum_{i=-\infty}^{\infty} \widehat{Q}^{n}(C(i), \varepsilon)
$$

and

$$
\gamma=\sum_{i=-\infty}^{\infty} \gamma(i) \in \widehat{Q}^{0}\left(C^{-*}, \varepsilon\right)=\sum_{i=-\infty}^{\infty} \widehat{Q}^{0}\left(C(i)^{-*}, \varepsilon\right) .
$$

The twisted ε-quadratic Q-groups of (C, γ) fit into the exact sequence

$$
\begin{aligned}
\cdots \rightarrow \sum_{i} Q_{n}(C(i), \gamma(i), \varepsilon) \quad \stackrel{q}{\longrightarrow} Q_{n}(C, \gamma, \varepsilon) & \xrightarrow{p} \sum_{i<j} H_{n}\left(C(i) \otimes_{A} C(j)\right) \\
& \stackrel{\partial}{\longrightarrow} \sum_{i} Q_{n-1}(C(i), \gamma(i), \varepsilon) \rightarrow \cdots,
\end{aligned}
$$

with

$$
\begin{aligned}
& p: Q_{n}(C, \gamma, \varepsilon) \rightarrow \sum_{i<j} H_{n}\left(C(i) \otimes_{A} C(j)\right) ; \quad(\phi, \theta) \mapsto \sum_{i<j}(p(i) \otimes p(j))\left(\phi_{0}\right) \\
& \quad(p(i)=\text { projection :C } \rightarrow C(i)), \\
& q=\sum_{i} q(i) \%: \sum_{i} Q_{n}(C(i), \gamma(i), \varepsilon) \rightarrow Q_{n}(C, \gamma, \varepsilon) \\
& \quad(q(i)=\text { inclusion : C(i) } \rightarrow C)), \\
& \partial: \sum_{i<j} H_{n}\left(C(i) \otimes_{A} C(j)\right) \rightarrow \sum_{i} Q_{n-1}(C(i), \gamma(i), \varepsilon) ; \\
& \sum_{i<j} h(i, j) \mapsto\left(0, \sum_{i \neq j} \widehat{h(i, j)}^{\%}\left(S^{n} \gamma(j)\right)\right) \quad\left(h(i, j): C(j)^{n-*} \rightarrow C(i)\right),
\end{aligned}
$$

with $h(j, i)=h(i, j)^{*}$ for $i<j$.
Proof. (i) See [21].
(ii) See [18, p. 26].

Example 39. The twisted ε-quadratic Q-groups of the zero chain ε-bundle $(C, 0)$ are just the ε-quadratic Q-groups of C, with isomorphisms

$$
Q_{n}(C, \varepsilon) \rightarrow Q_{n}(C, 0, \varepsilon) ; \quad \psi \mapsto((1+T) \psi, \theta)
$$

defined by

$$
\theta_{s}= \begin{cases}\psi_{-s-1}: C^{n-r+s+1} \rightarrow C_{r} & \text { if } s \leqslant-1 \\ 0 & \text { if } s \geqslant 0\end{cases}
$$

and with an exact sequence

$$
\cdots \rightarrow \widehat{Q}^{n+1}(C, \varepsilon) \xrightarrow{H} Q_{n}(C, \varepsilon) \xrightarrow{N} Q^{n}(C, \varepsilon) \xrightarrow{J} \widehat{Q}^{n}(C, \varepsilon) \rightarrow \cdots .
$$

For $\varepsilon=1$ we write

$$
\text { chain 1-bundle }=\text { chain bundle, } Q_{n}(C, \gamma, 1)=Q_{n}(C, \gamma)
$$

2.3. The algebraic normal invariant

Fix a chain ε-bundle (B, β) over A.
Definition 40. (i) An algebraic normal structure (γ, ϕ, θ) on an n-dimensional (ε symmetric, ε-quadratic) Poincaré pair $(f: C \rightarrow D,(\delta \phi, \psi)$) is a chain ε-bundle $(\mathcal{C}(f), \gamma)$ together with an ε-symmetric structure (ϕ, θ), where $\phi=\delta \phi /\left(1+T_{\varepsilon}\right) \psi \in$ $\left(W^{\%} \mathcal{C}(f)\right)_{n}$ is the ε-symmetric structure on $\mathcal{C}(f)$ given by the algebraic Thom construction on $\left(\delta \phi,\left(1+T_{\varepsilon}\right) \psi\right)(18)$.
(ii) A (B, β)-structure $(\gamma, \phi, \theta, g, \chi)$ on an n-dimensional (ε-symmetric, ε-quadratic) Poincaré pair $(f: C \rightarrow D,(\delta \phi, \psi)$) is an algebraic normal structure (γ, ϕ, θ) with $\phi=\delta \phi /\left(1+T_{\varepsilon}\right) \psi$, together with a chain ε-bundle map

$$
(g, \chi):(\mathcal{C}(f), \gamma) \rightarrow(B, \beta) .
$$

(iii) The n-dimensional (B, β)-structure ε-symmetric L-group $L\langle B, \beta\rangle^{n}(A, \varepsilon)$ is the cobordism group of n-dimensional ε-symmetric Poincaré complexes $(D, \delta \phi)$ over A together with a (B, β)-structure $(\gamma, \delta \phi, \theta, g, \chi)$ (so $(C, \psi)=(0,0)$).
(iv) The n-dimensional (B, β)-structure ε-hyperquadratic L-group $\widehat{L}\langle B, \beta\rangle^{n}(A, \varepsilon)$ is the cobordism group of n-dimensional (ε-symmetric, ε-quadratic) Poincaré pairs (f : $C \rightarrow D,(\delta \phi, \psi))$ over A together with a (B, β)-structure $\left(\gamma, \delta \phi /\left(1+T_{\varepsilon}\right) \psi, \theta, g, \chi\right)$.

There are defined skew-suspension maps in the (B, β)-structure ε-symmetric and ε-hyperquadratic L-groups

$$
\begin{aligned}
& \bar{S}: L\langle B, \beta\rangle^{n}(A, \varepsilon) \rightarrow L\left\langle B_{*-1}, \beta_{*-1}\right\rangle^{n+2}(A,-\varepsilon), \\
& \bar{S}: \widehat{L}\langle B, \beta\rangle^{n}(A, \varepsilon) \rightarrow \widehat{L}\left\langle B_{*-1}, \beta_{*-1}\right\rangle^{n+2}(A,-\varepsilon)
\end{aligned}
$$

given by $C \mapsto C_{*-1}$ on the chain complexes, with $\left(B_{*-1}, \beta_{*-1}\right)$ a chain $(-\varepsilon)$-bundle. We shall write the 4 -periodic versions of the (B, β)-structure L-groups as

$$
\begin{aligned}
& L\langle B, \beta\rangle^{n+4 *}(A, \varepsilon)=\lim _{k \rightarrow \infty} L\langle B, \beta\rangle^{n+4 k}(A, \varepsilon), \\
& \widehat{L}\langle B, \beta\rangle^{n+4 *}(A, \varepsilon)=\lim _{k \rightarrow \infty} \widehat{L}\langle B, \beta\rangle^{n+4 k}(A, \varepsilon) .
\end{aligned}
$$

Example 41. An (ε-symmetric, ε-quadratic) Poincaré pair with a $(0,0)$-structure is essentially the same as an ε-quadratic Poincaré pair. In particular, an ε-symmetric Poincaré complex with a $(0,0)$-structure is essentially the same as an ε-quadratic Poincaré complex. The $(0,0)$-structure L-groups are given by

$$
L\langle 0,0\rangle^{n}(A, \varepsilon)=L_{n}(A, \varepsilon), \widehat{L}\langle 0,0\rangle^{n}(A, \varepsilon)=0
$$

Proposition 42 (Ranicki [18, §7]). (i) An n-dimensional ε-symmetric structure $(\phi, \theta) \in$ $Q_{n}(B, \beta, \varepsilon)$ on a chain ε-bundle (B, β) determines an n-dimensional (ε-symmetric, ε quadratic) Poincaré pair $(f: C \rightarrow D,(\delta \phi, \psi))$ with

$$
\begin{aligned}
& f=\text { proj. }: C=\mathcal{C}\left(\phi_{0}: B^{n-*} \rightarrow B\right)_{*+1} \rightarrow D=B^{n-*}, \\
& \psi_{0}=\left(\begin{array}{cc}
\theta_{0} & 0 \\
1+\beta_{-n} \phi_{0}^{*} & \beta_{-n-1}^{*}
\end{array}\right): \\
& C^{r}=B^{r+1} \oplus B_{n-r} \rightarrow C_{n-r-1}=B_{n-r} \oplus B^{r+1}, \\
& \psi_{s}=\left(\begin{array}{cc}
\theta_{-s} & 0 \\
\beta_{-n-s} \phi_{0}^{*} & \beta_{-n-s-1}^{*}
\end{array}\right): \\
& C^{r}=B^{r+1} \oplus B_{n-r} \rightarrow C_{n-r-s-1}=B_{n-r-s} \oplus B^{r+s+1} \quad(s \geqslant 1), \\
& \delta \phi_{s}=\beta_{s-n}: D^{r}=B_{n-r} \rightarrow D_{n-r+s}=B^{r-s} \quad(s \geqslant 0)
\end{aligned}
$$

(up to signs) such that $(\mathcal{C}(f), \gamma) \simeq(B, \beta)$.
(ii) An n-dimensional (ε-symmetric, ε-quadratic) Poincaré pair $(f: C \rightarrow D,(\delta \phi, \psi)$ $\left.\in Q_{n}^{n}(f, \varepsilon)\right)$ has a canonical equivalence class of 'algebraic Spivak normal structures' (γ, ϕ, θ) with γ a chain ε-bundle over $\mathcal{C}(f)$ and (ϕ, θ) an n-dimensional ε-symmetric structure on γ representing an element

$$
(\phi, \theta) \in Q_{n}(\mathcal{C}(f), \gamma, \varepsilon)
$$

with $\phi=\delta \phi /\left(1+T_{\varepsilon}\right) \psi$. The construction of (i) applied to (ϕ, θ) gives an n-dimensional (ε-symmetric, ε-quadratic) Poincaré pair homotopy equivalent to $(f: C \rightarrow D,(\delta \phi, \psi) \in$ $\left.Q_{n}^{n}(f, \varepsilon)\right)$.

Proof. (i) By construction.
(ii) The equivalence class $\phi=\delta \phi /\left(1+T_{\varepsilon}\right) \psi \in Q^{n}(\mathcal{C}(f))$ is given by the algebraic Thom construction

$$
\begin{aligned}
& \phi_{s}= \begin{cases}\left(\begin{array}{cc}
\delta \phi_{0} & 0 \\
\left(1+T_{\varepsilon}\right) \psi_{0} f^{*} & 0
\end{array}\right) & \text { if } s=0, \\
\left(\begin{array}{cc}
\delta \phi_{1} & 0 \\
0 & \left(1+T_{\varepsilon}\right) \psi_{0}
\end{array}\right) & \text { if } s=1, \\
\left(\begin{array}{cc}
\delta \phi_{s} & 0 \\
0 & 0
\end{array}\right) & \text { if } s \geqslant 2,\end{cases} \\
& : \mathcal{C}(f)^{r}=D^{r} \oplus C^{r-1} \rightarrow \mathcal{C}(f)_{n-r+s}=D_{n-r+s} \oplus C_{n-r+s-1},
\end{aligned}
$$

such that

$$
\phi_{0}: \mathcal{C}(f)^{n-*} \rightarrow D^{n-*} \xrightarrow{\simeq} \mathcal{C}(f) .
$$

The equivalence class $\gamma \in \widehat{Q}^{0}\left(\mathcal{C}(f)^{0-*}, \varepsilon\right)$ of the Spivak normal chain bundle is the image of $(\delta \phi, \psi) \in Q_{n}^{n}(f, \varepsilon)$ under the composite
$Q_{n}^{n}(f, \varepsilon) \quad J_{f} \longrightarrow \hat{Q}^{n}(D, \varepsilon) \cong \xrightarrow{\left(\left(\delta \phi,\left(1+T_{\varepsilon}\right) \psi\right)_{0}^{\%}\right)^{-1}} \hat{Q}^{n}\left(\mathcal{C}(f)^{n-*}, \varepsilon\right) \quad S^{-n} \cong \xrightarrow{-} \widehat{Q}^{0}\left(\mathcal{C}(f)^{0-*}, \varepsilon\right)$.

Definition 43. (i) The boundary of an n-dimensional ε-symmetric structure $(\phi, \theta) \in$ $Q_{n}(B, \beta, \varepsilon)$ on a chain ε-bundle (B, β) over A is the ε-symmetric null-cobordant ($n-1$)dimensional ε-quadratic Poincaré complex over A :

$$
\partial(\phi, \theta)=(C, \psi)
$$

defined in Proposition 42(i) above, with $C=\mathcal{C}\left(\phi_{0}: B^{n-*} \rightarrow B\right)_{*+1}$.
(ii) The algebraic normal invariant of an n-dimensional (ε-symmetric, ε-quadratic) Poincaré pair over $A\left(f: C \rightarrow D,(\delta \phi, \psi) \in Q_{n}^{n}(f, \varepsilon)\right)$ is the class

$$
(\phi, \theta) \in Q_{n}(\mathcal{C}(f), \gamma, \varepsilon)
$$

defined in Proposition 42(ii) above.
Proposition 44. Let (B, β) be a chain ε-bundle over A such that B is concentrated in degree k,

$$
B: \cdots \rightarrow 0 \rightarrow B_{k} \rightarrow 0 \rightarrow \cdots .
$$

The boundary map $\partial: Q_{2 k}(B, \beta, \varepsilon) \rightarrow L_{2 k-1}(A, \varepsilon)$ sends an ε-symmetric structure $(\phi, \theta) \in Q_{2 k}(B, \beta, \varepsilon)$ to the Witt class of the $(-1)^{k-1} \varepsilon$-quadratic formation

$$
\partial(\phi, \theta)=\left(H_{(-1)^{k-1} \varepsilon}\left(B^{k}\right) ; B^{k}, \operatorname{im}\left(\begin{array}{c}
1-\beta \phi \\
\phi
\end{array}: B^{k} \rightarrow B^{k} \oplus B_{k}\right)\right),
$$

with

$$
H_{(-1)^{k-1} \varepsilon}\left(B^{k}\right)=\left(B^{k} \oplus B_{k},\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)\right)
$$

the hyperbolic $(-1)^{k-1}{ }_{\varepsilon}$-quadratic form.
Proof. The chain ε-bundle (equivalence class)

$$
\beta \in \widehat{Q}^{0}\left(B^{0-*}, \varepsilon\right)=\widehat{H}^{0}\left(\mathbb{Z}_{2} ; S\left(B_{k}\right),(-1)^{k} \varepsilon\right)
$$

is represented by a $(-1)^{k}$-symmetric form $\left(B_{k}, \beta\right)$. An ε-symmetric structure $(\phi, \theta) \in$ $Q_{2 k}(B, \beta, \varepsilon)$ is represented by an $(-1)^{k} \varepsilon$-symmetric form (B^{k}, ϕ) together with $\theta \in$ $S\left(B_{k}\right)$ such that

$$
\phi-\phi \beta \phi=\theta+(-1)^{k} \varepsilon \theta^{*} \in H^{0}\left(\mathbb{Z}_{2} ; S\left(B^{k}\right),(-1)^{k} \varepsilon\right)
$$

The boundary of (ϕ, θ) is the ε-symmetric null-cobordant $(2 k-1)$-dimensional ε quadratic Poincaré complex $\partial(\phi, \theta)=(C, \psi)$ concentrated in degrees $k-1, k$ corresponding to the formation in the statement.

Proposition 45. Let (B, β) be a chain ε-bundle over A such that B is concentrated in degrees $k, k+1$,

$$
B: \cdots \rightarrow 0 \rightarrow B_{k+1} \quad \xrightarrow{d} \quad B_{k} \rightarrow 0 \rightarrow \cdots
$$

The boundary map $\partial: Q_{2 k+1}(B, \beta, \varepsilon) \rightarrow L_{2 k}(A, \varepsilon)$ sends an ε-symmetric structure $(\phi, \theta) \in Q_{2 k+1}(B, \beta, \varepsilon)$ to the Witt class of the nonsingular $(-1)^{k} \varepsilon$-quadratic form over A

$$
\left(\operatorname{coker}\left(\left(\begin{array}{c}
-d^{*} \\
\phi_{0}^{*} \\
1-\beta_{-2 k} d \phi_{0}^{*}
\end{array}\right): B^{k} \rightarrow B^{k+1} \oplus B_{k+1} \oplus B^{k}\right),\left(\begin{array}{ccc}
\theta_{0} & 0 & \phi_{0} \\
1 & \beta_{-2 k-2}^{*} & d^{*} \\
0 & 0 & 0
\end{array}\right)\right)
$$

Proof. This is an application of the instant surgery obstruction of [15, 4.3], which identifies the cobordism class $(C, \psi) \in L_{2 k}(A, \varepsilon)$ of a $2 k$-dimensional ε-quadratic Poincaré complex (C, ψ) with the Witt class of the nonsingular ε-quadratic form

$$
I(C, \psi)=\left(\operatorname{coker}\left(\binom{d^{*}}{(-1)^{k+1}\left(1+T_{\varepsilon}\right) \psi_{0}}: C^{k-1} \rightarrow C^{k} \oplus C_{k+1}\right),\left(\begin{array}{cc}
\psi_{0} & d \\
0 & 0
\end{array}\right)\right)
$$

By Proposition 36 the chain ε-bundle β can be taken to be the cone of a chain ε-bundle map

$$
\left(d, \beta_{-2 k-2}\right):\left(B_{k+1}, 0\right) \rightarrow\left(B_{k}, \beta_{-2 k}\right),
$$

with

$$
\begin{aligned}
& \beta_{-2 k}^{*}=(-1)^{k} \varepsilon \beta_{-2 k}: B_{k} \rightarrow B^{k}, \\
& d^{*} \beta_{-2 k} d=\beta_{-2 k-2}+(-1)^{k} \varepsilon \beta_{-2 k-2}^{*}: B_{k+1} \rightarrow B^{k+1}, \\
& \beta_{-2 k-1}=\left\{\begin{array}{l}
\beta_{-2 k} d: B_{k+1} \rightarrow B^{k} \\
0: B_{k} \rightarrow B^{k+1} .
\end{array}\right.
\end{aligned}
$$

An ε-symmetric structure $(\phi, \theta) \in Q_{2 k+1}(B, \beta, \varepsilon)$ is represented by A-module morphisms

$$
\begin{aligned}
& \phi_{0}: B^{k} \rightarrow B_{k+1}, \widetilde{\phi}_{0}: B^{k+1} \rightarrow B_{k}, \phi_{1}: B^{k+1} \rightarrow B_{k+1}, \\
& \theta_{0}: B^{k+1} \rightarrow B_{k+1}, \theta_{-1}: B^{k} \rightarrow B_{k+1}, \widetilde{\theta}_{-1}: B^{k+1} \rightarrow B_{k}, \theta_{-2}: B^{k} \rightarrow B_{k}
\end{aligned}
$$

such that

$$
\begin{aligned}
& d \phi_{0}+(-1)^{k} \widetilde{\phi}_{0} d^{*}=0: B^{k} \rightarrow B_{k}, \\
& \phi_{0}-\varepsilon \widetilde{\phi}_{0}^{*}+(-1)^{k+1} \phi_{1} d^{*}=0: B^{k} \rightarrow B_{k+1}, \\
& \phi_{1}+(-1)^{k+1} \varepsilon \phi_{1}^{*}=0: B^{k+1} \rightarrow B_{k+1}, \\
& \phi_{0}-\phi_{0} \beta_{-2 k} d \widetilde{\phi}_{0}^{*}=(-1)^{k} \theta_{0} d^{*}-\theta_{-1}-\varepsilon \widetilde{\theta}_{-1}^{*}: B^{k} \rightarrow B_{k+1}, \\
& \widetilde{\phi}_{0}=d \theta_{0}-\widetilde{\theta}_{-1}-\varepsilon \theta_{-1}^{*}: B^{k+1} \rightarrow B_{k}, \\
& -\widetilde{\phi}_{0} \beta_{-2 k-2} \widetilde{\phi}_{0}^{*}=\theta_{-2}+(-1)^{k+1} \varepsilon \theta_{-2}^{*}: B^{k} \rightarrow B_{k}, \\
& \phi_{1}-\phi_{0} \beta_{-2 k} \phi_{0}^{*}=\theta_{0}+(-1)^{k} \varepsilon \theta_{0}^{*}: B^{k+1} \rightarrow B_{k+1} .
\end{aligned}
$$

The boundary of (ϕ, θ) given by $43(i)$ is an ε-symmetric null-cobordant $2 k$-dimensional ε-quadratic Poincaré complex $\partial(\phi, \theta)=(C, \psi)$ concentrated in degrees $k-1, k, k+1$, with $I(C, \psi)$ the instant surgery obstruction form (45) in the statement.

The ε-quadratic L-groups and the $(B, \beta$-structure L-groups fit into an evident exact sequence

$$
\cdots \rightarrow L_{n}(A, \varepsilon) \rightarrow L\langle B, \beta\rangle^{n}(A, \varepsilon) \rightarrow \widehat{L}\langle B, \beta\rangle^{n}(A, \varepsilon) \quad{ }^{\partial} \quad L_{n-1}(A, \varepsilon) \rightarrow \cdots
$$

and similarly for the 4-periodic versions

$$
\cdots \rightarrow L_{n}(A, \varepsilon) \rightarrow L\langle B, \beta\rangle^{n+4 *}(A, \varepsilon) \rightarrow \widehat{L}\langle B, \beta\rangle^{n+4 *}(A, \varepsilon) \quad \stackrel{\partial}{\longrightarrow} \quad L_{n-1}(A, \varepsilon) \rightarrow \cdots .
$$

Proposition 46 (Weiss [21]). (i) The function

$$
Q_{n}(B, \beta, \varepsilon) \rightarrow \widehat{L}\langle B, \beta\rangle^{n+4 *}(A, \varepsilon) ; \quad(\phi, \theta) \mapsto(f: C \rightarrow D,(\delta \phi, \psi))
$$

is an isomorphism, with inverse given by the algebraic normal invariant. The ε-quadratic L-groups of A, the 4-periodic (B, β)-structure ε-symmetric L-groups of A and the twisted ε-quadratic Q-groups of (B, β) are thus related by an exact sequence

$$
\cdots \rightarrow L_{n}(A, \varepsilon) \quad \xrightarrow{1+T} \quad L\langle B, \beta\rangle^{n+4 *}(A, \varepsilon) \rightarrow Q_{n}(B, \beta, \varepsilon) \xrightarrow{\partial} L_{n-1}(A, \varepsilon) \rightarrow \cdots .
$$

(ii) The cobordism class of an n-dimensional (ε-symmetric, ε-quadratic) Poincaré pair $(f: C \rightarrow D,(\delta \phi, \psi))$ over A with a (B, β)-structure $(\gamma, \phi, \theta, g, \chi)$ is the image of the algebraic normal invariant $(\phi, \theta) \in Q_{n}(\mathcal{C}(f), \gamma, \varepsilon)$

$$
(f: C \rightarrow D,(\delta \phi, \psi))=(g, \chi) \%(\phi, \theta) \in Q_{n}(B, \beta, \varepsilon) .
$$

Proof. The ε-symmetrization of an n-dimensional ε-quadratic Poincaré complex (C, ψ) is an n-dimensional ε-symmetric Poincaré complex $\left(C,\left(1+T_{\varepsilon}\right) \psi\right)$ with (B, β)-structure $(0,(1+T) \psi, \theta, 0,0)$ given by

$$
\theta_{s}= \begin{cases}\psi_{-s-1} \in \operatorname{Hom}_{A}\left(C^{-*}, C\right)_{n+s+1} & \text { if } s \leqslant-1 \\ 0 & \text { if } s \geqslant 0\end{cases}
$$

The relative groups of the symmetrization map

$$
1+T_{\varepsilon}: L_{n}(A, \varepsilon) \rightarrow L\langle B, \beta\rangle^{n}(A, \varepsilon) ; \quad(C, \psi) \mapsto\left(C,\left(1+T_{\varepsilon}\right) \psi\right)
$$

are the cobordism groups of n-dimensional (ε-symmetric, ε-quadratic) Poincaré pairs $(f: C \rightarrow D,(\delta \phi, \psi))$ together with a (B, β)-structure $(\gamma, \phi, \theta, g, \chi)$.

Proposition 47. Let (B, β) be a chain ε-bundle over A with B concentrated in degree k

$$
B: \cdots \rightarrow 0 \rightarrow B_{k} \rightarrow 0 \rightarrow \cdots
$$

so that $\beta \in \widehat{Q}^{0}\left(B^{0-*}, \varepsilon\right)=\widehat{H}^{0}\left(\mathbb{Z}_{2} ; S\left(B^{k}\right),(-1)^{k} T_{\varepsilon}\right)$ is represented by an element

$$
\beta_{-2 k}=(-1)^{k} \varepsilon \beta_{-2 k}^{*} \in S\left(B^{k}\right)
$$

The twisted ε-quadratic Q-groups $Q_{n}(B, \beta, \varepsilon)$ are given as follows:
(i) For $n \neq 2 k-1,2 k$:

$$
\begin{aligned}
Q_{n}(B, \beta, \varepsilon) & =Q_{n}(B, \varepsilon) \\
& = \begin{cases}\widehat{Q}^{n+1}(B, \varepsilon)=\widehat{H}^{n-2 k+1}\left(\mathbb{Z}_{2} ; S\left(B^{k}\right),(-1)^{k} T_{\varepsilon}\right) & \text { if } n \geqslant 2 k+1, \\
0 & \text { if } n \leqslant 2 k-2 .\end{cases}
\end{aligned}
$$

(ii) For $n=2 k$:

$$
Q_{2 k}(B, \beta, \varepsilon)=\frac{\left\{(\phi, \theta) \in S\left(B^{k}\right) \oplus S\left(B^{k}\right) \mid \phi=(-1)^{k} \varepsilon \phi^{*}, \phi-\phi \beta_{-2 k} \phi^{*}=\theta+(-1)^{k} \varepsilon \theta^{*}\right\}}{\left\{\left(0, \eta+(-1)^{k+1} \varepsilon \eta^{*}\right) \mid \eta \in S\left(B^{k}\right)\right\}},
$$

with addition by

$$
(\phi, \theta)+\left(\phi^{\prime}, \theta^{\prime}\right)=\left(\phi+\phi^{\prime}, \theta+\theta^{\prime}+\phi^{\prime} \beta_{-2 k} \phi^{*}\right) .
$$

The boundary of $(\phi, \theta) \in Q_{2 k}(B, \beta, \varepsilon)$ is the $(2 k-1)$-dimensional ε-quadratic Poincaré complex over A concentrated in degrees $k-1, k$ corresponding to the $(-1)^{k+1} \varepsilon_{\varepsilon}$ quadratic formation over A,

$$
\partial(\phi, \theta)=\left(H_{(-1)^{k+1} \varepsilon}\left(B^{k}\right) ; B^{k}, \operatorname{im}\left(\binom{1-\beta_{-2 k} \phi}{\phi}: B^{k} \rightarrow B^{k} \oplus B_{k}\right)\right) .
$$

(iii) For $n=2 k-1$:

$$
\begin{aligned}
Q_{2 k-1}(B, \beta, \varepsilon) & =\operatorname{coker}\left(J_{\beta}: Q^{2 k}(B, \varepsilon) \rightarrow \widehat{Q}^{2 k}(B, \varepsilon)\right) \\
& =\frac{\left\{\sigma \in S\left(B^{k}\right) \mid \sigma=(-1)^{k} \varepsilon \sigma^{*}\right\}}{\left\{\phi-\phi \beta_{-2 k} \phi^{*}-\left(\theta+(-1)^{k} \varepsilon \theta^{*}\right) \mid \phi=(-1)^{k} \varepsilon \phi^{*}, \theta \in S\left(B^{k}\right)\right\}} .
\end{aligned}
$$

The boundary of $\sigma \in Q_{2 k-1}(B, \beta, \varepsilon)$ is the $(2 k-2)$-dimensional ε-quadratic Poincaré complex over A concentrated in degree $k-1$ corresponding to the $(-1)^{k+1} \varepsilon$-quadratic form over A,

$$
\partial(\sigma)=\left(B^{k} \oplus B_{k},\left(\begin{array}{lc}
\sigma & 1 \\
0 & \beta_{-2 k}
\end{array}\right)\right),
$$

with

$$
\left(1+T_{(-1)^{k+1} \varepsilon}\right) \partial(\sigma)=\left(B^{k} \oplus B_{k},\left(\begin{array}{cc}
0 & 1 \\
(-1)^{k+1} \varepsilon & 0
\end{array}\right)\right) .
$$

(iv) The maps in the exact sequence

$$
\begin{aligned}
0 \rightarrow \widehat{Q}^{2 k+1}(B, \varepsilon) & \xrightarrow{H_{\beta}} Q_{2 k}(B, \beta, \varepsilon) \\
& \xrightarrow{N_{\beta}} Q^{2 k}(B, \varepsilon) \\
& \xrightarrow{J_{\beta}} \\
& \widehat{Q}^{2 k}(B, \varepsilon) \\
& \xrightarrow{H_{\beta}} \\
& Q_{2 k-1}(B, \beta, \varepsilon) \rightarrow 0
\end{aligned}
$$

are given by

$$
\begin{aligned}
& H_{\beta}: \widehat{Q}^{2 k+1}(B, \varepsilon)=\widehat{H}^{1}\left(\mathbb{Z}_{2} ; S\left(B^{k}\right),(-1)^{k} T_{\varepsilon}\right) \rightarrow Q_{2 k}(B, \beta, \varepsilon) ; \theta \mapsto(0, \theta), \\
& N_{\beta}: Q_{2 k}(B, \beta, \varepsilon) \rightarrow Q^{2 k}(B, \varepsilon)=H^{0}\left(\mathbb{Z}_{2} ; S\left(B^{k}\right),(-1)^{k} T_{\varepsilon}\right) ;(\phi, \theta) \mapsto \phi, \\
& J_{\beta}: Q^{2 k}(B, \varepsilon)=H^{0}\left(\mathbb{Z}_{2} ; S\left(B^{k}\right),(-1)^{k} T_{\varepsilon}\right) \rightarrow \widehat{Q}^{2 k}(B, \varepsilon)=\widehat{H}^{0}\left(\mathbb{Z}_{2} ; S\left(B^{k}\right),(-1)^{k} T_{\varepsilon}\right) ; \\
& \phi \mapsto \phi-\phi \beta_{-2 k} \phi^{*}, \\
& H_{\beta}: \widehat{Q}^{2 k}(B, \varepsilon)=\widehat{H}^{0}\left(\mathbb{Z}_{2} ; S\left(B^{k}\right),(-1)^{k} T_{\varepsilon}\right) \rightarrow Q_{2 k-1}(B, \beta, \varepsilon) ; \sigma \mapsto \sigma .
\end{aligned}
$$

Example 48. Let (K, λ) be a nonsingular ε-symmetric form over A, which may be regarded as a zero-dimensional ε-symmetric Poincaré complex (D, ϕ) over A with

$$
\phi_{0}=\lambda: D^{0}=K \rightarrow D_{0}=K^{*} .
$$

The composite

$$
Q^{0}(D, \varepsilon)=H^{0}\left(\mathbb{Z}_{2} ; S(K), \varepsilon\right) \quad \stackrel{J}{\longrightarrow} \widehat{Q}^{0}(D, \varepsilon) \quad \stackrel{\left(\phi_{0}\right)^{-1}}{\longrightarrow} \widehat{Q}^{0}\left(D^{0-*}, \varepsilon\right)
$$

sends $\phi \in Q^{0}(D, \varepsilon)$ to the algebraic Spivak normal chain bundle

$$
\gamma \in \widehat{Q}^{0}\left(D^{0-*}, \varepsilon\right)=\widehat{H}^{0}\left(\mathbb{Z}_{2} ; S\left(K^{*}\right), \varepsilon\right),
$$

with

$$
\gamma_{0}=\varepsilon \lambda^{-1}: D_{0}=K^{*} \rightarrow D^{0}=K
$$

By Proposition 47

$$
Q_{0}(D, \gamma, \varepsilon)=\frac{\left\{(\kappa, \theta) \in S(K) \oplus S(K) \mid \kappa=\varepsilon \kappa^{*}, \kappa-\kappa \gamma_{0} \kappa^{*}=\theta+\varepsilon \theta^{*}\right\}}{\left\{\left(0, \eta-\varepsilon \eta^{*}\right) \mid \eta \in S(K)\right\}}
$$

with addition by

$$
(\kappa, \theta)+\left(\kappa^{\prime}, \theta^{\prime}\right)=\left(\kappa+\kappa^{\prime}, \theta+\theta^{\prime}+\kappa^{\prime} \gamma_{0} \kappa^{*}\right)
$$

The algebraic normal invariant of (D, ϕ) is given by

$$
(\phi, 0) \in Q_{0}(D, \gamma, \varepsilon)
$$

Example 49. Let A be a ring with even involution (4), and let C be concentrated in degree k with $C_{k}=A^{r}$. For odd $k=2 j+1$,

$$
\widehat{Q}^{0}\left(C^{0-*}\right)=0
$$

and there is only one chain ε-bundle $\gamma=0$ over C, with

$$
Q_{n}(C, \gamma)=Q_{n}(C)= \begin{cases}\bigoplus_{r} \widehat{H}^{0}\left(\mathbb{Z}_{2} ; A\right) & \text { if } n \geqslant 4 j+2, n \equiv 0(\bmod 2), \\ 0 & \text { otherwise } .\end{cases}
$$

For even $k=2 j$,

$$
\widehat{Q}^{0}\left(C^{0-*}\right)=\bigoplus_{r} \widehat{H}^{0}\left(\mathbb{Z}_{2} ; A\right)
$$

a chain ε-bundle $\gamma \in \widehat{Q}^{0}\left(C^{0-*}\right)$ is represented by a diagonal matrix

$$
\gamma=X=\left(\begin{array}{ccccc}
x_{1} & 0 & 0 & \cdots & 0 \\
0 & x_{2} & 0 & \cdots & 0 \\
0 & 0 & x_{3} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & x_{r}
\end{array}\right) \in \operatorname{Sym}_{r}(A)
$$

with $\bar{x}_{i}=x_{i} \in A$, and there is defined an exact sequence

$$
\widehat{Q}^{4 j+1}(C)=0 \rightarrow Q_{4 j}(C, \gamma) \rightarrow Q^{4 j}(C) \quad \xrightarrow{J_{\gamma}} \quad \widehat{Q}^{4 j}(C) \rightarrow Q_{4 j-1}(C, \gamma) \rightarrow Q^{4 j-1}(C)=0,
$$

with

$$
J_{\gamma}: Q^{4 j}(C)=\operatorname{Sym}_{r}(A) \rightarrow \widehat{Q}^{4 j}(C)=\frac{\operatorname{Sym}_{r}(A)}{\operatorname{Quad}_{r}(A)} ; M \mapsto M-M X M,
$$

so that

$$
\begin{aligned}
& Q_{n}(C, \gamma) \\
& = \begin{cases}\bigoplus_{r} \widehat{H}^{0}\left(\mathbb{Z}_{2} ; A\right) & \text { if } n \geqslant 4 j+1, \\
\left\{M \in \operatorname{Sym}_{r}(A) \mid M-M X M \in \operatorname{Quad}_{r}(A)\right\} & \text { and } n \equiv 1(\bmod 2), \\
M_{r}(A) /\left\{M-M X M-\left(N+N^{t}\right) \mid M \in \operatorname{Sym}_{r}(A), N \in M_{r}(A)\right\} & \text { if } n=4 j, \\
0 & \text { if } n=4 j-1, \\
\text { otherwise. } .\end{cases}
\end{aligned}
$$

Moreover, Proposition 38(ii) gives an exact sequence

$$
0 \rightarrow \bigoplus_{i=1}^{r} Q_{4 j}\left(B, x_{i}\right) \rightarrow Q_{4 j}(C, \gamma) \rightarrow \bigoplus_{r(r-1) / 2} A \rightarrow \bigoplus_{i=1}^{r} Q_{4 j-1}\left(B, x_{i}\right) \rightarrow Q_{4 j-1}(C, \gamma) \rightarrow 0
$$

with B concentrated in degree $2 j$ with $B_{2 j}=A$.

2.4. The relative twisted quadratic Q-groups

Let $(f, \chi):(C, \gamma) \rightarrow(D, \delta)$ be a map of chain ε-bundles, and let (ϕ, θ) be an n-dimensional ε-symmetric structure on (C, γ), so that $\chi \in\left(\widehat{W}^{\%} C\right)_{1}, \phi \in\left(W^{\%} C\right)_{n}$ and $\theta \in\left(\widehat{W}^{\%} C\right)_{n+1}$. Composing the chain map $\phi_{0}: C^{n-*} \rightarrow C$ with f, we get an induced map

$$
\left(\widehat{f \phi_{0}}\right)^{\%}: \widehat{W}^{\%} C^{n-*} \rightarrow \widehat{W}^{\%} D
$$

The morphisms of twisted quadratic Q-groups

$$
(f, \chi) \%: Q_{n}(C, \gamma, \varepsilon) \rightarrow Q_{n}(D, \delta, \varepsilon) ; \quad(\phi, \theta) \mapsto\left(f^{\%}(\phi), \widehat{f}^{\%}(\theta)+\left(\widehat{f \phi_{0}}\right)^{\%}\left(S^{n} \chi\right)\right)
$$

are induced by a simplicial map of simplicial abelian groups. The relative homotopy groups are the relative twisted ε-quadratic Q-groups $Q_{n}(f, \chi, \varepsilon)$, designed to fit into a long exact sequence

$$
\cdots \longrightarrow Q_{n}(C, \gamma, \varepsilon) \xrightarrow{(f, \chi) \%_{0}} Q_{n}(D, \delta, \varepsilon) \longrightarrow Q_{n}(f, \chi, \varepsilon) \longrightarrow Q_{n-1}(C, \gamma, \varepsilon) \longrightarrow \cdots
$$

Proposition 50. For any chain ε-bundle map $(f, \chi):(C, \gamma) \rightarrow(D, \delta)$ the various Q-groups fit into a commutative diagram with exact rows and columns

Proof. These are the exact sequences of the homotopy groups of the simplicial abelian groups in the commutative diagram of fibration sequences

with

$$
\pi_{n}\left(K\left(J_{\chi}\right)\right)=Q_{n}(f, \chi, \varepsilon)
$$

There is also a twisted ε-quadratic Q-group version of the algebraic Thom constructions (12, 18, 24):

Proposition 51. Let $(f, \chi):(C, 0) \rightarrow(D, \delta)$ be a chain ε-bundle map, and let $(B, \beta)=$ $\mathcal{C}(f, \chi)$ be the cone chain ε-bundle (34). The relative twisted ε-quadratic Q-groups
$Q_{*}(f, \chi, \varepsilon)$ are related to the (absolute) twisted ε-quadratic Q-groups $Q_{*}(B, \beta, \varepsilon)$ by a commutative braid of exact sequences

involving the exact sequence of 18 ,

$$
\cdots \rightarrow H_{n}\left(B \otimes_{A} C\right) \quad \xrightarrow{F} Q^{n}(f, \varepsilon) \quad \xrightarrow{t} \quad Q^{n}(B, \varepsilon) \rightarrow H_{n-1}\left(B \otimes_{A} C\right) \rightarrow \cdots .
$$

Proof. The identity

$$
\widehat{f}^{* \%}(\delta)=d \chi \in\left(\widehat{W} C^{0-*}\right)_{0}
$$

determines a homotopy $\sim \sim$ in the square

$$
\begin{gathered}
K\left(W^{\%} C\right) \xrightarrow{J} K\left(\widehat{W}^{\%} C\right) \\
\left|f^{\%}{ }^{\%}\right| \widehat{f}^{\%} \\
K\left(W^{\%} D\right) \xrightarrow{J_{\delta}} K\left(\widehat{W}^{\%} D\right)
\end{gathered}
$$

(with $J=J_{0}$) and hence maps of the mapping fibres

$$
J_{\chi}: K\left(\mathcal{C}\left(f^{\%}\right)\right) \rightarrow K\left(\mathcal{C}\left(\widehat{f}^{\%}\right)\right),(f, \chi) \%: K(J) \rightarrow K\left(J_{\delta}\right) .
$$

The map J_{χ} is related to $J_{\beta}: K\left(W^{\%} B\right) \rightarrow K\left(\widehat{W}^{\%} B\right)$ by a homotopy commutative diagram

with $\widehat{t}: K\left(\mathcal{C}\left(\widehat{f}^{\%}\right)\right) \simeq K\left(\widehat{W}^{\%} B\right)$ a simplicial homotopy equivalence inducing the algebraic Thom isomorphisms $\widehat{t}: \widehat{Q}^{*}(f, \varepsilon) \cong \widehat{Q}^{*}(B, \varepsilon)$ of Proposition 12, and t :
$K\left(\mathcal{C}\left(f^{\%}\right)\right) \rightarrow K\left(W^{\%} B\right)$ a simplicial map inducing the algebraic Thom maps t : $Q^{*}(f, \varepsilon) \rightarrow Q^{*}(B, \varepsilon)$ of Proposition 18 , with mapping fibre $K(t) \simeq K\left(B \otimes_{A} C\right)$. The braid in the statement is the commutative braid of homotopy groups induced by the homotopy commutative braid of fibrations

Proposition 52. Let (C, γ) be a chain ε-bundle over a f.g. projective A-module chain complex which is concentrated in degrees $k, k+1$,

$$
C: \cdots \rightarrow 0 \rightarrow C_{k+1} \quad \xrightarrow{d} \quad C_{k} \rightarrow 0 \rightarrow \cdots,
$$

so that (C, γ) can be taken (up to equivalence) to be the cone $\mathcal{C}(d, \chi)$ of a chain ε bundle map $(d, \chi):\left(C_{k+1}, 0\right) \rightarrow\left(C_{k}, \delta\right)(36)$, regarding C_{k}, C_{k+1} as chain complexes concentrated in degree k. The relative twisted ε-quadratic Q-groups $Q_{*}(d, \chi, \varepsilon)$ and the absolute twisted ε-quadratic Q-groups $Q_{*}(C, \gamma, \varepsilon)$ are given as follows:
(i) For $n \neq 2 k-1,2 k, 2 k+1,2 k+2$

$$
Q_{n}(C, \gamma, \varepsilon)=Q_{n}(d, \chi, \varepsilon)=Q_{n}(C, \varepsilon)= \begin{cases}\widehat{Q}^{n+1}(C, \varepsilon) & \text { if } n \geqslant 2 k+3 \\ 0 & \text { if } n \leqslant 2 k-2\end{cases}
$$

with

$$
\widehat{Q}^{n+1}(C, \varepsilon)=\frac{\left\{(\phi, \theta) \in S\left(C^{k+1}\right) \oplus S\left(C^{k}\right) \mid \phi=(-1)^{n+k} \varepsilon \phi^{*}, d \phi d^{*}=\theta+(-1)^{n+k} \varepsilon \theta^{*}\right\}}{\left\{\left(\sigma+(-1)^{n+k} \varepsilon \sigma^{*}, d \sigma d^{*}+\tau+(-1)^{n+k+1} \varepsilon \tau^{*} \mid(\sigma, \tau) \in S\left(C^{k+1}\right) \oplus S\left(C^{k}\right)\right\}\right.}
$$

as given by Proposition 13.
(ii) For $n=2 k-1,2 k, 2 k+1,2 k+2$ the relative twisted ε-quadratic Q-groups are given by

$$
\begin{aligned}
& Q_{n}(d, \chi, \varepsilon) \\
& = \begin{cases}\frac{\left\{(\phi, \theta) \in S\left(C^{k+1}\right) \oplus S\left(C^{k}\right) \mid \phi=(-1)^{k} \varepsilon \phi^{*}, d \phi d^{*}=\theta+(-1)^{k} \varepsilon \theta^{*}\right\}}{\left\{\left(\sigma+(-1)^{k} \varepsilon \sigma^{*}, d \sigma d^{*}+\tau+(-1)^{k+1} \varepsilon \tau^{*} \mid(\sigma, \tau) \in S\left(C^{k+1}\right) \oplus S\left(C^{k}\right)\right\}\right.} & \text { if } n=2 k+2, \\
\frac{\left\{(\psi, \eta) \in S\left(C^{k+1}\right) \oplus S\left(C^{k}\right) \mid(d, \chi) \sigma^{*}(\psi)=\left(0, \eta+(-1)^{k+1} \varepsilon \eta^{*}\right)\right\}}{\left\{\left(\sigma+(-1)^{k+1} \varepsilon \sigma^{*}, d \sigma d^{*}+\tau+(-1)^{k} \varepsilon \tau^{*}\right) \mid(\sigma, \tau) \in S\left(C^{k+1}\right) \oplus S\left(C^{k}\right)\right\}} & \text { if } n=2 k+1, \\
\operatorname{coker}\left((d, \chi) \%: Q_{2 k}\left(C_{k+1}, \varepsilon\right) \rightarrow Q_{2 k}\left(C_{k}, \delta, \varepsilon\right)\right) & \text { if } n=2 k, \\
Q_{2 k-1}\left(C_{k}, \delta, \varepsilon\right) & \text { if } n=2 k-1,\end{cases}
\end{aligned}
$$

with

$$
\begin{aligned}
& Q_{2 k}\left(C_{k}, \delta, \varepsilon\right)=\frac{\left\{(\phi, \theta) \in S\left(C^{k}\right) \oplus S\left(C^{k}\right) \mid \phi=(-1)^{k} \varepsilon \phi^{*}, \phi-\phi \delta \phi^{*}=\theta+(-1)^{k} \varepsilon \theta^{*}\right\}}{\left\{\left(0, \eta+(-1)^{k+1} \varepsilon \eta^{*}\right) \mid \eta \in S\left(C^{k}\right)\right\}}, \\
& Q_{2 k-1}\left(C_{k}, \delta, \varepsilon\right)=\frac{\left\{\sigma \in S\left(C^{k}\right) \mid \sigma=(-1)^{k} \varepsilon \sigma^{*}\right\}}{\left\{\phi-\phi \delta \phi^{*}-\left(\theta+(-1)^{k} \varepsilon \theta^{*}\right) \mid \phi=(-1)^{k} \varepsilon \phi^{*}, \theta \in S\left(C^{k}\right)\right\}}, \\
& (d, \chi) \%: Q_{2 k}\left(C_{k+1}, \varepsilon\right)=H_{0}\left(\mathbb{Z}_{2} ; S\left(C^{k+1}\right),(-1)^{k} T_{\varepsilon}\right) \rightarrow Q_{2 k}\left(C_{k}, \delta, \varepsilon\right) ; \\
& \quad \psi \mapsto\left(d\left(\psi+(-1)^{k} \varepsilon \psi^{*}\right) d^{*}, d \psi d^{*}-d\left(\psi+(-1)^{k} \varepsilon \psi^{*}\right) \chi\left(\psi^{*}+(-1)^{k} \varepsilon \psi\right) d^{*}\right) .
\end{aligned}
$$

The absolute twisted quadratic Q-groups are such that

$$
Q_{2 k-1}(C, \gamma, \varepsilon)=Q_{2 k-1}(d, \chi, \varepsilon)=Q_{2 k-1}\left(C_{k}, \delta, \varepsilon\right)
$$

and there is defined an exact sequence

$$
\begin{aligned}
0 & \rightarrow Q_{2 k+2}(d, \chi, \varepsilon) \xrightarrow{t} \xrightarrow{\longrightarrow} Q_{2 k+2}(C, \gamma, \varepsilon) \\
& \rightarrow H_{k+1}(C) \otimes_{A} C_{k+1} \xrightarrow{F} Q_{2 k+1}(d, \chi, \varepsilon) \xrightarrow{t} Q_{2 k+1}(C, \gamma, \varepsilon) \\
& \rightarrow H_{k}(C) \otimes_{A} C_{k+1} \xrightarrow{F} Q_{2 k}(d, \chi, \varepsilon) \xrightarrow{t} Q_{2 k}(C, \gamma, \varepsilon) \rightarrow 0,
\end{aligned}
$$

with

$$
\begin{aligned}
& F: H_{k}(C) \otimes_{A} C_{k+1}=\operatorname{coker}\left(d^{*}: \operatorname{Hom}_{A}\left(C^{k+1}, C_{k+1}\right) \rightarrow \operatorname{Hom}_{A}\left(C^{k}, C_{k+1}\right)\right) \\
& \rightarrow Q_{2 k}(d, \chi) ; \quad \lambda \mapsto\left(\lambda d^{*}+(-1)^{k} \varepsilon d \lambda^{*}-d \lambda^{*} \delta \lambda d^{*},\right. \\
& \lambda d^{*}-\lambda \chi \lambda^{*}-d \lambda^{*} \delta \lambda \chi \lambda^{*} \delta \lambda d^{*}-d \lambda^{*} \delta\left(\lambda d^{*}+(-1)^{k} \varepsilon d \lambda^{*}\right) \\
& \left.\quad-\left(\lambda d^{*}+(-1)^{k} \varepsilon d \lambda^{*}\right) \delta d \lambda^{*} \delta \lambda d^{*}\right) .
\end{aligned}
$$

Proof. The absolute and relative twisted ε-quadratic Q-groups are related by the exact sequence of 51

$$
\begin{aligned}
& \cdots \rightarrow Q_{n}(d, \chi, \varepsilon) \xrightarrow{t} Q_{n}(C, \gamma, \varepsilon) \rightarrow H_{n-k-1}(C) \otimes_{A} C_{k+1} \\
& \stackrel{F}{\longrightarrow} Q_{n-1}(d, \chi, \varepsilon) \rightarrow \cdots .
\end{aligned}
$$

The twisted ε-quadratic Q-groups of $\left(C_{k+1}, 0\right)$ are given by Proposition 22

$$
\begin{aligned}
Q_{n}\left(C_{k+1}, 0, \varepsilon\right)=Q_{n}\left(C_{k+1}, \varepsilon\right) & =H_{n-2 k}\left(\mathbb{Z}_{2} ; S\left(C^{k+1}\right),(-1)^{k} T_{\varepsilon}\right) \\
& = \begin{cases}\widehat{H}^{n-2 k+1}\left(\mathbb{Z}_{2} ; S\left(C^{k+1}\right),(-1)^{k} T_{\varepsilon}\right) & \text { if } n \geqslant 2 k+1, \\
H_{0}\left(\mathbb{Z}_{2} ; S\left(C^{k+1}\right),(-1)^{k} T_{\varepsilon}\right) & \text { if } n=2 k, \\
0 & \text { if } n \leqslant 2 k-1 .\end{cases}
\end{aligned}
$$

The twisted ε-quadratic Q-groups of $\left(C_{k}, \delta\right)$ are given by Proposition 47

$$
\begin{aligned}
& Q_{n}\left(C_{k}, \delta, \varepsilon\right) \\
& = \begin{cases}\widehat{H}^{n-2 k+1}\left(\mathbb{Z}_{2} ; S\left(C^{k}\right),(-1)^{k} T_{\varepsilon}\right) & \text { if } n \geqslant 2 k+1, \\
\frac{\left\{(\phi, \theta) \in S\left(C^{k}\right) \oplus S\left(C^{k}\right) \mid \phi=(-1)^{k} \varepsilon \phi^{*}, \phi-\phi \delta \phi^{*}=\theta+(-1)^{k} \varepsilon \theta^{*}\right\}}{\left\{\left(0, \eta+(-1)^{k+1} \varepsilon \eta^{*}\right) \mid \eta \in S\left(C^{k}\right)\right\}} & \text { if } n=2 k, \\
\frac{\left\{\sigma \in S\left(C^{k}\right) \mid \sigma=(-1)^{k} \varepsilon \sigma^{*}\right\}}{\left\{\phi-\phi \delta \phi^{*}-\left(\theta+(-1)^{k} \varepsilon \theta^{*}\right) \mid \phi=(-1)^{k} \varepsilon \phi^{*}, \theta \in S\left(C^{k}\right)\right\}} & \text { if } n=2 k-1, \\
0 & \text { if } n \leqslant 2 k-2 .\end{cases}
\end{aligned}
$$

The twisted ε-quadratic Q-groups of (d, χ) fit into the exact sequence

$$
\cdots \longrightarrow Q_{n}\left(C_{k+1}, \varepsilon\right) \xrightarrow{(d, \chi) \%_{\%}} Q_{n}\left(C_{k}, \delta, \varepsilon\right) \longrightarrow Q_{n}(d, \chi, \varepsilon) \longrightarrow Q_{n-1}\left(C_{k+1}, \varepsilon\right) \longrightarrow \cdots
$$

giving the expressions in the statements of (i) and (ii).

2.5. The computation of $Q_{*}(C(X), \gamma(X))$

In this section, we compute the twisted quadratic Q-groups $Q_{*}(C(X), \gamma(X))$ of the following chain bundles over an even commutative ring A.

Definition 53. For $X \in \operatorname{Sym}_{r}(A)$ let

$$
(C(X), \gamma(X))=\mathcal{C}(d, \chi)
$$

be the cone of the chain bundle map over A,

$$
(d, \chi):\left(C(X)_{1}, 0\right) \rightarrow\left(C(X)_{0}, \delta\right)
$$

defined by

$$
\begin{aligned}
& d=2: C(X)_{1}=A^{r} \rightarrow C(X)_{0}=A^{r}, \\
& \delta=X: C(X)_{0}=A^{r} \rightarrow C(X)^{0}=A^{r} \\
& \chi=2 X: C(X)_{1}=A^{r} \rightarrow C(X)^{1}=A^{r} .
\end{aligned}
$$

By Proposition 36 every chain bundle (C, γ) with $C_{1}=A^{r} \xrightarrow{2} C_{0}=A^{r}$ is of the form $(C(X), \gamma(X))$ for some $X=\left(x_{i j}\right) \in \operatorname{Sym}_{r}(A)$, with the equivalence class given by

$$
\begin{align*}
\gamma=\gamma(X)= & X=\left(x_{11}, x_{22}, \ldots, x_{r r}\right) \\
& \in \widehat{Q}^{0}\left(C(X)^{-*}\right)=\frac{\operatorname{Sym}_{r}(A)}{\operatorname{Quad}_{r}(A)}=\bigoplus_{r} \widehat{H}^{0}\left(\mathbb{Z}_{2} ; A\right) \tag{14}
\end{align*}
$$

The 0th Wu class of $(C(X), \gamma(X))$ is the A-module morphism

$$
\begin{aligned}
& \widehat{v}_{0}(\gamma(X)): H_{0}(C(X))=\left(A_{2}\right)^{r} \\
& \rightarrow \widehat{H}^{0}\left(\mathbb{Z}_{2} ; A\right) ; \\
& a=\left(a_{1}, a_{2}, \ldots, a_{r}\right) \mapsto a X a^{t}=\sum_{i=1}^{r} a_{i} x_{i j} a_{j}=\sum_{i=1}^{r}\left(a_{i}\right)^{2} x_{i i} .
\end{aligned}
$$

In Theorem 60 below the universal chain bundle (B^{A}, β^{A}) of a commutative even ring A with $\widehat{H}^{0}\left(\mathbb{Z}_{2} ; A\right)$ a f.g. free A_{2}-module will be constructed from $(C(X), \gamma(X))$ for a diagonal $X \in \operatorname{Sym}_{r}(A)$ with $\widehat{v}_{0}(\gamma(X))$ an isomorphism, and the twisted quadratic Q-groups $Q_{*}\left(B^{A}, \beta^{A}\right)$ will be computed using the following computation of $Q_{*}(C(X), \gamma(X))$ (which holds for arbitrary X).

Theorem 54. Let A be an even commutative ring, and let $X \in \operatorname{Sym}_{r}(A)$.
(i) The twisted quadratic Q-groups of $(C(X), \gamma(X))$ are given by

$$
Q_{n}(C(X), \gamma(X))
$$

$$
= \begin{cases}0 & \text { if } n \leqslant-2, \\ \frac{\operatorname{Sym}_{r}(A)}{\operatorname{Quad}_{r}(A)+\left\{M-M X M \mid M \in \operatorname{Sym}_{r}(A)\right\}} & \text { if } n=-1, \\ \frac{\left\{M \in \operatorname{Sym}_{r}(A) \mid M-M X M \in \operatorname{Quad}_{r}(A)\right\}}{4 \operatorname{Quad}_{r}(A)+\left\{2\left(N+N^{t}\right)-4 N^{t} X N \mid N \in M_{r}(A)\right\}} & \text { if } n=0, \\ \frac{\left\{N \in M_{r}(A) \mid N+N^{t}-2 N^{t} X N \in 2 \operatorname{Quad}_{r}(A)\right\}}{2 M_{r}(A)} \oplus \frac{\operatorname{Sym}_{r}(A)}{\operatorname{Quad}_{r}(A)} & \text { if } n=1, \\ \frac{\operatorname{Sym}_{r}(A)}{\operatorname{Quad}_{r}(A)} & \text { if } n \geqslant 2 .\end{cases}
$$

(ii) The boundary maps $\partial: Q_{n}(C(X), \gamma(X)) \rightarrow L_{n-1}(A)$ are given by

$$
\begin{aligned}
& \partial: Q_{-1}(C(X), \gamma(X)) \rightarrow L_{-2}(A) ; M \mapsto\left(A^{r} \oplus\left(A^{r}\right)^{*},\left(\begin{array}{cc}
M & 1 \\
0 & X
\end{array}\right)\right), \\
& \left.\partial: Q_{0}(C(X), \gamma(X)) \rightarrow L_{-1}(A) ; M \mapsto\left(H_{-}\left(A^{r}\right) ; A^{r}, \operatorname{im}\binom{1-X M}{M}: A^{r} \rightarrow A^{r} \oplus\left(A^{r}\right)^{*}\right)\right), \\
& \partial: Q_{1}(C(X), \gamma(X)) \rightarrow L_{0}(A) ; \quad(N, P) \mapsto\left(A^{r} \oplus A^{r},\left(\begin{array}{cc}
\frac{1}{4}\left(N+N^{t}-2 N^{t} X N\right) & 1-2 N X \\
0 & -2 X
\end{array}\right)\right) .
\end{aligned}
$$

(iii) The twisted quadratic Q-groups of the chain bundles

$$
(B(i), \beta(i))=(C(X), \gamma(X))_{*+2 i} \quad(i \in \mathbb{Z})
$$

are just the twisted quadratic Q-groups of $(C(X), \gamma(X))$ with a dimension shift

$$
Q_{n}(B(i), \beta(i))=Q_{n-4 i}(C(X), \gamma(X)) .
$$

Proof. (i) Proposition 52(i) and Example 14(ii) give

$$
Q_{n}(C(X), \gamma(X))= \begin{cases}0 & \text { if } n \leqslant-2, \\ \widehat{Q}^{n+1}(C(X))=\frac{\operatorname{Sym}_{r}(A)}{\operatorname{Quad}_{r}(A)} & \text { if } n \geqslant 3\end{cases}
$$

For $-1 \leqslant n \leqslant 2$ Examples 14, 20, 49 and Proposition 52(ii) show that the commutative diagram with exact rows and columns

is given by

with

$$
\begin{aligned}
& J_{\delta}: \operatorname{Sym}_{r}(A) \rightarrow \frac{\operatorname{Sym}_{r}(A)}{\operatorname{Quad}_{r}(A)} ; M \mapsto M-M X M \\
& Q_{0}\left(C(X)_{0}, \delta\right)=\operatorname{ker}\left(J_{\delta}\right)=\left\{M \in \operatorname{Sym}_{r}(A) \mid M-M X M \in \operatorname{Quad}_{r}(A)\right\} \\
& Q_{0}(d, \chi)=\operatorname{coker}\left((d, \chi) \%: Q_{0}\left(C(X)_{1}\right) \rightarrow Q_{0}\left(C(X)_{0}, \delta\right)\right) \\
& \quad=\frac{\left\{M \in \operatorname{Sym}_{r}(A) \mid M-M X M \in \operatorname{Quad}_{r}(A)\right\}}{4 \operatorname{Quad}_{r}(A)} \\
& \quad \\
& N_{\chi}: Q_{0}(d, \chi) \rightarrow Q^{0}(d)=\frac{\operatorname{Sym}_{r}(A)}{4 \operatorname{Sym}_{r}(A)} ; M \mapsto M
\end{aligned}
$$

Furthermore, the commutative braid of exact sequences

is given by

with

$$
\begin{aligned}
& \frac{\operatorname{Sym}_{r}(A)}{2 \operatorname{Quad}_{r}(A)} \cong Q^{0}(C(X)) ; M \mapsto \phi\left(\text { where } \phi_{0}=M: C^{0} \rightarrow C(X)_{0}\right), \\
& J_{\gamma(X)}: \frac{\operatorname{Sym}_{r}(A)}{2 \operatorname{Quad}_{r}(A)} \rightarrow \frac{\operatorname{Sym}_{r}(A)}{\operatorname{Quad}_{r}(A)} ; M \mapsto M-M X M, \\
& F: H_{0}\left(C(X) \otimes_{A} C(X)_{1}\right)=\frac{M_{r}(A)}{2 M_{r}(A)} \rightarrow Q_{0}(d, \chi) ; N \mapsto 2\left(N+N^{t}\right)-4 N^{t} X N, \\
& Q^{1}(C(X))=\operatorname{ker}\left(N_{\chi} F: H_{0}\left(C(X) \otimes_{A} C(X)_{1}\right) \rightarrow Q^{0}(d)\right) \\
& \quad=\frac{\left\{N \in M_{r}(A) \mid N+N^{t} \in 2 \operatorname{Sym}_{r}(A)\right\}}{2 M_{r}(A)}
\end{aligned}
$$

$$
\text { (where } \phi \in Q^{1}(C(X)) \text { corresponds to } N=\phi_{0} \in M_{r}(A) \text {), }
$$

$$
J_{\gamma(X)}: Q^{1}(C(X)) \rightarrow \widehat{Q}^{1}(C(X))=\frac{\operatorname{Sym}_{r}(A)}{\operatorname{Quad}_{r}(A)} ; \quad N \mapsto \frac{1}{2}\left(N+N^{t}\right)-N^{t} X N .
$$

It follows that

$$
\begin{aligned}
& Q_{0}(C(X), \gamma(X))= \\
& =\operatorname{coker}\left(F: \frac{M_{r}(A)}{2 M_{r}(A)} \rightarrow Q_{0}(d, \chi)\right) \\
& \\
& =\frac{\left\{M \in \operatorname{Sym}_{r}(A) \mid M-M X M \in \operatorname{Quad}_{r}(A)\right\}}{4 Q_{-1}(C(X), \gamma(X))=} \begin{array}{l}
Q_{-1}(d, \chi) \\
\\
=\operatorname{coker}\left(J_{\gamma(X)}: Q^{0}(C(X)) \rightarrow \widehat{Q}^{0}(C(X))\right) \\
\\
=\frac{\operatorname{Sym}_{r}(A)}{\operatorname{Quad}_{r}(A)+\left\{M-M X M \mid M \in \operatorname{Sym}_{r}(A)\right\}},
\end{array},
\end{aligned}
$$

with

$$
\begin{aligned}
& \widehat{Q}^{1}(C(X))=\frac{\operatorname{Sym}_{r}(A)}{\operatorname{Quad}_{r}(A)} \rightarrow Q_{0}(C(X), \gamma(X)) ; \quad M \mapsto 4 M, \\
& \widehat{Q}^{0}(C(X))=\frac{\operatorname{Sym}_{r}(A)}{\operatorname{Quad}_{r}(A)} \rightarrow Q_{-1}(C(X), \gamma(X)) ; \quad M \mapsto M .
\end{aligned}
$$

Also

$$
\begin{aligned}
& \begin{array}{l}
(d, \chi) \%=0: Q_{2}(d, \chi)=Q_{1}\left(C(X)_{1}\right)=\frac{\operatorname{Sym}_{r}(A)}{\operatorname{Quad}_{r}(A)} \\
\\
\rightarrow Q_{1}\left(C(X)_{0}, \delta\right)=\widehat{Q}^{2}\left(C(X)_{0}\right)=\frac{\operatorname{Sym}_{r}(A)}{\operatorname{Quad}_{r}(A)}, \\
\begin{array}{l}
Q^{1}(C(X))= \\
\quad \operatorname{ker}\left(N_{\chi} F: H_{0}\left(C(X) \otimes_{A} C(X)_{1}\right) \rightarrow Q^{0}(d)\right) \\
\quad=\frac{\left\{N \in M_{r}(A) \mid N+N^{t} \in 2 \operatorname{Sym}_{r}(A)\right\}}{2 M_{r}(A)}, \\
J_{\gamma(X)}: Q^{1}(C(X)) \rightarrow \widehat{Q}^{1}(C(X))=\frac{\operatorname{Sym}_{r}(A)}{\operatorname{Quad}_{r}(A)} ; N \mapsto \frac{1}{2}\left(N+N^{t}\right)-N^{t} X N, \\
Q_{2}(C(X), \gamma(X))=Q_{2}(d, \chi)=\frac{\operatorname{Sym}_{r}(A)}{\operatorname{Quad}_{r}(A)} .
\end{array}
\end{array} .
\end{aligned}
$$

From the definition, an element $(\phi, \theta) \in Q_{1}(C(X), \gamma(X))$ is represented by a collection of A-module morphisms

$$
\begin{aligned}
& \phi_{0}: C(X)^{0} \rightarrow C(X)_{1}, \widetilde{\phi}_{0}: C(X)^{1} \rightarrow C(X)_{0}, \phi_{1}: C(X)^{1} \rightarrow C(X)_{0} \\
& \theta_{0}: C(X)^{1} \rightarrow C(X)_{1}, \theta_{-1}: C(X)^{0} \rightarrow C(X)_{1}, \tilde{\theta}_{-1}: C(X)^{1} \rightarrow C(X)_{0} \\
& \theta_{-2}: C(X)^{0} \rightarrow C(X)_{0}
\end{aligned}
$$

such that

$$
\begin{aligned}
& d \phi_{0}+\widetilde{\phi}_{0} d^{*}=0: C^{0} \rightarrow C_{1} \\
& \phi_{0}-\widetilde{\phi}_{0}^{*}+\phi_{1} d^{*}=0: C(X)^{0} \rightarrow C(X)_{1} \\
& \widetilde{\phi}_{0}-\phi_{0}^{*}-d \phi_{1}=0: C(X)^{1} \rightarrow C(X)_{0} \\
& \phi_{1}-\phi_{1}^{*}=0: C(X)^{1} \rightarrow C(X)_{1} \\
& \phi_{0}-\phi_{0} \gamma(X)_{-1} \widetilde{\phi}_{0}^{*}=-\theta_{0} d^{*}-\theta_{-1}-\widetilde{\theta}_{-1}^{*}: C(X)^{0} \rightarrow C(X)_{1}, \\
& \widetilde{\phi}_{0}-\widetilde{\phi}_{0} \widetilde{\gamma}(X)_{-1} \phi_{0}^{*}=d \theta_{0}-\theta_{-1}^{*}-\widetilde{\theta}_{-1}: C(X)^{1} \rightarrow C(X)_{0}, \\
& \phi_{1}-\phi_{0} \gamma(X)_{0} \phi_{0}^{*}=\theta_{0}+\theta_{0}^{*}: C(X)^{1} \rightarrow C(X)_{1}, \\
& -\widetilde{\phi}_{0} \gamma(X)_{-2} \widetilde{\phi}_{0}^{*}=d \theta_{-1}+\widetilde{\theta}_{-1} d^{*}+\theta_{-2}-\theta_{-2}^{*}: C(X)^{0} \rightarrow C(X)_{0},
\end{aligned}
$$

where

$$
\gamma(X)_{0}=X, \quad \gamma(X)_{-1}=0, \widetilde{\gamma}(X)_{-1}=-2 X, \quad \gamma(X)_{-2}=0 .
$$

The maps in the exact sequence

$$
\begin{aligned}
& 0 \rightarrow \widehat{Q}^{2}(C(X))=\frac{\operatorname{Sym}_{r}(A)}{\operatorname{Quad}_{r}(A)} \rightarrow Q_{1}(C(X), \gamma(X)) \\
& \rightarrow \operatorname{ker}\left(J_{\gamma(X)}: Q^{1}(C(X)) \rightarrow \widehat{Q}^{1}(C(X))\right) \\
& =\frac{\left\{N \in M_{r}(A) \mid N+N^{t}-2 N^{t} X N \in 2 \operatorname{Quad}_{r}(A)\right\}}{2 M_{r}(A)} \rightarrow 0
\end{aligned}
$$

are defined by

$$
\begin{aligned}
& Q_{1}(C(X), \gamma(X)) \rightarrow \operatorname{ker}\left(J_{\gamma(X)}\right) ; \quad(\phi, \theta) \mapsto N=\phi_{0}, \\
& \widehat{Q}^{2}(C(X)) \rightarrow Q_{1}(C(X), \gamma(X)) ; \quad \theta_{-2} \mapsto(0, \theta) \quad\left(\theta_{0}=0, \quad \theta_{-1}=0, \quad \tilde{\theta}_{-1}=0\right),
\end{aligned}
$$

with $\widehat{Q}^{2}(C(X)) \rightarrow Q_{1}(C(X), \gamma(X))$ split by

$$
Q_{1}(C(X), \gamma(X)) \rightarrow \widehat{Q}^{2}(C(X)) ; \quad(\phi, \theta) \mapsto \theta_{-2} .
$$

(ii) The expressions for $\partial: Q_{n}(C(X), \gamma(X)) \rightarrow L_{n-1}(A)$ are given by the boundary construction of Proposition 43 and its expression in terms of forms and formations (44, 45). The form in the case $n=-1$ (resp. the formation in the case $n=0$) is given by 45 (resp. 44) applied to the n-dimensional symmetric structure $(\phi, \theta) \in Q_{n}(C(X), \gamma(X))$ corresponding to $M \in \operatorname{Sym}_{r}(A)$. For $n=1$ the boundary of the one-dimensional symmetric structure $(\phi, \theta) \in Q_{1}(C(X), \gamma(X))$ corresponding to $N \in M_{r}(A)$ with

$$
N+N^{t} \in 2 \operatorname{Sym}_{r}(A), \frac{1}{2}\left(N+N^{t}\right)-N^{t} X N \in \operatorname{Quad}_{r}(A)
$$

is a zero-dimensional quadratic Poincaré complex (C, ψ) with

$$
C=\mathcal{C}\left(N: C(X)^{1-*} \rightarrow C(X)\right)_{*+1} .
$$

The instant surgery obstruction (45) is the nonsingular quadratic form

$$
\begin{aligned}
& I(C, \psi) \\
& =\left(\operatorname{coker}\left(\left(\begin{array}{c}
-2 \\
N^{t} \\
1+2 X N^{t}
\end{array}\right): A^{r} \rightarrow A^{r} \oplus A^{r} \oplus A^{r}\right),\right. \\
& \\
& \left.\quad\left(\begin{array}{ccc}
\frac{1}{4}\left(N+N^{t}-2 N X N^{t}\right) & 1 & N \\
0 & -2 X & 2 \\
0 & 0 & 0
\end{array}\right)\right),
\end{aligned}
$$

such that there is defined an isomorphism

$$
\left(\begin{array}{ccc}
1 & -4 X & 2 \\
N^{t} & 1-2 N^{t} X & N^{t}
\end{array}\right): I(C, \psi) \rightarrow\left(A^{r} \oplus A^{r},\left(\begin{array}{cc}
\frac{1}{4}\left(N+N^{t}-2 N^{t} X N\right) & 1-2 N X \\
0 & -2 X
\end{array}\right)\right)
$$

(iii) The even multiple skew-suspension isomorphisms of the symmetric Q-groups

$$
\bar{S}^{2 i}: Q^{n-4 i}\left(C(X)_{*+2 i}\right) \quad \xrightarrow{\cong} Q^{n}(C(X)) ;\left\{\phi_{s} \mid s \geqslant 0\right\} \mapsto\left\{\phi_{s} \mid s \geqslant 0\right\} \quad(i \in \mathbb{Z})
$$

are defined also for the hyperquadratic, quadratic and twisted quadratic Q-groups.

2.6. The universal chain bundle

For any A-module chain complexes B, C the additive group $H_{0}\left(\operatorname{Hom}_{A}(C, B)\right)$ consists of the chain homotopy classes of A-module chain maps $f: C \rightarrow B$. For a chain ε-bundle (B, β) there is thus defined a morphism

$$
H_{0}\left(\operatorname{Hom}_{A}(C, B)\right) \rightarrow \widehat{Q}^{0}\left(C^{0-*}, \varepsilon\right) ; \quad(f: C \rightarrow B) \mapsto \widehat{f}^{*}(\beta)
$$

Proposition 55 (Weiss [21]). (i) For every ring with involution A and $\varepsilon= \pm 1$ there exists a universal chain ε-bundle $\left(B^{A, \varepsilon}, \beta^{A, \varepsilon}\right)$ over A such that for any finite f.g. projective A-module chain complex C the morphism

$$
H_{0}\left(\operatorname{Hom}_{A}\left(C, B^{A, \varepsilon}\right)\right) \rightarrow \widehat{Q}^{0}\left(C^{0-*}, \varepsilon\right) ;\left(f: C \rightarrow B^{A, \varepsilon}\right) \mapsto \widehat{f}^{*}\left(\beta^{A, \varepsilon}\right)
$$

is an isomorphism. Thus every chain ε-bundle (C, γ) is classified by a chain ε-bundle map

$$
(f, \chi):(C, \gamma) \rightarrow\left(B^{A, \varepsilon}, \beta^{A, \varepsilon}\right)
$$

(ii) The universal chain ε-bundle $\left(B^{A, \varepsilon}, \beta^{A, \varepsilon}\right)$ is characterized (uniquely up to equivalence) by the property that its $W u$ classes are A-module isomorphisms

$$
\widehat{v}_{k}\left(\beta^{A, \varepsilon}\right): H_{k}\left(B^{A, \varepsilon}\right) \xrightarrow{\cong} \widehat{H}^{k}\left(\mathbb{Z}_{2} ; A, \varepsilon\right) \quad(k \in \mathbb{Z}) .
$$

(iii) An n-dimensional (ε-symmetric, ε-quadratic) Poincaré pair over A has a canonical universal ε-bundle ($B^{A, \varepsilon}, \beta^{A, \varepsilon}$)-structure.
(iv) The 4-periodic $\left(B^{A, \varepsilon}, \beta^{A, \varepsilon}\right)$-structure L-groups are the 4-periodic versions of the ε-symmetric and ε-hyperquadratic L-groups of A :

$$
\begin{aligned}
& L\left\langle B^{A, \varepsilon}, \beta^{A, \varepsilon}\right\rangle^{n+4 *}(A, \varepsilon)=L^{n+4 *}(A, \varepsilon), \\
& \widehat{L}\left\langle B^{A, \varepsilon}, \beta^{A, \varepsilon}\right\rangle^{n+4 *}(A, \varepsilon)=\widehat{L}^{n+4 *}(A, \varepsilon) .
\end{aligned}
$$

(v) The twisted ε-quadratic Q-groups of $\left(B^{A, \varepsilon}, \beta^{A, \varepsilon}\right)$ fit into an exact sequence

$$
\cdots \rightarrow L_{n}(A, \varepsilon) \quad \xrightarrow{1+T_{\varepsilon}} \quad L^{n+4 *}(A, \varepsilon) \rightarrow Q_{n}\left(B^{A, \varepsilon}, \beta^{A, \varepsilon}, \varepsilon\right) \xrightarrow{\partial} L_{n-1}(A, \varepsilon) \rightarrow \cdots,
$$

with

$$
\partial: Q_{n}\left(B^{A, \varepsilon}, \beta^{A, \varepsilon}, \varepsilon\right) \rightarrow L_{n-1}(A, \varepsilon) ; \quad(\phi, \theta) \mapsto(C, \psi)
$$

given by the construction of Proposition 42(ii), with

$$
C=\mathcal{C}\left(\phi_{0}:\left(B^{A, \varepsilon}\right)^{n-*} \rightarrow B^{A, \varepsilon}\right)_{*+1} \text { etc. }
$$

For $\varepsilon=1$ write

$$
\left(B^{A, 1}, \beta^{A, 1}\right)=\left(B^{A}, \beta^{A}\right)
$$

and note that

$$
\left(B^{A,-1}, \beta^{A,-1}\right)=\left(B^{A}, \beta^{A}\right)_{*-1} .
$$

In general, the chain A-modules $B^{A, \varepsilon}$ are not finitely generated, although $B^{A, \varepsilon}$ is a direct limit of f.g. free A-module chain complexes. In our applications the involution on A will satisfy the following conditions:

Proposition 56 (Connolly and Ranicki [10, Section 2.6]). Let A be a ring with an even involution such that $\widehat{H}^{0}\left(\mathbb{Z}_{2} ; A\right)$ has a one-dimensional f.g. projective A-module resolution

$$
0 \rightarrow C_{1} \quad \xrightarrow{d} C_{0} \quad \xrightarrow{x} \widehat{H}^{0}\left(\mathbb{Z}_{2} ; A\right) \rightarrow 0 .
$$

Let $(C, \gamma)=\mathcal{C}(d, \chi)$ be the cone of a chain bundle map $(d, \chi):\left(C_{1}, 0\right) \rightarrow\left(C_{0}, \delta\right)$ with

$$
\widehat{v}_{0}(\delta)=x: C_{0} \rightarrow \widehat{H}^{0}\left(\mathbb{Z}_{2} ; A\right)
$$

and set

$$
\left(B^{A}(i), \beta^{A}(i)\right)=(C, \gamma)_{*+2 i} \quad(i \in \mathbb{Z})
$$

(i) The chain bundle over A

$$
\left(B^{A}, \beta^{A}\right)=\bigoplus_{i}\left(B^{A}(i), \beta^{A}(i)\right)
$$

is universal.
(ii) The twisted quadratic Q-groups of $\left(B^{A}, \beta^{A}\right)$ are given by

$$
Q_{n}\left(B^{A}, \beta^{A}\right)= \begin{cases}Q_{0}(C, \gamma) & \text { if } n \equiv 0(\bmod 4) \\ \operatorname{ker}\left(J_{\gamma}: Q^{1}(C) \rightarrow \widehat{Q}^{1}(C)\right) & \text { if } n \equiv 1(\bmod 4) \\ 0 & \text { if } n \equiv 2(\bmod 4), \\ Q_{-1}(C, \gamma) & \text { if } n \equiv 3(\bmod 4)\end{cases}
$$

The inclusion $\left(B^{A}(2 j), \beta^{A}(2 j)\right) \rightarrow\left(B^{A}, \beta^{A}\right)$ is a chain bundle map which induces isomorphisms

$$
Q_{n}\left(B^{A}, \beta^{A}\right) \cong \begin{cases}Q_{n}\left(B^{A}(2 j), \beta^{A}(2 j)\right) & \text { if } n=4 j, 4 j-1 \\ \operatorname{ker}\left(J_{\beta^{A}(2 j)}: Q^{n}\left(B^{A}(2 j)\right) \rightarrow \widehat{Q}^{n}\left(B^{A}(2 j)\right)\right) & \text { if } n=4 j+1\end{cases}
$$

Proof. (i) The Wu classes of the chain bundle $(C, \gamma)_{*+2 i}$ are isomorphisms

$$
\widehat{v}_{k}(\gamma): H_{k}\left(C_{*+2 i}\right) \quad \stackrel{\cong}{\Longrightarrow} \widehat{H}^{k}\left(\mathbb{Z}_{2} ; A\right)
$$

for $k=2 i, 2 i+1$.
(ii) See [10] for the detailed analysis of the exact sequence of 38(ii)

$$
\begin{aligned}
\cdots \rightarrow \sum_{i=-\infty}^{\infty} Q_{n}\left(B^{A}(i), \beta^{A}(i)\right) \rightarrow Q_{n}\left(B^{A}, \beta^{A}\right) & \rightarrow \sum_{i<j} H_{n}\left(B^{A}(i) \otimes_{A} B^{A}(j)\right) \\
& \rightarrow \sum_{i=-\infty}^{\infty} Q_{n-1}\left(B^{A}(i), \beta^{A}(i)\right) \rightarrow \cdots
\end{aligned}
$$

As in the introduction:
Definition 57. A ring with involution A is r-even for some $r \geqslant 1$ if
(i) A is commutative, with the identity involution,
(ii) $2 \in A$ is a nonzero divisor,
(iii) $\widehat{H}^{0}\left(\mathbb{Z}_{2} ; A\right)$ is a f.g. free A_{2}-module of rank r with a basis $\left\{x_{1}=1, x_{2}, \ldots, x_{r}\right\}$.

Example 58. \mathbb{Z} is 1 -even.
Proposition 59. If A is 1 -even the polynomial extension $A[x]$ is 2-even, with $A[x]_{2}=$ $A_{2}[x]$ and $\{1, x\}$ an $A_{2}[x]$-module basis of $\widehat{H}^{0}\left(\mathbb{Z}_{2} ; A[x]\right)$.

Proof. For any $a=\sum_{i=0}^{\infty} a_{i} x^{i} \in A[x]$:

$$
\begin{aligned}
a^{2} & =\sum_{i=0}^{\infty}\left(a_{i}\right)^{2} x^{2 i}+2 \sum_{0 \leqslant i<j<\infty} a_{i} a_{j} x^{i+j} \\
& =\sum_{i=0}^{\infty} a_{i} x^{2 i} \in A_{2}[x] .
\end{aligned}
$$

The $A_{2}[x]$-module morphism

$$
A_{2}[x] \oplus A_{2}[x] \rightarrow \widehat{H}^{0}\left(\mathbb{Z}_{2} ; A[x]\right) ; \quad(p, q) \mapsto p^{2}+q^{2} x
$$

is thus an isomorphism, with inverse

$$
\widehat{H}^{0}\left(\mathbb{Z}_{2} ; A[x]\right) \quad \cong \quad A_{2}[x] \oplus A_{2}[x] ; \quad a=\sum_{i=0}^{\infty} a_{i} x^{i} \mapsto\left(\sum_{j=0}^{\infty} a_{2 j} x^{j}, \sum_{j=0}^{\infty} a_{2 j+1} x^{j}\right)
$$

Proposition 59 is the special case $k=1$ of a general result: if A is 1 -even and $t_{1}, t_{2}, \ldots, t_{k}$ are commuting indeterminates over A then the polynomial ring
$A\left[t_{1}, t_{2}, \ldots, t_{k}\right]$ is 2^{k}-even with

$$
\left\{x_{1}=1, x_{2}, x_{3}, \ldots, x_{2^{k}}\right\}=\left\{\left(t_{1}\right)^{i_{1}}\left(t_{2}\right)^{i_{2}} \cdots\left(t_{k}\right)^{i_{k}} \mid i_{j}=0 \text { or } 1,1 \leqslant j \leqslant k\right\}
$$

an $A_{2}\left[t_{1}, t_{2}, \ldots, t_{k}\right]$-module basis of $\widehat{H}^{0}\left(\mathbb{Z}_{2} ; A\left[t_{1}, t_{2}, \ldots, t_{k}\right]\right)$.
We can now prove Theorem C.
Theorem 60. Let A be an r-even ring with involution.
(i) The A-module morphism

$$
x: A^{r} \rightarrow \widehat{H}^{0}\left(\mathbb{Z}_{2} ; A\right) ; \quad\left(a_{1}, a_{2}, \ldots, a_{r}\right) \mapsto \sum_{i=1}^{r}\left(a_{i}\right)^{2} x_{i}
$$

fits into a one-dimensional f.g. free A-module resolution of $\widehat{H}^{0}\left(\mathbb{Z}_{2} ; A\right)$,

$$
0 \rightarrow C_{1}=A^{r} \quad \xrightarrow{2} C_{0}=A^{r} \quad \xrightarrow{x} \widehat{H}^{0}\left(\mathbb{Z}_{2} ; A\right) \rightarrow 0 .
$$

The symmetric and hyperquadratic L-groups of A are 4-periodic

$$
L^{n}(A)=L^{n+4}(A), \widehat{L}^{n}(A)=\widehat{L}^{n+4}(A)
$$

(ii) Let $(C(X), \gamma(X))$ be the chain bundle over A given by the construction of (53) for

$$
X=\left(\begin{array}{ccccc}
x_{1} & 0 & 0 & \ldots & 0 \\
0 & x_{2} & 0 & \ldots & 0 \\
0 & 0 & x_{3} & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & x_{r}
\end{array}\right) \in \operatorname{Sym}_{r}(A)
$$

with $C(X)=\mathcal{C}\left(2: A^{r} \rightarrow A^{r}\right)$. The chain bundle over A defined by

$$
\left(B^{A}, \beta^{A}\right)=\bigoplus_{i}(C(X), \gamma(X))_{*+2 i}=\bigoplus_{i}\left(B^{A}(i), \beta^{A}(i)\right)
$$

is universal. The hyperquadratic L-groups of A are given by

$$
\begin{aligned}
& \widehat{L}^{n}(A)=Q_{n}\left(B^{A}, \beta^{A}\right) \\
& = \begin{cases}Q_{0}(C(X), \gamma(X))=\frac{\left\{M \in \operatorname{Sym}_{r}(A) \mid M-M X M \in \operatorname{Quad}_{r}(A)\right\}}{4 \operatorname{Quad}_{r}(A)+\left\{2\left(N+N^{t}\right)-N^{t} X N \mid N \in M_{r}(A)\right\}} \\
\operatorname{im}\left(N_{\gamma}(X): Q_{1}(C(X), \gamma(X)) \rightarrow Q^{1}(C(X))\right)=\operatorname{ker}\left(J_{\gamma(X)}: Q^{1}(C(X)) \rightarrow \widehat{Q}^{1}(C(X))\right) & \text { if } n=0, \\
=\frac{\left\{N \in M_{r}(A) \mid N+N^{t} \in 2 \operatorname{Sym}_{r}(A), \frac{1}{2}\left(N+N^{t}\right)-N^{t} X N \in \operatorname{Quad}_{r}(A)\right\}}{2 M_{r}(A)} & \text { if } n=1, \\
0 & \text { if } n=2, \\
Q_{-1}(C(X), \gamma(X))=\frac{\operatorname{Sym}_{r}(A)}{\operatorname{Quad}_{r}(A)+\left\{L-L X L \mid L \in \operatorname{Sym}_{r}(A)\right\}} & \text { if } n=3,\end{cases}
\end{aligned}
$$

with

$$
\begin{aligned}
& \partial: \widehat{L}^{0}(A) \rightarrow L_{-1}(A) ; \quad M \mapsto\left(H_{-}\left(A^{r}\right) ; A^{r}, \operatorname{im}\left(\binom{1-X M}{M}: A^{r} \rightarrow A^{r} \oplus\left(A^{r}\right)^{*}\right)\right), \\
& \partial: \widehat{L}^{1}(A) \rightarrow L_{0}(A) ; \quad N \mapsto\left(A^{r} \oplus A^{r},\left(\begin{array}{cc}
\frac{1}{4}\left(N+N^{t}-2 N^{t} X N\right) & 1-2 N X \\
0 & -2 X
\end{array}\right),\right. \\
& \partial: \widehat{L}^{3}(A) \rightarrow L_{2}(A) ; \quad M \mapsto\left(A^{r} \oplus\left(A^{r}\right)^{*},\left(\begin{array}{cc}
M & 1 \\
0 & X
\end{array}\right)\right) .
\end{aligned}
$$

Proof. Combine Proposition 30, Theorem 54 and Proposition 56, noting that the direct summand

$$
\widehat{Q}^{2}(C(X))=\operatorname{Sym}_{r}(A) / \operatorname{Quad}_{r}(A) \subseteq Q_{1}(C(X), \gamma(X))
$$

is precisely the image of $H_{2}\left(C(X) \otimes C(X)_{*+2}\right)=\widehat{Q}^{2}(C(X))$ under the first map in the exact sequence

$$
\begin{aligned}
& H_{2}\left(C(X) \otimes_{A} C(X)_{*+2}\right) \rightarrow Q_{1}(C(X), \gamma(X)) \oplus Q_{1}\left(C(X)_{*+2}, \gamma(X)_{*+2}\right) \\
& \quad \rightarrow Q_{1}\left(C(X) \oplus C(X)_{*+2}, \gamma(X) \oplus \gamma(X)_{*+2}\right) \rightarrow H_{1}\left(C(X) \otimes_{A} C(X)_{*+2}\right)=0
\end{aligned}
$$

of Proposition 38(ii), with $Q_{1}\left(C(X)_{*+2}, \gamma(X)_{*+2}\right)=0$, so that

$$
Q_{1}\left(C(X) \oplus C(X)_{*+2}, \gamma(X) \oplus \gamma(X)_{*+2}\right)=\operatorname{ker}\left(J_{\gamma(X)}: Q^{1}(C(X)) \rightarrow \widehat{Q}^{1}(C(X))\right)
$$

We can now prove Theorem A.
Corollary 61. Let A be a 1 -even ring with $\psi^{2}=1$.
(i) The universal chain bundle $\left(B^{A}, \beta^{A}\right)$ over A is given by

$$
\begin{aligned}
& B^{A}: \cdots \longrightarrow B_{2 k+2}^{A}=A \xrightarrow{0} B_{2 k+1}^{A}=A \xrightarrow{2} B_{2 k}^{A}=A \xrightarrow{0} B_{2 k-1}^{A}=A \longrightarrow \cdots, \\
& \left(\beta^{A}\right)-4 k=1: B_{2 k}^{A}=A \rightarrow\left(B^{A}\right)^{2 k}=A \quad(k \in \mathbb{Z}) .
\end{aligned}
$$

(ii) The hyperquadratic L-groups of A are given by

$$
\widehat{L}^{n}(A)=Q_{n}\left(B^{A}, \beta^{A}\right)= \begin{cases}A_{8} & \text { if } n \equiv 0(\bmod 4) \\ A_{2} & \text { if } n \equiv 1,3(\bmod 4) \\ 0 & \text { if } n \equiv 2(\bmod 4)\end{cases}
$$

with

$$
\begin{aligned}
& \partial: \widehat{L}^{0}(A)=A_{8} \rightarrow L_{-1}(A) ; a \mapsto\left(H_{-}(A) ; A, \operatorname{im}\left(\binom{1-a}{a}: A \rightarrow A \oplus A\right)\right), \\
& \partial: \widehat{L}^{1}(A)=A_{2} \rightarrow L_{0}(A) ; a \mapsto\left(A \oplus A,\left(\begin{array}{cc}
a(1-a) / 2 & 1-2 a \\
0 & -2
\end{array}\right)\right), \\
& \partial: \widehat{L}^{3}(A)=A_{2} \rightarrow L_{2}(A) ; a \mapsto\left(A \oplus A,\left(\begin{array}{ll}
a & 1 \\
0 & 1
\end{array}\right)\right) .
\end{aligned}
$$

(iii) The map $L^{0}(A) \rightarrow \widehat{L}^{0}(A)$ sends the Witt class $(K, \lambda) \in L^{0}(A)$ of a nonsingular symmetric form (K, λ) over A to

$$
[K, \lambda]=\lambda(v, v) \in \widehat{L}^{0}(A)=A_{8}
$$

for any $v \in K$ such that

$$
\lambda(x, x)=\lambda(x, v) \in A_{2} \quad(x \in K) .
$$

Proof. (i)+(ii) The A-module morphism

$$
\widehat{v}_{0}\left(\beta^{A}\right): H_{0}\left(B^{A}\right)=A_{2} \rightarrow \widehat{H}^{0}\left(\mathbb{Z}_{2} ; A\right) ; a \mapsto a^{2}
$$

is an isomorphism. Apply Theorem 60 with $r=1, x_{1}=1$.
(ii) The computation of $\widehat{L}^{*}(A)=Q_{*}\left(B^{A}, \beta^{A}\right)$ is given by Theorem 60 , using the fact that $a-a^{2} \in 2 A(a \in A)$ for a 1 -even A with $\psi^{2}=1$. The explicit descriptions of ∂ are special cases of the formulae in Theorem 54(ii).
(iii) As in Example 48 regard (K, λ) as a zero-dimensional symmetric Poincaré complex (D, ϕ) with

$$
\phi_{0}=\varepsilon \lambda^{-1}: D^{0}=K \rightarrow D^{0}=K^{*}
$$

The Spivak normal chain bundle $\gamma=\lambda^{-1} \in \widehat{Q}^{0}\left(D^{0-*}\right)$ is classified by the chain bundle map $(v, 0):(D, \gamma) \rightarrow\left(B^{A}, \beta^{A}\right)$ with

$$
g: D_{0}=K^{*} \rightarrow \widehat{H}^{0}\left(\mathbb{Z}_{2} ; A\right) ; \quad x \mapsto \lambda^{-1}(x, x)=x(v) .
$$

The algebraic normal invariant $(\phi, 0) \in Q_{0}(D, \gamma)$ has image

$$
g_{\%}(\phi, 0)=\lambda(v, v) \in Q_{0}\left(B^{A}, \beta^{A}\right)=A_{8}
$$

Example 62. For $R=\mathbb{Z}$,

$$
\widehat{L}^{n}(\mathbb{Z})=Q_{n}\left(B^{\mathbb{Z}}, \beta^{\mathbb{Z}}\right)= \begin{cases}\mathbb{Z}_{8} & \text { if } n \equiv 0(\bmod 4) \\ \mathbb{Z}_{2} & \text { if } n \equiv 1,3(\bmod 4) \\ 0 & \text { if } n \equiv 2(\bmod 4)\end{cases}
$$

as recalled (from [15]) in the Introduction.

3. The generalized Arf invariant for forms

A nonsingular ε-quadratic form (K, ψ) over A corresponds to a zero-dimensional ε quadratic Poincaré complex over A. The zero-dimensional ε-quadratic L-group $L_{0}(A, \varepsilon)$ is the Witt group of nonsingular ε-quadratic forms, and similarly for $L^{0}(A, \varepsilon)$ and ε-symmetric forms. In this section we define the 'generalized Arf invariant'

$$
(K, \psi ; L) \in Q_{1}\left(B^{A, \varepsilon}, \beta^{A, \varepsilon}\right)=\widehat{L}^{4 *+1}(A, \varepsilon)
$$

for a nonsingular ε-quadratic form (K, ψ) over A with a lagrangian L for the ε symmetric form $\left(K, \psi+\varepsilon \psi^{*}\right)$, so that

$$
\begin{aligned}
(K, \psi) & =\partial(K, \psi ; L) \in \operatorname{ker}\left(1+T: L_{0}(A, \varepsilon) \rightarrow L^{4 *}(A, \varepsilon)\right) \\
& =\operatorname{im}\left(\partial: Q_{1}\left(B^{A, \varepsilon}, \beta^{A, \varepsilon}, \varepsilon\right) \rightarrow L_{0}(A, \varepsilon)\right)
\end{aligned}
$$

3.1. Forms and formations

Given a f.g. projective A-module K and the inclusion $j: L \rightarrow K$ of a direct summand, let $f: C \rightarrow D$ be the chain map defined by

$$
\begin{aligned}
& C: \cdots \rightarrow 0 \rightarrow C_{k}=K^{*} \rightarrow 0 \rightarrow \cdots, \\
& D: \cdots \rightarrow 0 \rightarrow D_{k}=L^{*} \rightarrow 0 \rightarrow \cdots, \\
& f=j^{*}: C_{k}=K^{*} \rightarrow D_{k}=L^{*} .
\end{aligned}
$$

The symmetric Q-group

$$
Q^{2 k}(C)=H^{0}\left(\mathbb{Z}_{2} ; S(K),(-1)^{k} T\right)=\left\{\phi \in S(K) \mid \phi^{*}=(-1)^{k} \phi\right\}
$$

is the additive group of $(-1)^{k}$-symmetric pairings on K, and

$$
f^{\%}=S(j): Q^{2 k}(C) \rightarrow Q^{2 k}(D) ; \quad \phi \mapsto f \phi f^{*}=j^{*} \phi j=\left.\phi\right|_{L}
$$

sends such a pairing to its restriction to L. A $2 k$-dimensional symmetric (Poincaré) complex $\left(C, \phi \in Q^{2 k}(C)\right)$ is the same as a (nonsingular) $(-1)^{k}$-symmetric form (K, ϕ). The relative symmetric Q-group of f :

$$
\begin{aligned}
Q^{2 k+1}(f) & =\operatorname{ker}\left(f^{\%}: Q^{2 k}(C) \rightarrow Q^{2 k}(D)\right) \\
& =\left\{\phi \in S(K)\left|\phi^{*}=(-1)^{k} \phi \in S(K), \phi\right|_{L}=0 \in S(L)\right\}
\end{aligned}
$$

consists of the $(-1)^{k}$-symmetric pairings on K which restrict to 0 on L. The submodule $L \subset K$ is a lagrangian for (K, ϕ) if and only if ϕ restricts to 0 on L and

$$
L^{\perp}=\{x \in K \mid \phi(x)(L)=\{0\} \subset A\}=L
$$

if and only if $\left(f: C \rightarrow D,(0, \phi) \in Q^{2 k+1}(f)\right)$ defines a $(2 k+1)$-dimensional symmetric Poincaré pair, with an exact sequence

$$
0 \longrightarrow D^{k}=L \xrightarrow{f^{*}=j} C^{k}=K \xrightarrow{f \phi=j^{*} \phi} D_{k}=L^{*} \longrightarrow 0
$$

Similarly for the quadratic case, with

$$
\begin{aligned}
& Q_{2 k}(C)=H_{0}\left(\mathbb{Z}_{2} ; S(K),(-1)^{k} T\right) \\
& Q_{2 k+1}(f)=\frac{\left\{(\psi, \chi) \in S(K) \oplus S(L) \mid f^{*} \psi f=\chi+(-1)^{k+1} \chi^{*} \in S(L)\right\}}{\left\{\left(\theta+(-1)^{k+1} \theta^{*}, f \theta f^{*}+v+(-1)^{k} v^{*}\right) \mid \theta \in S(K), v \in S(L)\right\}}
\end{aligned}
$$

A quadratic structure $\psi \in Q_{2 k}(C)$ determines and is determined by the pair (λ, μ) with $\lambda=\psi+(-1)^{k} \psi^{*} \in Q^{2 k}(C)$ and

$$
\mu: K \rightarrow H_{0}\left(\mathbb{Z}_{2} ; A,(-1)^{k}\right) ; \quad x \mapsto \psi(x)(x)
$$

A $(2 k+1)$-dimensional (symmetric, quadratic) Poincaré pair $(f: C \rightarrow D,(\delta \phi, \psi))$ is a nonsingular $(-1)^{k}$-quadratic form (K, ψ) together with a lagrangian $L \subset K$ for the nonsingular $(-1)^{k}$-symmetric form $\left(K, \psi+(-1)^{k} \psi^{*}\right)$.

Lemma 63. Let (K, ψ) be a nonsingular $(-1)^{k}$-quadratic form over A, and let $L \subset K$ be a lagrangian for $\left(K, \psi+(-1)^{k} \psi^{*}\right)$. There exists a direct complement for $L \subset K$ which is also a lagrangian for $\left(K, \psi+(-1)^{k} \psi^{*}\right)$.

Proof. Choosing a direct complement $L^{\prime} \subset K$ to $L \subset K$ write

$$
\psi=\left(\begin{array}{cc}
\mu & \lambda \\
0 & v^{\prime}
\end{array}\right): K=L \oplus L^{\prime} \rightarrow K^{*}=L^{*} \oplus\left(L^{\prime}\right)^{*}
$$

with $\lambda: L^{\prime} \rightarrow L^{*}$ an isomorphism and

$$
\mu+(-1)^{k} \mu^{*}=0: L \rightarrow L^{*}
$$

In general $v^{\prime}+(-1)^{k}\left(v^{\prime}\right)^{*} \neq 0: L^{*} \rightarrow L$, but if the direct complement L^{\prime} is replaced by

$$
L^{\prime \prime}=\left\{\left(-\left(\lambda^{-1}\right)^{*}\left(v^{\prime}\right)^{*}(x), x\right) \in L \oplus L^{\prime} \mid x \in L^{\prime}\right\} \subset K
$$

and the isomorphism

$$
\lambda^{\prime \prime}: L^{\prime \prime} \rightarrow L^{*} ; \quad\left(-\left(\lambda^{-1}\right)^{*}\left(v^{\prime}\right)^{*}(x), x\right) \mapsto \lambda(x)
$$

is used as an identification then

$$
\psi=\left(\begin{array}{cc}
\mu & 1 \\
0 & v
\end{array}\right): K=L \oplus L^{*} \rightarrow K^{*}=L^{*} \oplus L
$$

with $v=\left(v^{\prime}\right)^{*} \mu v^{\prime}: L^{*} \rightarrow L$ such that

$$
s v+(-1)^{k} v^{*}=0: L^{*} \rightarrow L
$$

Thus $L^{\prime \prime}=L^{*} \subset K$ is a direct complement for L which is a lagrangian for $(K, \psi+$ $\left.(-1)^{k} \psi^{*}\right)$, with

$$
\psi+(-1)^{k} \psi^{*}=\left(\begin{array}{cc}
0 & 1 \\
(-1)^{k} & 0
\end{array}\right): K=L \oplus L^{*} \rightarrow K^{*}=L^{*} \oplus L
$$

A lagrangian L for the $(-1)^{k}$-symmetrization $\left(K, \psi+(-1)^{k} \psi^{*}\right)$ is a lagrangian for the $(-1)^{k}$-quadratic form (K, ψ) if and only if $\left.\psi\right|_{L}=\mu$ is a $(-1)^{k+1}$-symmetrization, i.e.

$$
\mu=\theta+(-)^{k+1} \theta^{*}: L \rightarrow L^{*}
$$

for some $\theta \in S(L)$, in which case the inclusion $j:(L, 0) \rightarrow(K, \psi)$ extends to an isomorphism of $(-1)^{k}$-quadratic forms

$$
\left(\begin{array}{cc}
1 & -v^{*} \\
0 & 1
\end{array}\right): H_{(-1)^{k}}(L)=\left(L \oplus L^{*},\left(\begin{array}{cc}
0 & 1 \\
0 & 0
\end{array}\right)\right) \quad \cong \quad(K, \psi)
$$

with $v=\left.\psi\right|_{L^{*}}$. The $2 k$-dimensional quadratic L-group $L_{2 k}(A)$ is the Witt group of stable isomorphism classes of nonsingular $(-1)^{k}$-quadratic forms over A, such that

$$
\begin{aligned}
& (K, \psi)=\left(K^{\prime}, \psi^{\prime}\right) \in L_{2 k}(A) \text { if and only if there exists an isomorphism } \\
& \qquad(K, \psi) \oplus H_{(-1)^{k}}(L) \cong\left(K^{\prime}, \psi^{\prime}\right) \oplus H_{(-1)^{k}}\left(L^{\prime}\right) .
\end{aligned}
$$

Proposition 64. Given $a(-1)^{k}$-quadratic form (L, μ) over A such that

$$
\mu+(-1)^{k} \mu^{*}=0: L \rightarrow L^{*}
$$

let (B, β) be the chain bundle over A given by

$$
\begin{aligned}
& B: \cdots \rightarrow 0 \rightarrow B_{k+1}=L \rightarrow 0 \rightarrow \cdots, \\
& \beta=\mu \in \widehat{Q}^{0}\left(B^{0-*}\right)=\operatorname{Hom}_{A}\left(L, \widehat{H}^{k+1}\left(\mathbb{Z}_{2} ; A\right)\right)=\widehat{H}^{0}\left(\mathbb{Z}_{2} ; S(L),(-1)^{k+1} T\right) .
\end{aligned}
$$

(i) The $(2 k+1)$-dimensional twisted quadratic Q-group of (B, β) :

$$
\begin{aligned}
Q_{2 k+1}(B, \beta) & =\frac{\left\{v \in S\left(L^{*}\right) \mid v+(-1)^{k} v^{*}=0\right\}}{\left\{\phi-\phi \mu \phi^{*}-\left(\theta+(-1)^{k+1} \theta^{*}\right) \mid \phi^{*}=(-1)^{k+1} \phi, \theta \in S\left(L^{*}\right)\right\}} \\
& =\operatorname{coker}\left(J_{\mu}: H^{0}\left(\mathbb{Z}_{2} ; S\left(L^{*}\right),(-1)^{k+1} T\right) \rightarrow \widehat{H}^{0}\left(\mathbb{Z}_{2} ; S\left(L^{*}\right),(-1)^{k+1} T\right)\right)
\end{aligned}
$$

classifies nonsingular $(-1)^{k}$-quadratic forms (K, ψ) over A for which there exists a lagrangian L for $\left(K, \psi+(-1)^{k} \psi^{*}\right)$ such that

$$
\begin{aligned}
\left.\psi\right|_{L} & =\mu \in \operatorname{im}\left(\widehat{H}^{1}\left(\mathbb{Z}_{2} ; S(L),(-1)^{k} T\right) \rightarrow H_{0}\left(\mathbb{Z}_{2} ; S(L),(-1)^{k} T\right)\right) \\
& =\operatorname{ker}\left(1+(-1)^{k} T: H_{0}\left(\mathbb{Z}_{2} ; S(L),(-1)^{k} T\right) \rightarrow H^{0}\left(\mathbb{Z}_{2} ; S(L),(-1)^{k} T\right)\right)
\end{aligned}
$$

Specifically, for any $(-1)^{k}$-quadratic form $\left(L^{*}, v\right)$ such that

$$
v+(-1)^{k} v^{*}=0: L^{*} \rightarrow L
$$

the nonsingular $(-1)^{k}$-quadratic form (K, ψ) defined by

$$
\psi=\left(\begin{array}{cc}
\mu & 1 \\
0 & v
\end{array}\right): K=L \oplus L^{*} \rightarrow K^{*}=L^{*} \oplus L
$$

is such that L is a lagrangian of $\left(K, \psi+(-1)^{k} \psi^{*}\right)$, and

$$
\partial: Q_{2 k+1}(B, \beta) \rightarrow L_{2 k}(A) ; \quad v \mapsto(K, \psi) .
$$

(ii) The algebraic normal invariant of a $(2 k+1)$-dimensional (symmetric, quadratic) Poincaré pair $(f: C \rightarrow D,(\delta \phi, \psi))$ concentrated in degree k with

$$
\begin{aligned}
& C_{k}=K^{*}, \quad D_{k}=L^{*} \\
& f \psi_{0} f^{*}=\mu \in \operatorname{ker}\left(1+(-1)^{k} T: H_{0}\left(\mathbb{Z}_{2} ; S(L),(-1)^{k} T\right) \rightarrow H^{0}\left(\mathbb{Z}_{2} ; S(L),(-1)^{k} T\right)\right)
\end{aligned}
$$

is given by

$$
(\phi, \theta)=v \in Q_{2 k+1}(\mathcal{C}(f), \gamma)=Q_{2 k+1}(B, \beta),
$$

with

$$
\widehat{v}_{k+1}(\gamma)=\widehat{v}_{k+1}(\beta): L=H_{k+1}(f)=H_{k+1}(B) \rightarrow \widehat{H}^{k+1}\left(\mathbb{Z}_{2} ; A\right) ; x \mapsto \mu(x)(x)
$$

and $v=\left.\psi\right|_{L^{*}}$ the restriction of ψ to any lagrangian $L^{*} \subset K$ of $\left(K, \psi+(-1)^{k} \psi^{*}\right)$ complementary to L.

Proof. (i) Given $(-1)^{k+1}$-symmetric forms $\left(L^{*}, v\right),\left(L^{*}, \phi\right)$ and $\theta \in S\left(L^{*}\right)$ replacing v by

$$
v^{\prime}=v+\phi-\phi \mu \phi^{*}-\left(\theta+(-1)^{k+1} \theta^{*}\right): L^{*} \rightarrow L
$$

results in a $(-1)^{k}$-quadratic form $\left(K, \psi^{\prime}\right)$ such that there is defined an isomorphism

$$
\left(\begin{array}{cc}
1 & \phi^{*} \\
0 & 1
\end{array}\right):\left(K, \psi^{\prime}\right) \rightarrow(K, \psi)
$$

which is the identity on L.
(ii) This is the translation of Proposition 42(iii) into the language of forms and lagrangians.

More generally:

Proposition 65. Given $(-1)^{k}$-quadratic forms (L, μ), $\left(L^{*}, v\right)$ over A such that

$$
\mu+(-1)^{k} \mu^{*}=0: L \rightarrow L^{*}, \quad v+(-1)^{k} v^{*}=0: L^{*} \rightarrow L
$$

define a nonsingular $(-1)^{k}$-quadratic form

$$
(K, \psi)=\left(L \oplus L^{*},\left(\begin{array}{cc}
\mu & 1 \\
0 & v
\end{array}\right)\right)
$$

such that L and L^{*} are complementary lagrangians of the nonsingular $(-1)^{k}$-symmetric form

$$
\left(K, \psi+(-1)^{k} \psi^{*}\right)=\left(L \oplus L^{*},\left(\begin{array}{cc}
0 & 1 \\
(-1)^{k} & 0
\end{array}\right)\right)
$$

and let $(f: C \rightarrow D,(\delta \phi, \psi))$ be the $(2 k+1)$-dimensional (symmetric, quadratic) Poincaré pair concentrated in degree k defined by

$$
f=\left(\begin{array}{ll}
1 & 0
\end{array}\right): C_{k}=K^{*}=L^{*} \oplus L \rightarrow D_{k}=L^{*}, \quad \delta \phi=0
$$

with $\mathcal{C}(f) \simeq L_{*-k-1}$.
(i) The Spivak normal bundle of $(f: C \rightarrow D,(\delta \phi, \psi))$ is given by

$$
\gamma=\mu \in \widehat{Q}^{0}\left(\mathcal{C}(f)^{0-*}\right)=\widehat{H}^{0}\left(\mathbb{Z}_{2} ; S(L),(-1)^{k+1} T\right)
$$

and

$$
\begin{aligned}
Q_{2 k+1}(\mathcal{C}(f), \gamma) & =\frac{\left\{\lambda \in S\left(L^{*}\right) \mid \lambda+(-1)^{k} \lambda^{*}=0\right\}}{\left\{\phi-\phi \mu \phi^{*}-\left(\theta+(-1)^{k+1} \theta^{*}\right) \mid \phi^{*}=(-1)^{k+1} \phi, \theta \in S\left(L^{*}\right)\right\}} \\
& =\operatorname{coker}\left(J_{\mu}: H^{0}\left(\mathbb{Z}_{2} ; S\left(L^{*}\right),(-1)^{k+1} T\right)\right. \\
& \left.\rightarrow \widehat{H}^{0}\left(\mathbb{Z}_{2} ; S\left(L^{*}\right),(-1)^{k+1} T\right)\right) .
\end{aligned}
$$

The algebraic normal invariant of $(f: C \rightarrow D,(\delta \phi, \psi))$ is

$$
(\phi, \theta)=v \in Q_{2 k+1}(\mathcal{C}(f), \gamma)
$$

(ii) Let (B, β) be a chain bundle concentrated in degree $k+1$

$$
\begin{aligned}
& B: \cdots \rightarrow 0 \rightarrow B_{k+1} \rightarrow 0 \rightarrow \cdots \\
& \beta \in \widehat{Q}^{0}\left(B^{0-*}\right)=\operatorname{Hom}_{A}\left(B_{k+1}, \widehat{H}^{k+1}\left(\mathbb{Z}_{2} ; A\right)\right)=\widehat{H}^{0}\left(\mathbb{Z}_{2} ; S\left(B_{k+1}\right),(-1)^{k+1} T\right),
\end{aligned}
$$

so that

$$
\begin{aligned}
Q_{2 k+1}(B, \beta) & =\frac{\left\{\lambda \in S\left(B^{k+1}\right) \mid \lambda+(-1)^{k} \lambda^{*}=0\right\}}{\left\{\phi-\phi \beta \phi^{*}-\left(\theta+(-1)^{k+1} \theta^{*}\right) \mid \phi^{*}=(-1)^{k+1} \phi, \theta \in S\left(B^{k+1}\right)\right\}} \\
& =\operatorname{coker}\left(J_{\beta}: H^{0}\left(\mathbb{Z}_{2} ; S\left(B^{k+1}\right),(-1)^{k+1} T\right)\right. \\
& \left.\rightarrow \widehat{H}^{0}\left(\mathbb{Z}_{2} ; S\left(B^{k+1}\right),(-1)^{k+1} T\right)\right) .
\end{aligned}
$$

A (B, β)-structure on $(f: C \rightarrow D,(\delta \phi, \psi))$ is given by a chain bundle map (g, χ) : $(\mathcal{C}(f), \gamma) \rightarrow(B, \beta)$, corresponding to an A-module morphism $g: L \rightarrow B_{k+1}$ such that

$$
g^{*} \beta g=\mu \in \widehat{H}^{0}\left(\mathbb{Z}_{2} ; S(L),(-1)^{k+1} T\right),
$$

with

$$
(g, \chi) \%: Q_{2 k+1}(\mathcal{C}(f), \gamma) \rightarrow Q_{2 k+1}(B, \beta) ; \quad \lambda \mapsto g \lambda g^{*} .
$$

The 4-periodic (B, β)-structure cobordism class is thus given by

$$
\begin{aligned}
(K, \psi ; L)=(f: C \rightarrow D,(\delta \phi, \psi)) & =(g, \chi) \%(\phi, \theta)=g v g^{*} \\
& \in \widehat{L}\langle B, \beta\rangle^{4 *+2 k+1}(A)=Q_{2 k+1}(B, \beta),
\end{aligned}
$$

with

$$
\begin{aligned}
(K, \psi) & =\left(B_{k+1} \oplus B^{k+1},\left(\begin{array}{cc}
\beta & 1 \\
0 & g v g^{*}
\end{array}\right)\right) \\
& \in \operatorname{im}\left(\partial: Q_{2 k+1}(B, \beta) \rightarrow L_{2 k}(A)\right)=\operatorname{ker}\left(L_{2 k}(A) \rightarrow L\langle B, \beta\rangle^{4 *+2 k}(A)\right) .
\end{aligned}
$$

3.2. The generalized Arf invariant

Definition 66. The generalized Arf invariant of a nonsingular $(-1)^{k}$-quadratic form (K, ψ) over A together with a lagrangian $L \subset K$ for the $(-1)^{k}$-symmetric form $(K, \psi+$ $\left.(-1)^{k} \psi^{*}\right)$ is the image

$$
(K, \psi ; L)=(g, \chi)_{\%}(\phi, \theta) \in \widehat{L}^{4 *+2 k+1}(A)=Q_{2 k+1}\left(B^{A}, \beta^{A}\right)
$$

of the algebraic normal invariant $(\phi, \theta) \in Q_{2 k+1}(\mathcal{C}(f), \gamma)$ (43) of the corresponding $(2 k+1)$-dimensional (symmetric, quadratic) Poincaré pair $(f: C \rightarrow D,(\delta \phi, \psi) \in$ $\left.Q_{2 k+1}^{2 k+1}(f)\right)$

$$
\begin{aligned}
(\phi, \theta) & =v \in Q_{2 k+1}(\mathcal{C}(f), \gamma) \\
& =\operatorname{coker}\left(J_{\mu}: H^{0}\left(\mathbb{Z}_{2} ; S\left(L^{*}\right),(-1)^{k+1} T\right) \rightarrow \widehat{H}^{0}\left(\mathbb{Z}_{2} ; S\left(L^{*}\right),(-1)^{k+1} T\right)\right)
\end{aligned}
$$

under the morphism $(g, \chi) \%$ induced by the classifying chain bundle map (g, χ) : $(\mathcal{C}(f), \gamma) \rightarrow\left(B^{A}, \beta^{A}\right)$. As in $64 v=\left.\psi\right|_{L^{*}}$ is the restriction of ψ to a lagrangian $L^{*} \subset K$ of $\left(K, \psi+(-1)^{k} \psi^{*}\right)$ complementary to L.

A nonsingular $(-1)^{k}$-symmetric formation $\left(K, \phi ; L, L^{\prime}\right)$ is a nonsingular $(-1)^{k}$ symmetric form (K, ϕ) together with two lagrangians L, L^{\prime}. This type of formation is essentially the same as a $(2 k+1)$-dimensional symmetric Poincaré complex concentrated in degrees $k, k+1$, and represents an element of $L^{4 *+2 k+1}(A)$.

Proposition 67. (i) The generalized Arf invariant is such that

$$
(K, \psi ; L)=0 \in Q_{2 k+1}\left(B^{A}, \beta^{A}\right)=\widehat{L}^{4 *+2 k+1}(A)
$$

if and only if there exists an isomorphism of $(-1)^{k}$-quadratic forms

$$
(K, \psi) \oplus H_{(-1)^{k}}\left(L^{\prime}\right) \cong H_{(-1)^{k}}\left(L^{\prime \prime}\right)
$$

such that

$$
\left(\left(K, \psi+(-1)^{k} \psi^{*}\right) \oplus(1+T) H_{(-1)^{k}}\left(L^{\prime}\right) ; L \oplus L^{\prime}, L^{\prime \prime}\right)=0 \in L^{4 *+2 k+1}(A)
$$

(ii) If (K, ψ) is a nonsingular $(-1)^{k}$-quadratic form over A and $L, L^{\prime} \subset K$ are lagrangians for $\left(K, \psi+(-1)^{k} \psi^{*}\right)$ then

$$
\begin{aligned}
& (K, \psi ; L)-\left(K, \psi ; L^{\prime}\right)=\left(K, \psi+(-1)^{k} \psi^{*} ; L, L^{\prime}\right) \\
& \quad \in \operatorname{im}\left(L^{4 *+2 k+1}(A) \rightarrow \widehat{L}^{4 *+2 k+1}(A)\right)=\operatorname{ker}\left(\widehat{L}^{4 *+2 k+1}(A) \rightarrow L_{2 k}(A)\right)
\end{aligned}
$$

Proof. This is the translation of the isomorphism $Q_{2 k+1}\left(B^{A}, \beta^{A}\right) \cong \widehat{L}^{4 *+2 k+1}(A)$ given by 46 into the language of forms and formations.

Example 68. Let A be a field, so that each $\widehat{H}^{n}\left(\mathbb{Z}_{2} ; A\right)$ is a free A-module, and the universal chain bundle over A can be taken to be

$$
B^{A}=\widehat{H}^{*}\left(\mathbb{Z}_{2} ; A\right): \cdots \longrightarrow B_{n}^{A}=\widehat{H}^{n}\left(\mathbb{Z}_{2} ; A\right) \xrightarrow{0} B_{n-1}^{A}=\widehat{H}^{n-1}\left(\mathbb{Z}_{2} ; A\right) \xrightarrow{0} \cdots
$$

If A is a perfect field of characteristic 2 with the identity involution squaring defines an A-module isomorphism

$$
A \quad \cong \quad \widehat{H}^{n}\left(\mathbb{Z}_{2} ; A\right) ; a \mapsto a^{2}
$$

Every nonsingular $(-1)^{k}$-quadratic form over A is isomorphic to one of the type

$$
(K, \psi)=\left(L \oplus L^{*},\left(\begin{array}{cc}
\mu & 1 \\
0 & v
\end{array}\right)\right)
$$

with $L=A^{\ell}$ f.g. free and

$$
\mu=(-1)^{k+1} \mu^{*}: L \rightarrow L^{*}, \quad v=(-1)^{k+1} v^{*}: L^{*} \rightarrow L
$$

For $j=1,2, \ldots, \ell$ let

$$
\begin{aligned}
& e_{j}=(0, \ldots, 0,1,0, \ldots, 0) \in L, \quad g_{j}=\mu\left(e_{j}\right)\left(e_{j}\right) \in A \\
& e_{j}^{*}=(0, \ldots, 0,1,0, \ldots, 0) \in L^{*}, \quad h_{j}=v\left(e_{j}^{*}\right)\left(e_{j}^{*}\right) \in A
\end{aligned}
$$

The generalized Arf invariant in this case was identified in [18, §11] with the original invariant of Arf [1]

$$
(K, \psi ; L)=\sum_{j=1}^{\ell} g_{j} h_{j} \in Q_{2 k+1}\left(B^{A}, \beta^{A}\right)=A /\left\{c+c^{2} \mid c \in A\right\} .
$$

For $k=0$ we have:
Proposition 69. Suppose that the involution on A is even. If (K, ψ) is a nonsingular quadratic form over A and L is a lagrangian of $\left(K, \psi+\psi^{*}\right)$ then L is a lagrangian of (K, ψ), the Witt class is

$$
(K, \psi)=0 \in L_{0}(A)
$$

the algebraic normal invariant is

$$
(\phi, \theta)=0 \in Q_{1}(\mathcal{C}(f), \gamma)=0
$$

and the generalized Arf invariant is

$$
(K, \psi ; L)=(g, \chi) \%(\phi, \theta)=0 \in \widehat{L}^{4 *+1}(A)=Q_{1}\left(B^{A}, \beta^{A}\right) .
$$

Proof. By hypothesis $\widehat{H}^{1}\left(\mathbb{Z}_{2} ; A\right)=0$, and $L=A^{\ell}$, so that by Proposition 64(i)

$$
Q_{1}(\mathcal{C}(f), \gamma)=\widehat{H}^{0}\left(\mathbb{Z}_{2} ; S\left(L^{*}\right),-T\right)=\bigoplus_{\ell} \widehat{H}^{1}\left(\mathbb{Z}_{2} ; A\right)=0 .
$$

For $k=1$ we have:

Theorem 70. Let A be an r-even ring with A_{2}-module basis $\left\{x_{1}=1, x_{2}, \ldots, x_{r}\right\} \subset$ $\widehat{H}^{0}\left(\mathbb{Z}_{2} ; A\right)$, and let

$$
X=\left(\begin{array}{ccccc}
x_{1} & 0 & 0 & \ldots & 0 \\
0 & x_{2} & 0 & \ldots & 0 \\
0 & 0 & x_{3} & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & x_{r}
\end{array}\right) \in \operatorname{Sym}_{r}(A)
$$

so that by Theorem 60

$$
Q_{3}\left(B^{A}, \beta^{A}\right)=\frac{\operatorname{Sym}_{r}(A)}{\operatorname{Quad}_{r}(A)+\left\{L-L X L \mid L \in \operatorname{Sym}_{r}(A)\right\}}
$$

(i) Given $M \in \operatorname{Sym}_{r}(A)$ define the nonsingular (-1)-quadratic form over A

$$
\left(K_{M}, \psi_{M}\right)=\left(A^{r} \oplus\left(A^{r}\right)^{*},\left(\begin{array}{cc}
X & 1 \\
0 & M
\end{array}\right)\right)
$$

such that $L_{M}=A^{r} \subset K_{M}$ is a lagrangian of $\left(K_{M}, \psi_{M}-\psi_{M}^{*}\right)$. The function

$$
Q_{3}\left(B^{A}, \beta^{A}\right) \rightarrow \widehat{L}^{4 *+3}(A) ; \quad M \mapsto\left(K_{M}, \psi_{M} ; L_{M}\right)
$$

is an isomorphism, with inverse given by the generalized Arf invariant.
(ii) Let (K, ψ) be a nonsingular (-1)-quadratic form over A of the type

$$
(K, \psi)=\left(L \oplus L^{*},\left(\begin{array}{cc}
\mu & 1 \\
0 & v
\end{array}\right)\right)
$$

with

$$
\mu-\mu^{*}=0: L \rightarrow L^{*}, v-v^{*}=0: L^{*} \rightarrow L
$$

and let $g: L \rightarrow A^{r}, h: L^{*} \rightarrow A^{r}$ be A-module morphisms such that

$$
\mu=g^{*} X g \in \widehat{H}^{0}\left(\mathbb{Z}_{2} ; S(L), T\right), \quad v=h^{*} X h \in \widehat{H}^{0}\left(\mathbb{Z}_{2} ; S\left(L^{*}\right), T\right) .
$$

The generalized Arf invariant of $(K, \psi ; L)$ is

$$
(K, \psi ; L)=g v g^{*}=g h^{*} X h g^{*} \in Q_{3}\left(B^{A}, \beta^{A}\right)
$$

If $L=A^{\ell}$ then

$$
g=\left(g_{i j}\right): L=A^{\ell} \rightarrow A^{r}, h=\left(h_{i j}\right): L^{*}=A^{\ell} \rightarrow A^{r},
$$

with the coefficients $g_{i j}, h_{i j} \in A$ such that

$$
\begin{gathered}
\mu\left(e_{j}\right)\left(e_{j}\right)=\sum_{i=1}^{r}\left(g_{i j}\right)^{2} x_{i}, \quad v\left(e_{j}^{*}\right)\left(e_{j}^{*}\right)=\sum_{i=1}^{r}\left(h_{i j}\right)^{2} x_{i} \in \widehat{H}^{0}\left(\mathbb{Z}_{2} ; A\right) \\
\left(e_{j}=(0, \ldots, 0,1,0, \ldots, 0) \in L=A^{\ell}, \quad e_{j}^{*}=(0, \ldots, 0,1,0, \ldots, 0) \in L^{*}=A^{\ell}\right)
\end{gathered}
$$

and

$$
(K, \psi ; L)=g h^{*} X h g^{*}=\left(\begin{array}{ccccc}
c_{1} & 0 & 0 & \ldots & 0 \\
0 & c_{2} & 0 & \ldots & 0 \\
0 & 0 & c_{3} & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & c_{r}
\end{array}\right) \in Q_{3}\left(B^{A}, \beta^{A}\right),
$$

with

$$
c_{i}=\sum_{k=1}^{r}\left(\sum_{j=1}^{\ell} g_{i j} h_{k j}\right)^{2} x_{k} \in \widehat{H}^{0}\left(\mathbb{Z}_{2} ; A\right) .
$$

(iii) For any $M=\left(m_{i j}\right) \in \operatorname{Sym}_{r}(A)$ let $h=\left(h_{i j}\right) \in M_{r}(A)$ be such that

$$
m_{j j}=\sum_{i=1}^{r}\left(h_{i j}\right)^{2} x_{i} \in \widehat{H}^{0}\left(\mathbb{Z}_{2} ; A\right)(1 \leqslant j \leqslant r),
$$

so that

$$
M=\left(\begin{array}{ccccc}
m_{11} & 0 & 0 & \ldots & 0 \\
0 & m_{22} & 0 & \ldots & 0 \\
0 & 0 & m_{33} & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & m_{r r}
\end{array}\right)=h^{*} X h \in \widehat{H}^{0}\left(\mathbb{Z}_{2} ; M_{r}(A), T\right)=\frac{\operatorname{Sym}_{r}(A)}{\operatorname{Quad}_{r}(A)}
$$

and the generalized Arf invariant of the triple $\left(K_{M}, \psi_{M} ; L_{M}\right)$ in (i) is

$$
\left(K_{M}, \psi_{M} ; L_{M}\right)=h^{*} X h=M \in Q_{3}\left(B^{A}, \beta^{A}\right)
$$

(with $g=\left(\delta_{i j}\right)$ here).
Proof. (i) The isomorphism $Q_{3}\left(B^{A}, \beta^{A}\right) \rightarrow \widehat{L}^{3}(A) ; M \mapsto\left(K_{M}, \psi_{M} ; L_{M}\right)$ is given by Proposition 46.
(ii) As in Definition 66 let $(\phi, \theta) \in Q_{3}(\mathcal{C}(f), \gamma)$ be the algebraic normal invariant of the three-dimensional (symmetric, quadratic) Poincaré pair ($f: C \rightarrow D,(\delta \phi, \psi)$) concentrated in degree 1, with

$$
f=\left(\begin{array}{ll}
1 & 0
\end{array}\right): C_{1}=K^{*}=L^{*} \oplus L \rightarrow D_{1}=L^{*}, \delta \phi=0 .
$$

The A-module morphism

$$
\widehat{v}_{2}(\gamma): H_{2}(\mathcal{C}(f))=H^{1}(D)=L \rightarrow \widehat{H}^{0}\left(\mathbb{Z}_{2} ; A\right) ; \quad y \mapsto \mu(y)(y)
$$

is induced by the A-module chain map

$$
g: \mathcal{C}(f) \simeq L_{*-2} \rightarrow B^{A}(1)
$$

and

$$
(g, 0):(\mathcal{C}(f), \gamma) \rightarrow\left(B^{A}(1), \beta^{A}(1)\right) \rightarrow\left(B^{A}, \beta^{A}\right)
$$

is a classifying chain bundle map. The induced morphism

$$
\begin{aligned}
& (g, 0)_{\%}: Q_{3}(\mathcal{C}(f), \gamma)=\operatorname{coker}\left(J_{\mu}: H^{0}\left(\mathbb{Z}_{2} ; S\left(L^{*}\right), T\right) \rightarrow \widehat{H}^{0}\left(\mathbb{Z}_{2} ; S\left(L^{*}\right), T\right)\right) \\
& \rightarrow Q_{3}\left(B^{A}, \beta^{A}\right)=\operatorname{coker}\left(J_{X}: H^{0}\left(\mathbb{Z}_{2} ; M_{r}(A), T\right) \rightarrow \widehat{H}^{0}\left(\mathbb{Z}_{2} ; M_{r}(A), T\right)\right) ; \sigma \mapsto g \sigma g^{*}
\end{aligned}
$$

sends the algebraic normal invariant

$$
(\phi, \theta)=v=h^{*} X h \in Q_{3}(\mathcal{C}(f), \gamma)
$$

to the generalized Arf invariant

$$
(g, 0) \%(\phi, \theta)=g h^{*} X h g^{*} \in Q_{3}\left(B^{A}, \beta^{A}\right)
$$

(iii) By construction.

In particular, the generalized Arf invariant for $A=\mathbb{Z}_{2}$ is just the classical Arf invariant.

4. The generalized Arf invariant for linking forms

An ε-quadratic formation $(Q, \psi ; F, G)$ over A corresponds to a one-dimensional ε quadratic Poincaré complex. The one-dimensional ε-quadratic L-group $L_{1}(A, \varepsilon)$ is the Witt group of ε-quadratic formations, or equivalently the cobordism group of onedimensional ε-quadratic Poincaré complexes over A. We could define a generalized Arf invariant $\alpha \in Q_{2}\left(B^{A}, \beta^{A}, \varepsilon\right)$ for any formation with a null-cobordism of the onedimensional ε-symmetric Poincaré complex, so that

$$
\begin{aligned}
(Q, \psi ; F, G) & =\partial(\alpha) \in \operatorname{ker}\left(1+T_{\varepsilon}: L_{1}(A, \varepsilon) \rightarrow L^{4 *+1}(A, \varepsilon)\right) \\
& =\operatorname{im}\left(\partial: Q_{2}\left(B^{A, \varepsilon}, \beta^{A, \varepsilon}, \varepsilon\right) \rightarrow L_{1}(A, \varepsilon)\right)
\end{aligned}
$$

However, we do not need quite such a generalized Arf invariant here. For our application to UNil, it suffices to work with a localization $S^{-1} A$ of A and to only consider a formation $(Q, \psi ; F, G)$ such that

$$
F \cap G=\{0\}, \quad S^{-1}(Q /(F+G))=0
$$

which corresponds to a ($-\varepsilon$)-quadratic linking form (T, λ, μ) over (A, S) with

$$
T=Q /(F+G), \quad \lambda: T \times T \rightarrow S^{-1} A / A
$$

Given a lagrangian $U \subset T$ for the ($-\varepsilon$)-symmetric linking form (T, λ) we define in this section a 'linking Arf invariant'

$$
(T, \lambda, \mu ; U) \in Q_{2}\left(B^{A, \varepsilon}, \beta^{A, \varepsilon}, \varepsilon\right)=\widehat{L}^{4 *+2}(A, \varepsilon)
$$

such that

$$
\begin{aligned}
(Q, \psi ; F, G) & =\partial(T, \lambda, \mu ; U) \in \operatorname{ker}\left(1+T_{\varepsilon}: L_{1}(A, \varepsilon) \rightarrow L^{4 *+1}(A, \varepsilon)\right) \\
& =\operatorname{im}\left(\partial: Q_{2}\left(B^{A, \varepsilon}, \beta^{A, \varepsilon}\right) \rightarrow L_{1}(A, \varepsilon)\right)
\end{aligned}
$$

4.1. Linking forms and formations

Given a ring with involution A and a multiplicative subset $S \subset A$ of central nonzero divisors such that $\bar{S}=S$ let $S^{-1} A$ be the localized ring with involution obtained from A by inverting S. We refer to [16] for the localization exact sequences in ε-symmetric and ε-quadratic algebraic L-theory

$$
\begin{aligned}
& \cdots \rightarrow L^{n}(A, \varepsilon) \rightarrow L_{I}^{n}\left(S^{-1} A, \varepsilon\right) \rightarrow L^{n}(A, S, \varepsilon) \rightarrow L^{n-1}(A, \varepsilon) \rightarrow \cdots, \\
& \cdots \rightarrow L_{n}(A, \varepsilon) \rightarrow L_{n}^{I}\left(S^{-1} A, \varepsilon\right) \rightarrow L_{n}(A, S, \varepsilon) \rightarrow L_{n-1}(A, \varepsilon) \rightarrow \cdots
\end{aligned}
$$

with $I=\operatorname{im}\left(\tilde{K}_{0}(A) \rightarrow \widetilde{K}_{0}\left(S^{-1} A\right)\right), L^{n}(A, S, \varepsilon)$ the cobordism group of $(n-1)$ dimensional ε-symmetric Poincaré complexes (C, ϕ) over A such that $H_{*}\left(S^{-1} C\right)=$ 0 , and similarly for $L_{n}(A, S, \varepsilon)$. An (A, S)-module is an A-module T with a onedimensional f.g. projective A-module resolution

$$
0 \rightarrow P \xrightarrow{d} Q \longrightarrow T \longrightarrow 0
$$

such that $S^{-1} d: S^{-1} P \rightarrow S^{-1} Q$ is an $S^{-1} A$-module isomorphism. In particular,

$$
S^{-1} T=0
$$

The dual (A, S)-module is defined by

$$
\begin{aligned}
T^{\wedge} & =\operatorname{Ext}_{A}^{1}(T, A)=\operatorname{Hom}_{A}\left(T, S^{-1} A / A\right) \\
& =\operatorname{coker}\left(d^{*}: Q^{*} \rightarrow P^{*}\right)
\end{aligned}
$$

with

$$
A \times T \sim \rightarrow \widetilde{T} ;(a, f) \mapsto(x \mapsto f(x) \bar{a})
$$

For any (A, S)-modules T, U there is defined a duality isomorphism

$$
\operatorname{Hom}_{A}(T, U) \rightarrow \operatorname{Hom}_{A}\left(U^{\wedge}, T\right) ; \quad f \mapsto f^{\wedge}
$$

with

$$
f^{\wedge}: U \checkmark T \curvearrowright ; g \mapsto(x \mapsto g(f(x))) .
$$

An element $\lambda \in \operatorname{Hom}_{A}\left(T, T^{\wedge}\right)$ can be regarded as a sesquilinear linking pairing

$$
\lambda: T \times T \rightarrow S^{-1} A / A ; \quad(x, y) \mapsto \lambda(x, y)=\lambda(x)(y)
$$

with

$$
\begin{aligned}
& \lambda(x, a y+b z)=a \lambda(x, y)+b \lambda(x, z) \\
& \lambda(a y+b z, x)=\lambda(y, x) \bar{a}+\lambda(z, x) \bar{b} \\
& \hat{\lambda}(x, y)=\overline{\lambda(y, x)} \in S^{-1} A / A \quad(a, b \in A, x, y, z \in T)
\end{aligned}
$$

Definition 71. Let $\varepsilon= \pm 1$.
(i) An ε-symmetric linking form over $(A, S)(T, \lambda)$ is an (A, S)-module T together with $\lambda \in \operatorname{Hom}_{A}(T, T)$ such that $\lambda=\varepsilon \lambda$, so that

$$
\overline{\lambda(x, y)}=\varepsilon \lambda(y, x) \in S^{-1} A / A \quad(x, y \in T) .
$$

The linking form is nonsingular if $\lambda: T \rightarrow T$ is an isomorphism. A lagrangian for (T, λ) is an (A, S)-submodule $U \subset T$ such that the sequence

$$
0 \rightarrow U \xrightarrow{j} T \xrightarrow{j \wedge \lambda} U \rightarrow 0
$$

is exact with $j \in \operatorname{Hom}_{A}(U, T)$ the inclusion. Thus λ restricts to 0 on U and

$$
U^{\perp}=\left\{x \in T \mid \lambda(x)(U)=\{0\} \subset S^{-1} A / A\right\}=U
$$

(ii) A (nonsingular) ε-quadratic linking form over $(A, S)(T, \lambda, \mu)$ is a (nonsingular) ε-symmetric linking form (T, λ) together with a function

$$
\mu: T \rightarrow Q_{\varepsilon}(A, S)=\frac{\left\{b \in S^{-1} A \mid \varepsilon \bar{b}=b\right\}}{\{a+\varepsilon \bar{a} \mid a \in A\}}
$$

such that

$$
\begin{aligned}
& \mu(a x)=a \mu(x) \bar{a} \\
& \mu(x+y)=\mu(x)+\mu(y)+\lambda(x, y)+\lambda(y, x) \in Q_{\varepsilon}(A, S) \\
& \mu(x)=\lambda(x, x) \in \operatorname{im}\left(Q_{\varepsilon}(A, S) \rightarrow S^{-1} A / A\right) \quad(x, y \in T, a \in A)
\end{aligned}
$$

A lagrangian $U \subset T$ for (T, λ, μ) is a lagrangian for (T, λ) such that $\left.\mu\right|_{U}=0$.
We refer to $[16,3.5]$ for the development of the theory of ε-symmetric and ε-quadratic linking formations over (A, S).

From now on, we shall only be concerned with A, S which satisfy:
Hypothesis 72. A, S are such that

$$
\widehat{H}^{*}\left(\mathbb{Z}_{2} ; S^{-1} A\right)=0
$$

Example 73. Hypothesis 72 is satisfied if $1 / 2 \in S^{-1} A$, e.g. if A is even and

$$
S=(2)^{\infty}=\left\{2^{i} \mid i \geqslant 0\right\} \subset A, \quad S^{-1} A=A[1 / 2] .
$$

Proposition 74. (i) For $n=2$ (resp. 1) the relative group $L^{n}(A, S, \varepsilon)$ in the ε-symmetric L-theory localization exact sequence

$$
\cdots \rightarrow L^{n}(A, \varepsilon) \rightarrow L_{I}^{n}\left(S^{-1} A, \varepsilon\right) \rightarrow L^{n}(A, S, \varepsilon) \rightarrow L^{n-1}(A, \varepsilon) \rightarrow \cdots
$$

is the Witt group of nonsingular (-غ)-symmetric linking forms (resp. ε-symmetric linking formations) over (A, S), with $I=\operatorname{im}\left(\widetilde{K}_{0}(A) \rightarrow \widetilde{K}_{0}\left(S^{-1} A\right)\right)$. The skew-suspension maps

$$
\bar{S}: L^{n}(A, S, \varepsilon) \rightarrow L^{n+2}(A, S,-\varepsilon)(n \geqslant 1)
$$

are isomorphisms if and only if the skew-suspension maps

$$
\bar{S}: L^{n}(A, \varepsilon) \rightarrow L^{n+2}(A,-\varepsilon) \quad(n \geqslant 0)
$$

are isomorphisms.
(ii) The relative group $L_{n}(A, S, \varepsilon)$ for $n=2 k$ (resp. $2 k+1$) in the ε-quadratic L-theory localization exact sequence

$$
\cdots \rightarrow L_{n}(A, \varepsilon) \rightarrow L_{n}^{I}\left(S^{-1} A, \varepsilon\right) \rightarrow L_{n}(A, S, \varepsilon) \rightarrow L_{n-1}(A, \varepsilon) \rightarrow \cdots
$$

is the Witt group of nonsingular $(-1)^{k} \varepsilon$-quadratic linking forms (resp. formations) over (A, S).
(iii) The 4-periodic ε-symmetric and ε-quadratic localization exact sequences interleave in a commutative braid of exact sequences

Proof. (i)+(ii) See [16, §3].
(iii) For A, S satisfying Hypothesis 72 the ε-symmetrization maps for the L-groups of $S^{-1} A$ are isomorphisms

$$
1+T_{\varepsilon}: L_{n}^{I}\left(S^{-1} A, \varepsilon\right) \quad \cong \quad L_{I}^{n}\left(S^{-1} A, \varepsilon\right)
$$

Definition 75. (i) An ε-quadratic S-formation $(Q, \psi ; F, G)$ over A is an ε-quadratic formation such that

$$
S^{-1} F \oplus S^{-1} G=S^{-1} Q,
$$

or equivalently such that $Q /(F+G)$ is an (A, S)-module.
(ii) A stable isomorphism of ε-quadratic S-formations over A

$$
[f]:\left(Q_{1}, \psi_{1} ; F_{1}, G_{1}\right) \rightarrow\left(Q_{2}, \psi_{2} ; F_{2}, G_{2}\right)
$$

is an isomorphism of the type

$$
f:\left(Q_{1}, \psi_{1} ; F_{1}, G_{1}\right) \oplus\left(N_{1}, v_{1} ; H_{1}, K_{1}\right) \rightarrow\left(Q_{2}, \psi_{2} ; F_{2}, G_{2}\right) \oplus\left(N_{2}, v_{2} ; H_{2}, K_{2}\right),
$$

with $N_{1}=H_{1} \oplus K_{1}, N_{2}=H_{2} \oplus K_{2}$.

Proposition 76. (i) A ($-\varepsilon$)-quadratic S-formation $(Q, \psi ; F, G$) over A determines a nonsingular ε-quadratic linking form (T, λ, μ) over (A, S), with

$$
\begin{aligned}
& T=Q /(F+G), \\
& \lambda: T \times T \rightarrow S^{-1} A / A ; \quad(x, y) \mapsto\left(\psi-\varepsilon \psi^{*}\right)(x)(z) / s, \\
& \mu: T \rightarrow Q_{\varepsilon}(A, S) ; \quad y \mapsto\left(\psi-\varepsilon \psi^{*}\right)(x)(z) / s-\psi(y)(y) \\
& (x, y \in Q, \quad z \in G, \quad s \in S, s y-z \in F) .
\end{aligned}
$$

(ii) The isomorphism classes of nonsingular ε-quadratic linking forms over A are in one-one correspondence with the stable isomorphism classes of $(-\varepsilon)$-quadratic S formations over A.

Proof. See Proposition 3.4.3 of [16].
For any $S^{-1} A$-contractible f.g. projective A-module chain complexes concentrated in degrees $k, k+1$

$$
\begin{aligned}
& C: \cdots \rightarrow 0 \rightarrow C_{k+1} \rightarrow C_{k} \rightarrow 0 \rightarrow \cdots, \\
& D: \cdots \rightarrow 0 \rightarrow D_{k+1} \rightarrow D_{k} \rightarrow 0 \rightarrow \cdots
\end{aligned}
$$

there are natural identifications

$$
\begin{aligned}
& H^{k+1}(C)=H_{k}(C)^{\uparrow}, H_{k}(C)=H^{k+1}(C) \uparrow \\
& H^{k+1}(D)=H_{k}(D) \uparrow, H_{k}(D)=H^{k+1}(D)^{\wedge}, \\
& H_{0}\left(\operatorname{Hom}_{A}(C, D)\right)=\operatorname{Hom}_{A}\left(H_{k}(C), H_{k}(D)\right)=\operatorname{Tor}_{1}^{A}\left(H^{k+1}(C), H_{k}(D)\right), \\
& H_{1}\left(\operatorname{Hom}_{A}(C, D)\right)=H^{k+1}(C) \otimes_{A} H_{k}(D)=\operatorname{Ext}_{A}^{1}\left(H_{k}(C), H_{k}(D)\right), \\
& H_{2 k}\left(C \otimes_{A} D\right)=H_{k}(C) \otimes_{A} H_{k}(D)=\operatorname{Ext}_{A}^{1}\left(H^{k+1}(C), H_{k}(D)\right), \\
& H_{2 k+1}\left(C \otimes_{A} D\right)=\operatorname{Hom}_{A}\left(H^{k+1}(C), H_{k}(D)\right)=\operatorname{Tor}_{1}^{A}\left(H_{k}(C), H_{k}(D)\right)
\end{aligned}
$$

In particular, an element $\lambda \in H_{2 k+1}\left(C \otimes_{A} D\right)$ is a sesquilinear linking pairing

$$
\lambda: H^{k+1}(C) \times H^{k+1}(D) \rightarrow S^{-1} A / A
$$

An element $\phi \in H_{2 k}\left(C \otimes_{A} D\right)$ is a chain homotopy class of chain maps $\phi: C^{2 k-*} \rightarrow D$, classifying the extension

$$
0 \rightarrow H_{k}(D) \rightarrow H_{k}(\phi) \rightarrow H^{k+1}(C) \rightarrow 0
$$

Proposition 77. Given an (A, S)-module T let

$$
B: \cdots \rightarrow 0 \rightarrow B_{k+1} \quad \xrightarrow{d} \quad B_{k} \rightarrow 0 \rightarrow \cdots
$$

be a f.g. projective A-module chain complex concentrated in degrees $k, k+1$ such that $H^{k+1}(B)=T, H^{k}(B)=0$, so that $H_{k}(B)=T, H_{k+1}(B)=0$. The Q-groups in the exact sequence

$$
\begin{aligned}
Q^{2 k+2}(B) & =0 \longrightarrow \widehat{Q}^{2 k+2}(B) \xrightarrow{H} Q_{2 k+1}(B) \xrightarrow{1+T} Q^{2 k+1}(B) \\
& \xrightarrow{J} \widehat{Q}^{2 k+1}(B)
\end{aligned}
$$

have the following interpretation in terms of T.
(i) The symmetric Q-group

$$
Q^{2 k+1}(B)=H^{0}\left(\mathbb{Z}_{2} ; \operatorname{Hom}_{A}(T, T),(-1)^{k+1}\right)
$$

is the additive group of $(-1)^{k+1}$-symmetric linking pairings λ on T, with $\phi \in Q^{2 k+1}(B)$ corresponding to

$$
\lambda: T \times T \rightarrow S^{-1} A / A ; \quad(x, y) \mapsto \phi_{0}\left(d^{*}\right)^{-1}(x)(y) \quad\left(x, y \in B^{k+1}\right)
$$

(ii) The quadratic Q-group

$$
\begin{aligned}
& Q_{2 k+1}(B) \\
& \quad=\frac{\left\{\left(\psi_{0}, \psi_{1}\right) \in \operatorname{Hom}_{A}\left(B^{k}, B_{k+1}\right) \oplus S\left(B^{k}\right) \mid d \psi_{0}=\psi_{1}+(-1)^{k+1} \psi_{1}^{*} \in S\left(B^{k}\right)\right\}}{\left\{\left(\left(\chi_{0}+(-1)^{k+1} \chi_{0}^{*}\right) d^{*}, d \chi_{0} d^{*}+\chi_{1}+(-1)^{k} \chi_{1}^{*}\right) \mid\left(\chi_{0}, \chi_{1}\right) \in S\left(B^{k+1}\right) \oplus S\left(B^{k}\right)\right\}}
\end{aligned}
$$

is the additive group of $(-1)^{k+1}$-quadratic linking structures (λ, μ) on T. The element $\psi=\left(\psi_{0}, \psi_{1}\right) \in Q_{2 k+1}(B)$ corresponds to

$$
\begin{aligned}
& \lambda: T \times T \rightarrow S^{-1} A / A ; \quad(x, y) \mapsto \psi_{0}\left(d^{*}\right)^{-1}(x)(y) \quad\left(x, y \in B^{k+1}\right) \\
& \mu: T \rightarrow Q_{(-1)^{k+1}}(A, S) ; \quad x \mapsto \psi_{0}\left(d^{*}\right)^{-1}(x)(x)
\end{aligned}
$$

(iii) The hyperquadratic Q-groups of B

$$
\widehat{Q}^{n}(B)=H_{n}\left(\widehat{d}^{\%}: \widehat{W}^{\%} B_{k+1} \rightarrow \widehat{W}^{\%} B_{k}\right)
$$

are such that

$$
\begin{aligned}
& \widehat{Q}^{2 k}(B)=\frac{\left\{(\delta, \chi) \in S\left(B^{k+1}\right) \oplus S\left(B^{k}\right) \mid \delta^{*}=(-1)^{k+1} \delta, d \delta d^{*}=\chi+(-1)^{k+1} \chi^{*}\right\}}{\left\{\left(\mu+(-1)^{k+1} \mu^{*}, d \mu d^{*}+v+(-1)^{k} v^{*}\right) \mid(\mu, v) \in S\left(B^{k+1}\right) \oplus S\left(B^{k}\right)\right\}} \\
& \widehat{Q}^{2 k+1}(B)=\frac{\left\{(\delta, \chi) \in S\left(B^{k+1}\right) \oplus S\left(B^{k}\right) \mid \delta^{*}=(-1)^{k} \delta, d \delta d^{*}=\chi+(-1)^{k} \chi^{*}\right\}}{\left\{\left(\mu+(-1)^{k} \mu^{*}, d \mu d^{*}+v+(-1)^{k+1} v^{*}\right) \mid(\mu, v) \in S\left(B^{k+1}\right) \oplus S\left(B^{k}\right)\right\}},
\end{aligned}
$$

with universal coefficient exact sequences

$$
\begin{aligned}
& 0 \rightarrow T^{\wedge} \otimes_{A} \widehat{H}^{k}\left(\mathbb{Z}_{2} ; A\right) \rightarrow \widehat{Q}^{2 k}(B) \quad \xrightarrow{\widehat{v}_{k+1}} \quad \operatorname{Hom}_{A}\left(T, \widehat{H}^{k+1}\left(\mathbb{Z}_{2} ; A\right)\right) \rightarrow 0, \\
& 0 \rightarrow T^{\wedge} \otimes_{A} \widehat{H}^{k+1}\left(\mathbb{Z}_{2} ; A\right) \rightarrow \widehat{Q}^{2 k+1}(B) \quad \xrightarrow{\widehat{v}_{k}} \quad \operatorname{Hom}_{A}\left(T, \widehat{H}^{k}\left(\mathbb{Z}_{2} ; A\right)\right) \rightarrow 0 .
\end{aligned}
$$

Let $f: C \rightarrow D$ be a chain map of $S^{-1} A$-contractible A-module chain complexes concentrated in degrees $k, k+1$, inducing the A-module morphism

$$
f^{*}=j: U=H^{k+1}(D) \rightarrow T=H^{k+1}(C) .
$$

By Proposition 77(i) a $(2 k+1)$-dimensional symmetric Poincaré complex (C, ϕ) is essentially the same as a nonsingular $(-1)^{k+1}$-symmetric linking form (T, λ), and a $(2 k+2)$-dimensional symmetric Poincaré pair $(f: C \rightarrow D,(\delta \phi, \phi))$ is essentially the same as a lagrangian U for (T, λ), with $j=f^{*}: U \rightarrow T$ the inclusion. Similarly, a $(2 k+1)$-dimensional quadratic Poincaré complex (C, ψ) is essentially the same as
a nonsingular $(-1)^{k+1}$-quadratic linking form (T, λ, μ), and a $(2 k+2)$-dimensional quadratic Poincaré pair $(f: C \rightarrow D,(\delta \psi, \psi))$ is essentially the same as a lagrangian $U \subset T$ for (T, λ, μ). A $(2 k+2)$-dimensional (symmetric, quadratic) Poincaré pair (f : $C \rightarrow D,(\delta \phi, \psi))$ is a nonsingular $(-1)^{k+1}$-quadratic linking form (T, λ, μ) together with a lagrangian $U \subset T$ for the nonsingular $(-1)^{k+1}$-symmetric linking form (T, λ).

Proposition 78. Let U be an (A, S)-module together with an A-module morphism μ_{1} : $U \rightarrow \widehat{H}^{k+1}\left(\mathbb{Z}_{2} ; A\right)$, defining a $(-1)^{k+1}$-quadratic linking form $\left(U, \lambda_{1}, \mu_{1}\right)$ over (A, S) with $\lambda_{1}=0$.
(i) There exists a map of chain bundles $(d, \chi):\left(B_{k+2}, 0\right) \rightarrow\left(B_{k+1}, \delta\right)$ concentrated in degree $k+1$ such that the cone chain bundle $(B, \beta)=\mathcal{C}(d, \chi)$ has

$$
\begin{aligned}
& H_{k+1}(B)=U, H^{k+2}(B)=U^{\widehat{ }}, H_{k+2}(B)=H^{k+1}(B)=0, \\
& \beta=[\delta]=\mu_{1} \in \widehat{Q}^{0}\left(B^{0-*}\right)=\operatorname{Hom}_{A}\left(U, \widehat{H}^{k+1}\left(\mathbb{Z}_{2} ; A\right)\right) .
\end{aligned}
$$

(ii) The $(2 k+2)$-dimensional twisted quadratic Q-group of (B, β) as in (i)

$$
\begin{aligned}
& Q_{2 k+2}(B, \beta) \\
& \quad=\frac{\left\{(\phi, \theta) \in S\left(B^{k+1}\right) \oplus S\left(B^{k+1}\right) \mid \phi^{*}=(-1)^{k+1} \phi, \phi-\phi \delta \phi^{*}=\theta+(-1)^{k+1} \theta^{*}\right\}}{\left\{(d, \chi) \%(v)+\left(0, \eta+(-1)^{k} \eta^{*}\right) \mid v \in S\left(B^{k+2}\right), \eta \in S\left(B^{k+1}\right)\right\}} \\
& \left((d, \chi)_{\%}(v)=\left(d\left(v+(-1)^{k+1} v^{*}\right) d^{*}, d v d^{*}-d\left(v+(-1)^{k+1} v^{*}\right) \chi\left(v^{*}+(-1)^{k+1} v\right) d^{*}\right)\right)
\end{aligned}
$$

is the additive group of isomorphism classes of extensions of U to a nonsingular $(-1)^{k+1}$-quadratic linking form (T, λ, μ) over (A, S) such that $U \subset T$ is a lagrangian of the $(-1)^{k+1}$-symmetric linking form (T, λ) and

$$
\beta=\left.\mu\right|_{U}: H_{k+1}(B)=U \rightarrow \widehat{H}^{k+1}\left(\mathbb{Z}_{2} ; A\right)=\operatorname{ker}\left(Q_{(-1)^{k+1}}(A, S) \rightarrow S^{-1} A / A\right)
$$

(iii) An element $(\phi, \theta) \in Q_{2 k+2}(B, \beta)$ is the algebraic normal invariant (43) of the $(2 k+2)$-dimensional (symmetric, quadratic) Poincaré pair $(f: C \rightarrow D,(\delta \phi, \psi) \in$ $\left.Q_{2 k+2}^{2 k+2}(f)\right)$ with

$$
\begin{aligned}
& d_{C}=\left(\begin{array}{cc}
d & \phi \\
0 & d^{*}
\end{array}\right): C_{k+1}=B_{k+2} \oplus B^{k+1} \rightarrow C_{k}=B_{k+1} \oplus B^{k+2}, \\
& f=\text { projection }: C \rightarrow D=B^{2 k+2-*}
\end{aligned}
$$

constructed as in Proposition 42(ii), corresponding to the quadruple $(T, \lambda, \mu ; U)$ given by

$$
j=f^{*}: U=H^{k+1}(D)=H_{k+1}(B) \rightarrow T=H^{k+1}(C)
$$

The A-module extension

$$
0 \rightarrow U \rightarrow T \rightarrow U^{\curlywedge} \rightarrow 0
$$

is classified by

$$
[\phi] \in H_{2 k+2}\left(B \otimes_{A} B\right)=U \otimes_{A} U=\operatorname{Ext}_{A}^{1}(U, U) .
$$

(iv) The $(-1)^{k+1}$-quadratic linking form (T, λ, μ) in (iii) corresponds to the $(-1)^{k}$ quadratic S-formation $(Q, \psi ; F, G)$ with

$$
\begin{aligned}
& (Q, \psi)=H_{(-1)^{k}}(F), F=B_{k+2} \oplus B^{k+1} \\
& G=\operatorname{im}\left(\left(\begin{array}{cc}
1 & 0 \\
-\delta d & 1-\delta \phi \\
0 & (-1)^{k+1} d^{*} \\
d & \phi
\end{array}\right): B_{k+2} \oplus B^{k+1} \rightarrow B_{k+2} \oplus B^{k+1} \oplus B^{k+2} \oplus B_{k+1}\right) \\
& \\
& \subset F \oplus F^{*}
\end{aligned}
$$

such that

$$
F \cap G=\{0\}, \quad Q /(F+G)=H^{k+1}(C)=T
$$

The inclusion $U \rightarrow T$ is resolved by

(v) If the involution on A is even and $k=-1$ then

$$
Q_{0}(B, \beta)=\frac{\left\{\phi \in \operatorname{Sym}\left(B^{0}\right) \mid \phi-\phi \delta \phi \in \operatorname{Quad}\left(B^{0}\right)\right\}}{\left\{d \sigma d^{*} \mid \sigma \in \operatorname{Quad}\left(B^{1}\right)\right\}} .
$$

An extension of $U=\operatorname{coker}\left(d: B_{1} \rightarrow B_{0}\right)$ to a nonsingular quadratic linking form (T, λ, μ) over (A, S) with $\left.\mu\right|_{U}=\mu_{1}$ and $U \subset T$ a lagrangian of (T, λ) is classified by $\phi \in Q_{0}(B, \beta)$ such that $\lambda: T \rightarrow T$ is resolved by

and

$$
\begin{aligned}
& T=\operatorname{coker}\left(\left(\begin{array}{cc}
0 & d^{*} \\
d & \phi
\end{array}\right): B_{1} \oplus B^{0} \rightarrow B^{1} \oplus B_{0}\right) \\
& \lambda: T \times T \rightarrow S^{-1} A / A \\
& \left(\left(x_{1}, x_{0}\right),\left(y_{1}, y_{0}\right)\right) \mapsto-d^{-1} \phi\left(d^{*}\right)^{-1}\left(x_{1}\right)\left(y_{1}\right)+d^{-1}\left(x_{1}\right)\left(y_{0}\right)+\left(d^{*}\right)^{-1}\left(x_{0}\right)\left(y_{1}\right), \\
& \mu: T \rightarrow Q_{+1}(A, S) ; \\
& \left(x_{1}, x_{0}\right) \mapsto-d^{-1} \phi\left(d^{*}\right)^{-1}\left(x_{1}\right)\left(x_{1}\right)+d^{-1}\left(x_{1}\right)\left(x_{0}\right)+\left(d^{*}\right)^{-1}\left(x_{0}\right)\left(x_{1}\right)-\delta\left(x_{0}\right)\left(x_{0}\right), \\
& \left(x_{0}, y_{0} \in B_{0}, x_{1}, y_{1} \in B^{1}\right) .
\end{aligned}
$$

4.2. The linking Arf invariant

Definition 79. The linking Arf invariant of a nonsingular $(-1)^{k+1}$-quadratic linking form (T, λ, μ) over (A, S) together with a lagrangian $U \subset T$ for (T, λ) is the image

$$
(T, \lambda, \mu ; U)=(g, \chi) \%(\phi, \theta) \in \widehat{L}^{4 *+2 k+2}(A)=Q_{2 k+2}\left(B^{A}, \beta^{A}\right)
$$

of the algebraic normal invariant $(\phi, \theta) \in Q_{2 k+2}(\mathcal{C}(f), \gamma)$ (43) of the corresponding $(2 k+2)$-dimensional (symmetric, quadratic) Poincaré pair $(f: C \rightarrow D,(\delta \phi, \psi) \in$ $\left.Q_{2 k+2}^{2 k+2}(f)\right)$ concentrated in degrees $k, k+1$ with

$$
f^{*}=j: H^{k+1}(D)=U \rightarrow H^{k+1}(C)=T
$$

and $(g, \chi) \%$ induced by the classifying chain bundle map $(g, \chi):(\mathcal{C}(f), \gamma) \rightarrow\left(B^{A}, \beta^{A}\right)$.
The chain bundle $(\mathcal{C}(f), \gamma)$ in 79 is (up to equivalence) of the type (B, β) considered in Proposition 78(i) : the algebraic normal invariant $(\phi, \theta) \in Q_{2 k+2}(B, \beta)$ classifies the extension of (U, β) to a lagrangian of a $(-1)^{k+1}$-symmetric linking form (T, λ) with
a $(-1)^{k+1}$-quadratic function μ on T such that $\left.\mu\right|_{U}=\beta$. The linking Arf invariant $(T, \lambda, \mu ; U) \in Q_{2 k+2}\left(B^{A}, \beta^{A}\right)$ gives the Witt class of $(T, \lambda, \mu ; U)$. The boundary map

$$
\partial: Q_{2 k+2}\left(B^{A}, \beta^{A}\right) \rightarrow L_{2 k+1}(A) ; \quad(T, \lambda, \mu ; U) \mapsto(Q, \psi ; F, G)
$$

sends the linking Arf invariant to the Witt class of the $(-1)^{k}$-quadratic formation ($Q, \psi ; F, G$) constructed in 78(iv).

Theorem 80. Let A be an r-even ring with A_{2}-module basis $\left\{x_{1}=1, x_{2}, \ldots, x_{r}\right\} \subset$ $\widehat{H}^{0}\left(\mathbb{Z}_{2} ; A\right)$, and let

$$
X=\left(\begin{array}{ccccc}
x_{1} & 0 & 0 & \ldots & 0 \\
0 & x_{2} & 0 & \ldots & 0 \\
0 & 0 & x_{3} & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & x_{r}
\end{array}\right) \in \operatorname{Sym}_{r}(A),
$$

so that by Theorem 60

$$
Q_{2 k}\left(B^{A}, \beta^{A}\right)= \begin{cases}\frac{\left\{M \in \operatorname{Sym}_{r}(A) \mid M-M X M \in \operatorname{Quad}_{r}(A)\right\}}{4 \operatorname{Quad}_{r}(A)+\left\{2\left(N+N^{t}\right)-N^{t} X N \mid N \in M_{r}(A)\right\}} & \text { if } k=0 \\ 0 & \text { if } k=1\end{cases}
$$

(i) Let

$$
S=(2)^{\infty} \subset A,
$$

so that

$$
S^{-1} A=A[1 / 2]
$$

and $\widehat{H}^{0}\left(\mathbb{Z}_{2} ; A\right)$ is an (A, S)-module. The hyperquadratic L-group $\widehat{L}^{0}(A)$ fits into the exact sequence

$$
\cdots \rightarrow L^{1}(A, S) \rightarrow \widehat{L}^{0}(A) \rightarrow L_{0}(A, S) \rightarrow L^{0}(A, S) \rightarrow \cdots
$$

The linking Arf invariant of a nonsingular quadratic linking form (T, λ, μ) over (A, S) with a lagrangian $U \subset T$ for (T, λ) is the Witt class

$$
(T, \lambda, \mu ; U) \in Q_{0}\left(B^{A}, \beta^{A}\right)=\widehat{L}^{4 *}(A) .
$$

(ii) Given $M \in \operatorname{Sym}_{r}(A)$ such that $M-M X M \in \operatorname{Quad}_{r}(A)$ let $\left(T_{M}, \lambda_{M}, \mu_{M}\right)$ be the nonsingular quadratic linking form over (A, S) corresponding to the (-1)-quadratic S-formation over A (76)

$$
\left.\left.\left.\begin{array}{l}
\left(Q_{M}, \psi_{M} ; F_{M}, G_{M}\right) \\
\quad=\left(H_{-}\left(A^{2 r}\right) ; A^{2 r}, \operatorname{im}\left(\left(\begin{array}{cc}
I & 0 \\
-2 X & I-X M
\end{array}\right)\right.\right. \\
\left(\begin{array}{cc}
0 & 2 I \\
2 I & M
\end{array}\right)
\end{array}\right): A^{2 r} \rightarrow A^{2 r} \oplus A^{2 r}\right)\right) .
$$

and let

$$
U_{M}=\left(A_{2}\right)^{r} \subset T_{M}=Q_{M} /\left(F_{M}+G_{M}\right)=\operatorname{coker}\left(G_{M} \rightarrow F_{M}^{*}\right)
$$

be the lagrangian for the nonsingular symmetric linking form $\left(T_{M}, \lambda_{M}\right)$ over (A, S) with the inclusion $U_{M} \rightarrow T_{M}$ resolved by

The function

$$
Q_{0}\left(B^{A}, \beta^{A}\right) \rightarrow \widehat{L}^{4 *}(A) ; \quad M \mapsto\left(T_{M}, \lambda_{M}, \mu_{M} ; U_{M}\right)
$$

is an isomorphism, with inverse given by the linking Arf invariant.
(iii) Let (T, λ, μ) be a nonsingular quadratic linking form over (A, S) together with a lagrangian $U \subset T$ for (T, λ). For any f.g. projective A-module resolution of U

$$
0 \rightarrow B_{1} \quad \xrightarrow{d} \quad B_{0} \rightarrow U \rightarrow 0
$$

let

$$
\begin{aligned}
\delta & \in \operatorname{Sym}\left(B_{0}\right), \quad \phi \in \operatorname{Sym}\left(B^{0}\right), \quad \beta=[\delta]=\left.\mu\right|_{U} \in \widehat{Q}^{0}\left(B^{0-*}\right) \\
& =\operatorname{Hom}_{A}\left(U, \widehat{H}^{0}\left(\mathbb{Z}_{2} ; A\right)\right)
\end{aligned}
$$

be as in Proposition 78(i) and (v), so that

$$
d^{*} \delta d \in \operatorname{Quad}\left(B_{1}\right), \quad \phi-\phi \delta \phi \in \operatorname{Quad}\left(B^{0}\right)
$$

and

$$
\phi \in Q_{0}(B, \beta)=\frac{\operatorname{ker}\left(J_{\delta}: \operatorname{Sym}\left(B^{0}\right) \rightarrow \operatorname{Sym}\left(B^{0}\right) / \operatorname{Quad}\left(B^{0}\right)\right)}{\operatorname{im}\left(\left(d^{*}\right)^{\%}: \operatorname{Quad}\left(B^{1}\right) \rightarrow \operatorname{Sym}\left(B^{0}\right)\right)}
$$

classifies $(T, \lambda, \mu ; U)$. Lift $\beta: U \rightarrow \widehat{H}^{0}\left(\mathbb{Z}_{2} ; A\right)$ to an A-module morphism $g: B_{0} \rightarrow A^{r}$ such that

$$
g d\left(B_{1}\right) \subseteq 2 A^{r}, \delta=g^{*} X g \in \widehat{H}^{0}\left(\mathbb{Z}_{2} ; S\left(B^{0}\right), T\right)=\operatorname{Sym}\left(B^{0}\right) / \operatorname{Quad}\left(B^{0}\right) .
$$

The linking Arf invariant is

$$
(T, \lambda, \mu ; U)=g \phi g^{*} \in Q_{0}\left(B^{A}, \beta^{A}\right) .
$$

(iv) For any $M=\left(m_{i j}\right) \in \operatorname{Sym}_{r}(A)$ with $m_{i j} \in 2 A$

$$
M-M X M=2(M / 2-2(M / 2) X(M / 2)) \in \operatorname{Quad}_{r}(A)
$$

and so M represents an element $M \in Q_{0}\left(B^{A}, \beta^{A}\right)$. The invertible matrix

$$
\left(\begin{array}{cc}
-M / 2 & I \\
I & 0
\end{array}\right) \in M_{2 r}(A)
$$

is such that

$$
\begin{aligned}
& \left(\begin{array}{cc}
-M / 2 & I \\
I & 0
\end{array}\right)\left(\begin{array}{cc}
0 & 2 I \\
2 I & v M
\end{array}\right)=\left(\begin{array}{cc}
2 I & 0 \\
0 & 2 I
\end{array}\right), \\
& \left(\begin{array}{cc}
I & 0 \\
-2 X & I-X M
\end{array}\right)\left(\begin{array}{cc}
-M / 2 & I \\
I & 0
\end{array}\right)=\left(\begin{array}{cc}
-M / 2 & I \\
I & -2 X
\end{array}\right)
\end{aligned}
$$

so that $\left(Q_{M}, \psi_{M} ; F_{M}, G_{M}\right)$ is isomorphic to the (-1)-quadratic S-formation

$$
\begin{aligned}
& \left(Q_{M}^{\prime}, \psi_{M}^{\prime} ; F_{M}^{\prime}, G_{M}^{\prime}\right) \\
& =\left(H_{-}\left(A^{2 r}\right) ; A^{2 r}, \operatorname{im}\left(\binom{\left(\begin{array}{cc}
-M / 2 & I \\
I & -2 X
\end{array}\right)}{\left(\begin{array}{cc}
2 I & 0 \\
0 & 2 I
\end{array}\right)}: A^{2 r} \rightarrow A^{2 r} \oplus A^{2 r}\right)\right),
\end{aligned}
$$

corresponding to the nonsingular quadratic linking form over (A, S)

$$
\left(T_{M}^{\prime}, \lambda_{M}^{\prime}, \mu_{M}^{\prime}\right)=\left(\left(A_{2}\right)^{r} \oplus\left(A_{2}\right)^{r},\left(\begin{array}{cc}
-M / 4 & I / 2 \\
I / 2 & 0
\end{array}\right),\binom{-M / 4}{-X}\right)
$$

with $2 T_{M}^{\prime}=0$, and $U_{M}^{\prime}=0 \oplus\left(A_{2}\right)^{r} \subset T_{M}^{\prime}$ a lagrangian for the symmetric linking form $\left(T_{M}^{\prime}, \lambda_{M}^{\prime}\right)$. The linking Arf invariant of $\left(T_{M}^{\prime}, \lambda_{M}^{\prime}, \mu_{M}^{\prime} ; U_{M}^{\prime}\right)$ is

$$
\left(T_{M}^{\prime}, \lambda_{M}^{\prime}, \mu_{M}^{\prime} ; U_{M}^{\prime}\right)=M \in Q_{0}\left(B^{A}, \beta^{A}\right) .
$$

Proof. (i) $\widehat{H}^{0}\left(\mathbb{Z}_{2} ; A\right)$ has an $S^{-1} A$-contractible f.g. free A-module resolution

$$
0 \longrightarrow A^{r} \xrightarrow{2} A^{r} \xrightarrow{x} \widehat{H}^{0}\left(\mathbb{Z}_{2} ; A\right) \longrightarrow 0 .
$$

The exact sequence for $\widehat{L}^{0}(A)$ is given by the exact sequence of Proposition 74(iii)

$$
\cdots \rightarrow L^{4 *+1}(A, S) \rightarrow Q_{0}\left(B^{A}, \beta^{A}\right) \rightarrow L_{0}(A, S) \rightarrow L^{4 *}(A, S) \rightarrow \cdots
$$

and the isomorphism $Q_{0}\left(B^{A}, \beta^{A}\right) \cong \widehat{L}^{4 *}(A)$.
(ii) The isomorphism

$$
Q_{0}\left(B^{A}, \beta^{A}\right) \rightarrow \widehat{L}^{4 *}(A) ; \quad M \mapsto\left(T_{M}, \lambda_{M}, \mu_{M} ; U_{M}\right)
$$

is given by Proposition 46 .
(iii) Combine (ii) and Proposition 78.
(iv) By construction.

5. Application to UNil

5.1. Background

The topological context for the unitary nilpotent L-groups UNil_{*} is the following. Let N^{n} be a closed connected manifold together with a decomposition into n-dimensional connected submanifolds $N_{-}, N_{+} \subset N$ such that

$$
N=N_{-} \cup N_{+}
$$

and

$$
N_{\cap}=N_{-} \cap N_{+}=\partial N_{-}=\partial N_{+} \subset N
$$

is a connected $(n-1)$-manifold with $\pi_{1}\left(N_{\cap}\right) \rightarrow \pi_{1}\left(N_{ \pm}\right)$injective. Then

$$
\pi_{1}(N)=\pi_{1}\left(N_{-}\right) *_{\pi_{1}\left(N_{\cap}\right)} \pi_{1}\left(N_{+}\right)
$$

with $\pi_{1}\left(N_{ \pm}\right) \rightarrow \pi_{1}(N)$ injective. Let M be an n-manifold. A homotopy equivalence $f: M \rightarrow N$ is called splittable along N_{\cap} if it is homotopic to a map f^{\prime}, transverse regular to N_{\cap} (whence $f^{\prime-1}\left(N_{\cap}\right)$ is an ($n-1$)-dimensional submanifold of M), and whose restriction $f^{\prime-1}\left(N_{\cap}\right) \rightarrow N_{\cap}$, and a fortiori also $f^{\prime-1}\left(N_{ \pm}\right) \rightarrow N_{ \pm}$, is a homotopy equivalence.

We ask the following question: given a simple homotopy equivalence $f: M \rightarrow N$, when is $M h$-cobordant to a manifold M^{\prime} such that the induced homotopy equivalence $f^{\prime}: M^{\prime} \rightarrow N$ is splittable along N_{\cap} ? The answer is given by Cappell [5,6]: the problem has a positive solution if and only if a Whitehead torsion obstruction

$$
\bar{\Phi}(\tau(f)) \in \widehat{H}^{n}\left(\mathbb{Z}_{2} ; \operatorname{ker}\left(\widetilde{K}_{0}(A) \rightarrow \widetilde{K}_{0}\left(B_{+}\right) \oplus \widetilde{K}_{0}\left(B_{-}\right)\right)\right)
$$

(which is 0 if f is simple) and an algebraic L-theory obstruction

$$
\chi^{h}(f) \in \operatorname{UNil}_{n+1}\left(A ; \mathcal{N}_{-}, \mathcal{N}_{+}\right)
$$

vanish, where

$$
A=\mathbb{Z}\left[\pi_{1}\left(N_{\cap}\right)\right], \quad B_{ \pm}=\mathbb{Z}\left[\pi_{1}\left(N_{ \pm}\right)\right], \quad \mathcal{N}_{ \pm}=B_{ \pm}-A
$$

The groups $\operatorname{UNil}_{*}\left(A ; \mathcal{N}_{-}, \mathcal{N}_{+}\right)$are 4-periodic and 2-primary, and vanish if the inclusions $\pi_{1}\left(N_{\cap}\right) \hookrightarrow \pi_{1}\left(N_{ \pm}\right)$are square root closed. The groups $\mathrm{UNil}_{*}(\mathbb{Z} ; \mathbb{Z}, \mathbb{Z})$ arising from the expression of the infinite dihedral group as a free product

$$
D_{\infty}=\mathbb{Z}_{2} * \mathbb{Z}_{2}
$$

are of particular interest. Cappell [3] showed that

$$
\operatorname{UNil}_{4 k+2}(\mathbb{Z} ; \mathbb{Z}, \mathbb{Z})=\operatorname{UNil}_{4 k+2}\left(\mathbb{Z} ; \mathbb{Z}\left[\mathbb{Z}_{2}-\{1\}\right], \mathbb{Z}\left[\mathbb{Z}_{2}-\{1\}\right]\right)
$$

contains $\left(\mathbb{Z}_{2}\right)^{\infty}$, and deduced that there is a manifold homotopy equivalent to the connected sum $\mathbb{R P}^{4 k+1} \# \mathbb{R} \mathbb{P}^{4 k+1}$ which does not have a compatible connected sum decomposition. With

$$
B=\mathbb{Z}\left[\pi_{1}(N)\right]=B_{1} *_{A} B_{2},
$$

the map

$$
\operatorname{UNil}_{n+1}\left(A ; \mathcal{N}_{-}, \mathcal{N}_{+}\right) \longrightarrow L_{n+1}(B)
$$

given by sending the splitting obstruction $\chi^{h}(f)$ to the surgery obstruction of an ($n+1$)-dimensional normal map between f and a split homotopy equivalence, is a split monomorphism, and

$$
L_{n+1}(B)=L_{n+1}^{K}\left(A \rightarrow B_{+} \cup B_{-}\right) \oplus \operatorname{UNil}_{n+1}\left(A ; \mathcal{N}_{-}, \mathcal{N}_{+}\right)
$$

with $K=\operatorname{ker}\left(\widetilde{K}_{0}(A) \rightarrow \widetilde{K}_{0}\left(B_{+}\right) \oplus \widetilde{K}_{0}\left(B_{-}\right)\right)$. Farrell [11] established a factorization of this map as

$$
\operatorname{UNil}_{n+1}\left(A ; \mathcal{N}_{-}, \mathcal{N}_{+}\right) \longrightarrow \operatorname{UNil}_{n+1}(B ; B, B) \longrightarrow L_{n+1}(B)
$$

Thus the groups $\operatorname{UNil}_{n}(A ; A, A)$ for any ring A with involution acquire special importance, and we shall use the usual abbreviation

$$
\operatorname{UNil}_{n}(A)=\operatorname{UNil}_{n}(A ; A, A)
$$

Cappell [3-5] proved that $\operatorname{UNil}_{4 k}(\mathbb{Z})=0$ and that $\operatorname{UNil}_{4 k+2}(\mathbb{Z})$ is infinitely generated. Farrell [11] showed that for any ring $A, 4 \operatorname{UNil}_{*}(A)=0$. Connolly and Koźniewski [9] obtained $\operatorname{UNil}_{4 k+2}(\mathbb{Z})=\bigoplus_{1}^{\infty} \mathbb{Z}_{2}$.

For any ring with involution A let $N L_{*}$ denote the L-theoretic analogues of the nilpotent K-groups

$$
N K_{*}(A)=\operatorname{ker}\left(K_{*}(A[x]) \rightarrow K_{*}(A)\right),
$$

that is

$$
N L_{*}(A)=\operatorname{ker}\left(L_{*}(A[x]) \rightarrow L_{*}(A)\right)
$$

where $A[x] \rightarrow A$ is the augmentation map $x \mapsto 0$. Ranicki [16, 7.6] used the geometric interpretation of $\mathrm{UNil}_{*}(A)$ to identify $N L_{*}(A)=\operatorname{UNil}_{*}(A)$ in the case when $A=\mathbb{Z}[\pi]$ is the integral group ring of a finitely presented group π. The following was obtained by pure algebra:

Proposition 81 (Connolly and Ranicki [10]). For any ring with involution A

$$
\operatorname{UNil}_{*}(A) \cong N L_{*}(A)
$$

It was further shown in [10] that $\operatorname{UNil}_{1}(\mathbb{Z})=0$ and $\operatorname{UNil}_{3}(\mathbb{Z})$ was computed up to extensions, thus showing it to be infinitely generated.

Connolly and Davis [8] related $\mathrm{UNil}_{3}(\mathbb{Z})$ to quadratic linking forms over $\mathbb{Z}[x]$ and computed the Grothendieck group of the latter. By Proposition 81

$$
\operatorname{UNil}_{3}(\mathbb{Z}) \cong \operatorname{ker}\left(L_{3}(\mathbb{Z}[x]) \rightarrow L_{3}(\mathbb{Z})\right)=L_{3}(\mathbb{Z}[x])
$$

using the classical fact $L_{3}(\mathbb{Z})=0$. From a diagram chase one gets

$$
L_{3}(\mathbb{Z}[x]) \cong \operatorname{ker}\left(L_{0}\left(\mathbb{Z}[x],(2)^{\infty}\right) \rightarrow L_{0}\left(\mathbb{Z},(2)^{\infty}\right)\right)
$$

By definition, $L_{0}\left(\mathbb{Z}[x],(2)^{\infty}\right)$ is the Witt group of nonsingular quadratic linking forms (T, λ, μ) over $\left(\mathbb{Z}[x],(2)^{\infty}\right)$, with $2^{n} T=0$ for some $n \geqslant 1$. Let $\mathcal{L}(\mathbb{Z}[x], 2)$ be a similar Witt group, the difference being that the underlying module T is required to satisfy $2 T=0$. The main results of [8] are

$$
L_{0}\left(\mathbb{Z}[x],(2)^{\infty}\right) \cong \mathcal{L}(\mathbb{Z}[x], 2)
$$

and

$$
\mathcal{L}(\mathbb{Z}[x], 2) \cong \frac{x \mathbb{Z}_{4}[x]}{\left\{2\left(p^{2}-p\right) \mid p \in x \mathbb{Z}_{4}[x]\right\}} \oplus \mathbb{Z}_{2}[x] .
$$

By definition, a ring A is one-dimensional if it is hereditary and noetherian, or equivalently if every submodule of a f.g. projective A-module is f.g. projective. In particular, a Dedekind ring A is one-dimensional. The symmetric and hyperquadratic L-groups of a one-dimensional A are 4-periodic

$$
L^{n}(A)=L^{n+4}(A), \widehat{L}^{n}(A)=\widehat{L}^{n+4}(A)
$$

Proposition 82 (Connolly and Ranicki [10]). For any one-dimensional ring A with involution

$$
Q_{n+1}\left(B^{A[x]}, \beta^{A[x]}\right)=Q_{n+1}\left(B^{A}, \beta^{A}\right) \oplus \operatorname{UNil}_{n}(A) \quad(n \in \mathbb{Z})
$$

Proof. For any ring with involution A the inclusion $A \rightarrow A[x]$ and the augmentation $A[x] \rightarrow A ; x \mapsto 0$ determine a functorial splitting of the exact sequence

$$
\cdots \rightarrow L_{n}(A[x]) \rightarrow L^{n}(A[x]) \rightarrow \widehat{L}^{n}(A[x]) \rightarrow L_{n-1}(A[x]) \rightarrow \cdots
$$

as a direct sum of the exact sequences

$$
\begin{aligned}
& \cdots \rightarrow L_{n}(A) \rightarrow L^{n}(A) \rightarrow \widehat{L}^{n}(A) \rightarrow L_{n-1}(A) \rightarrow \cdots, \\
& \cdots \rightarrow N L_{n}(A) \rightarrow N L^{n}(A) \rightarrow N \widehat{L}^{n}(A) \rightarrow N L_{n-1}(A) \rightarrow \cdots .
\end{aligned}
$$

with $\widehat{L}^{n+4 *}(A)=Q_{n}\left(B^{A}, \beta^{A}\right)$. It is proved in [10] that for a one-dimensional A

$$
L^{n}(A[x])=L^{n}(A), \quad N L^{n}(A)=0, N \widehat{L}^{n+1}(A)=N L_{n}(A)=\operatorname{UNil}_{n}(A)
$$

Example 83. Proposition 82 applies to $A=\mathbb{Z}$, so that

$$
Q_{n+1}\left(B^{\mathbb{Z}[x]}, \beta^{\mathbb{Z}[x]}\right)=Q_{n+1}\left(B^{\mathbb{Z}}, \beta^{\mathbb{Z}}\right) \oplus \operatorname{UNil}_{n}(\mathbb{Z})
$$

with $Q_{*}\left(B^{\mathbb{Z}}, \beta^{\mathbb{Z}}\right)=\widehat{L}^{*}(\mathbb{Z})$ as given by Example 62.
5.2. The computation of $Q_{*}\left(B^{A[x]}, \beta^{A[x]}\right)$ for 1-even A with $\psi^{2}=1$

We shall now compute the groups

$$
\widehat{L}^{n}(A[x])=Q_{n}\left(B^{A[x]}, \beta^{A[x]}\right) \quad(n(\bmod 4))
$$

for a 1 -even $\operatorname{ring} A$ with $\psi^{2}=1$. The special case $A=\mathbb{Z}$ computes

$$
\widehat{L}^{n}(\mathbb{Z}[x])=Q_{n}\left(B^{\mathbb{Z}[x]}, \beta^{\mathbb{Z}[x]}\right)=\widehat{L}^{n}(\mathbb{Z}) \oplus \operatorname{UNil}_{n-1}(\mathbb{Z}) .
$$

Proposition 84. The universal chain bundle over $A[x]$ is given by

$$
\left(B^{A[x]}, \beta^{A[x]}\right)=\bigoplus_{i=-\infty}^{\infty}(C(X), \gamma(X))_{*+2 i}
$$

with $(C(X), \gamma(X))$ the chain bundle over $A[x]$ given by the construction of (53) for

$$
X=\left(\begin{array}{ll}
1 & 0 \\
0 & x
\end{array}\right) \in \operatorname{Sym}_{2}(A[x])
$$

The twisted quadratic Q-groups of ($\left.B^{A[x]}, \beta^{A[x]}\right)$ are

$$
\begin{aligned}
& Q_{n}\left(B^{A[x]}, \beta^{A[x]}\right) \\
& = \begin{cases}Q_{0}(C(X), \gamma(X))=\frac{\left\{M \in \operatorname{Sym}_{2}(A[x]) \mid M-M X M \in \operatorname{Quad}_{2}(A[x])\right\}}{4 \operatorname{Quad}_{2}(A[x])+\left\{2\left(N+N^{t}\right)-N^{t} X N \mid N \in M_{2}(A[x])\right\}} & \text { if } n=0, \\
\operatorname{im}\left(N_{\gamma(X)}: Q_{1}(C(X), \gamma(X)) \rightarrow Q^{1}(C(X))\right)=\operatorname{ker}\left(J_{\gamma(X)}: Q^{1}(C(X)) \rightarrow \widehat{Q}^{1}(C(X))\right) \\
=\frac{\left\{N \in M_{2}(A[x]) \mid N+N^{t} \in 2 \operatorname{Sym}_{2}(A[x]), \frac{1}{2}\left(N+N^{t}\right)-N^{t} X N \in \operatorname{Quad}_{2}(A[x])\right\}}{2 M_{2}(A[x])} & \text { if } n=1, \\
0 & \text { if } n=2, \\
Q_{-1}(C(X), \gamma(X))=\frac{\operatorname{Sym}_{2}(A[x])}{\operatorname{Quad}_{2}(A[x])+\left\{L-L X L \mid L \in \operatorname{Sym}_{2}(A[x])\right\}} & \text { if } n=3 .\end{cases}
\end{aligned}
$$

Proof. A special case of Theorem 60, noting that by Proposition $59 A[x]$ is 2-even, with $\{1, x\}$ an $A_{2}[x]$-module basis for $\widehat{H}^{0}\left(\mathbb{Z}_{2} ; A[x]\right)$.

Our strategy for computing $Q_{*}\left(B^{A[x]}, \beta^{A[x]}\right)$ will be to first compute $Q_{*}(C(1), \gamma(1))$, $Q_{*}(C(x), \gamma(x))$ and then to compute $Q_{*}(C(X), \gamma(X))$ for

$$
(C(X), \gamma(X))=(C(1), \gamma(1)) \oplus(C(x), \gamma(x))
$$

using the exact sequence given by Proposition 38(ii)

$$
\begin{aligned}
\cdots \rightarrow H_{n+1}\left(C(1) \otimes_{A[x]} C(x)\right) \partial & \longrightarrow Q_{n}(C(1), \gamma(1)) \oplus Q_{n}(C(x), \gamma(x)) \\
& \rightarrow Q_{n}(C(X), \gamma(X)) \rightarrow H_{n}\left(C(1) \otimes_{A[x]} C(x)\right) \rightarrow \cdots .
\end{aligned}
$$

The connecting maps ∂ have components

$$
\begin{gathered}
\partial(1): H_{n+1}\left(C(1) \otimes_{A[x]} C(x)\right) \rightarrow \widehat{Q}^{n+1}(C(1)) \rightarrow Q_{n}(C(1), \gamma(1)) \\
\left(f(1): C(x)^{n+1-*} \rightarrow C(1)\right) \mapsto\left(0, \widehat{f(1)}^{\%}\left(S^{n+1} \gamma(x)\right)\right), \\
\partial(x): H_{n+1}\left(C(1) \otimes_{A[x]} C(x)\right) \rightarrow \widehat{Q}^{n+1}(C(x)) \rightarrow Q_{n}(C(x), \gamma(x)) \\
\left(f(x): C(1)^{n+1-*} \rightarrow C(x)\right) \mapsto\left(0, \widehat{f(x)}^{\%}\left(S^{n+1} \gamma(1)\right)\right) .
\end{gathered}
$$

Proposition 85. (i) The twisted quadratic Q-groups

$$
Q_{n}(C(1), \gamma(1))= \begin{cases}\frac{A[x]}{2 A[x]+\left\{a-a^{2} \mid a \in A[x]\right\}} & \text { if } n=-1, \\ \frac{\left\{a \in A[x] \mid a-a^{2} \in 2 A[x]\right\}}{8 A[x]+\left\{4 b-4 b^{2} \mid b \in A[x]\right\}} & \text { if } n=0, \\ \frac{\left\{a \in A[x] \mid a-a^{2} \in 2 A[x]\right\}}{2 A[x]} & \text { if } n=1,\end{cases}
$$

(as given by Theorem 54) are such that

$$
Q_{n}(C(1), \gamma(1)) \cong \begin{cases}A_{2}[x] & \text { if } n=-1, \\ A_{8} \oplus A_{4}[x] \oplus A_{2}[x] & \text { if } n=0, \\ A_{2} & \text { if } n=1,\end{cases}
$$

with isomorphisms

$$
f_{-1}(1): Q_{-1}(C(1), \gamma(1)) \rightarrow A_{2}[x] ; \sum_{i=0}^{\infty} a_{i} x^{i} \mapsto a_{0}+\sum_{i=0}^{\infty}\left(\sum_{j=0}^{\infty} a_{(2 i+1) 2^{j}}\right) x^{i+1}
$$

$$
f_{0}(1): Q_{0}(C(1), \gamma(1)) \rightarrow A_{8} \oplus A_{4}[x] \oplus A_{2}[x]
$$

$$
\begin{aligned}
& \sum_{i=0}^{\infty} a_{i} x^{i} \mapsto\left(a_{0}, \sum_{i=0}^{\infty}\left(\sum_{j=0}^{\infty} a_{(2 i+1) 2^{j}} / 2\right) x^{i}, \sum_{k=0}^{\infty}\left(a_{2 k+2} / 2\right) x^{k}\right), \\
& f_{1}(1): Q_{1}(C(1), \gamma(1)) \rightarrow A_{2} ; \quad a=\sum_{i=0}^{\infty} a_{i} x^{i} \mapsto a_{0} .
\end{aligned}
$$

The connecting map components $\partial(1)$ are given by

$$
\begin{aligned}
& \partial(1): H_{1}\left(C(1) \otimes_{A[x]} C(x)\right)=A_{2}[x] \rightarrow Q_{0}(C(1), \gamma(1)) ; c \mapsto(0,2 c, 0), \\
& \partial(1): H_{0}\left(C(1) \otimes_{A[x]} C(x)\right)=A_{2}[x] \rightarrow Q_{-1}(C(1), \gamma(1)) ; c \mapsto c x .
\end{aligned}
$$

(ii) The twisted quadratic Q-groups

$$
Q_{n}(C(x), \gamma(x))= \begin{cases}\frac{A[x]}{2 A[x]+\left\{a-a^{2} x \mid a \in A[x]\right\}} & \text { if } n=-1, \\ \frac{\left\{a \in A[x] \mid a-a^{2} x \in 2 A[x]\right\}}{8 A[x]+\left\{4 b-4 b^{2} x \mid b \in A[x]\right\}} & \text { if } n=0, \\ \frac{\left\{a \in A[x] \mid a-a^{2} x \in 2 A[x]\right\}}{2 A[x]} & \text { if } n=1\end{cases}
$$

(as given by Theorem 54) are such that

$$
Q_{n}(C(x), \gamma(x)) \cong \begin{cases}A_{2}[x] & \text { if } n=-1 \\ A_{4}[x] \oplus A_{2}[x] & \text { if } n=0 \\ 0 & \text { if } n=1,\end{cases}
$$

with isomorphisms

$$
\begin{aligned}
& f_{-1}(x): Q_{-1}(C(x), \gamma(x)) \rightarrow A_{2}[x] ; \quad a=\sum_{i=0}^{\infty} a_{i} x^{i} \mapsto \sum_{i=0}^{\infty}\left(\sum_{j=0}^{\infty} a_{(2 i+1) 2^{j}-1}\right) x^{i}, \\
& f_{0}(x): Q_{0}(C(x), \gamma(x)) \rightarrow A_{4}[x] \oplus A_{2}[x]
\end{aligned}
$$

$$
\sum_{i=0}^{\infty} a_{i} x^{i} \mapsto\left(\sum_{i=0}^{\infty}\left(\sum_{j=0}^{\infty} a_{(2 i+1) 2^{j}-1} / 2\right) x^{i}, \sum_{k=0}^{\infty}\left(a_{2 k+1} / 2\right) x^{k}\right)
$$

The connecting map components $\partial(x)$ are given by

$$
\begin{aligned}
& \partial(x): H_{1}\left(C(1) \otimes_{A[x]} C(x)\right)=A_{2}[x] \rightarrow Q_{0}(C(x), \gamma(x)) ; c \mapsto(2 c, 0), \\
& \partial(x): H_{0}\left(C(1) \otimes_{A[x]} C(x)\right)=A_{2}[x] \rightarrow Q_{-1}(C(x), \gamma(x)) ; c \mapsto c .
\end{aligned}
$$

Proof. (i) We start with $Q_{1}(C(1), \gamma(1))$. A polynomial $a(x)=\sum_{i=0}^{\infty} a_{i} x^{i} \in A[x]$ is such that $a(x)-a(x)^{2} \in 2 A[x]$ if and only if

$$
a_{2 i+1}, a_{2 i+2}-\left(a_{i+1}\right)^{2} \in 2 A \quad(i \geqslant 0),
$$

if and only if $a_{k} \in 2 A$ for all $k \geqslant 1$, so that $f_{1}(1)$ is an isomorphism.
Next, we consider $Q_{-1}(C(1), \gamma(1))$. A polynomial $a(x)=\sum_{i=0}^{\infty} a_{i} x^{i} \in A[x]$ is such that

$$
a(x) \in 2 A[x]+\left\{b(x)-b(x)^{2} \mid b(x) \in A[x]\right\}
$$

if and only if there exist $b_{1}, b_{2}, \ldots \in A$ such that

$$
a_{0}=0, a_{1}=b_{1}, a_{2}=b_{2}-b_{1}, a_{3}=b_{3}, a_{4}=b_{4}-b_{2}, \ldots \in A_{2},
$$

if and only if

$$
a_{0}=\sum_{j=0}^{\infty} a_{(2 i+1) 2^{j}}=0 \in A_{2} \quad(i \geqslant 0)
$$

(with $b_{(2 i+1) 2^{j}}=\sum_{k=0}^{j} a_{(2 i+1) 2^{k}} \in A_{2}$ for any $\left.i, j \geqslant 0\right)$. Thus $f_{-1}(1)$ is well-defined and injective. The morphism $f_{-1}(1)$ is surjective, since

$$
\sum_{i=0}^{\infty} c_{i} x^{i}=f_{-1}(1)\left(c_{0}+\sum_{i=0}^{\infty} c_{i+1} x^{2 i+1}\right) \in A_{2}[x] \quad\left(c_{i} \in A\right) .
$$

The map $\widehat{Q}^{1}(C(1)) \rightarrow Q_{0}(C(1), \gamma(1))$ is given by

$$
\begin{aligned}
\widehat{Q}^{1}(C(1))=A_{2}[x] & \rightarrow Q_{0}(C(1), \gamma(1))=A_{8} \oplus A_{4}[x] \oplus A_{2}[x], \\
a & =\sum_{i=0}^{\infty} a_{i} x^{i} \mapsto\left(4 a_{0}, \sum_{i=0}^{\infty}\left(\sum_{j=0}^{\infty} 2 a_{(2 i+1) 2^{j}}\right) x^{i}, 0\right) .
\end{aligned}
$$

If $a=c^{2} x$ for $c=\sum_{i=0}^{\infty} c_{i} x^{i} \in A_{2}[x]$ then

$$
\left(4 a_{0}, \sum_{i=0}^{\infty}\left(\sum_{j=0}^{\infty} 2 a_{(2 i+1) 2^{j}}\right) x^{i}\right)=(0,2 c) \in A_{8} \oplus A_{4}[x]
$$

so that the composite

$$
\begin{aligned}
\partial(1): H_{1}\left(C(1) \otimes_{A[x]} C(x)\right) & =A_{2}[x] \rightarrow \widehat{Q}^{1}(C(1)) \rightarrow Q_{0}(C(1), \gamma(1)) \\
& =A_{8} \oplus A_{4}[x] \oplus \mathbb{Z}_{2}[x]
\end{aligned}
$$

is given by $c \mapsto(0,2 c, 0)$.
Next, we consider $Q_{0}(C(1), \gamma(1))$. A polynomial $a(x) \in A \oplus 2 x A[x]$ is such that

$$
a(x) \in 8 A[x]+\left\{4\left(b(x)-b(x)^{2}\right) \mid b(x) \in A[x]\right\}
$$

if and only if there exist $b_{1}, b_{2}, \ldots \in A$ such that

$$
a_{0}=0, a_{1}=4 b_{1}, a_{2}=4\left(b_{2}-b_{1}\right), a_{3}=4 b_{3}, a_{4}=4\left(b_{4}-b_{2}\right), \cdots \in A_{8}
$$

if and only if

$$
\begin{aligned}
& a_{1}=a_{2}=a_{3}=a_{4}=\cdots=0 \in A_{4} \\
& a_{0}=\sum_{j=0}^{\infty} a_{(2 i+1) 2^{j}}=0 \in A_{8} \quad(i \geqslant 0)
\end{aligned}
$$

Thus $f_{0}(1)$ is well-defined and injective. The morphism $f_{0}(1)$ is surjective, since

$$
\begin{aligned}
\left(a_{0}, \sum_{i=0}^{\infty} b_{i} x^{i}, \sum_{i=0}^{\infty} c_{i} x^{i}\right) & =f_{0}(1)\left(a_{0}+2 \sum_{i=0}^{\infty} b_{i} x^{2 i+1}+2 \sum_{i=0}^{\infty} c_{i} x^{2 i+2}\right) \\
& \in A_{8} \oplus A_{4}[x] \oplus A_{2}[x] \quad\left(a_{0}, b_{i}, c_{i} \in A\right)
\end{aligned}
$$

The map $\widehat{Q}^{0}(C(1)) \rightarrow Q_{-1}(C(1), \gamma(1))$ is given by

$$
\begin{aligned}
\widehat{Q}^{0}(C(1))=A_{2}[x] & \rightarrow Q_{-1}(C(1), \gamma(1))=A_{2}[x] \\
a & =\sum_{i=0}^{\infty} a_{i} x^{i} \mapsto a_{0}+\sum_{i=0}^{\infty}\left(\sum_{j=0}^{\infty} a_{(2 i+1) 2^{j}}\right) x^{i+1} .
\end{aligned}
$$

If $a=c^{2} x$ for $c=\sum_{i=0}^{\infty} c_{i} x^{i} \in A_{2}[x]$ then

$$
a_{0}+\sum_{i=0}^{\infty}\left(\sum_{j=0}^{\infty} a_{(2 i+1) 2^{j}}\right) x^{i+1}=c x \in A_{2}[x],
$$

so that the composite

$$
\partial(1): H_{0}\left(C(1) \otimes_{A[x]} C(x)\right)=A_{2}[x] \rightarrow \widehat{Q}^{0}(C(1)) \rightarrow Q_{-1}(C(1), \gamma(1))=A_{2}[x]
$$

is given by $c \mapsto c x$.
(ii) We start with $Q_{1}(C(x), \gamma(x))$. For any polynomial $a=\sum_{i=0}^{\infty} a_{i} x^{i} \in A[x]$

$$
a-a^{2} x=\sum_{i=0}^{\infty} a_{i} x^{i}-\sum_{i=0}^{\infty} a_{i} x^{2 i+1} \in A_{2}[x] .
$$

Now $a-a^{2} x \in 2 A[x]$ if and only if the coefficients $a_{0}, a_{1}, \ldots \in A$ are such that

$$
a_{0}=a_{1}-a_{0}=a_{2}=a_{3}-a_{1}=\cdots=0 \in A_{2}
$$

if and only if

$$
a_{0}=a_{1}=a_{2}=a_{3}=\cdots=0 \in A_{2} .
$$

It follows that $Q_{1}(C(x), \gamma(x))=0$.
Next, $Q_{-1}(C(x), \gamma(x))$. A polynomial $a=\sum_{i=0}^{\infty} a_{i} x^{i} \in A[x]$ is such that

$$
a \in 2 A[x]+\left\{b-b^{2} x \mid v \in A[x]\right\}
$$

if and only if there exist $b_{0}, b_{1}, \ldots \in A$ such that

$$
a_{0}=b_{0}, \quad a_{1}=b_{1}-b_{0}, \quad a_{2}=b_{2}, \quad a_{3}=b_{3}-b_{1}, \quad a_{4}=b_{4}, \quad \ldots \in A_{2},
$$

if and only if

$$
\sum_{j=0}^{\infty} a_{(2 i+1) 2^{j}-1}=0 \in A_{2} \quad(i \geqslant 0)
$$

Thus $f_{-1}(x)$ is well-defined and injective. The morphism $f_{-1}(x)$ is surjective, since

$$
\begin{aligned}
\sum_{i=0}^{\infty} c_{i} x^{i} & =f_{-1}(x)\left(\sum_{i=0}^{\infty} c_{i} x^{2 i}\right) \\
& \in A_{2}[x] \quad\left(c_{i} \in A\right)
\end{aligned}
$$

The map $\widehat{Q}^{0}(C(x)) \rightarrow Q_{-1}(C(x), \gamma(x))$ is given by

$$
\begin{aligned}
\widehat{Q}^{0}(C(x))=A_{2}[x] & \rightarrow Q_{-1}(C(x), \gamma(x))=A_{2}[x] ; \\
b & =\sum_{i=0}^{\infty} b_{i} x^{i} \mapsto \sum_{i=0}^{\infty}\left(\sum_{j=0}^{\infty} b_{(2 i+1) 2^{j}-1}\right) x^{i} .
\end{aligned}
$$

If $b=c^{2}$ for $c=\sum_{i=0}^{\infty} c_{i} x^{i} \in A_{2}[x]$ then

$$
\sum_{i=0}^{\infty}\left(\sum_{j=0}^{\infty} b_{(2 i+1) 2^{j}-1}\right) x^{i}=c \in A_{2}[x]
$$

so that the composite

$$
\partial(x): H_{0}\left(C(1) \otimes_{A[x]} C(x)\right)=A_{2}[x] \rightarrow \widehat{Q}^{0}(C(x)) \rightarrow Q_{-1}(C(x), \gamma(x))=A_{2}[x]
$$

is just the identity $c \mapsto c$.
Next, $Q_{0}(C(x), \gamma(x))$. For any $a \in A[x]$

$$
a \in 8 A[x]+\left\{4\left(b-b^{2} x\right) \mid b \in A[x]\right\}
$$

if and only there exist $b_{0}, b_{1}, \ldots \in A$ such that

$$
a_{0}=4 b_{0}, a_{1}=4\left(b_{1}-b_{0}\right), a_{2}=4 b_{2}, a_{3}=4\left(b_{3}-b_{1}\right), \cdots \in A_{8}
$$

if and only if

$$
\begin{aligned}
& a_{0}=a_{1}=a_{2}=a_{3}=\cdots=0 \in A_{4} \\
& \sum_{j=0}^{\infty} a_{(2 i+1) 2^{j}-1}=0 \in A_{8} \quad(i \geqslant 0)
\end{aligned}
$$

Thus $f_{0}(x)$ is well-defined and injective. The morphism $f_{0}(x)$ is surjective, since

$$
\begin{aligned}
\left(\sum_{i=0}^{\infty} c_{i} x^{i}, \sum_{i=0}^{\infty} d_{i} x^{i}\right) & =f_{0}(x)\left(\sum_{i=0}^{\infty} 2 c_{i} x^{2 i}+\sum_{i=0}^{\infty} 2 d_{i} x^{2 i+1}\right) \\
& \in A_{4}[x] \oplus A_{2}[x] \quad\left(c_{i}, d_{i} \in A\right) .
\end{aligned}
$$

The map $\widehat{Q}^{1}(C(x)) \rightarrow Q_{0}(C(x), \gamma(x))$ is given by

$$
\begin{aligned}
\widehat{Q}^{1}(C(x))=A_{2}[x] & \rightarrow Q_{0}(C(x), \gamma(x))=A_{4}[x] \oplus A_{2}[x] ; \\
b & =\sum_{i=0}^{\infty} b_{i} x^{i} \mapsto\left(\sum_{i=0}^{\infty}\left(\sum_{j=0}^{\infty} 2 b_{(2 i+1) 2^{j}-1}\right) x^{i}, 0\right) .
\end{aligned}
$$

If $b=c^{2}$ for $c=\sum_{i=0}^{\infty} c_{i} x^{i} \in A_{2}[x]$ then

$$
\sum_{i=0}^{\infty}\left(\sum_{j=0}^{\infty} 2 a_{(2 i+1) 2^{j}} x^{i}\right)=2 c \in A_{4}[x],
$$

so that the composite

$$
\begin{aligned}
\partial(x): H_{1}\left(C(1) \otimes_{A[x]} C(x)\right) & =A_{2}[x] \rightarrow \widehat{Q}^{1}(C(x)) \rightarrow Q_{0}(C(x), \gamma(x)) \\
& =A_{4}[x] \oplus A_{2}[x]
\end{aligned}
$$

is given by $c \mapsto(2 c, 0)$.
We can now prove Theorem B:
Theorem 86. The hyperquadratic L-groups of $A[x]$ for a 1 -even A with $\psi^{2}=1$ are given by

$$
\widehat{L}^{n}(A[x])=Q_{n}\left(B^{A[x]}, \beta^{A[x]}\right)= \begin{cases}A_{8} \oplus A_{4}[x] \oplus A_{2}[x]^{3} & \text { if } n \equiv 0(\bmod 4) \\ A_{2} & \text { if } n \equiv 1(\bmod 4) \\ 0 & \text { if } n \equiv 2(\bmod 4) \\ A_{2}[x] & \text { if } n \equiv 3(\bmod 4)\end{cases}
$$

(i) For $n=0$

$$
Q_{0}\left(B^{A[x]}, \beta^{A[x]}\right)=\frac{\left\{M \in \operatorname{Sym}_{2}(A[x]) \mid M-M X M \in \operatorname{Quad}_{2}(A[x])\right\}}{4 \operatorname{Quad}_{2}(A[x])+\left\{2\left(N+N^{t}\right)-4 N^{t} X N \mid N \in M_{2}(A[x])\right\}}
$$

An element $M \in Q_{0}\left(B^{A[x]}, \beta^{A[x]}\right)$ is represented by a matrix

$$
M=\left(\begin{array}{ll}
a & b \\
b & c
\end{array}\right) \in \operatorname{Sym}_{2}(A[x]) \quad\left(a=\sum_{i=0}^{\infty} a_{i} x^{i}, c=\sum_{i=0}^{\infty} c_{i} x^{i} \in A[x]\right)
$$

with $a-a_{0}, b, c \in 2 A[x]$. The isomorphism

$$
Q_{0}\left(B^{A[x]}, \beta^{A[x]}\right) \quad \cong \quad \widehat{L}^{0}(A[x])=\widehat{L}^{1}\left(A[x],(2)^{\infty}\right) ; M \mapsto\left(T_{M}, \lambda_{M}, \mu_{M} ; U_{M}\right)
$$

sends M to the Witt class of the nonsingular quadratic linking form $\left(T_{M}, \lambda_{M}, \mu_{M}\right)$ over $\left(A[x],(2)^{\infty}\right)$ with a lagrangian $U_{M} \subset T_{M}$ for $\left(T_{M}, \lambda_{M}\right)$ corresponding to the (-1)-quadratic (2) ${ }^{\infty}$-formation over $A[x]$

$$
\partial(M)=\left(H_{-}\left(A[x]^{4}\right) ; A[x]^{4}, \mathrm{im}\left(\binom{\left(\begin{array}{cc}
I & 0 \\
-2 X & I-X M
\end{array}\right)}{\left(\begin{array}{cc}
0 & 2 I \\
2 I & M
\end{array}\right)}: A[x]^{4} \rightarrow A[x]^{4} \oplus A[x]^{4}\right)\right)
$$

(80), with

$$
\partial: Q_{0}\left(B^{A[x]}, \beta^{A[x]}\right)=\widehat{L}^{0}(A[x]) \rightarrow L_{-1}(A[x]) ; \quad M \mapsto \partial(M)
$$

The inverse isomorphism is defined by the linking Arf invariant (79). Writing

$$
2 \Delta: A_{2}[x] \rightarrow A_{4}[x] \oplus A_{4}[x] ; \quad d \mapsto(2 d, 2 d)
$$

there are defined isomorphisms

$$
\begin{aligned}
& Q_{0}\left(B^{A[x]}, \beta^{A[x]}\right) \xrightarrow{\cong} A_{8} \oplus \operatorname{coker}(2 \Delta) \oplus A_{2}[x] \oplus A_{2}[x] ; \\
& M=\left(\begin{array}{cc}
a & b \\
b & c
\end{array}\right)=\left(\begin{array}{ll}
a & 0 \\
0 & c^{\prime}
\end{array}\right)\left(c^{\prime}=c-b^{2}\right) \\
& \mapsto\left(a_{0},\left[\sum_{i=0}^{\infty}\left(\sum_{j=0}^{\infty} a_{(2 i+1) 2^{j} / 2}\right) x^{i}, \sum_{i=0}^{\infty}\left(\sum_{j=0}^{\infty} c_{(2 i+1) 2^{j}-1}^{\prime} / 2\right) x^{i}\right], \sum_{k=0}^{\infty}\left(a_{2 k+2} / 2\right) x^{k},\right. \\
& \left.\sum_{k=0}^{\infty}\left(c_{2 k+1}^{\prime} / 2\right) x^{k}\right), \\
& \operatorname{coker}(2 \Delta) \xrightarrow{\cong} A_{4}[x] \oplus A_{2}[x] ;[d, e] \mapsto(d-e, d) .
\end{aligned}
$$

In particular $M \in Q_{0}\left(B^{A[x]}, \beta^{A[x]}\right)$ can be represented by a diagonal matrix $\left(\begin{array}{cc}a & 0 \\ 0 & c^{\prime}\end{array}\right)$.
(ii) For $n=1$:

$$
\begin{aligned}
& Q_{1}\left(B^{A[x]}, \beta^{A[x]}\right) \\
& \quad=\frac{\left\{N \in M_{2}(A[x]) \mid N+N^{t} \in 2 \operatorname{Sym}_{2}(A[x]), \frac{1}{2}\left(N+N^{t}\right)-N^{t} X N \in \operatorname{Quad}_{2}(A[x])\right\}}{2 M_{2}(A[x])}
\end{aligned}
$$

and there is defined an isomorphism

$$
Q_{1}\left(B^{A[x]}, \beta^{A[x]}\right) \quad \stackrel{\cong}{\Longrightarrow} Q_{1}\left(B^{A}, \beta^{A}\right)=A_{2} ; \quad N=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \mapsto a_{0},
$$

with

$$
\begin{aligned}
& \partial: Q_{1}\left(B^{A[x]}, \beta^{A[x]}\right)=\widehat{L}^{1}(A[x])=A_{2} \rightarrow L_{0}(A[x]) \\
& a_{0} \mapsto A[x] \otimes_{A}\left(A \oplus A,\left(\begin{array}{cc}
a_{0}\left(a_{0}-1\right) / 2 & 1-2 a_{0} \\
0 & -2
\end{array}\right)\right) .
\end{aligned}
$$

(iii) For $n=2$:

$$
Q_{2}\left(B^{A[x]}, \beta^{A[x]}\right)=0 .
$$

(iv) For $n=3$:

$$
Q_{3}\left(B^{A[x]}, \beta^{A[x]}\right)=\frac{\operatorname{Sym}_{2}(A[x])}{\operatorname{Quad}_{2}(A[x])+\left\{M-M X M \mid M \in \operatorname{Sym}_{2}(A[x])\right\}}
$$

There is defined an isomorphism

$$
\begin{aligned}
& Q_{3}\left(B^{A[x]}, \beta^{A[x]}\right) \xrightarrow{\cong} \quad A_{2}[x] ; \\
& M=\left(\begin{array}{ll}
a & b \\
b & c
\end{array}\right)=\left(\begin{array}{cc}
a^{\prime} & 0 \\
0 & c^{\prime}
\end{array}\right) \mapsto d_{0}+\sum_{i=0}^{\infty}\left(\sum_{j=0}^{\infty} d_{(2 i+1) 2^{j}}\right) x^{i+1} \\
& \left(a^{\prime}=a-b^{2} x, \quad c^{\prime}=c-b^{2} \in A[x], \quad d=a^{\prime}+c^{\prime} x=a+c x \in A_{2}[x]\right) .
\end{aligned}
$$

The isomorphism

$$
Q_{3}\left(B^{A[x]}, \beta^{A[x]}\right) \quad \cong \quad \widehat{L}^{3}(A[x]) ; \quad M=\left(\begin{array}{cc}
a & b \\
b & c
\end{array}\right) \mapsto\left(K_{M}, \psi_{M} ; L_{M}\right)
$$

sends M to the Witt class of the nonsingular (-1)-quadratic form over $A[x]$

$$
\left(K_{M}, \psi_{M}\right)=\left(A[x]^{2} \oplus A[x]^{2},\left(\begin{array}{cc}
X & 1 \\
0 & M
\end{array}\right)\right),
$$

with a lagrangian $L_{M}=A[x]^{2} \oplus 0 \subset K_{M}$ for $\left(K_{M}, \psi_{M}-\psi_{M}^{*}\right)$ (70), and

$$
\partial: Q_{3}\left(B^{A[x]}, \beta^{A[x]}\right)=\widehat{L}^{3}(A[x]) \rightarrow L_{2}(A[x]) ; \quad M \mapsto\left(K_{M}, \psi_{M}\right) .
$$

In particular $M \in Q_{3}\left(B^{A[x]}, \beta^{A[x]}\right)$ can be represented by a diagonal matrix $\left(\begin{array}{cc}a & 0 \\ 0 & c^{\prime}\end{array}\right)$. The inverse isomorphism is defined by the generalized Arf invariant (66).

Proof. Proposition 84 expresses $Q_{n}\left(B^{A[x]}, \beta^{A[x]}\right)$ in terms of 2×2 matrices. We deal with the four cases separately.
(i) Let $n=0$. Proposition 85 gives an exact sequence

$$
0 \rightarrow H_{1}\left(C(1) \otimes_{A[x]} C(x)\right) \quad \stackrel{\partial}{\longrightarrow} Q_{0}(C(1), \gamma(1)) \oplus Q_{0}(C(x), \gamma(x)) \rightarrow Q_{0}(C(X), \gamma(X)) \rightarrow 0
$$

with

$$
\begin{aligned}
& H_{1}\left(C(1) \otimes_{A[x]} C(x)\right)=A_{2}[x] \\
& \rightarrow Q_{0}(C(1), \gamma(1)) \oplus Q_{0}(C(x), \gamma(x))=\left(A_{8} \oplus A_{4}[x] \oplus A_{2}[x]\right) \oplus\left(A_{4}[x] \oplus A_{2}[x]\right) ; \\
& x
\end{aligned}
$$

so that there is defined an isomorphism

$$
\operatorname{coker}(\partial) \quad \stackrel{\cong}{\Longrightarrow} \quad A_{8} \oplus \operatorname{coker}(2 \Delta) \oplus A_{2}[x] \oplus A_{2}[x] ; \quad(s, t, u, v, w) \mapsto(s,[t, v], u, w) .
$$

We shall define an isomorphism $Q_{0}(C(X), \gamma(X)) \cong \operatorname{coker}(\partial)$ by constructing a splitting map

$$
Q_{0}(C(X), \gamma(X)) \rightarrow Q_{0}(C(1), \gamma(1)) \oplus Q_{0}(C(x), \gamma(x)) .
$$

An element in $Q_{0}(C(X), \gamma(X))$ is represented by a symmetric matrix

$$
M=\left(\begin{array}{ll}
a & b \\
b & c
\end{array}\right) \in \operatorname{Sym}_{2}(A[x])
$$

such that

$$
M-M X M=\left(\begin{array}{ll}
a-a^{2}-b^{2} x & b-a b-b c x \\
b-a b-b c x & c-b^{2}-c^{2} x
\end{array}\right) \in \operatorname{Quad}_{2}(A[x]),
$$

so that

$$
a-a^{2}-b^{2} x, c-b^{2}-c^{2} x \in 2 A[x] .
$$

Given $a=\sum_{i=0}^{\infty} a_{i} x^{i} \in A[x]$ let

$$
d=\max \left\{i \geqslant 0 \mid a_{i} \notin 2 A\right\} \quad(=0 \text { if } a \in 2 A[x])
$$

so that $a \in A_{2}[x]$ has degree $d \geqslant 0$,

$$
\left(a_{d}\right)^{2}=a_{d} \neq 0 \in A_{2}
$$

and $a-a^{2} \in A_{2}[x]$ has degree $2 d$. Thus if $b \neq 0 \in A_{2}[x]$ the degree of $a-a^{2}=b^{2} x \in$ $A_{2}[x]$ is both even and odd, so $b \in 2 A[x]$ and hence also $a-a^{2}, c-c^{2} x \in 2 A[x]$. It follows from $a(1-a)=0 \in A_{2}[x]$ that $a=0$ or $1 \in A_{2}[x]$, so $a-a_{0} \in 2 A[x]$. Similarly, it follows from $c(1-c x)=0 \in A_{2}[x]$ that $c=0 \in A_{2}[x]$, so $c \in 2 A[x]$. The matrices defined by

$$
N=\left(\begin{array}{cc}
0 & -b / 2 \\
0 & 0
\end{array}\right) \in M_{2}(A[x]), \quad M^{\prime}=\left(\begin{array}{cc}
a & 0 \\
0 & c-b^{2}
\end{array}\right) \in \operatorname{Sym}_{2}(A[x])
$$

are such that

$$
M+2\left(N+N^{t}\right)-4 N^{t} X N=M^{\prime} \in \operatorname{Sym}_{2}(A[x])
$$

and so $M=M^{\prime} \in Q_{0}(C(X), \gamma(X))$. The explicit splitting map is given by

$$
Q_{0}(C(X), \gamma(X)) \rightarrow Q_{0}(C(1), \gamma(1)) \oplus Q_{0}(C(x), \gamma(x)) ; \quad M=M^{\prime} \mapsto\left(a, c-b^{2}\right)
$$

The isomorphism

$$
Q_{0}(C(X), \gamma(X)) \quad \stackrel{\cong}{\Longrightarrow} \operatorname{coker}(\partial) ; \quad M \mapsto\left(a, c-b^{2}\right)
$$

may now be composed with the isomorphisms given in the proof of Proposition 85(i)

$$
\begin{aligned}
& Q_{0}(C(1), \gamma(1)) \xrightarrow{\cong} A_{8} \oplus A_{4}[x] \oplus A_{2}[x] ; \\
& \sum_{i=0}^{\infty} d_{i} x^{i} \mapsto\left(d_{0}, \sum_{i=0}^{\infty}\left(\sum_{j=0}^{\infty} d_{(2 i+1) 2^{j}} / 2\right) x^{i}, \sum_{k=0}^{\infty}\left(d_{2 k+2} / 2\right) x^{k}\right), \\
& \cong \\
& Q_{0}(C(x), \gamma(x)) \xrightarrow{\cong} A_{4}[x] \oplus A_{2}[x] ; \\
& \sum_{i=0}^{\infty} e_{i} x^{i} \mapsto\left(\sum_{i=0}^{\infty}\left(\sum_{j=0}^{\infty} e_{(2 i+1) 2^{j}-1} / 2\right) x^{i}, \sum_{k=0}^{\infty}\left(e_{2 k+1} / 2\right) x^{k}\right)
\end{aligned}
$$

(ii) Let $n=1$. If $N=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in M_{2}(A[x])$ represents an element $N \in Q_{1}$ $\left(B^{A[x]}, \beta^{A[x]}\right)$

$$
\begin{aligned}
& N+N^{t}=\left(\begin{array}{cc}
2 a & b+c \\
b+c & 2 d
\end{array}\right) \in 2 \operatorname{Sym}_{2}(A[x]), \\
& \begin{aligned}
& \frac{1}{2}\left(N+N^{t}\right)-N^{t} X N=\left(\begin{array}{cc}
a & (b+c) / 2 \\
(b+c) / 2 & d
\end{array}\right)-\left(\begin{array}{cc}
a^{2}+c^{2} x & a b+c d x \\
a b+c d x & b^{2}+d^{2} x
\end{array}\right) \\
& \in \operatorname{Quad}_{2}(A[x])
\end{aligned}
\end{aligned}
$$

then

$$
b+c, a-a^{2}-c^{2} x, d-b^{2}-d^{2} x \in 2 A[x]
$$

If $d \notin 2 A[x]$ then the degree of $d-d^{2} x=b^{2} \in A_{2}[x]$ is both even and odd, so that $d \in 2 A[x]$ and hence $b, c \in 2 A[x]$. Thus $a-a^{2} \in 2 A[x]$ and so (as above) $a-a_{0} \in 2 A[x]$. It follows that

$$
Q_{1}\left(B^{A[x]}, \beta^{A[x]}\right)=Q_{1}\left(B^{A}, \beta^{A}\right)=A_{2}
$$

(iii) Let $n=2 . Q_{2}\left(B^{A[x]}, \beta^{A[x]}\right)=0$ by 85 .
(iv) Let $n=3$. Proposition 85 gives an exact sequence

$$
0 \rightarrow H_{0}\left(C(1) \otimes_{A[x]} C(x)\right) \quad \xrightarrow{\partial} \quad Q_{-1}(C(1), \gamma(1)) \oplus Q_{-1}(C(x), \gamma(x)) \rightarrow Q_{3}(C(X), \gamma(X)) \rightarrow 0
$$

with

$$
\begin{aligned}
& \partial: H_{0}\left(C(1) \otimes_{A[x]} C(x)\right)=A_{2}[x] \rightarrow \\
& Q_{-1}(C(1), \gamma(1)) \oplus Q_{-1}(C(x), \gamma(x))=A_{2}[x] \oplus A_{2}[x] ; c \mapsto(c x, c),
\end{aligned}
$$

so that there is defined an isomorphism

$$
\operatorname{coker}(\partial) \quad \xrightarrow{\cong} A_{2}[x] ; \quad(a, b) \mapsto a+b x
$$

We shall define an isomorphism $Q_{3}(C(X), \gamma(X)) \cong \operatorname{coker}(\partial)$ by constructing a splitting map

$$
Q_{3}(C(X), \gamma(X)) \rightarrow Q_{-1}(C(1), \gamma(1)) \oplus Q_{-1}(C(x), \gamma(x))
$$

For any $M=\left(\begin{array}{ll}a & b \\ b & c\end{array}\right) \in \operatorname{Sym}_{2}(A[x])$ the matrices

$$
L=\left(\begin{array}{cc}
0 & -b \\
-b & 0
\end{array}\right), \quad M^{\prime}=\left(\begin{array}{cc}
a-b^{2} x & 0 \\
0 & c-b^{2}
\end{array}\right) \in \operatorname{Sym}_{2}(A[x])
$$

are such that

$$
M^{\prime}=M+L-L X L \in \operatorname{Sym}_{2}(A[x])
$$

so $M=M^{\prime} \in Q_{3}(C(X), \gamma(X))$. The explicit splitting map is given by

$$
\begin{aligned}
& Q_{3}(C(X), \gamma(X)) \rightarrow Q_{-1}(C(1), \gamma(1)) \oplus Q_{-1}(C(x), \gamma(x)) \\
& M=M^{\prime} \mapsto\left(a-b^{2} x, c-b^{2}\right) .
\end{aligned}
$$

The isomorphism

$$
Q_{3}(C(X), \gamma(X)) \quad \cong \quad Q_{-1}(C(1), \gamma(1)) ; M \mapsto\left(a-b^{2} x\right)+\left(c-b^{2}\right) x=a+c x
$$

may now be composed with the isomorphism given in the proof of Proposition 85(ii)

$$
Q_{-1}(C(1), \gamma(1)) \quad \cong \quad A_{2}[x] ; \quad d=\sum_{i=0}^{\infty} d_{i} x^{i} \mapsto d_{0}+\sum_{i=0}^{\infty}\left(\sum_{j=0}^{\infty} d_{(2 i+1) 2^{j}}\right) x^{i+1}
$$

Remark 87. (i) Substituting the computation of $Q_{*}\left(B^{\mathbb{Z}}[x], \beta^{\mathbb{Z}}[x]\right)$ given by Theorem 86 in the formula

$$
Q_{n+1}\left(B^{\mathbb{Z}[x]}, \beta^{\mathbb{Z}[x]}\right)=Q_{n+1}\left(B^{\mathbb{Z}}, \beta^{\mathbb{Z}}\right) \oplus \operatorname{UNil}_{n}(\mathbb{Z})
$$

recovers the computations

$$
\operatorname{UNil}_{n}(\mathbb{Z})=N L_{n}(\mathbb{Z})= \begin{cases}0 & \text { if } n \equiv 0,1(\bmod 4) \\ \mathbb{Z}_{2}[x] & \text { if } n \equiv 2(\bmod 4) \\ \mathbb{Z}_{4}[x] \oplus \mathbb{Z}_{2}[x]^{3} & \text { if } n \equiv 3(\bmod 4)\end{cases}
$$

of Connolly and Ranicki [10] and Connolly and Davis [8].
(ii) The twisted quadratic Q-group

$$
Q_{0}\left(B^{\mathbb{Z}[x]}, \beta^{\mathbb{Z}[x]}\right)=\mathbb{Z}_{8} \oplus L_{-1}(\mathbb{Z}[x])=\mathbb{Z}_{8} \oplus \operatorname{UNil}_{3}(\mathbb{Z})
$$

fits into a commutative braid of exact sequences

with $L_{0}\left(\mathbb{Z}[x],(2)^{\infty}\right)$ (resp. $L^{0}\left(\mathbb{Z}[x],(2)^{\infty}\right)$) the Witt group of nonsingular quadratic (resp. symmetric) linking forms over $\left(\mathbb{Z}[x],(2)^{\infty}\right)$, and

$$
L^{0}\left(\mathbb{Z}[x],(2)^{\infty}\right) \quad \stackrel{\cong}{\Longrightarrow} \mathbb{Z}_{2} ; \quad(T, \lambda) \mapsto n \text { if }\left|\mathbb{Z} \otimes_{\mathbb{Z}[x]} T\right|=2^{n} .
$$

The twisted quadratic Q-group $Q_{0}\left(B^{\mathbb{Z}}[x], \beta^{\mathbb{Z}[x]}\right)$ is thus the Witt group of nonsingular quadratic linking forms (T, λ, μ) over $\left(\mathbb{Z}[x]\right.$, (2) ${ }^{\infty}$) with $\left|\mathbb{Z} \otimes_{\mathbb{Z}}[x] T\right|=4^{m}$ for some $m \geqslant 0 . Q_{0}\left(B^{\mathbb{Z}}[x], \beta^{\mathbb{Z}[x]}\right)$ can also be regarded as the Witt group of nonsingular quadratic linking forms (T, λ, μ) over $\left(\mathbb{Z}[x],(2)^{\infty}\right)$ together with a lagrangian $U \subset T$ for the symmetric linking form (T, λ). The isomorphism class of any such quadruple $(T, \lambda, \mu ; U)$ is an element $\phi \in Q_{0}(B, \beta)$. The chain bundle β is classified by a chain bundle map

$$
(f, \chi):(B, \beta) \rightarrow\left(B^{\mathbb{Z}[x]}, \beta^{\mathbb{Z}[x]}\right)
$$

and the Witt class is given by the linking Arf invariant

$$
(T, \lambda, \mu ; U)=(f, \chi) \%(\phi) \in Q_{0}\left(B^{\mathbb{Z}[x]}, \beta^{\mathbb{Z}[x]}\right)=\mathbb{Z}_{8} \oplus \mathbb{Z}_{4}[x] \oplus \mathbb{Z}_{2}[x]^{3}
$$

(iii) Here is an explicit procedure obtaining the generalized linking Arf invariant

$$
(T, \lambda, \mu ; U) \in Q_{0}\left(B^{A[x]}, \beta^{A[x]}\right)=A_{8} \oplus A_{4}[x] \oplus A_{2}[x]^{3}
$$

for a nonsingular quadratic linking form (T, λ, μ) over $\left(A[x],(2)^{\infty}\right)$ together with a lagrangian $U \subset T$ for the symmetric linking form (T, λ) such that $[U]=0 \in \widetilde{K}_{0}(A[x])$, for any 1 -even ring A with $\psi^{2}=1$.

Use a set of $A[x]$-module generators $\left\{g_{1}, g_{2}, \ldots, g_{u}\right\} \subset U$ to obtain a f.g. free $A[x]$-module resolution

$$
0 \rightarrow B_{1} \quad \xrightarrow{d} B_{0}=A[x]^{u} \xrightarrow{\left(g_{1}, g_{2}, \ldots, g_{u}\right)} \quad U \rightarrow 0
$$

Let $\left(p_{i}, q_{i}\right) \in A_{2}[x] \oplus A_{2}[x]$ be the unique elements such that

$$
\mu\left(g_{i}\right)=\left(p_{i}\right)^{2}+x\left(q_{i}\right)^{2} \in \widehat{H}^{0}\left(\mathbb{Z}_{2} ; A[x]\right)=A_{2}[x] \quad(1 \leqslant i \leqslant u)
$$

and use arbitrary lifts $\left(p_{i}, q_{i}\right) \in A[x] \oplus A[x]$ to define

$$
\begin{aligned}
& b_{i}=\left(p_{i}\right)^{2}+x\left(q_{i}\right)^{2} \in A[x] \\
& p=\left(p_{1}, p_{2}, \ldots, p_{u}\right), q=\left(q_{1}, q_{2}, \ldots, q_{u}\right) \in A[x]^{u} .
\end{aligned}
$$

The diagonal symmetric form on B_{0},

$$
\beta=\left(\begin{array}{cccc}
b_{1} & 0 & \ldots & 0 \\
0 & b_{2} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & b_{u}
\end{array}\right) \in \operatorname{Sym}\left(B_{0}\right)
$$

is such that

$$
d^{*} \beta d \in \operatorname{Quad}\left(B_{1}\right) \subset \operatorname{Sym}\left(B_{1}\right)
$$

and represents the chain bundle

$$
\beta=\left.\mu\right|_{U} \in \widehat{Q}^{0}\left(B^{-*}\right)=\operatorname{Hom}_{A}\left(U, \widehat{H}^{0}\left(\mathbb{Z}_{2} ; A[x]\right)\right)
$$

The $A[x]$-module morphisms

$$
\begin{aligned}
& f_{0}=\binom{p}{q}: B_{0}=A[x]^{u} \rightarrow B_{0}^{A[x]}=A[x] \oplus A[x] ; \quad\left(a_{1}, a_{2}, \ldots, a_{u}\right) \mapsto \sum_{i=1}^{u} a_{i}\left(p_{i}, q_{i}\right), \\
& f_{1}: B_{1}=A[x]^{u} \rightarrow B_{1}^{A[x]}=A[x] \oplus A[x] ; \quad a=\left(a_{1}, a_{2}, \ldots, a_{u}\right) \mapsto \frac{f_{0} d(a)}{2}
\end{aligned}
$$

define a chain bundle map

$$
(f, 0):(B, \beta) \rightarrow\left(B^{A[x]}, \beta^{A[x]}\right)
$$

with

$$
\beta_{0}^{A[x]}=\left(\begin{array}{ll}
1 & 0 \\
0 & x
\end{array}\right): B_{0}^{A[x]}=A[x] \oplus A[x] \rightarrow\left(B_{0}^{A[x]}\right)^{*}=A[x] \oplus A[x] .
$$

The (2) ${ }^{\infty}$-torsion dual of U has f.g. free $A[x]$-module resolution

$$
0 \rightarrow B^{0}=A[x]^{u} \quad \xrightarrow{d^{*}} \quad B^{1} \rightarrow U^{\wedge} \rightarrow 0
$$

Lift a set of $A[x]$-module generators $\left\{h_{1}, h_{2}, \ldots, h_{u}\right\} \subset U^{\wedge}$ to obtain a basis for B^{1}, and hence an identification $B^{1}=A[x]^{u}$. Also, lift these generators to elements $\left\{h_{1}, h_{2}, \ldots, h_{u}\right\} \subset T$, so that $\left\{g_{1}, g_{2}, \ldots, g_{u}, h_{1}, h_{2}, \ldots, h_{u}\right\} \subset T$ is a set of $A[x]-$ module generators such that

$$
d^{-1}=\left(\lambda\left(g_{i}, h_{j}\right)\right) \in \frac{\operatorname{Hom}_{A[1 / 2][x]}\left(B_{0}[1 / 2], B_{1}[1 / 2]\right)}{\operatorname{Hom}_{A[x]}\left(B_{0}, B_{1}\right)} .
$$

Lift the symmetric $u \times u$ matrix $\left(\lambda\left(h_{i}, h_{j}\right)\right)$ with entries in $A[1 / 2][x] / A[x]$ to a symmetric form on the f.g. free $A[1 / 2][x]$-module $B^{1}[1 / 2]=A[1 / 2][x]^{u}$:

$$
\Lambda=\left(\lambda_{i j}\right) \in \operatorname{Sym}\left(B^{1}[1 / 2]\right)
$$

such that $\lambda_{i i} \in A[1 / 2][x]$ has image $\mu\left(h_{i}\right) \in A[1 / 2][x] / 2 A[x]$. Let $\phi=\left(\phi_{i j}\right)$ be the symmetric form on $B^{0}=A[x]^{u}$ defined by

$$
\phi=d \Lambda d^{*} \in \operatorname{Sym}\left(B^{0}\right) \subset \operatorname{Sym}\left(B^{0}[1 / 2]\right)
$$

Then T has a f.g. free $A[x]$-module resolution

$$
0 \rightarrow B_{1} \oplus B^{0} \xrightarrow{\left(\begin{array}{cc}
0 & d^{*} \\
d & \phi
\end{array}\right)} B^{1} \oplus B_{0} \xrightarrow{\left(g_{1}, \ldots, g_{u}, h_{1}, \ldots, h_{u}\right)} T \rightarrow 0
$$

and

$$
\phi_{i i}-\sum_{j=1}^{u}\left(\phi_{i j}\right)^{2} b_{j} \in 2 A[x] .
$$

The symmetric form on $\left(B_{0}^{A[x]}\right)^{*}=A[x] \oplus A[x]$ defined by

$$
\begin{aligned}
& \left(\begin{array}{ll}
a & b \\
b & c
\end{array}\right)=f_{0} \phi f_{0}^{*}=\left(\begin{array}{ll}
\phi(p, p) & \phi(p, q) \\
\phi(q, p) & \phi(q, q)
\end{array}\right) \in \operatorname{Sym}\left(\left(B_{0}^{A[x]}\right)^{*}\right) \\
& \left(p=\left(p_{1}, p_{2}, \ldots, p_{u}\right), q=\left(q_{1}, q_{2}, \ldots, q_{u}\right) \in B^{0}=A[x]^{u}\right)
\end{aligned}
$$

is of the type considered in the proof of Theorem 86(i), with

$$
a-a^{2}=b^{2} x, c-c^{2} x=b^{2} \in A_{2}[x], \quad b \in 2 A[x] .
$$

The Witt class is

$$
\begin{aligned}
(T, \lambda, \mu ; U) & =(f, 0)_{\%}(\phi) \\
& =\left(\begin{array}{ll}
a & b \\
b & c
\end{array}\right)=\left(\begin{array}{cc}
a & 0 \\
0 & c^{\prime}
\end{array}\right) \in Q_{0}\left(B^{A[x]}, \beta^{A[x]}\right) \quad\left(c^{\prime}=c-b^{2}\right),
\end{aligned}
$$

with isomorphisms

$$
\begin{aligned}
& Q_{0}\left(B^{A[x]}, \beta^{A[x]}\right) \stackrel{\cong}{\cong} A_{8} \oplus \operatorname{coker}(2 \Delta) \oplus A_{2}[x] \oplus A_{2}[x] ; \\
& \left(\begin{array}{cc}
a & 0 \\
0 & c^{\prime}
\end{array}\right) \mapsto\left(a_{0},\left[\sum_{i=0}^{\infty}\left(\sum_{j=0}^{\infty} a_{(2 i+1) 2^{j} / 2}\right) x^{i}, \sum_{i=0}^{\infty}\left(\sum_{j=0}^{\infty} c^{\prime}(2 i+1) 2^{j}-1 / 2\right) x^{i}\right],\right. \\
& \\
& \left.\sum_{k=0}^{\infty}\left(a_{2 k+2} / 2\right) x^{k}, \sum_{k=0}^{\infty}\left(c_{2 k+1}^{\prime} / 2\right) x^{k}\right), \\
& \\
& \operatorname{coker}(2 \Delta) \stackrel{y}{\cong} \quad A_{4}[x] \oplus A_{2}[x] ;[m, n] \mapsto(m-n, m),
\end{aligned}
$$

where

$$
2 \Delta: A_{2}[x] \rightarrow A_{4}[x] \oplus A_{4}[x] ; \quad m \mapsto(2 m, 2 m)
$$

as in Theorem 86, and

$$
Q_{0}\left(B^{A[x]}, \beta^{A[x]}\right)=A_{8} \oplus A_{4}[x] \oplus A_{2}[x]^{3}
$$

For Dedekind A the splitting formula of [10] gives

$$
\operatorname{UNil}_{3}(A) \cong Q_{0}\left(B^{A[x]}, \beta^{A[x]}\right) / A_{8} \cong A_{4}[x] \oplus A_{2}[x]^{3}
$$

Acknowledgments

We are grateful to Joerg Sixt and the referees for some helpful comments.

References

[1] C. Arf, Untersuchungen über quadratische Formen in Körpern der Charakteristik 2. I., J. Reine Angew. Math. 183 (1941) 148-167.
[2] A. Bak, Arf's theorem for trace noetherian rings, J. Pure Appl. Algebra 14 (1979) 1-20.
[3] S.E. Cappell, Splitting obstructions for hermitian forms and manifolds with $\mathbb{Z}_{2} \subset \pi_{1}$, Bull. Amer. Math. Soc. 79 (1973) 909-913.
[4] S.E. Cappell, Unitary nilpotent groups and hermitian K-theory, Bull. Amer. Math. Soc. 80 (1974) 1117-1122.
[5] S.E. Cappell, Manifolds with fundamental group a generalized free product, Bull. Amer. Math. Soc. 80 (1974) 1193-1198.
[6] S.E. Cappell, A splitting theorem for manifolds, Invent. Math. 33 (1976) 69-170.
[7] F. Clauwens, L-theory and the Arf invariant, Invent. Math. 30 (1975) 197-206.
[8] F.X. Connolly, J.F. Davis, The surgery obstruction groups of the infinite dihedral group, Geom. Topol. 8 (2004) 1043-1078 e-print http://arXiv.org/abs/math/0306054.
[9] F.X. Connolly, T. Koźniewski, Nil groups in K-theory and surgery theory, Forum Math. 7 (1995) 45-76.
[10] F.X. Connolly, A.A. Ranicki, On the calculation of UNil ${ }_{*}$, Adv. Math. 195 (2005) 205-258 (2005), e-print http://arXiv.org/abs/math.AT/0304016.
[11] F.T. Farrell, The exponent of UNil, Topology 18 (1979) 305-312.
[12] F. Hirzebruch, W.D. Neumann, S.S. Koh, Differentiable Manifolds and Quadratic Forms, Marcel Dekker, New York, 1971.
[13] A.S. Mishchenko, Homotopy invariants of non-simply connected manifolds III. Higher signatures, Izv. Akad. Nauk Ser. Mat. 35 (1971) 1316-1355.
[14] F. Quinn, Surgery on Poincaré and normal spaces, Bull. Amer. Math. Soc. 78 (1972) 262-267.
[15] A.A. Ranicki, The algebraic theory of surgery I. Foundations, Proc. London Math. Soc. 40 (3) (1980) 87-192.
[16] A.A. Ranicki, Exact Sequences in the Algebraic Theory of Surgery, Mathematical Notes, vol. 26, Princeton, 1981.
[17] A.A. Ranicki, High-dimensional Knot Theory, Springer, Berlin, 1998.
[18] A.A. Ranicki, Algebraic Poincaré cobordism, in: Topology, Geometry, and Algebra: Interactions and New Directions, Proceedings 1999 Milgram Conference, Stanford, Contemporary Mathematics, vol. 279, American Mathematical Society, Providence, RI, 2001, pp. 213-255, e-print http://arXiv.org/abs/math/0008228.
[19] F. van der Blij, An invariant of quadratic forms mod 8, Indag. Math. 21 (1959) 291-293.
[20] C.T.C. Wall, Surgery on Compact Manifolds, second ed., American Mathematical Society, Mathematical Surveys and Monographs, vol. 69, American Mathematical Society, Providence, RI, 1999.
[21] M. Weiss, Surgery and the generalized Kervaire invariant, Proc. London Math. Soc. 51(3) (1985) I. 146-192, II. 193-230.
[22] P. Wolters, Generalized Arf invariants and reduced power operations in cyclic homology, Nijmegen Ph.D. Thesis, 1990, e-print http://arXiv.org/abs/math/0503538.

[^0]: * Corresponding author.

 E-mail addresses: banagl@mathi.uni-heidelberg.de (M. Banagl), a.ranicki@ed.ac.uk (A. Ranicki).
 ${ }^{1}$ In part supported by the European Union TMR network project ERB FMRX CT-97-0107 "Algebraic K-theory, linear algebraic groups and related structures".

