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Introduction

The theory of algebraic surgery on chain complexes with an abstract
Poincaré duality developed in Part I (Ranicki [22]) is applied here to the
study of geometric surgery on manifolds.

In §2 {respectively §4, §9} below we shall associate an n-dimensional
symmetric Poincaré {respectively quadratic Poincaré, hyperquadratic}
complex over Z[m(X)] o*(X) {respectively o.(f,b), *(»)} to an n-
dimensional geometric Poincaré complex X {an n-dimensional normal
map (f: M - X,b: vyy - vx), a stable spherical fibration p: X - B@
over an n-dimensional CW complex X} such that

(1+T)oy(f,0)® o*(X) = o*(H),

Jo*¥(X) = 0*(vx).
The quadratic signature o,(f,b) € L,(Z[m,(X)]) will be identified in §7
with the Wall surgery obstruction. The Mishchenko symmetric signature

invariant o*(X) € L*(Z[m,(X)]) appears in the product formula for surgery
obstructions obtained in §8,

ox(fxg: MxN > Xx Y, bdc: Yy X VN —> vy XVy)
| = 04(f,6)® 04(9,¢) + *(X) ® 04(9,¢) + 04(f, ) ® *(Y)
€ Ly yn(Z[m(X x T))).

In §9 there is obtained a formula describing the effect on the surgery
obstruction o(f,b) € L,(Z[m(X)]) of a change in the bundle map
b: vyy > vx. It turns out that the surgery obstruction of a ([3n]—1)-
connected n-dimensional normal map (f,b) is independent of b for
n #2367 14,15,
Part II contains the following sections:

§1. The chain constructions;

§2. Geometric Poincaré complexes;

§3. Equivariant S-duality;

§4. Normal maps;

§ 5. Intersections and self-intersections;

§6. Geometric Poincaré cobordism;
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§7. Geometric surgery;
§8. Products;
§9. Wu classes.

1. The chain constructions

We develop two chain level constructions on topological spaces, which
we shall use in §2 to obtain algebraic Poincaré complexes from geometric
Poincaré complexes. The ‘symmetric construction’ associates to the
singular chain complex C(X) of a topological space X a natural chain
‘homotopy class of chain maps

¢x: C(X) > Homgy, (W, C(X) ®, C(X)),
inducing abelian group morphisms in homology
ox: H,(X) ~ H,(Homg, (W, C(X)®, C(X))) = @ (C(X)).

In fact, px is the Alexander-Whitney diagonal approximation underlying
the construction of the Steenrod squares, which may be recovered from
px: H(X) - @QYC(X)) by applying the symmetric Wu class operations
v, of §1.1. The ‘quadratic construction’ associates to a stable map of
spaces F': 27X — ZPY (p large) a natural chain homotopy class of chain
maps

pp: O(X) > W®g4,(C(Y)®,0(Y)),

inducing abelian group morphisms in homology
The two constructions are related to each other by

frex—erfe = 1+ Tip: Hy(X) > @4C(Y)),
where f: C(X) - C(Y) is any of the chain maps in the chain homotopy
class of the composite
P F (Z7)

C(X) — QPC(ZPX) —— QPC(ZPY) —— C(Y).
If fisinduced by a geometric map, that isif F = ZP F for some F: X — Y,
then

$r = 0: Hy(X) > @,(C(Y)),
fox—prfa = 0: H(X) - @YC(Y)).

Thus the quadratic construction ¢ is a chain level desuspension obstruc-
tion, and measures the failure of f to respect the symmetric constructions
¢x,9y. The effect of applying the quadratic Wu class operations v” to

Yp: Hy(X) > @,(C(Y)) can be expressed in terms of the functional
Steenrod squares.
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Actually, we shall develop the symmetric and quadratic constructions
in the context of spaces with a discrete group action and equivariant
maps, in order to deal with the action of the group of covering translations
7 on the singular chain complex C(X) of a covering X of a space X.

Let R be a commutative ring with 1.
Write the singular R-module chain complex functor as

C( ; R): (topological spaces) - (R-module chain complexes);
X+ C(X; R),
and denote the homology and cohomology R-modules by
H.(C(X; R)) = Hy(X; R), H*C(X; R)) = H*X; R).
As usual, for R = Z we write
O(X; Z) = O(X), Hy(X;Z)=Hd(X), H*X;Z)=H¥X).
(Thus C(X; R) = R®,C(X).)
ProrosiTiON 1.1. (i) There exists a functorial diagonal chain map
A: C( ; R) - Homy, (W,C( ; R)®zC( ; R));
that is for each topological space X there is given an R-module chain ma,p
Ax: C(X; R) - Homy, (W,C(X; R)®zC(X; R)),

such that for any map of spaces f: X — Y there is defined a commutative
diagram of R-module chain complexes

A
C(X; B) —=— Homg, (W,C(X; R)®zC(X; R))

f [l%
Ay
C(Y; R) —— Homg,, (W,C(Y; R)®C(Y; R))
with T' € Z, acting on C(X; R)@rC(X; R) by

T: Cp(X; R)Y®RrCYX; R) > CX; R)®RrCy(X; R); 2@y = (— )Py ®@x.

(il) Any two such functorial diagonal chain maps A,A’ are related by a
functorial chain homotopy

I''A~A: C( ; B)— Homgy (W,C( ; R)®gC( ; R)).
Any two such chain homotopies are related by a functorial homotopy.
Proof. The proof is by standard acyclic model theory.

We recall the construction from Ay of the squaring operations intro-
duced by Steenrod [26].
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The Steenrod squares of a topological space X are the Z,-module
morphisms

8¢': H'(X; Z,) > H¥(X; Z,);

(¢: CAX; Zy) > Zs) > (Sq¥(c) = (c®C)Ax(—)(1,—g): CrpelX; Zy) > Zy)
with
Z(Z,) (r=>1)
0 (r <)
the generator, and Ay any of the diagonal chain approximations given
by Proposition 1.1(i) for R = Z,.

The functional Steenrod squares of a map of spaces f: X — Y are the
Z,-module morphisms

L seW= [

*
Sqi: ker((gqi): HY; Z,) > H(X; Z,) @ H+{(Y; Zz))
— coker((Sq* f*): HYX; Z,)® H+YY; Z,) > H+YX; Z,));
(c: C(Y; Zy) > Zy) > (SQ;(C)
= (9®9)(Ax(—)(1—s1) + (1@ dx)Ax(—)(1,-0) +hf: Crpss(X; Zy) > Zy)
(of = gdx: CAX; Zg) > Zy, 9: C,1(X; Zy) > Zy,
(€®c)Ap(—=)(1,) = kdy: CoiY; Zy) = Zy, h: Coi (Y Zy) > Zy).
Let = be a group, and let R[] be the group ring with elements formal
sums Y, ., 7,9 (n, € R) such that only a finite number of the coefficients
7, is not 0.
Given a group morphism w: 7 — Z,={+1} define the w-twisted
involution on R[~]
—: R[#] - R[n]; X n,g a§ w(g)n,g1.

gen

The untwisted involution on R[] is the w-twisted involution in the case
where w = 1 (so that § = g~ (g € m)).

We refer to §1 of Part I for our conventions and definitions regarding
modules over a ring with involution.

Given an R[n]-module M let *M denote the R[n]-module defined by the
additive group of M, with R[=] acting by

R[n]x¥M — vM; (ﬂ‘}‘ﬂngg, x) — g‘?"ngw(g)(gx).

The right R[#]-module (¥YM)' (respectively the dual R[=]-module (¥.M)*)
defined with respect to the untwisted involution on R[r] is the same as
the right R[#]-module M* (respectively the dual R[7]-module M*) defined
with respect to the w-twisted involution on R[~].
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A 7-action on a topological space X is a continuous function
ax X - X; (9,%) = gx
(with the discrete topology on =), such that
g(hz) = (gh)2,
lx=x (xeX,g,hemn).

The singular chain complex C(X; R) is an R[n]-module chain complex,
and there are defined homology and cohomology R[m]}-modules

H(X;R) = H(C(X; R)), H*X; R)=H*C(X; R))
using the untwisted dual R[#]-module structure on
C(X; R)* = Homp,(C(X; R), R[n]).
For R = Z write
H(X;Z)= H,(X), H¥X; Z)= H*X).

(Warning: if = is infinite A*(X) is not the singular cohomology of X.)
Define also the homology and cohomology R-modules of a space with
m-action X taking coefficients in an R[#]-module M,

Hi(X; M) = H(C(X; M), HHX; M)=H*CX; M)),
using the R-module chain complex
CX; M)= M'®p, C(X; R).

Given a group morphism w: = — Z, there are natural identifications of
R[7]-modules

YH(X; R) = H,(¥C(X; R)), *H*(X; R)=H*(*C(X; R)),
making use of the natural isomorphism of R[#]-module chain complexes
wHomR[nj(C(X; R)’ R["]) —-> HomR(ﬂ](wC(X; R)’ R["]);

[ (x> Twgng) (f(x)= Xng e R[n], n; € R).
gen

gem

Given a pointed topological space X define the quotient R-module

chain complex
C(X; R) = C(X; R)/C(pt.; R).

Write the reduced homology and cohomology R-modules as
H,(X; R) = H,(C(X; R)), H*X; R)=H*C(X; R))
For R = Z we shall write
C(X; Z) = C(X), HuX;Z)=H,X), H*X;Z)=H*X).
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Given a functorial diagonal chain map
Ax: O(X; R) - Homg, (W,C0(X; R)®C(X; R)),
there is induced a diagonal chain map
Ay: C(X; R)=C(X; R)/C(pt.; R)

A
L2x), Homyy(W, 00X Y@ CX; R)/Homyy(W, Clot; B

) ®gC(pt.; R))
Y Homggy (W, C(X; B R C(X; R))

with pr.: C(X; R) - C(X; R) the projection. Then Ay is functorial on
the category of pointed spaces and basepoint-preserving maps.
Given an (unpointed) space X define a pointed space by adjoining a
point
X, =Xu{pt}.
We shall identify

C(X,; R) = C(X; R), Hu(X,; R)=Hu(X;R),
H*(X,; R)= HYX; R), Ax, =Ax.
A 7-space is a pointed space X with a m-action
mxX > X; (g9,2%) > gz,

such that g(pt.) = pt. € X (¢ € #»). The induced R[n]-action on C(X; R)
preserves C(pt.; R) € C(X; R), so that there is induced an R[=]-action on
C(X; R). Also, there are defined reduced homology and cohomology
R[#]-modules

H,(X; R) = H,(C(X; R)), H*X;R)=H*C(X; R))
The reduced diagonal chain map
Ay: C(X; R) » Homy, (W,C(X; R)®rC(X; R))
is an R[#]-module chain map, with the diagonal =-action on
C(X; R)®RC(X; R).
A m-map of n-spaces is a map of spaces

[ X7,
such that

f(pt.) =pt., flgz)=gf(x)e Y (xe X, gemn).
There are induced R[n]-module maps
f:CX;R)>C(Y; R), fu: HuX;R)—>H,(Y;R)
f*: H%(Y; BR) - HXX; R),
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and ‘
f*Ax = Ay f: C(X; R) > Homg, (W,C(Y; R)®RC(Y; R)).
We have the following symmetric construction ¢ x.
ProrosiTION 1.2. Let 7 be a group, w: m - Z, a group morphism, R a

commutative ring, and give the group ring R[m] the w-twisted involution.
Regard R as an R[n]-module by

R[n]x B - R; (X nyg,7) = (X np)r.

gen gen
Given a w-space X there are defined in a natural way R-module morphisms

Hi(X; “R) > @Y C(X; R)) (n3>0)
such that
(i) for each x € Hr(X; “R),

¢x(@)\ — =z0 —: *H"(X; R) -~ H,_(X; R),

(ii) for each w-map of m-spaces f: X — Y there is defined a commutative
diagram of R-modules

Hy(X; “’R)———>Q"(C’(X R))

H"(Y; vR) ——— @C(Y; R))

(iii) for each morphism h: R — S of commutative rings there is defined a
commutative diagram of R-modules

Hy(X; “’R)—-——>Q”(C’(X R))

hl jh
Hy(X; »8) ——>@(C(X; 8))

in which the vertical maps are the change of rings h: R[=] — S[].

Proof. Applying R'®py,; — to a functorial diagonal R[#]-module chain

map )
Ax: C(X; R) - Homg(W,C(X; R)®rC(X; R)),

we obtain a functorial Z-module chain map
Ax: B®punC(X; R) » R'® gy Homyy (W, C0(X; R)®:C(X; R))
= HomZ[Zﬂ(W: O(X: R)‘®Rfﬂ]0(X) R)):
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inducing the required Z-module maps in homology
¢x = (Ax)* H,(R'® (X ; R)) = Hy(X; “R)
H,(Homg,(W,C(X; R)®pumC(X; R)) = @UC(X; R)).

Applying the symmetric construction to the n-space X, obtained from
a space with n-action X by adjoining a base point we obtain an absolute
symmetric construction

¢x = px, Hy(X; “R) = Hi(X,; “R) > Q"(C(X; R)) = @Q*(C(X,; R)).

Applying the symmetric Wu class operations v, of §1.1 to the symmetric
construction for 7 = {1}, R = Z, we obtain the Steenrod squares:

ProrosiTioN 1.3. Let X be a {1}-space. The composite Zy-module
morphism
HyX; Zy) 25 QrO(X; Zy) —> Homy,, (H"(X ; Z,), H"*"(Zy; Z,))
Hom, (H**(X; Z,),Z,) ifn>2r
0 if n < 2r,

t8 given by
v, (@x(@)Y) = <Sq"(y), x> € Zy (v € Hy(X; Zy), y € H"(X; Zy)),
with { , > the Kronecker product.
Let f,f': C - D be chain maps of A-module chain complexes (for any

ring 4), and let ¢,¢’: f ~ f': C - D be chain homotopies. A homotopy
of chain homotopies

h:geg':f~f':C—->D
is a collection of A-module morphisms {k € Hom(C,, D, ,)|r € Z}

such that
—g=dph—hdy: C, > D,,,.

The suspension of a n-space X is the reduced suspension w-space
2X = 8'AX = (8'x X)/(S* x pt. upt. x X),

with the trivial 7-action on 8. Acyclic models give functorial Z[=]}-module
chain equivalences on the category of n-spaces and =-maps,

Tx: 8C(X) » C(=X), =x': C(EX) - SC(X),
and functorial Z[=]-module chain homotopies,
hx- Zx(Ex1) ~ 1: CEX) > C(EX),
x 1 (Ex)Ex ~ 1: 8C(X) - SC(X),

such that Zy,X 5! are unique up to functorial chain homotopy, and
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hx,hx~! are unique up to functorial homotopy of chain homotopies. (This
follows from the standard proof of the Eilenberg—Zilber theorem, which,
in particular, gives inverse chain equivalences C(S?) ®,0(X) 5 C(8*A X),
since SZ < C(8?), 8C(X) = SZ®,C(X) = C(S') ®,C(X) are chain homo-
topy deformation retracts.) Let
Ax: O(X) -~ Homyy, (WC(X)®,C0(X))

be a functorial diagonal Z[7]-module chain map, as before, and let

8: 8 Homgp (W, C(X) ®4C(X)) - Homgz (W, SC(X) ®, SC(X))
be the algebraic suspension chain map of §1.1. Acyclic models also give a
functorial Z[7]-module chain homotopy

Tx: ApxZx ~ Z%8Ax: SC(X) - Homgy (W, C(2X)®, C(EX))
in the diagram
Zx

SC(X) — C(ZX)

SAXJ, - = \ 1Azx

Homy,, (W, SC(X)®,8C(X)) _>:-X_> Homg, (W,C(EX)®,C(EX))

(This is the chain level relation implying that the Steenrod squares
commute with suspensions in cohomology. The chain map SAy can also
be expressed as the composite

SAy: SZ®,C(X) 2985 Homg, (W, SZ®,SZ) ®, Homgg, (W, C(X)
Ax ®z O(X))
—> Homy,(W, (SZ®; C(X)) @7 (SZ@,0(X))),
where Ag: SZ - Homg, (W, 8Z®,8Z) is the restriction of
Agi: C(SY) - Homg (W, C(SY) ® C(SY))
defined by
Ag: (SZ), = Z - Homyy (W, (SZ®28Z),) = Z; 11,
and Ap: W > W ®, W is the diagonal Z[Z,]-module chain map defined by
By: W, = Z(Z) > (W@, W), = S0 W, i 1, 31,07,

r=0

(s > 0),

exactly as in §1.8. More generally, for any pointed spaces X, Y there are
defined a chain equivalence C(XAY)=~ C(X)®,C(Y) and a chain
homotopy Axay = (Ax ® Ap)A%, cf. the proof of Proposition 8.1 below.)
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Applying R®,— we have the same types of chain maps and chain
homotopies for any coefficient ring R.

Thus the algebraic and geometric suspension operations correspond to
each other under the symmetric construction:

ProrosITION 1.4. For any w-space X, commutative ring R, and group
morphism w: w — Z, there is defined a commutative diagram of R-modules

Hi(X; °R) —2Z - @uC(X; B) —— QrySC(X; B)

Tx P33

Hy o(5X; “R) Pz > QuiC(EX; R)
Proof. The underlying chain maps are chain homotopic.

A w-homotopy of m-maps f,f,: X - Y is a 7-map
H: XA, =Y
which restricts to f; on XA{s} (¢ = 0,1), with the trivial #-action on
= [0,1]. The functoriality of the usual proof of the homotopy invariance
of singular homology ensures that H induces an R[#]-module chain
homotopy (for any ring R)

H:f,~f,:CX; R)—>C(Y;R).
We have the following quadratic construction .

PRrOPOSITION 1.5. Let 7 be a group, let w: m — Z, be a group morphism,
let R be a commutative ring, and give the group ring R[m] the w-twisted
tnvolution.

Given m-spaces X,Y and a m-map F:3ZPX — ZPY (p > 0) there are
defined in a natural way R-module morphisms

Yp: Hy(X; ©R) > Qor=1(C(Y; R) (n > 0)
such that:
i) Y5 depends only on the w-homotopy class of F, and iz p is given by

o B(X; o) 5> QorC(Y; B —> QUAC(T; B),
with ZF: ZpHX — ZpH1Y the suspension of F. Passing to the
suspension limit I_ng;k ZkF there are defined R-module morphisms

Yp: Hi(X; “R) > Lim QRe+-1(C(Y; R)) = @,(C(Y; R)),
k

depending only on the stable w-homotopy class of F; if p = 0 then
Jr = 0 (unstably);
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@) (L+TWp = ¢rfe—f*ox: Hy(X; “E) > Q™C(Y; R)),
with f the composite R[w]-module chain map

f: C(X; R) —25& Q»C(Z?X; R) LR QrC(ZrY; R)Ei: C(Y; R);

(iii) of G: ZPY — TPZ is another w-map between p-fold suspensions of
w-spaces Y, Z, and g = (E;7)GZ% : C(Y; R) - C(Z; R), then

bor = gubr+idafe: HI(X; “R) > QUr-C(Z; R));

(iv) ¢fj: R — S is a morphism of commutative rings then there is defined a
commutative diagram of R-modules

Hi(X; “R) bz, Qur1(C(Y; R))

|

Hy(X; »8) —-E Qur-1(C(Y; 8))
tn which the vertical maps are the change of rings for j: R[n] - S[n].

Proof. (We consider only the case where R = Z. To obtain the general
case apply R®;— on the chain level.)

Iterating the previous constructions p times there are defined functorial
Z[n]-module chain equivalences on the category of m-spaces and w-maps

T2 : 820(X) - O(Z*X), Z@: C(ZrX) - 87C(X),

and a functorial Z[7]-module chain homotopy

h: Z833P ~ 1: C(ZrX) - C(ZPX).
Also, applying Z!®4,,— we see that there are defined a functorial diagonal
Z-module chain map

Ay: Z'®znC(X) - Homym (W, C(X) @70 C(X))
and a functorial Z-module chain homotopy
T2 : Ag, x 28 ~ TB%SPA
Z' @z C(X) - QF Homyy, (W, C(ZPX ) ®,C (27 X)),

where S? is the p-fold algebraic suspension chain map
87: Homy (W, C(X) ® g, C(X)) = QF Homgy (W, 8PC(X )} ©4,,87C(X))

and QC denotes the desuspension of a chain complex C, QC, = C,,,,

dnc = dc.
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Given a m-map F: T2X - X?Y define a Z-module chain map
br: @z, C(X) > QO(SP)

to the desuspension QC(S?) of the algebraic mapping cone C(8?) of the
p-fold algebraic suspension chain map

8?: Homg (W, QPC(ZP Y ) ®4, QPC(ZPY))
by > Qv Homgz (W, C(ZP Y} ©2,1C(27 Y)),
ZPAy BPFIY ~ FRSEFAy
br = (F%P&— P%E?FE&—AWWEJ&)‘
Z' @5 C(X), > QO(8P), = Homgy (W, QPC(ZPY ) ®4, QPC(ZPY)),
® QP Homg, (W, C(ZrY)® 2o 0P Y )iy
The composition of ¢y: Z!®,, C(X) - QC(S?) with the Z-module chain
equivalence given by Proposition 1.1.3,
QC(87) - W[0,p— 1)@z (PC(EPY ¥ @ 4, QPC(EP Y)),
and the Z-module chain equivalence induced by Z37: QvC(ErY) - C(Y),
(E7)s: W0, 0 — 1)@z, (QPC(ZPY ) @5, QPC(ZPY))

- W[0,p—1]®zzy(C(¥ )} ®zxC(Y)),
is a Z-module chain map

dp: Z@znC(X) > W[0,p— 11@7z,(C(Y ) ®gnC(Y))
inducing the quadratic construction in homology
$r: Hy(Z'®g, C(X)) = HY(X; vZ)
- Hy(W[0, 2 — 11®zz,(C(Y ) ©gn C(Y))) = QU#-HC(Y)).
For w-maps of the type F: Z?(X,) » Z?(Y.) (for some spaces with
m-action X, Y') we have an absolute quadratic construction
Yp = ¥p: H(X; “R) = Hy(X,; “R) > @2»~(C(Y; R))
= Qur-N(C(Y, ; R)).
REMARK.T Asnoted in the Introduction to Part I there is an alternative

expression for the quadratic construction ¢5: H2(X; *R) - @,(C(Y; R))
of a stable 7-map F: X*X - Z*°Y, using the adjoint 7-map

adj(F): X - Q©OIoY
and the canonical group completion 7-map
(HEZ, x5, 1Y)/~ > QeZ*Y
k21 k

t See note added in proof (p. 279).
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(where ~ is the equivalence relation given by the inclusions X, < 2,
and the base point of Y), as the composite

(adj F)

yp: Hi(X; “R) ¥ H1(QwE®Y; wR)

= (élHZ(EZk <z (A X)/m; “’R)) ® riny B[Z]
Proioction Ha(BE, s<s(¥ 1, Y); “R) = Qu(C(Y; R))

The unstable-quadratic construction ¢ 5: H7(X; ¥R) - QO»-1(C(Y; R))
has a similar description, using the approximation theorem for Qr2?rY,
and the adjoint 7-map adj(F): X - QPZ?Y of a w-map F: ZPX — ZPY.

The result of applying the quadratic Wu class operation v" of §1.1 to
the quadratic construction Y5 for = = {1}, R = Z, can be expressed in
terms of the functional Steenrod squares:

ProrosiTION 1.6. Let X,Y be {1}-spaces, and let F: 22X — ZPY be a
{1}-map, inducing the chain map f: C(X; Zy) - C(Y; Z,). The composite

B(X; Z) 225 Qoo ; 2,)

vT
—> Homy, (H*"(Y; Z,), QUr-1(S"~"Z,))
{HomZa(H"—'(Y; Z,),Z,) ifn<2r<n+t+p-1l,

0 otherwise,
is given by
V(P p(@))(Y) = <SGHUEP), T (z)) € Zy,
where x € H,(X; Z,), « = generator € H""(K(Zy,n—1); Z,) = Z,,
y € H"(Y; Z,) = [Y,K(Zyp,n—1)],
f*y € H"(X; Z,) = [X, K(Zy,n—1)],
h = (SPy)F — 22(f*y) € [ZPX, 22K (Zy,n—1)],
satisfying the sum formula |
V(Y p(2))(Y1+Y2) = " (§ p(2)) (Y1) — " (Y 2(2))(Y2)
_ Sy 9ye) = (f*y0f *ye) x> € Zy, if o= 2r,
o otherwise,
(@ € Hy(X; Zy), 41,9, € H""(Y; Zy)).
2. Geometric Poincaré complexes

Given an oriented covering X of an n-dimensional geometric Poincaré
complex X with group = of covering translations we shall use the
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symmetric construction of §1 to define an n-dimensional symmetric
Poincaré complex over Z[r]

o*(X) = (C(X), p € @YC(X))).

A degree 1 map of n-dimensional geometric Poincaré complexes f: M — X
has a kernel n-dimensional symmetric Poincaré complex o*(f) such that

o¥(M) = o*(f)® o*(X).

Given also a stable m-map F:XrX - 32, inducing the Umkehr
f': C(X) - C(J) we shall use the quadratic construction of §1 to define
an n-dimensional quadratic Poincaré complex over Z[n]o,(f, F) such that

(1+T)ou(f, F) = o*(f).
In § 4 we shall show how such geometric Umkehr maps F may be obtained
for normal maps (f: M — X,b: vy - vx), and in §§ 5 and 7 we shall relate
the resulting quadratic Poincaré complex oy(f,b) = ou(f,F) to the
surgery obstruction.

An n-dimensional geometric Potncaré complex X (as defined by Wall [29])
is a finitely dominated CW complex X together with an oréentation group
morphism

w(X): m(X) > Z,
and a fundamental class
[X]e H;?(X)(X; wX)Z),
such that the cap products
[X]n—:»XH"X) > H,_(X) (0<r<n)

are Z[m,(X)]-module isomorphisms, with X the universal cover of X and
#,(X) acting on the left of X as the group of covering translations. The
singular chain complex C(X) is an n-dimensional Z[m,(X)]-module chain
complex, and the Poincaré duality isomorphisms are induced by a
Z[7m,(X)]-module chain equivalence

[X]1n—: DX )—* — O(X).
(For finite X and w(X) = 1 such a geometric Poincaré complex X is a
P-space of formal dimension % in the sense of Spivak [25], since applying
Homy,(—, Z) we obtain a Z[n,(X)]-module chain equivalence
[X]1n—: Hom,(C(X), Z) > Hom,(C(X)»*,Z) = CLF(X),_,
inducing Poincaré duality isomorphisms
[X]1n—: H¥X) -~ HLF (X)

n—%

between the singular cohomology groups of X and the homology groups
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of X defined by locally finite infinite chains, with [X]e HLF(X) the
transfer of the fundamental class [X] € H,(X).)

Let X be an n-dimensional geometric Poincaré complex. If X is a (not
necessarily connected) covering of X with group of covering translations
m and £ is the universal covering of X, the natural projection

Z[m]®zmnC(X) > C(X)

is a chain equivalence of n-dimensional Z[n]-module chain complexes,
with Z[m(X)] - Z[n] the group ring morphism defined by the character-
istic map m,(X) - =. The covering X of X is oriented with data (7, w) if =
is equipped with a group morphism w: = — Z, such that the orientation
map w(X) factors as

w
w(X): m(X) —> 7 —— Z,.

In particular, the universal cover X is oriented ‘with data (7 (X), w(X)).
If X is oriented with data (w,w) applying Z'®y,;— to the above Z[=]-
module chain equivalence we obtain a Z-module chain equivalence

Z1X) ®Z[111(X)]0(X) =Z! ®Z[7r](z[77] ®Z[m(X)]C(§)) - Z ®Z["]O(X),

where ¢(X) {respectively ¢} refers to the w(X) {w}-twisted involution on
Z[n,(X)] {Z[r]}, so that there is a fundamental class

[X]e H/(X; vZ) = H,(Z' ®zln10(X )
for X. Applying Z[n] ®zimx) — to the Z[m(X)]-module chain equivalence
(X]n—: w00 &y—* > o),
we obtain a Z[7]-module chain equivalence
[X]n—: »C(X)—* - C(X).

Thus a geometric Poincaré complex satisfies Poincaré duality with
respect to any oriented cover X.

The symmetric construction of Proposition 1.2 associates a symmetric
Poincaré complex to every oriented covering of a geometric Poincaré
complex, by a chain homotopy invariant version of the procedure of
Mishchenko [18].

ProrosiTiON 2.1. Given an n-dimensional geometric Poincaré complex X
and an oriented cover X with data (m,w) there is defined in a natural way an
n-dimensional symmetric Poincaré complex over Z[m] with the w-twisted
tnvolution

o*(X) = (C(X), pz[X] € @1(C(X))).
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If X is the universal cover of X then

o*(X) = Z[n] @gimuxne*(X)
up to homotopy equivalence.

Proof. Evaluating ¢g: H7(X; vZ) - @*(C(X)) on the fundamental
class [X] € H2(X ; “Z) we see that there is obtained a Z,-hypercohomology
class p%[X] € @(C(X)) such that slant product with

e%[X]s € Hy(C(R) ®7nC(X))
defines the Poincaré duality Z[=]-module isomorphisms
e%[X1o\ — = [X]n—: »H¥X) > H,_4(X)
(cf. Proposition 1.2(i)). Also, there is defined a commutative diagram

agoo®; wog) X, guod)

| |

HY(X; vz) — X, gue(X)

in which the vertical maps are the change of rings Z[m,(X)] — Z[=].

We shall normally write o*(X) as o*(X).

A map of geometric Poincaré complexes (not necessarily of the same
dimension)

ffM->X
is a map of the underlying spaces which preserves the orientation maps,
that is such that w(M) factors as
w(X
w(M): m (M) -i> m(X) -—(—2 Z,

If-X is an oriented cover of X with data (,w) then the pullback M is an
oriented cover of M with data (7, w).

Let f: M — X be a map of n-dimensional geometric Poincaré complexes,
and let. X be a (not necessarily connected) cover of X with group of

covering translations = and induced cover M of M. Define the Umkehr

Z[n]-module chain map
f: 0 X) - o)

(up to non-canonical Z[n]-module chain homotopy) by applying
Z[7]®zmxn— to the composite Z[r,(X)]-module chain map

fl: O(X) M w(X)O(X)n-* __f*_.> w(X)O(ﬁ)'n—* L‘ﬂ_ﬂ_—:_) C(ﬁ)
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with X the universal cover of X and M the induced oriented cover of M.
If X is an oriented cover of X with data (7, w) then the Umkehr factors as

o Eln=) I* [M]n-

froX wQ(X)n—* wC(IT )+ C(If).

A map of n-dimensional geometric Poincaré complexes f: M - X is
of degree 1 if it preserves the fundamental classes, that is if

fulM] = [X] e HY(X; vZ)

for any oriented cover X of X with data (7, w). The induced chain map
f: C(M) > C(X) defines a map of n-dimensional symmetric Poincaré
complexes over Z[x]

f: o*( M) - o*(X),
which is a homotopy equivalence if f: M — X is a homotopy equivalence

of spaces. Conversely, if f: M - X is a degree 1 map inducing an iso-
morphism f: m (M) - m(X) and a homotopy equivalence

fi o) - o*(X),
with M, X the universal covers then f: M — X is a homotopy equivalence,
by Whitehead’s theorem.

ProrosITION 2.2. Let f: M — X be a degree 1 map of n-dimensional
geometric Poincaré complexes. Let X be a cover of X with group of covering
translations = and induced cover M of M. Then the Umkehr Z[r]-module
chain map

f': ¢(X) - C(i)
i8 a chain homotopy right inverse for f: C(M) - C(X), that is
ffr~1:0X) - 0X).
The inclusion in the algebraic mapping cone e: C(M) - O(f') is such that

(}) . o) > C(f) @ C(X)

defines a chain equivalence of n-dimensional Z[w}-module chain complexes.
If X is an oriented cover of X with data (m,w) the symmetric kernel of f,

o*(f) = (C(f"), e*(pmlM]) € @1C(/M)),
18 an n-dimensional symmetmc Poincaré complex over Z[m) with the w-twisted
tnvolution, and there is defined a homotopy equivalence of such complexes

(}) o* (M) - o*(f)® o*(X).

Proof. To obtain ff'~ 1 apply Z[#]®zymxy— to the Z[m (X)]-module
5388.3.40 o
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chain homotopy commutative diagram

f*

wX0( f)n—* — > WX ﬁ)n-*

[X]n—l l[M]n—

o) —1 ol

with X the universal cover of X and ]lzl the induced cover of M. To show
that

(}) QC(I)) > @HO(f) @ C(R)) = QC(f)) @Q(C(R))

® H,(C(f") @z C(X))

sends @i[M] to e*(pj[M]))Dpg[X]®0 (using the decomposition of
Proposition I.1.4(i)) consider the chain homotopy commutative diagram

* 15

wQ(f')r—* _e_) wC( M)n—* — v X)‘n—*

o e
C(IT) ——f——> Cc(X)

which gives f([M]n—)e* ~ 0: »O(f')»* - C(X), and so
(¢ @z Vot Mo = 0 € Ho(C(f) ®znC(X))-
Define the homology {cohomology} kernel Z[=]-modules of a degree 1 map

of n-dimensional geometric Poincaré complexes f: M — X with respect
to a covering X of X with group of covering translations =

{K*(M) = H*(C(f'))
K*(M) = H*C(f")

using any w-twisted involution on Z[~] to define the dual Z[=]-module struc-
ture on C(f')*. Proposition 2.2 givesnatural direct sum decompositions

{ H,(M) = K\(M) o Hy(X),
wH*( M) = K*(M)evH*(X).

If X is oriented with data (7, w) the symmetric kernel o*(f) gives Poincaré
duality in the kernel modules

K*(M) = Kp_o(M).
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A geometric Umkehr map for a degree 1 map f: M — X and a cover X
is a 7-map
F:zX, - M. (p>0),

inducing the Umkehr f! on chain level, that is such that there exists a
Z[rn]}-module chain homotopy

(Z)1F (%) ~ f*: C(X) -~ O(H).

PropoSITION 2.3. Given a degree 1 map of n-dimenstonal geometric
Poincaré complexes f: M — X and a geometric Umkehr map
F:rX >3 M,

with respect to an oriented cover X of X with data (m,w), there is defined in a
natural way an n-dimensional quadratic Poincaré complex over Z[n) with
the w-twisted imvolution, the quadratic kernel of (f, F'),

ou(f, F) = (C(f"), exp v[X] € Qu(C(S)))
depending only on the stable =-homotopy class of F, such that

(1+T)ou(f, F) = o*(f)-

Proof. The absolute version of the quadratic construction of

Proposition 1.5
yp: Hy(X; vZ) > QL»-1(0(I))
is such that
eitfh—f* oz = 1+ T)p: HYX; vZ) > QnOC(H)).
Let e: C(#) — O(f') be the inclusion, so that
1+ TegpplX] = *(1+ T)p[X]
= %o f4[X] - e*f*p[X] = e*on[M] € QnC()).

Here, as elsewhere, we let e,y z[X] stand both for an element of
QUr-1(C(f")) and for its image in Q,(C(f")).

The symmetric {quadratic} kernels o*(f) {o«(f, F)} of a degree 1 map
f: M - X {with Umkehr F: Z?X - T} } associated to the various
oriented covers of X are all induced from the kernel associated to the
universal cover X.

In §7 below we shall show how to obtain the surgery obstruction of a
normal map (f,b): M — X from the quadratic kernel o.(f, F'), using the
given normal bundle map b: vy, > vy and the equivariant S-duality of § 3
to produce a geometric Umkehr map F: £#X_ — X2, for the universal
cover X. In favourable circumstances it is possible to obtain F directly
from (f,b) without the S-duality machinery. For example, if f: M — X is
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a degree 1 map of manifolds which is covered by a map b: vy, - vx of stable
normal bundles then f can be approximated by a framed embedding
M x Dr < interior(X x D?) (p large) which lifts to an embedding of covers
I x D < X x Dr for any cover X of X, giving F by the Pontrjagin-Thom
construction

I
F:2o®, = X xDo/% x 901 202 % po/X x Do — H x D?
— T x Do/ I x §v-* = o1,

The case where p = 1 is of interest in codimension 2 surgery.

The mod 2 reduction of the quadratic kernel construction gives the
Z,-valued quadratic form used by Browder [3, Chapter III, §4] to
define the Arf invariant. An n-dimensional geometric Zy-Poincaré complex
is a finitely dominated CW complex X together with a mod 2 fundamental
class [X] € H,(X; Z,) defining mod 2 Poincaré duality isomorphisms

[X]n—: H¥X; Z,) > H, (X; Z,).

ProrosiTION 2.4. (i) Given an n-dimensional geometric Z,-Poincaré
complex X there is defined in a natural way an n-dimensional symmetric
Poincaré complex over Z,

o*(X) = (C(X; Zy), px[X] € Q"(C(X; Zy)))
such that the symmetric Wu classes of o*(X) are just the Wu classes of X
v (px[X]) = v(X) € Homy, (H*"(X; Z,), Zy) = H"(X; Z,),
as characterized by
Sq7(y) = <v(X) vy, [X]) € Zy (y € H" (X Zy)).

(i) Given a degree 1 (mod 2) map f: M — X of n-dimensional geometric
Z,-Poincaré complexes and a {1}-map F:ZrX, - ZPM, inducing the
mod 2 Umkehr f': C(X; Z,) - C(M ; Z,) there is defined in a natural way
an n-dimensional quadratic Poincaré complex over Z,,

ox(fs F) = (C(f"), exp [ X] € @u(C(f1)),
M) = (1+T)ox(f, F) @ o*(X)

such that

up to homotopy equivalence. The quadratic Wu classes of o, (f, F),

Z, ifn<2r<n+p-1,
v = v'(eg P p[X]): KMT(M; Zy) — {
0 otherwise,
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can be expressed in terms of functional Steenrod squares
0"(y) = <SqEhr(ZP (), XD € Z, (n < 27),
(y € Kn~"(M; Z,) € H™"(M; Zy) = [M,, K(Zy,n—7)),

v € H"(K(Zy,n—7); Zy) = Z,),
and are such that

YV [M]) € Zy if n=2r,

V(Y +Y2) —v"(yy) —v"(y2) =
hrde ! ’ 0eZ, if n < 2r.

Proof. Apply Propositions 1.3 and 1.6.
The kernel constructions behave as follows under composition.

ProposiTION 2.5. Let X,Y,Z be n-dimensional geometric Poincaré
complexes. The composite of degree 1 {geometric Umkehr} maps f: X - ¥,
g: Y >Z {F:Z°Y - 2rX,, G:ZrZ, —~>3Z?Y.} is a degree 1 {geomelric
Umbkehry map gf: X - Z {FG: Z*Z, - 32X}, with symmetric {quadratic}
kernel

o*(gf )= o*(f)® o*(9),

ox(gf, FG) = au(f, F)® 04(g, (Z°f,)FG)

up to homotopy equivalence, with X, ¥ the oriented covers of X, Y induced
from an oriented cover Z of Z.

Proof. Write the inclusions in the algebraic mapping cones as
e: cX) > e,
et C(¥) - C(g),
eor C(2) - C((9f)),

and note that (gf)! = f'g': C(Z) - C(¥) - C(X). The stable composite of
the chain equivalences,

(j,’) . C(%) > C(f) e O(P),

(2): o1 > cre 0,
is a chain equivalence
]
e,f |: 0(X) = C(fHeClg) e C2),
af
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allowing us to identify

e = () €&) > or9) = ci@ CGY
Using the direct sum decomposition of Proposition I.1.4(i) we have
enplX] = (fozlX), e} f*p2(X], (¢ ® €, )p2[X]o)
€ @MC(f e C(g)) = @UC(f") @€™C(g") @ H.(C(f') ®znC(g")
Now f*o£[X] = pzfs[X] = p5[¥] € @Y(C(Y)), and

(¢)® ef )@z X)o = 0 € H,(C(f') ®21C(9")
since there is defined a Z[#]-module chain homotopy commutative diagram

8* f!*

wC(f1yn—* —1 wC(X)n—* - wC(Y)n—*

pzlX]y = [X]ﬂ—l J[Ylﬂ-
f

€y

C(X) ——— C(¥) ——— C(g"
with f'*ef ~ 0. Thus A
ez X] = efpz[X]@© fpp[Y] € QUC((9f)) = @™(C(f) @ C(g),
and so
o*(9f) = o*(f) @ o*(g).
(The formula o*(X) = o*(f)® o*(Y) is the special case Z = J.)
In the quadratic case we have

ox(9f, FG@) = (C((9f)); eopubralZ] € @u(C((af)))

with e = ¢rg' +fibe: HL(Z; ¥Z) - Q,(C(X)) by the sum formula of
Proposition 1.5(iii). Working as above, we have

eornbralZ] = (esxb 7ol 2], ey frb wal Z1, (€@ e f (1 + T3 6L 2])o)
= (et pl Y, epo( it s +$6)[Z], 0)
= e, p[ Y] ® epibiso7, ) rolZ]
€ Qu(C((gf ") = @u(C(fH @ C(g)

ox(0f, FG) = ox(f, F) @ o4(g, (Z7f,)FG).

A degree 1 map of n-dimensional geometric Poincaré complexes
f: M - X is k-connected with respect to some covering X of X if K,(M) = 0
for r < k. Recalling the definition of skew-suspension S in §I.1 we have:

ProposITION 2.6. The symmetric {quadratic} kernel o*(f) {ou(f,F)}
of an (r—1)-connected degree 1 map of n-dimensional geometric Poincaré

so that
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complexes f: M — X {with geometric Umkehr m-map F} with respect to an
oriented covering X of X with data (w, w) is the r-fold skew-suspension of an
(n — 2r)-dimensional (— )'-symmetric {( —)"-quadratic} Poincaré complex over
Z[x) o"(f) {a,(f, )}, with

So'(f)= o™ Xf) o°f) = o*(f),
So(f.F) = o, s(£,F), oo(fsF) = ou(f,F), (L+Ty)o(f,F) = o"(f).

In § 5 below we shall identify the quadratic kernel o(f, F) associated to
an (¢—1)-connected 2i¢ {2¢+1}-dimensional northal map (f,b): M - X
with the surgery obstruction kernel obtained in §5 {§6} of Wall [30],
using the one-to-one correspondence between 0-dimensional {1-dimensional}
(=)* quadratic Poincaré complexes and non-singular (—)! quadratic
forms {formations} of Proposition I.2.1 {I.2.5}.

3. Equivariant S-duality _

The S-duality between M, and the Thom space 7'(v;,) of the normal
bundle v, of an embedding M™ < §»+P (p large) of a compact manifold M
was first established by Milnor and Spanier [17]. This was then generalized
by Atiyah [2], and extended to geometric Poincaré complexes by Spivak
[25] and Wall [29]. In particular, if f: M — X is a degree 1 map of
geometric Poincaré complexes which is covered by a map of Spivak
normal fibrations b: vy — vx then the S-dual of T'(b): T'(vy) - T(vx) is a
geometric Umkehr map F: TP X, — P M., and this was used by Browder
[3] to obtain the surgery obstruction in the simply-connected case
m(X) = {1}. We shall now develop an equivariant S-duality theory for
m-spaces with a special type of m-equivariant cell structure (‘CWn-
complexes’) in order to obtain a geometric Umkehr =-map

F:3vX 320, (p large)

for any covering X of X with group of covering translations =, giving the
non-simply-connected surgery obstruction by means of the quadratic
construction ¢z of §1.

Given m-spaces X,Y let [X, Y], be the pointed set of w-homotopy
classes of m-maps f: X - Y. Regarding the loop space QX = (X, pt.)s"»t
as a w-space using the trivial #-action on S* we have that

[Z*X, Y], = [X,QrY],

is a group for p > 1, abelian for p > 2. Define the abelian group of Sw=-maps
between n-spaces X, Y to be the direct limit

{X, Y}, = Lim[Z*X,Z°Y],
—_—

P
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of the suspension sequence

) ) )
[X, Y], —> [EX,ZY], —> [Z2X,3?Y], —> [E8X,38Y], —> ...

For m = {1} we write [X, Y], = [X, Y],{X, Y}, = {X, Y} as usual.
The mapping cone of a m-map f: X - Y is the =-space

The cofibration sequence of w-spaces and 7-maps
f xf

X > Y > O > 2X >2Y > Ogy —> ..

induces the following 7-equivariant analogue of the Puppe exact sequence.

ProrositioN 3.1. For any n-map f: X - Y and w-space Z there is
defined in a natural way an exact sequence

X,2], <L (¥,2), —— [C,,2), ~— [£X.2),

z
«L ZY,Z], «<— ....
For any {1}-space K regard V, K as a w-space by permutation of the
summands. Note that for any n-space X,

[V K, X], = [K, X], {\”/K,X}n = {K, X}.

Define the =-space obtained from a w-space X by altaching an r-
dimensional m-cell to be the disjoint union {identification space}
X XunxDO ifr=0,
Clx U,y 7 X D7, for some map f: ™1 > X ifr > 1.
The m-cell is pointed if the attaching map f: S*~* - X (r > 1) preserves
basepoints, in which case f extends to a 7-map f': V, 87! > X such that

X'=Cr=Xu VD

If X is a path-connected =-space then any map f: S*1 > X (r > 1) is
homotopic to a basepoint-preserving map f,: S*~* - X extending to a
m-map fo:V,8 1> X, and X' = X u,y,nxDr is n-homotopic to the
mapping cone n-space C;. = X u,.V, D".

A CWn-complex X is a w-space which is a based CW complex obtained
from the base 0-cell by successively attaching m-cells of non-decreasing
dimension. A CWnr-complex is thus an ordinary CW complex with a
cellular 7-action which preserves the base 0-cell and which acts freely by
permutation on the other cells. The suspension of a CWnr-complex X is
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a CWm-complex XX, with one r-dimensional =-cell for each (r—1)-
dimensional 7-cell of X (r > 0).
CWn-complexes arise as follows.

Prorosrrion 3.2. If (X, ¥) is a covering of a CW pair (X, Y) with group
7 of covering translations, then X|¥ is a CW n-complex with one w-cell for
each cell of X — Y. If Y = @ interpret the quotient as X/ = X .

A CWn-complex is pointed if it involves only pointed =-cells. A CWan-
complex with no 0-dimensional =-cells (for example, a suspension) is
m-homotopic to a pointed C Wx-complex.

A CWnr-complex X is finite if it involves only a finite number of 7-cells.
A CWn-complex X is finstely-dominated if there exist a finite CWa-
complex K and =n-maps f: X - K, g: K - X such that gf =1 € [X, X],,
and it is n-dimensional if H7(X) = 0 for r > n, in which case C(X) is an
n-dimensional Z[7]-module chain complex.

We have the following analogue of the Freudenthal suspension theorem.

ProrosITION 3.3. Let X be an n-dimensional finite pointed CWr-complex,
and let Y be a m-space of the homotopy type of a CW complex. Then the
suspension map

2 [ZrX,ZrY], » [ZPHIX,ZPHY]
18 an tsomorphism for p > n+1, and
{X,Y}, = [EnH1X, Ent1Y] .
Proof. The proof is by induction on the number of pointed =-cells in
X. The result is trivial for n = 0; assume it is true for X, and let

X'=Xu,V,D" for some mmap f:V,8" !> X (n>1). There is
defined a commutative diagram of abelian groups and morphisms

[SPH1X,SPY] ———> [V Sn+p, ZPY], — > [EPX’, Z7Y],

: " zl zl

[Sp+2X, ZpHY] ——> [V SnipHl TpHY] — [ZPHX’, ZeHY]

—> [Z?X, ZPY], ——— [V S*P L 2P Y,

zj Jz

> [ZpHX, Yo+l Y]" —— [V Sntp, Yp+l Y]n
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in which the rows are exact (Proposition 3.1). The suspension maps
involving X are isomorphisms for p > n+1 by the inductive hypothesis.
Since Y is of the homotopy type of a CW complex ZPY is (p—1)-
connected and

Y [VS"H” yp Y]” = [Sn+p’ 3 Y] - [Sn+p+l’ o+l y]

is an isomorphism for » > n+1 by the ordinary Freudenthal suspension
theorem. Application of the 5-lemma gives the induction step.

Given n-spaces X, Y define the {1}-space
XA, Y=(XAY)/n
to be the space of orbits of the diagonal =-action
mxXAY > XAY; (g, xAy) = gxagy.
Note that for any w-space X and {1}-space K
XA, (VK)=XAK.
A m-spectrum Z is a sequence of w-spaces Z,(p > 0) and w-maps
£&:22,>2Z,,(p 2 0). Given a m-space X define the abelian group
(X,2), = Lin[3°X.5,),
P

to be the direct limit of the sequence

p) )
[X’ZO]ﬂ - [EX’ zzo]n '_§O_> [E‘X’Zl]ﬂ - [zzx’ 2;Zl]rr __§1_> eeee

In particular, for §, = id.: 22, = Z*Y1Z, - Z,,, = Z**1Z, we have
{X’Z}ﬂ = {X’ZO m*

Given a w-space X and a m-spectrum Z let X A,Z be the {1}-spectrum
defined by

(XA 2)y= XN, 2y, 1NE:Z(XN,Z,)=XNZZ, > XN 2y,

n4ps
ProprosITION 3.4. Given a {1}-space W, a m-map f: X - Y and a =-
spectrum Z there are defined exact sequences of abelian groups
{W,X 7,2}y > {W,YNZ}>{W,C;n, Z} > {(W,ZX A, Z} ~ ...
{X’Z}ﬂ <« {Y,Z},, < {C,,Z},, < {EX,Z},, < e

Proof. The first sequence is just the Puppe sequence associated to the
(co)fibration sequence of {1}-spectra

1
XA,,ZL/:—) Y2 —> CnZ —> XA Z— ...
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The exactness of the other sequence may be established as in the case
where = = {1} (Puppe sequence again) by insisting on #-maps and =-
homotopies.

Given n-spaces X, Y and a {1}-map

a: 8N > XA, Y

for some N > 0 define slant products for any =-spectrum Z,

o\ —: {X,Z), — {8",Zn, ¥);

zr 1
(f: 2PX —— Z)) ——> (8NP =3 ZPX A Y f—A> Zyn, Y),

o\ —: {¥, 2}, — {8V, XA, Z};

2Py

g: ZPY —> Z,) —> (S¥ % XA 50¥ ~24 X 4 29).

Call a: SN - X A, Y an Sw-duality map if these slant products are iso-
morphisms for every #-spectrum Z, in which case the suspensions

Sa: SN 5 T(XA,Y)=ZXA, Y, Zoa: SV 5 3(XA, Y)=XAXY
are also Sm-duality maps. For 7 = {1} this is classical Spanier—Whitehead
S-duality.

Given Sn-duality maps

a: 88 > XA, Y, o: 8N > X'A, Y,

define the Sm-dual of an Sw-map fe{X,X'}, to be the Sw-map
g € {Y’, Y}, to which f is sent by the composite isomorphism

"\ )1
&, X, = 90, x08, 1 2 (v,
In particular, if X = X’ the S=-duals of 1 € {X, X}, are an inverse pair
of Sm-homotopy equivalences g € {Y, Y'},, ¢’ € {Y’, Y},.

ProrosrTION 3.5. Every finite CWr-complex X admits an Sw-duality map
a: SN > XA Y
with Y a finite CWr-complex.

Proof. Suspending if necessary we may assume that X is a pointed
CWm-complex. Our construction of an Sw-dual is by induction on the
pointed =-cells: given an Sw-duality map a: 8¥ — X A, Y between finite
pointed CWmx-complexes X,Y and a #-map f:V,8 !> X we shall
construct an Sw-duality map o': SV - X'A, Y’ for X' = X u,V, Dr.

Let m = max(dimension(Y)+1,2r—1—N). Replacing a: S¥ > XA, Y
by Zmq: SN+m —» X A, ZmY we have that N—»+1 > 0 and

{v S'-l, X}" - [V SN’ 2N—r+1X]m {Y’ V SN—r-l-l}" — [Y’ V SN—r+l]"
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(by Proposition 3.3). Define an S»-duality map
B: SN > (V8 1)A, (V 8N-r+1) = Y SV

by sending S¥ to the summand labelled by 1 € #. Let g: Y — Y, SN-r#1
be a 7-map representing the S=-dual of f € {V, 8™, X},, and let Y’ = C,
be the mapping cone =-space. Denote the cofibration sequences by

d
veLx L x %ys,

h k
y L yev-rn 2Ly O, vy

”

The diagram of {1}-spaces and {1}-maps

1
SN s > XA Y — e s XA Y

Bl lAgl ll/\g
fal eAl

(V871 Ay (VSN=r#) ——— XA, (V8N=rH) ——— X'A, (VS¥="H)

w

is homotopy commutative, with the bottom row null-homotopic. It is
thus possible to define a {1}-map j: D¥ » X' _(V,S¥-"+1) such that
the diagram

gy —erl oy

T

is actually commutative, with ¢: S¥ — DN+1 the inclusion. The induced
{1}-map of mapping cones

o': Cg= 8V 5 Oy = X'A, Y

is such that both the squares in the diagram of {1}-spaces and {1}-maps

z ))
Xa,2Y = gvn — (v, (VY

eAll la' ll/\h
1Ak dal

X'AZY ——X'A Y —— (V8)A, Y’
w
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are homotopy commutative. There is thus-defined a commutative diagram
of abelian groups and morphisms

x.2), —L— .2, ———— (X2,
(Za)\ l(zﬁ)\ [a'\
(S¥44, 2, T} —T—> {S¥41, 2, (V S¥-r41)) ——— ($¥41, 21, ¥}
—— xg—L— sz,
lza\ jZB\
2g

—_— {SN'*']‘,_Z_A" EY} —_— {SN+1’Z Ay (V SN—r+2)}

for any m-spectrum Z, with exact rows (Proposition 3.4). Applying the
5-lemma we have that the middle column is an isomorphism, and similarly
for the other type of slant product. Therefore a': SN+ —» X’A, Y’ is an
Sz-duality map.

We can use Swm-duality to prove an equivariant analogue of Whitehead’s
theorem.

PropOSITION 3.6. A w-map of finite CWn-complexes f: X — Y induces
tsomorphisms in homology if and only if ZPf: ZPX — XPY is a w-homotopy
equivalence for some p > 0.

Proof. Let f: X - Y induce isomorphisms in homology. Applying the
ordinary Whitehead theorem we have that Xf: £X — XY is a homotopy
equivalence, and hence that

< 8%, (V 8, X} > {8%,(V 8, T}

is an isomorphism for all N,» > 0. This gives the induction step in proving
that
F SN, WA, X} {SN, WA, Y}

is an isomorphism for every finite C Wx-complex W. Given an Sw-duality
map a: S¥ - WA, Y (by Proposition 3.5) we thus have isomorphisms

(¥, X}, — s (9, W, X} —L s 5, W, 1} s (v,

The element g € {Y, X}, corresponding to 1 € {Y, Y}, is represented by a
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m-map g: 2PY —» XPX for some p > 0 (by Proposition 3.2) which is a
w-homotopy inverse for Z7f: 27X —» XrY,
For any =-spaces X,Y the natural projection defines a Z-module
chain map
Z' @z (C(X)©7 C(Y)) = C(XY @7, C(Y) > C(X A, Y),
where ¢ refers to the untwisted involution on Z[~). If X, Y are finitely-
dominated CWx-complexes this is a chain equivalence (consider the
reduced cellular chain complexes) and the chain level slant product
(C(X) ®zn C(Y) @2 C(X)*  C(Y); (x®y)®f - Flzly
induces a slant product in homology
\: By(X 7, Y) @z H'(X) - Hy_,(Y).
The Sn-duality map «: 8¥ - XA, Y constructed in Proposition 3.5 is
such that o, [SN]\ — : C(X)N-* —» ((Y)is a Z[n]-module chain equivalence,
since the =-cellular structure was constructed as the dual of that of X. We
shall show (in Proposition 3.8 below) that this property characterizes
S=-duality maps for finite CWn-complexes, generalizing the case = = {1}
of ordinary S-duality.
Define the r-dimensional Eilenberg-MacLane mn-spectrum K= (Z,r) by

K=n(Z,7), = YK(Z,p+r), & = Y‘qp: ZKn(Z,r), = YZ‘.K(Z,pH’)
- Kn(Z,7)p1, = VK(Z,p+7r+1) (r>0),

with 7,: ZK(Z,p+r) > K(Z,p+r+1) the standard map. For = = {1}
this is the usual Eilenberg-MacLane spectrum K(Z,r).

ProrosrrioN 3.7. If X is a finite CWa-complex X then
H/(X)={8",X A, Kn(Z,0)}, H"(X)={X,Kn(Z,r)}, (r>0).

Proof. For any CWn-complex X we have
{S", X n, Kn(Z,0)} = (8", X rK(Z,0)} = H(X) (r>0)

by the usual identification of integral homology with K(Z, 0)-homology.
Also, there is defined a natural Z[#]-module morphism

v {X, Kn(Z,7)}, > H(X); (f: Z*X > VEK(Z,p+7)) — f*(1)
with f*: Ho+(\, K(Z,p+7)) = Z[n] > Hp+7(ZPX) = H/(X). If X is

finite we have an Sw-duality o: S¥ — X A, ¥ (Proposition 3.5) and ¢ can
be identified with the S7-duality isomorphism

a\—: {X,Kn(Z,1)}, > {SN,Kn(Z,r) A, Y} = Hy_(Y) = H"(X).
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If X,Y are finite CWn-complexes and o: S¥ - XA, Y is a {1}-map
then the identification of Proposition 3.7 carries the chain level slant
product

oax[SVI\—: H'(X) > Hy_(Y) (o4[SV] € Hy(X A, Y)),
to the geometric slant product
o\~ : {X, Kn(Z,)}, ~ {S¥, Kn(Z,r) n, ¥} = (S, Kn(Z, 0) n, Y},
defined previously.

ProrosiTioN 3.8. Let X,Y be finite CWn-complexes. A {1}-map
a: 8N > XA, Y is an Sw-duality map if and only if the chain level slant
product

ag[SV]\ - : C(X)N-* > O(Y)
18 a Z[w)-module chain equivalence.

Proof. If «: ¥ - X A, Y is an Sw-duality map then the chain level
slant product with o,[S¥]e Hy(XA,Y) induces the Sw-duality iso-
morphisms

H'(X) = {X,Kn(Z,1)}, > {SN, Kn(Z,7) A, ¥}

= {SN-", Km(Z,0)A, Y} = Hy_(Y).

Conversely, suppose given a {l}-map o«:SM¥ > XA,Y such that
age[SN\ ~ : H*(X) - Hy_,(Y) is an isomorphism. Let o’: S¥ - XA, Y’
be the Sw-duality map constructed for X in Proposition 3.5 for N suffi-

ciently large, and let f € {Y"’, Y}, correspond to « € {S¥, X A, Y} under the
Sm-duality isomorphism

o'\=:{Y', Y}, - {8N, XA, Y}
Now f e {Y’, Y}, induces isomorphisms in homology
f=oau[SVI\—: Hy(Y') = HN-*(X) - Hy(Y).
Applying Proposition 3.6 we have that fe {Y’, Y} is an Sw-homotopy

" equivalence, and hence that a: S¥ - X A, Y is an Sw-duality map.

With a little more effort Propositions 3.5-3.8 can be made to apply
also for finitely-dominated CW=-complexes.
Sn-duality maps arise as follows.

ProrosITION 3.9. Let E be a compact N-dimensional submanifold
of SN with non-empty boundary 0E and let E be a covering space of E
with group of covering translations =, with 0E < E covering 0E. Then the
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composite {1}-map

I ~
o: S8 2P N /SN = B/0E = (B)38)/m 20

18 an Sw-duality map.

diagona E n, (B/0E)

Proof. The diagonal map is obtained from
A: E/é\i}' - E+AE/5E = (Ex E)/(E x 525); x> (z,%)
by quotienting out the =-action. Now £, and E/@E are finite CWa-
complexes by Proposition 3.2, and o: S¥ - £, A, B/oE is an Sn-duality
map by Proposition 3.8 since
«[8Y)/— = [B]n—: H(B/SE) = H(E,3E) - Hy_(B,) = Hy_(E)

defines the Poincaré-Lefschetz duality isomorphisms of (E,oF), with
[E] € Hy(E, o) the fundamental class.

Given a fibration F —— K 2, B and a covering B of the base
space B with group = of covering translations define the Thom w-space to
be the mapping cone w-space of the induced #-map ¢.: £, - B,

Tn(p)= B ug, E.Al = Bugy ExI/Ex1.

The quotient {1}-space T'n(p)/m = T(p) is the usual Thom {1}-space of p,
and if B = 7 x B is the trivial covering then

Ta(p) = VT(p)

If p: E - B is a cellular map of CW complexes then T'n(p) is a CWn-
complex by Proposition 3.2.
Fibre homotopy equivalence classes of (k— 1)-spherical fibrations

Sk—l._>EL>X

over a CW complex X are in a natural one—one correspondence with
the homotopy classes of maps p: X — BG(k), for the appropriate
classifying space BG(k). Given such a fibration we shall say that a
covering X of X is oriented with respect to p if the group of covering
translations = is equipped with a group morphism w: = — Z, such that
the first Stiefel-Whitney class w,(p) € HY(X; Z,) = Hom(m(X), Z,)
factors as

w
wy(p): m(X) —> 7 —> Z,
with 7, (X) — = the characteristic map, and the pair (=, w) is the dala
of the covering. A covering X of X can be oriented with respect to

p: X - BG(k) if and only if the pullback 5: X — X 2, Bak) is
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an orientable (k — 1)-spherical fibration, but the choice of w is not unique.
If f: M > X is a map of CW complexes then the pullback cover
IT of M is oriented with respect to the pullback fibration

o) M =1 x -2 Baw),

with the same data (7, w).

A covering X of a geometric Poincaré complex X is oriented with data
(w,w) in the sense of §2 if and only if it is oriented in the above sense
with respect to the Spivak normal fibration vy: X -~ BG with data
(7, w) (cf. Proposition 4.1).

Spherical fibrations are characterized by the following equivariant
generalization of the Thom isomorphism theorem.

ProrosriTION 3.10. Let F —— E 2, B be a fibration of CW complexes,
with E,B finitely dominated. If F = S** (up to homotopy equivalence)
and B is an oriented covering of B with data (m,w) then there exists
an element U, € H¥(Tn(p); *Z), the Thom class of p, such that the cap
product

U,n—: *C(T=(p)) - SkC(B)
18 a chain equivalence of finite-dimensional Z[n]-module chain complexes,
the Thom equivalence. Conversely, if F is simply-connected and there
exists an element U, € H% 5 (T'm (B)(p); ¥Z) (k > 3) for the Thom m\(B)-
space with respect to the universal cover B of B, for some group morphism
w: my(B) - Zy, such that

U, 0 — : C(Tmy(B)) - S*C(B)

18 a Z[m(B)]-module chain equivalence then F is a homotopy S*-! and
w = w,(p): m(B) = Z, is the first Stiefel-Whitney class of p.

Proof. The proof is by the spectral sequence argument of Browder

[3, Lemma I.4.3] applied to the pullback F — £ 2, B of p to the
universal cover B of B.

We can now state the analogue of Proposition 4.4 of Spivak [25]
appropriate to geometric Poincaré complexes in the sense of Wall [29]
(cf. Browder [4]).

ProrosrrioN 3.11. Let X < S¥ be a finite subcomplex with a closed
reqular neighbourhood E, and let F be the homotopy-theoretic fibre of the
tnclusion p: 0E — E. Then X is an n-dimensional geometric Poincaré
complex if and only if F is a homotopy SN—""1 (N > n+3).

5388.3.40 P
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Proof. The inclusion X < F is a (simple) homotopy equivalence, so we
can identify #,(X) = m(E)=m, X = E, Tn(p) = E/oE with X, £ the
universal covers. Proposition 3.9 gives an S#-duality map

a: 8N > X A, Tn(p)

such that there is defined a commutative diagram

H1(X; vZ)@, »H"(X) — > H, (%)

(e [SFT\ = )1 ® (o [SV]\ ) id.
. N

HN-n(T'n(p); “Z)® *Hy_(Tn(p)) ——> H,_/%)

for any group morphism w: = — Z,. Comparison of the definition of a
geometric Poincaré complex (as in §2) with the criterion of Proposition
3.10 gives the required correspondence.

4. Normal maps

Given a degree 1 map of n-dimensional geometric Poincaré complexes
f: M - X and a covering map of the Spivak stable normal fibrations
b: vyr > vx we shall apply the equivariant S-duality of §3 to obtain a
geometric Umkehr map F: 22X, — $2M,, and hence by the quadratic
kernel construction of §2 an n-dimensional quadratic Poincaré complex
over Z[~],

O’*(f, b) = U*(f, F)'
In §7 we shall identify the quadratic Poincaré cobordism class

ox(f,b) € L,(Z[m(X)])
with the Wall surgery obstruction.

An n-dimensional normal space (X,vx, px) is an n-dimensional finitely-
dominated CW complex X together with a (k—1)-spherical fibration
vx: X - BG(k) and an element py € 7, (T (vx)). (This concept is due to
Quinn [21].) Given a covering X of X with group of covering translations
w define the fundamental map of (X, vy, px) to be the composite {1}-map
ax: Svik PEs o,y X/B = (R/B)/m 4, X A X/E =X A, Trlvx),
with £ the induced covering of the total space E of v, and A the diagonal
map. If X is oriented with data (w,w) with respect to vy define the
Sfundamental class to be the twisted homology class

[X] = Uy, nhipx) € HYX; vZ),
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with U, € H¥Tn(vx); *Z) the Thom class of vx and

b: 7y (T(vy)) - Hn+k(T("X))

the Hurewicz map. The fundamental map is related to the fundamental
class by a Z[n]-module chain homotopy commutative diagram

wo@p-+ — =" o(8)

U,xu—J lid.
n+k)\ —

C’(Tw(vx))“““* a*[S_‘L]\__) C( X)

in which the cup product with U,_is a chain equivalence (a variant of the
Thom equivalence of Proposition 3.10).
A normal map of n-dimensional normal spaces

(£,0): (M, var, py) > (X, v, px)
consists of a map f: M — X of the underlying spaces together with a
stable fibre homotopy class of stable fibre maps b: vy; — vx over f such
that
T®)py = px € k(T (vx))

for sufficiently large k.

An equivalence of normal structures (vy,px), (Vx,px) on a space X is
a normal map of the type

(1,b): (X,vx,px) > (X, v, p'x).

ProrosiTiON 4.1. An n-dimensional geometric Poincaré complex X

admits a mormal structure (vx,px) with wy(vx) = w(X) and the same
fundamental class [X] € Ho(X ; vZ) such that the fundamental map

ax: 8tk X A, Tr(vy)

defines an Sn-duality for every covering X of X, with = the group of covering
translations. Any two such normal structures (vx,px), (Vx, p’x) are related
by a unique equivalence (1,b): (X,vx,px) = (X, V%, p%). Conversely, if X
is a finitely-dominated CW complex with a mnormal structure (vx,px)
such that the fundamental map

ay: 8tk > X A Tr(vy)

with respect to the universal cover X (m = n,(X)) defines an Sw-duality map
then X is an n-dimensional geometric Poincaré complex with w(X) = w,(vx)
and the same fundamental class [X] € HY(X ; ¥Z).
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Proof. If X is finite there exists an embedding X < 8V for
N > 2(geometric dimension of X)+1 by general position, with closed
regular neighbourhood E say. If X is any covering of X with group of
covering translations = then Proposition 3.9 gives an S#-duality map

= collapse ~
ag: OV EXZ PR B op XA, B/38.
Let F be the homotopy-theoretic fibre of the inclusion 0 < E, so that
there is defined a fibration

F—>s oE % X

with Tn(vy) = E’/éf’. If X is an m-dimensional geometric Poincaré
complex then F ~ §¥-n-1 by Proposition 3.11, and (vx,px) defines a
normal structure with S=-duality. If X is not finite use the trick of Wall
[29, § 3] of crossing with S! to reduce to the finite case. The uniqueness
clause is as in [29, Corollary 3.6] (see also Theorem 1.4.19 of Browder [3] ).
Conversely, given a normal structure with S7-duality for the universal
cover we can obtain Poincaré duality by combining the Sw-duality
criterion of Proposition 3.8 with the Thom isomorphism of Proposition
3.10.

Thus an n-dimensional geometric Poincaré complex X carries a
canonical equivalence class of normal structures (vx, px) with Sw-duality.
We shall call this the Spivak normal class, calling any such vy a Spivak
normal fibration of X. A normalization of X is a choice of normal structure
(vx, px) in the Spivak normal class.

We are now in a position to apply Sw-duality to obtain geometric
Umkehr maps of the type considered in § 2 for degree 1 maps of geometric
Poincaré complexes which preserve Spivak normal structures.

ProrosiTion 4.2. Given a degree 1 normal map of normalized n-
dimensional geometric Poincaré complexes

(f,0): (M, vy, par) > (X,vx, px)
and a cover X of X with group of covering translations = there is induced a
m-map of Thom m-spaces T'n(b): Tn(vy) > Tn(vyx) such that the Sw-dual of
T (b) with respect to the fundamental Sm-duality maps

ay: SN > M A, Trlvy), ax: SN > X A, Tnlvg)

is an Sm-homotopy class F e {X, M.}, of geometric Umkehr maps
F:zrX, > Zo M, such that (Z°f )F ~1: 27X, > 32X, up to stable =-
homotopy.
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Proof. The Sw-duality is defined by the composite

o\ — )1 oax \ —
. {T”(VM)s T"(”X)}n '(—M\-—)) {SN’ Tn(vx)Aq M+} (X_\)> {X+a H+}ﬂ'

Working round the stable homotopy commutative diagram

Zpa >4

SN+ > ZPX A, Tr(vy)
A
N ZA
ZpT(Vx)
sz(b)I 27 f, ATn(b)
22T (vyy) Zrfoal
ZPpy TPA
v /;paM \
SN+p — ZPI1, A, Tr(vy)
SPar | W(b)
v Fal
E”X_._/\" T‘IT(Vx) -> ZpM+A” T?T(Vx)

we have that
(EPfOF AL)(ZPay) ~ (ZPax): SN+ > 32X A Tn(vg).
Since XPay is also an Sw-duality map it follows that
(SPf)F ~1: 22X, - ¥ X,

for p large enough. The diagram also shows that F' induces the Umkehr
f': C(X) > C(Jf) on the chain level, identifying the Poincaré duality
chain equivalences with the appropriate Thom equivalences.

Define the quadratic kernel of a normal map of normalized n-
dimensional geometric Poincaré complexes

(f,0): (M, vpr, pyr) = (X, vx, px)

with respect to an oriented cover X of X with data (w,w) to be the
n-dimensional quadratic Poincaré complex over Z[n] with the w-twisted
involution

ox(f,0) = 0u(f, F) = (C(f"), expr[X] € @u(C(/)),
using the quadratic kernel construction of Proposition 2.3 with any of
the geometric Umkehr maps F: ZpX, —> =2/, such that (Z°f,)F ~ 1
provided by Proposition 4.2. All such quadratic kernels are induced from
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that associated to the universal covering X of X with data (m(X), w(X)).
We have the sum formula:

ProrosiTION 4.3. The quadratic kernel of the composite
(f,0) (g,¢)
(f.cb): (X,vx,px) — (Y,vp,px) — (Z,vz, p2)
of normal maps of normalized n-dimensional geometric Poincaré complexes is

ox(9f,¢b) = ox(/, b)® 04(g,¢)
up to homotopy equivalence.

Proof. This is immediate from Proposition 2.5, since (Z2f,)F ~ 1.

The difference '~ € ker((1+T'): @,(C(f") = @™(C(f"))) of the hyper-
homology classes appearing in the quadratic kernels o (f,b) = (C(f"),¥),
ax(f,0') = (C(f'),¢’) of normal maps

(f0): (M,vpr, ppr) > (X, vx, px)s  (F,0°): (M, v, par) > (X,vx, px)
such that b’ = bc: vy, - vy for some automorphism c: vy = vy will be
expressed in terms of ¢ in Proposition 9.10 below.

A normal bundle map
(f,o): M- X
is a degree 1 map f: M — X from an n-dimensional smooth manifold M
to an n-dimensional geometric Poincaré complex X together with a bundle
map b:vy - vy from the normal bundle v,: M — BO(k) for some
embedding M < 87+« (k > n) to some bundle vy : X — BO(k). This is the
definition of normal map due to Browder [3] (with M compact and X
finite). The quadratic kernel of such a normal bundle map with respect to
an oriented cover X of X is the quadratic kernel

ox(f,0) = a4 (f, Jb) = (C(f"), e, (¥ p[X]) € @u(C(f)))
of the normal map of normalized n-dimensional geometric Poincaré
complexes
(f,Jb): (M, Jvp, pyr) > (X, Jvx, px),
obtained by passing to the associated spherical fibrations Jvy,: M — BG(k),
Jvyx: X — BG(k), with
collapse
par: 8 ——=— T(vyy), px = T(b)py: §** —— T'(vx).
The surgery obstruction of a 2¢-dimensional normal bundle map
(f,b): M — X such that =,(X) = {1} is }(signature) {the Arf invariant}
of the non-singular quadratic form over Z {Z,} defined on K%(M)
{Ka(M; Z,)} by ou(f,d) {Z,@0u(f,0)} if =0 {g=1} (mod2) (cf.
Propositions 2.4(i), 1.7.1, and 1.7.2).
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A normal map in the sense of Wall [30]
(f,B): M - X

is a degree 1 map f: M - X from an n-dimensional smooth manifold M
to an n-dimensional geometric Poincaré complex X together with a bundle
isomorphism B: &y — 75, ® f *vx, with 7,,: M — BO(n) the tangent bundle
of M, vx: X - BO(k) some bundle over X, and ¢, = 0: M - BO(n+k)
the trivial (n + k)-plane bundle (with M compact and X finite). Choosing
an embedding M < S¥ (N > n) with normal bundle vy: M — BO(N —n)
we have a stable inverse v, for 75, and a bundle map over f
leoB
bivy @&y —> vy ® (T ®f *vx)
= (vu®Ty)Of*vx — frex®f*vx — exOvyx
with ex = 0: X - BO(N). The quadratic kernel o,(f,b) of the normal
bundle map (f,b): M — X does not depend on the choice of vy : for
if vy, vy, are two such then there exists a bundle isomorphism ¢: vy, — vy,
such that b’ =bc:vy > vy and T(c)(py) = par € "a(T(va)) (by the
uniqueness of embeddings M < S¥ for N > n), so that applying the sum
formula of Proposition 4.3 to the composite normal map
, .y (Lo (£;9)
(f,6): (M, v, pag) — (M, vy, prr) — (X, vx, px)s
we have that up to homotopy equivalence

ox(f,0") = 0x(f,0) @ 04(1,0) = 0u(f, b).
Conversely, a normal bundle map (f,b): M - X determines a normal map
in the sense of Wall [30] (f,B): M — X with
B: gy =1y @vy -1—@—b> T ®f*rvx.
From now on we shall not distinguish between the two formulations of
normal bundle maps.

5. Intersections and self-intersections

We have used the quadratic construction ¢ of §1 to define in §4 the
quadratic kernel o, (f,b) = o4(f, F) of a normal bundle map (f,b): M - X,
using the equivariant S-duality of §3 to obtain the geometric Umkehr
map F: 22X, — S»M,. We shall now describe the self-intersections of an
immersion 8™ - M™ in terms of the quadratic construction i, allowing us
to identify the quadratic kernel o, (f,b) for a highly-connected f with the
geometrically defined surgery obstruction kernel of Wall [30, §§5, 6).
(See the note added in proof (p. 279) for the generalization to arbitrary
immersions of manifolds.)
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ProrosiTION 5.1. For any p,q > 0 there is defined in a natural way a
morphism of commutative braids of exact sequences of abelian groups

jim—>Q
Jrom
/\ /—\
7(8O0(p +¢)/80(q)) 7, 4(80(g)) "m—l(Sg\

A
7 m (SO(p+q) 7 (SOSO@)  m, (SO(p+q))
N N 1

A
1.(80)  Tu(SOISO(P+9)) 7 (SO(p+9)/SO(g))

N N I

to
J
Q02 1(87Z) Qm19(S9Z) Q@m+e(SIZ)
W A N+ ~NgF 7N
Q: Qmirtatl(SrHZ) Qniq(SZ) Qm+r+a(Sr+aZ)

P A R BT A

Qe (S9Z)  Quipio(SPHE) QRP(8°Z)

NS NS

Proof. @ is a particular case of the braid of Proposition I.1.3.
Define as follows abelian group morphisms

j: "m(BSO(q)) = 7"m—l(So(q)) —> Qmﬂ(‘ng) = Hq-’m(zz; z: (_ )q)’
J* Tmar(BSO(p +9), BSO(9)) = m,.(80(p +4)/80(q))
~> QRETNSZ) (= Hy o(Zy; Z,(—)) if m—g <p—1+#0).
Given an oriented g-plane bundle «: 8™ — BSO(q) over S™ apply Lemma 1
of Milnor [15] to identify the Thom space 7'(«) with the mapping cone of
J(a) € "mw-l(‘sq)
T(a) = S Ur) emte,

Applying the symmetric construction ¢ and the symmetric Wu class v,,

Z = By, (T(x)) 229 gmi(O(T(a))) —=> Hom,(HY(T(x)), @™ (SZ))

set
(@) = vp(@r@(D))(1) € Qme(S9Z) (BUT(x)) = Z).
(By Propositions 1.2(i) (if m = ¢) and 1.3 (if m # ¢) j(«) can be expressed in
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terms of the cup product structure of H*(T(«)) and the action of the
Steenrod algebra on H*(T'(«); Z,). In §9 below we shall use this to identify
Jj(c) with the Hopf invariant of J(«).) Furthermore, given a null-homotopy
B: Dt —» BSO(p+4q) of a®e?: 8™ - BSO(p+q) there is defined an
isomorphism B: ¢#*? - o @ ¢? of oriented (p +q)-plane bundles over 8™,
inducing a homotopy equivalence of Thom spaces

T(B): T(ep+9) = Sptay §miPH — T(a® eP) = ZPT ().
The composite |
inclusion T(B)
I(B): Zr(Sm+e) = Smtp+e Sp+Hay §Sm+P+ ————— 3T (o)

represents the generator 1 € H, mip+a(2PT () = Z. Applying the quadratic
construction ¢ and the quadratic Wu class ™

Z = By 5m9) 222 Qr;( 02 )~ Hom (Ho(T(w), Q2752)
set
jlow B) = v™(hrp(1))(1) € QLT (SZ).

Applying the symmetric Wu class operation »,, to the relation

Pr(1) = (ZP) L (B)ZP *pgmsa[S™+] = (L+T)yp(1) € @Qm(C(T(w))
given by Proposition 1.5(ii) we have that

J(e) = 1+ T)j(x, B) € Qm+(SZ).
The remaining morphisms j: = — @ are obtained from these by passing

to the suspension limits in both the geometry and the algebra (cf.
Proposition 1.4).

(It is possible to factorize the map of braids j: # > Q asj: = - II = Q,
with II defined exactly as = but using SG instead of SO. In particular,
for m = q = 2k, j factorizes as

. J Hopf invariant

J: mau(BSO(2Kk)) > g1 (8%) > QH(S*Z) =
and is just the function assigning the Euler number y(a) € Z to the oriented
2k-plane bundle over S%* classified by «: S%* — BSO(2k). For m < g,
J: m(80/80(q)) - Qn14(89Z) is an isomorphism.)

Let M™ be an n-manifold, which for the sake of simplicity we take to be
compact, smooth, and closed. Let (w,w) = (m (M), w(M)), and give the
group ring Z[n] the w-twisted involution. Let S,(M) (r > 2) be the
Z[7]-module of regular homotopy classes of oriented immersions
g: 8" > M with a preferred lift §: 8" = #x 8" — M to the universal
cover M of M, where addition is by connected sum and = acts by
changing lifts. Given such an immersion ¢ define a Z[7}-module chain map
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g': C(M) - C(Tn(v,)) by

((M]o=-)"t ([8710-)

C(Sf'r)n—* _ Sn—rc(gr)
G,0-)

— 5 s (Ta(v,)),

Qe
*

g': O C(H -

where Tn(v,) = V,T(v,) is the Thom =-space of the normal bundle
v,: 8" > BS8O(n—7),and U, € H™"(T(v,)) is the Thom class of v,.

The symmetric self-intersection of an immersion g: 8* — M™ is the
Z,-cohomology class

Ag) = v (el M])(x) € H*(Zq; Z[m(M)],(—)""")
obtained by evaluating the composite

Hy(J; wz) 2> gn(c(al)

_r> Homz[ﬂ](an_r(M)’ Hn—Zr(Z2; Z[W]’ ( - )'n._,.)),

with z = g**(U, ) € “Hn~"(I) the Poincaré dual of §,[S7] € H,(M). For a
fixed M the class A(g) depends only on §,[S7] € H,(J). In the case where
n = 2r, A(g) can be identified with the evaluation A(g,g) of the geometric
intersection pairing

X: S (M) x 8,(M) — Z[my(M)].

By Propositions 1.3 and 2.4(i) the mod 2 reduction of A(g) (for n > 2r)
can be expressed as

Alg) = <8¢"(x), [M]> = <v (M) vz, [M]) € Z,
(@ = g*(U,) € H*"(M; Z,)).
Given an immersion g: §” — M™ and a non-negative integer
p>2r—n+1l,

it is possible to deform the immersion g x 1: S — M" x D? by a regular
homotopy to an embedding g’ : 87 = interior(M™ x DP) with normal bundle

vy =v,®eP: 87 > BSO(n—r+p).
Let E be a closed tubular neighbourhood of ¢’(S7) in M»x DP, with
induced cover £ = = x E = M x D?. The n-map
G: XPM, = M x D?/H x §p—1 ——— collapse MxDv/HIxD?— B
= E/oE = Tn(v,) = Z*Tn(v,)
induces g': C(#) - C(Tn(v,)) on the chain level.
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The quadratic self-intersection of an immersion g: 8T - M™ is the
Z,-homology class
P‘(g == lﬁG[Jn] v,) € HZr—n(zz: Z[ﬂl( )]a(_ )n—r)
obtained by evaluating the composite

H;;(M; wZ) — lﬁa Qn(C’(Tw(v ) —>H0mz[,,](wH" "(T'n'(va)),

2r—'n(z2’ Z['”] ( 'n—r)
In the case where n = 2r, u(g) will be identified with the geometric self-

intersection of g (in Proposition 5.2 below). By Proposition 1.6, the mod 2
reduction of u(g) can be expressed as

#g) = <8qpHH(ZP), ZP[M]) € Z,
(h = (29U, )G~ T9(s) € [Z7 M, 2K (Zg,n—)],
¢ = generator € H*"(K(Zy,n—1); Zy) = Z,).

ProPOSITION 5.2. The symmetric and quadratic self-intersections define
functions

A: 8,(M~) > H=27(Zy; Z[my(M)], (= )*); (g: 87 —> M™) > X(g),
p: S (M™) > Hy, o(Zy; Z[my(M)], (—)*7); (9: 87 > M™) = plg),
such that
(i) Mag) = aX(g)a, plag) =ap(g)d (a € Z[m(M)], g € S(M™)),
(i) Alg) = (J(vp), 0)+ (1 +T)ulg) € H2"(Zy; Z[my(M)], (—)"")
= H1(Zy; Z, (- )*~") @ H=*(Zy; Z[m(M)Y/Z, (—)"~),

[A(g1,92)] of n=2r
(i) (g +g0)—mlgy) —plge) ={ T (91,92 € S,(M™),
0 otherwise

(iv) if the class g € S,(M™) contains an embedding then u(g) = 0, and of it
contains a framed embedding then also A(g) = 0,

v) if n=2r > 6 and u(g) = 0 then the class g € S,(M3") contains an
embedding.

Proof. (i) By construction.
(ii) Apply the symmetric Wu class v, to the relation given by Pro-
position 1.5(i),
9% U] = praupdulM]— (1 +T))elM] € Q(C(Tn(v,)).
(iii) The quadratic self-intersection u(g,+g,) of the connected sum
g, +¢, of immersions g,,g,: 8" — M™ is given by

p(gy+9;) = "”'('/’G[M])(U»,‘@ U,) € Hyy_u(Ze; L[y (M)], (—)""),
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with '
@ = G,vGy: ZPH, - Z2(Ta(v,)v Trlv,,)) = ZPTw(v,) v ZPTn(v,,).
There is a natural identification of Z[#]-module chain complexes
C(T(v,,)v Tn(y,,)) = C(Tn(y,))® C(Tn(v,,)),
and Proposition I.1.4(i) allows us to express y, as
bay
Yo = Yo, : Hy(M; vZ) > Q,(C(Tn(v,,))® C(Tn(v,,)))
—(71®9b)A,
= Qu(C(Tn(,)) @ Qu(C(Tn(v,))) @ H(C(Tr(v,,)} @z, C(Ta(v,,)),
with (¢} ® g})A, the composite

A
(L@ gh)dy: Hi(M ; vZ) —— H,(C(H) ®4, C(IT))

! |
2B B (O (00 @51 O T, ).
Now apply the rth quadratic Wu class v" to the identity
Yol M) = (b, [ M1, g[M), — (91 ® g)ALM]) € Qu(C(Tm(v,) v Tmlv,,)))-
(iv) By definition ¢ is a composite
Yo: Hy(M; *Z) > QRP—1(C(Tn(v,)) = Qu(C(Tm(v,))),
and the middle group is 0 if p = 0.

(v) Let fi(g) € Hy(Zy; Z[my(M)], (—)7) be the geometric self-intersection
of an immersion g: 87 — M?" (r > 2), as defined by Wall in [30, Theorem

5.2]. It was proved there that
g1+ 92) — 2(9:) — £(92) = [M91,92)] € Hy(Zy; Z[my(M)], ()",

and that, for » > 3, fi(g) is the sole obstruction to deforming g to an

embedding.

We shall prove that u(g) = fi(g) (for r > 3) by a generalization of the
trick used by Browder in the proof of Theorem 1V.4.1 of [3].+ Lift fi(g) to
some element a € Z[m(M)], and let ¢’: 8" — M'?r = M2 #(S"x 87) be an

immersion representing the homology class
§alS71 = (0, —a,1) € H(H') = H(M)® Z{my(M)]® Z[m,(M)].
The immersion g#0: S* — M'?" represents the homology class
(7% 0)4[8) = (§x[871,0,0) € H(M') = H(M)® Z[m\(M)]® Z[m(M)].
Define an immersion
9" = (g¥#0)+g': 8" —> M,
t See note added in proof on p. 279.
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and apply the sum formulae for x and i to obtain
#(g") = pg ¥ 0)+p(g’) = u(g) — [a] = ulg) — (9) € Ho(Zy; Z[my(M)], (-)"),
fi(g") = fig # 0)+ 2(g") = Alg) — [a] = 0 € Hy(Zy; Z[m(M)], (-)").
Thus ¢” can be deformed to an embedding, and u(g") = 0 by (iv).
The relation of Proposition 5.2(ii) for n = 27,
Ag) = (§(v,), 0)+ (1 + T)ulg) € HYZy; Z[my (M)}, (—)")
is precisely the relation of Theorem 5.2(iii) of Wall [30], with
j(vg) = X(Va) € Ho(zz; Z’ ('— )r)
the Euler number of v, € 7, (BSO(r)).

PrOPOSITION 5.3. Let f: M — X {(f,b): M — X} be a degree 1 {normal
bundle} map from an n-dimensional manifold M to an n-dimensional geo-
metric Poincaré complex X. Let g: S — M be an itmmersion with an oriented

normal bundle v,: 8 - BSO(n—r) and a null-homotopy h: D™ - X of
fg: 8" > X {and let v,: D™+ - BSO be the stable trivialization of
v,: 87 > BSO(n—r) determined by b:vy —vx} The rth symmetric
{quadratic} Wu class of the symmetric {quadratic} kernel,

{ o*(f) = (C(f'), ¢ = e*p5[M] € @Q(C(f")),
ox(f,0) = (C(f'), ¢ = expr[X] € @u(C(fM))),
{ vy(p): H*=7(C(f")) = K""(M) -~ H"2(Zy; Z[my(X)], (—)*"),
v(): H(C(f")) = K* (M) - Hyy_n(Zy; Z[my(X)], (= )*),
sends the Poincaré dual x € K*7(M) of the Hurewicz image in
H,.(f) = K(H)
of (h,9) € mpy(f) = mppa(f) to
{ v,(@) () = Ag) = (J(vp), 0)+ (1 + T)ulg) € H**/(Zy; Z[my(X)], (—)*"),
")) = (j(vnr 7o) 0) +11lg) € Hapn(Zgs Z[my(X)], (—)77).

Proof. The expression for v,(p)(x) is immediate from Proposition 5.2(i),
so only the normal bundle case need be considered. The commutative
diagram of maps of spaces

g

St — M

| hlf

DH—— > X
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is covered by a commutative diagram of bundle maps

*
gV —> Vg

c‘ ‘b
h*VX —_— VX

with h*vy a trivial bundle and c¢: g*vy, > h¥*vx giving rise to
Vp Dr+1 -> BSO.
There is induced a commutative diagram of Thom =-spaces and 7-maps

(m = m (X))
Tr(g*vy) —— T(var)

Tn(c)l l'_rw(b)

Ta(h*vy) —> Tn(vy)

whose Sw-dual is a 7-homotopy commutative diagram of #-maps

G _
=P Tn(v,) «—— So 1,

I (vh)I [F
H

Zr(Y 87) «— =X,

for p > 0 sufficiently large. Applying the sum formula for the quadratic
construction of Proposition 1.5(iii) we have

G rl X1+ $6[M] = Yap[X] = d1nalX]
= Yrop(1) + 1) P X] € @ (C(Tn(v,))).

The disc theorem for geometric Poincaré complexes (Wall {29, Theorem
2.4]) provides a homotopy equivalence

X - Yuy,er
with Y a homologically (n— 1)-dimensional complex and k: 8*»! - Y

some map. Passing to the universal covers, adjoining basepoints, and
collapsing ¥ we obtain an unstable 7-map

H: X, - (Yug(mxer)), > V8»,

representing the Sw-dual of T'#n(h*vx) - Tw(vx), so that
Y = 0: Hy(X; vZ) > @,(C(VS") (w = w(X)).
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Applying the rth quadratic Wu class v” to the Z,-hyperhomology class

Gy r[X] = (1) — o[ M] € @, (C(Tn(v,)))

we obtain the desired expression for v*(y)(x)

At this point it is instructive to compare the approaches taken by Wall
[30] and Browder [8] to the problem of performing framed surgery on an
element « € m,.,(f) for some n-dimensional normal bundle map (f,b):
M - X. Theorem 1.1 of [30] establishes that for » <n—2 every
o € 7,.,(f) determines a regular homotopy class of framed immersions
g: ST > M together with a prescribed null-homotopy %: D™+ - X of
fg: 8" > X, such that (v,,v,) = 0 € 7,,,(BSO, BSO(n—r)). Surgery on «
is possible if and only if this class contains an embedding, so that on the
chain level the surgery obstruction is

") (@) = u(9) € Hpp_n(Zy; Z[m(X)], (—)"").
On the other hand, Theorem IV.1.6 of [3] assumes that o € m,,(f) is
already represented by an embedding g: 8* <» M with a null-homotopy
h: D1 — X of fg: 87— X, so that u(g) = 0. Surgery on « is possible if
and only if (v,,v,) =0 € 7, ,(BSO,BSO(n—r)) (= =,(S0/80(n—r)) =
7.V, n_ ), k large), so that the chain level surgery obstruction is
V() (x J(nsv,),0). In Proposition I.4.6(i) we interpreted the e-quad-
ratic Wu class v"(Y)(x) € Hy,_,(Zy; A, (—)"""e) associated to an abstract
n-dimensional ¢-quadratic Poincaré complex over 4, (C,¢ € @,(C,¢)), as
the obstruction to performing algebraic surgery on x € H,(C). (Algebraic

surgery will be related to geometric surgery in § 7 below.)

Given an (7 — 1)-connected 2i-dimensional {(2: + 1)-dimensional} normal
bundle map for ¢z > 3 {i > 2}, (f,b): M - X, let

(Ki( M), A, )
(Hyi(K;41(U, 00)); Kpy(U, 0U), Kyy (Mo, 3U))

be the non-singular (—)* quadratic form {formation} over Z[,(X)] with
the w(X)-twisted involution obtained by Wall in §5 {§6} of [30] as the
surgery obstruction kernel, using geometrically defined intersection and
self-intersection forms. The odd-dimensional terminology involves the
union U of disjoint framed embeddings 8¢x Dit! < M such that the
images f(S% x D) € X are contractible, and such that the corresponding
elements of K,(M) are a set of generators, with My = M\U < M. The
quadratic kernel o,(f,b) is the i-fold skew-suspension of a 0-dimensional
{1-dimensional} (— )¢ quadratic Poincaré complex over Z[m,(X)],

ox(f,b) = Stoy(f,b)

0(f,b) =
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(as in Proposition 2.6), and o,(f,b) can be regarded as a non-singular
(- ) quadratic form {formation} by Proposition I.2.1 {I.2.5}.

ProrosrTioN 5.4. The surgery obstruction kernel of a highly-connected
n-dimensional normal bundle map (f,b): M - X agrees with the quadratic
kernel defined using a geometric Umkehr map F € {X,, 1.}, (7 = (X))

0(f,0) = o4(f,b) (n=2i0r2i+1 > 5).

Proof. Consider first the case where » = 2i. Now C(f!) is given up to
chain equivalence by

c(fY): ... > 0> K(M)—>0— ...,
and the quadratic kernel is given by

0u(f:5) = (C(f"), ¥ = ex5[X] € ol C(")
= coker(1 — T\_yi: Homy,(K(M), K(M)¥)

- Homl{n]('Ki(M): Ki(M)*)))’
identifying K, (M) = K¥M) by Poincaré duality. By [30, Theorem 1.1},
every element z € K;(M)is represented by a framed immersion g: S — M2
together with a null-homotopy k: D' —» X of fg: 8 - X, and Pro-
positions 5.2 and 5.3 allow the identification

Y(@)(@) = plg) € Hy(Zg; Z[m(X)], (- )?).
Thus 6(f,b) = o;(f,b) if n = 2i.
In the case where n = 2{+ 1 we have that up to chain equivalence
C(fY):...>0> K, ,(M,U) > K(U) >0 ...,
so that o,(f,b) is a non-singular (— )¢ quadratic formation over Z[,(X)]
oi(f,0) = (Hi(K(U)*); K(U)*, Ky, (M, U)).

Identifying K;,,(U,0U) = K¥U) = K,(U)* by Poincaré duality and the
universal coefficient theorem we can write the inclusion of the lagrangian
Kin(M,U) > K(U)*o K,(U)

as the map
Koy(M,U) = Kyy(My, 0U) — E(0U) = Ky (U, 00) @ Kgyy(U, 8U)*
appearing in the definition of 8(f,b). Thus 6(f,b) = o,(f,b)ifn = 2¢+1.

6. Geometric Poincaré cobordism

We now relativize all of the results of §§1-4, in order to construct
algebraic Poincaré pairs from geometric Poincaré pairs. Given an (n+1)-
dimensional geometric Poincaré pair (X, 0X) we define an (n+ 1)-dimen-
sional symmetric Poincaré pair ¢*(X,0X) with boundary o*(0X), and
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given a degree 1 {normal} map of (n+ 1)-dimensional geometric Poincaré
pairs (f,9f): (M,0M) - (X, 0X) {(f,2f), (b, 2b)): (M,0M) - (X, 0X)} we
define an (n+1)-dimensional symmetric {quadratic} Poincaré pair

o*(f, of ) {ox((f, f ), (b, 0b))} with boundary o*(9f) {o4(2f, 2b)}.
The relative symmetric construction @, defined below is a relative version
of the absolute symmetric construction ¢x of Proposition 1.2.

ProrosiTION 6.1. Let 7 be a group, and give Z[rn] the w-twisted involution
for some group morphism w: m - Z,. Given a m-map of w-spaces
i X->Y
there are defined in a natural way abelian group morphisms
#r Hilf; ¥2) > @H(f: 6(X) > C(Y)) (n e Z)

such that
(i) for each z € H7 \(f; VZ),

?I(z)o\_ =zn—: *H'(f) > Hn+1—r( Y),
(ii) there is defined a morphism of long exact sequences

woo —> Hz,\(Y; vZ) — Hi,,(f; *Z) —> HL(X; vZ)

d

oo —— QU(C(Y)) ——— QrY(f) — @C(X))

L H;(Y’ wZ) —> Ho(f; YZ) —> ...

¢YJ ?ll
f %

—— QMO(Y) —— @) — ..

Proof. Choosing a functorial diagonal approximation A we have a
commutative diagram of abelian group chain complexes and chain maps

1eof

Z' @, C(X) > Z'®gn O(Y)

¢X=1®AXJ ‘1®AY=¢Y
1%
Homy, (W, C(X) ®ztn) C(X) — Homgy (W, C(Yy ®zm C(Y))
with corresponding chain map of algebraic mapping cones

o C1Qf) > C(f*).
5388.3.40 Q
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The relative symmetric construction is given by the maps induced in the
homology groups

¢y Hy(CA®S)) = Hr \(f; YZ) > H, . (C(f*)) = @(f).

Given a pair of #-spaces (X, Y) we shall write the relative symmetric
construction for the inclusion 7: ¥ <+ X as

exy = ¢ Hpy(X, Y5 vZ) = Hy (05 vZ) > @ris: C(Y) - C(X)).
An (n+ 1)-dimensional geometric Poincaré pair (X,0X) is a CW pair of
finitely-dominated CW complexes, such that 6X is an »-dimensional

geometric Poincaré complex, together with a group morphism w(X):
m(X) - Z, such that w(0X) factors as

w(X)
w(0X): m(0X) —> m(X) —> Z,

and with a relative homology class [X] € HnZ(X, 4X ; X)Z) such that
the cap products

[X]0—: wOHY(X,0X) > Hyyy (X) (0<r<n+])
are Z[m,(X)]-module isomorphisms (Poincaré-Lefschetz duality) and

~

0[X] = [0X] € HI'X)(0X ; wDZ),
with X the universal cover of X and ’OZJY the induced cover of 0X.

The relative symmetric construction of Proposition 6.1 gives a relative
version of the construction of ¢*(X) in Proposition 2.1.

_PROPOSITION 6.2. Given an (n+1)-dimensional geomelric Poincaré pair
(X, 0X) and an oriented cover X of X with data (m, w) and induced cover 0X
of 0X there is defined in a natural way an (n+ 1)-dimensional symmeiric
Poincaré pair over Z[w] with the w-twisted involution

o*(X,0X) = (ig: C(3X) ~ C(R), pz 5% X] € Q**1(ig))
with boundary o*(0X) = (C(’é\i),q)é}[aX] € Q”(C’(é\f{ ))), where 1§ s the
tnclusion.
Define the symmetric signature of an n-dimensional geometric Poincaré

complex X with respect to an oriented cover X of X with data (m, w) to be
the symmetric Poincaré cobordism class

o*(X) € LYZ[n])
with o*(X) = (C(X), oz[X]ec@*C(X))) the n-dimensional symmetric
Poincaré complex over Z[n] with the w-twisted involution constructed in
Proposition 2.1. The symmetric signature o*(X) e L*(Z[~]) is induced

via the change of ring maps Z[m,(X)] - Z[~] from the universal symmetric
signature o*(X) € L*(Z[w,(X)]) associated to the universal cover of X.
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The symmetric signature invariant o*(X) € L™(Z[m,(X)]) was introduced
by Mishchenko [18].

Given a space K and a group morphism w: m(K) - Z, let QP(K,w)
be the group of geometric Poincaré bordism classes of maps f: X — K
from n-dimensional geometric Poincaré complexes X such that the
orientation map factors as

f w
w(X): m(X) —— m(K) — Z,,

that is, such that the cover X of X induced from the universal cover K of
K is oriented with data (m,(K), w).

PropositioN 6.3. The symmetric signature defines abelian group

morphisms
o*: QP(K,w) - LMZ[m(K)]); (f: X > K) > o%(X) (n > 0).

Proof. If (g; f, f"): (Y; X, X’) > K is an (n + 1)-dimensional geometric
Poincaré bordism then the construction of Proposition 6.2 defines an
(n + 1)-dimensional symmetric Poincaré cobordism over Z[m,(K)]

o¥Y; X,X")

from o*(X) to o*(X').

As a special case of the geometric Poincaré bordism invariance of the
symmetric signature we have homotopy invariance: if f: X - X’ is a

homotopy equivalence of n-dimensional geometric Poincaré complexes

then
o¥(X) = o*(X') € LNZ[m(X)))-

It follows from the computation of L*(Z) (Proposition 1.7.2) that the
simply-connected symmetric signature map

Z 0

Z, ifn=)] 1 (mod4)
o*: QP(pt.) > L™MZ) = 0 9

0 3

sends an oriented 4k-dimensional {(4k+ 1)-dimensional} geometric Poin-
caré complex X (w(X) = 1) to
o*(X%) = (signature of X) = (signature of the Poincaré duality
intersection form (H2(X; R), px[X],)) € L¥*(Z) = Z,
o*(X*%+) = (deRham invariant of X) = (deRham invariant of the
Seifert linking form (H*+{(X ; Q/Z), px[X1,))
= (dim, H*+Y(X; Z,)) € L*+YZ) = Z,,
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The relative quadratic construction g described below is the relative
version of the absolute quadratic construction i, of Proposition 1.5.

ProposITION 6.4. Let 7 be a group, and give Z[w] the w-twisted tnvolution
for some group morphism w:mw — Z,. Given m-spaces X, X', Y,Y' and

mmaps [ X > 7Y, f': X'"»> Y, F:2rX —» 2PX', Q:ZrY - ZPY' for
some p > 0 such that the diagram

zrf
X —— ZvY

Fi h lG
3p f’
X —— Y’

commutes there are defined in a natural way abelian group morphisms
Ur,o: Hpalf; YZ) > Quu(f': CX') > C(Y")) (neZ)
such that
(i) k*op—@rhy = (1+T)p,e: Hpu(f; YZ) > Q™H(f'),
with hy: Hy o (f; ¥2Z) — Hp ((f'; YZ), B*: Qri(f) — @rH(f') the
tnduced maps,
(ii) there is defined a map of long exact sequences

. — Hy(f; *Z) —— Hy(X; vZ)

o4

o > Qua(f) —— Q,(C(X")

ey emy —— By em ——

ll'Gl '/’F,Gl

LN Qn(C(Y") —— Qu(f') ——> -

(ii) g factorizes through QLE(f')
Yre: Hyn(f; YZ) > QOE(f') = @U3NS") = Quaa(f)-
If p=0then Y q=0.
Given a degree 1 map of (n+ 1)-dimensional geometric Poincaré pairs
(f,of): (M,oM) - (X, 0X)
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and a covering X of X with group of covering translations = define
Z[n]}-module Umkehr chain maps

f': ¢(X) - o)
oft: C(6X) - C(oM)

by applying Z[7]®zmxy— to the Z[=;(X)]-module Umkehr chain maps
( . 1 ~
f C(f) L[E_]n_)_) w(X)C()?’ oX )1

i__, w(X)C(_ﬁ’ a’?{)nﬂ— [M]o- O’(.ﬂ)

o ((eXln-)* &4

f!: O(aX —Q wX)C(0X)™

L af* R [OM]n— I~
—— WXC(OM ) ——— C(oM)

~
with X the universal cover of X and I , oM, 0X the induced covers of
M, oM, 0X. There is defined a chain homotopy commutative diagram

oE%) —2, o(®)

1

C(631) —2 s oy

with 157, ¢ the inclusions, so that there is induced a Z[n]-module chain
map in the algebraic mapping cones

C(af') > C(f").
A geometric Umkehr map for ( f, af ) is a m-map of pairs of m-spaces
(F,oF): (20 X,, 2°(0X),) - (Z2IL,, Z0(601),,)

for some p > 0, which induces the Umkehr (f!, of') on the chain level.
The relative symmetric {quadratic} construction of Proposition 6.1
{Proposition 6.4} can be used to obtain a relative analogue of the sym-

metric {quadratic} kernel o*(f) {ox(f, F)} of Proposition 2.2 {Proposition
2.3} as follows.

PROPOSITION 6.5. Given a degree 1 map of (n+ 1)-dimensional geometric
Poincaré pairs
(f,9f): (M,0M) > (X, 0X)
and or oriented cover X of X with data (m, w) there is defined in a natural way
a symmetric kernel (n+ 1)-dimensional symmetric Poincaré pair over
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Z[7] with the w-twisted involution
o*(£,f) = (i7: C@f") > C(fY), o M] € Qv1(ip)
with boundary o*(of ), and such that
o*(M,0M) = o*(f,of )® o*(X, 2X)
up to homotopy equivalence of pairs. Given also a geometric Umkehr map
(F,oF): (3»X,,570X,) - (e M, SPall,)

there is defined in a natural way a quadratic kernel (n+ 1)-dimensional
quadratic Poincaré pair over Z[m)

ox(f,of; F,0F) = (i5: C(&f") > C(f"), e por[X] € @r1a (i)
with boundary o,(9f, oF), and such that
(Y+T)ou(f, of; F,0F) = o*(f, of ).

Next, we outline the relative version of the equivariant S-duality
theory of § 3 required to obtain geometric Umkehr maps for normal bundle
maps of pairs. A 7-pair (X, Y) is a pair of n-spaces, ¥ < X, in which case
the suspension %(X,Y)=(ZX,XY) is also a =-pair. Given =-pairs
(X,Y), (4,B) let {X,Y; A, B}, be the abelian group of stable relative
m-homotopy classes of #-maps of =-pairs (f,g): Z?(X,Y) - Z?(4, B)
(p =2 0). The n-pairs (X,7Y), (X*, Y*) are relatively Sm-dual if there is
given a {1}-map of pairs

(o, B): (DN, 8N-1) > (X A, X*, YA, Y¥)
such that for every m-spectrum of pairs (4, B) the slant products
\: {X,Y; 4,B}, > {DN,8N-1; AA, X*, BA, Y™},
((f,9): (Z*X,ZPY) > (4,, B)))
= ((fA1)ZPa, (g A 1)ZPB):
(DN+2, SN+P-1) > (A, A, X*, By A, Y'¥)),
\: {X*, ¥*; 4,B), > {DV,8%1; Xn, 4, Y n, B};
((f*.9*%): (Z*X*,ZrY*) > (4,, By))
> (1A f*)ZPa, (LAg*)ZPB):
(DN+p, §N+P-1) > (X A, 4,, Y A, By))
are isomorphisms, and such that the {1}-map B: S¥-1 > YA, Y* is an
absolute Sw-duality map. It then follows that there are defined absolute
Sn-duality maps

o/B: 8N > (X/Y)A, X* ofB: SN > XA, (X*/T*).
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An n-dimensional geometric Poincaré pair (X,0X) can be embedded in
(D, 8n+k-1) (k large) with X nSntk-1 = 9X < §n+k-1, such that there
exists a closed regular neighbourhood E of X in D*+* with

E' = EnSrtk-1 c 9F
a closed regular neighbourhood of X in 8n+*-1, The inclusions
E\E' < E, 0B — E'
define (k— 1)-spherical fibrations

Sk-1 — ENE —%> E = X,

Sk-1 5 op" 20X, B _ oX,

such that v,y is the restriction of vy to 6X

vox: 0X ©—» X —=> BG(k).
The collapsing map of {1}-pairs
(pxs pox): (D+%, §n44-1) > Dt/ DR, St /ST )
= (E/oE\E', E'/ok") = (T(vx), T(vox))
can be used to define a relative Sz-duality map

(ax,xpx): (D™, Sn+k-1) M‘)’ (T(vx), T(vyx))

—— s (R A, Trlvg), 0X, A, Tr(vyx))
between the m-pairs (X+, 55(+) and (T'n(vx), T'n(vyx)) for any covering X
of X with group of covering translations #. Given n-dimensional geo-
metric Poincaré pairs (M, dM), (X, 2X) and any coverings M, X with the
same group of covering translations = we thus have relative S=-duality
isomorphisms
{Tn(vy), Tr(van); Trlvx), Tr(vox)}a

— {Dn+k, Sntk=1; BT A Tm(vg), 6, A, Tr(vpx)}

~{X,,0X,; M,,5M,3},.
Thus given a normal bundle map of pairs

(f,of; b,ob): (M,oM) - (X, 0X)
and an oriented covering X of X with data (m,w) the Sm-dual of the
m-map of =-pairs

(T'n(b), Tn(8b)): (Tm(var), Tlvay)) > (Tn(vx), Tm(vpx))
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is the relative Sw-homotopy class of a relative geometric Umkehr map
(F,oF): (2#X,,=0X,) - (S° ML, S#0M,).

The construction of Proposition 6.5 now gives a quadratic kernel n-
dimensional quadratic Poincaré pair over Z[x]

ox(f,0f; b,0b) = oy (f, of; F,0F)

with boundary o, (f,b).
Define the symmetric {quadratic} signature

o*(f) € LMZ[m(X)]) {ox(£,]) € Ln(Z[m(X)])}

of a degree 1 {normal} map f: M — X {(f,b): M - X} of n-dimensional
geometric Poincaré complexes to be the symmetric {quadratic} Poincaré
cobordism class of the symmetric {quadratic} kernel

{ o*(f) = (C(f"), ol M] € @C(f"))
o*(£,0) = (C(f"), exp 5[ X] € @u(C(f1))
defined in Proposition 2.2 {Proposition 4.3}.
A degree 1 {normal} bordism between n-dimensional degree 1 {normal}

maps
{f:M—)X,f':M’—LX

(f,b): M- X, (f,b'): M' > X

is a degree 1 {normal} map of (n+ 1)-dimensional geometric Poincaré
cobordisms

@;: £ f): (N; M, M') > (X xI; Xx{0}, Xx{1})

(I =1[0,1])
((g; £, ')y (c; B,0): (N; M, M') > (X xI; X x{0}, X x {1}).
ProrosITION 6.6. (i) The symmetric {quadratic} signature

o*(f) € L"(Z[m(X)]) {o«(f,d) € Ln(Z[m(X)])}

of an n-dimensional degree 1 {normal} map f: M - X {(f,b): M - X} is a
degree 1 {normal} bordism invariant such that

o*(f) = o*(M)— o*(X) € LY(Z[m,(X)]),
(1+T)ou(f,d) = o*(f) € LZ[m (X))

(ii) The symmetric {quadratic} signature of the composite gf: M — Y
{(gf,cb): M — Y} of n-dimensional degree 1 {normal} maps

fiU>X,9:X>Y {(f,b): M~ X, (g,0): X>7Y}
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18 the sum
o*(gf) = o*(f) + o*(9) € L*(Z[m(Y))),
ox(gf, cb) = a4 (f,b) + 04(9,¢) € L,(Z[m(Y)]).
Proof. The symmetric {quadratic} kernel

o*(g; £, ') {oullg; £, f"), (¢; 5,0")}
of a degree 1 {normal} bordism (g; f, f') {((g; f, f'), (c; b,]'))} is & sym-
metric {quadratic} Poincaré cobordism between the symmetric {quadratic}
kernels o*(f), o*(f’) {ox([, ), ox(f’,’)}. Proposition 2.2 {Proposition 2.3}
gives that o*(f)® o*(X) = o*(M) {(1+T)o«(f,b) = o*(f)}, and Proposi-
tion 2.5 {Proposition 4.3} that

o*(gf) = o*(f)® o*(g) {ow(gf,cb) = ox(f,D)® 04(g,c)},

up to homotopy equivalence. By Proposition I.3.2 homotopy equivalent
symmetric {quadratic} Poincaré complexes are cobordant.

In Proposition 7.1 we shall identify the quadratic signature

0*(f:b) € L.,,(Z[WI(X)])
of an n-dimensional normal bundle map (f,b): M — X with the surgery
obstruction 6(f,b) € L,(m(X), w(X)) obtained by Wall [30] using geo-
metric intersection and self-intersection forms. We have already related
the two constructions in Proposition 5.4, and the normal bordism in-
variance of the quadratic signature (Proposition 6.6(i) ) ensures that there
is defined a morphism of abelian groups

L, (m(X), w(X)) > L, (Z[7(X)]); 6(f,d) — ox(f,b).
In §7 below we shall identify this geometrically defined map with the
algebraically defined isomorphism of §1.5.
In view of the above, the quadratic signature sum formula of Pro-

position 6.6(il) may be considered as a homotopy-theoretic version of the
sum formulae of Wall [30, § 17H] and Theorem 7.0 of Jones [6].

7. Geometric surgery

The original work of Milnor [16] and Wallace [31] {Kervaire and Milnor
[8]} developed oriented {framed} surgery as a method for killing the
homotopy groups of an oriented {framed} smooth manifold M. The
framed surgery technique was generalized to surgery on a normal bundle
map (f,b): M - X from a compact manifold M to a finite geometric
Poincaré complex X (previously X = S*) by Browder [3], Novikov [20]
(for m(X) = {1}), and Wall [30] (for any m,(X)). The manifold M may be
taken to be smooth, PL, topological (Kirby and Siebenmann [9]) and
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even a homology manifold (Maunder [14]). There are also versions for
paracompact M and infinite X (Taylor [27], Maumary [18]). Various
authors, Levitt [11], Jones [6], Quinn [21], Lannes, Latour and Morlet
[10], went on to consider framed surgery on normal maps of geometric
Poincaré complexes. In all cases the obstruction to making & normal map
a homotopy equivalence by a sequence of framed surgeries is an element
6(f,b) of the group L,(m(X), w(X)) of Wall [30], or of one of the closely
related variants described in §1.9. We shall now identify the surgery
obstruction
0(f,b) € Ly(m(X), w(X))
with the quadratic signature

o*(f’ b) € Ln(z["l(x)])

Also, we shall show that the chain level effect of an oriented {framed}
geometric surgery on a degree 1 {normal} map f: M - X {(f,b): M - X}
is an elementary symmetric {quadratic} surgery on the symmetric
{quadratic} kernel o*(f) {o4(f,b)} (as defined in §I.4). For the purpose
of exposition we shall consider only smooth surgery in geometry, and only
the projective symmetric {quadratic} L-groups L™(4) {L,(4)} in algebra.

ProrosrTioN 7.1. The quadratic signature of an n-dimensional normal
bundle map (f,b): M — X is the Wall surgery obstruction
O'*(f,b) = o(f) b) € Ln(z[wl(X)]) = Ln("l(X)sw(X)) (n 2 5)'

Proof. Let n = 2¢ or 2¢+1, and write (f’,b'): M’ - X for the normal
bordant (¢—1)-connected n-dimensional normal bundle map obtained
from (f,b): M - X by framed surgery below the middle dimension, as in
Theorem 1.2 of Wall [30]. Propositions 4.2 and 2.6 give an (n—2i)-
dimensional (—)* quadratic Poincaré complex over Z[m,(X)], a;(f',d"),
such that _

Sioy(f',b') = ou(f', ).

It follows from the normal bordism invariance of the quadratic signature
(Proposition 6.6(i) ) that

ox(f',b') = 0u(f, ) € Ly(Z[m (X)]).
Proposition 5.4 identifies the (— )* quadratic Poincaré cobordism class
a,(f',b") € Lo Z[m (X)), (- ))
with the framed surgery obstruction obtained by Wall in [30, §§ 5, 6],
0(f,6) = 6(f',b') € Ly(m(X), w(X)),
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under the identifications
Ly oi(Z[my (X)), (= )Y) = Ly(my(X), w(X))

of Propositions I.5.1 and 1.5.2. The i-fold skew-suspension isomorphism of
Proposition 1.4.3

Si: Lo Z[my(X)], (= )¥) = Lyy(Z[my(X)])
is therefore such that
80(f,b) = 86(f',b') = Sioy(f',0') = ax(f’,b') = au(f,b) € Ly(Z[m(X)]).

As yet, there is no geometric interpretation of the symmetric signature
o*(X) € LYZ[n,(X)]) of an n-dimensional geometric Poincaré complex X.
At any rate, the symmetric signature appears in the product formula for
surgery obstructions (Proposition 8.1(ii) below).

Given an n-dimensional normal bundle map of pairs

((f,f), (b, 8b)): (M,aM) - (X, oX)

such that of: oM — 0X is a homotopy equivalence we have that the
quadratic kernel o, ((f, of), (b, ob)) is an n-dimensional quadratic Poincaré
pair over Z[m,(X)] with contractible boundary (n— 1)-dimensional quad-
ratic Poincaré complex o,(df, o). The homotopy equivalence classes of
n-dimensional quadratic Poincaré pairs with contractible boundary are
in a natural one-one correspondence with the homotopy equivalence
classes of n-dimensional quadratic Poincaré complexes (by Proposition
1.3.4(i)). We thus obtain a quadratic signature

0*((f, af)’ (b’ 3b)) € Ln(z[ﬂl(x)])a

which we can identify with the obstruction obtained by Wall [30] (for
n > 5) to making (f,of ): (M,0M) - (X,0X) a homotopy equivalence by
a sequence of framed surgeries on the interior of M, keeping df: oM —» 0X
fixed.

The identification of Proposition 7.1 can be interpreted as an instant
surgery obstruction, solving Problem 5 of Shaneson [24]. Given a 2i-
dimensional {(2¢ + 1)-dimensional} normal bundle map (f,b): M - X we
can write down a non-singular (—)‘-quadratic form {formation} over
Z[m,(X)] representing the surgery obstruction o(f,b) € Ly(Z[w,(X)])
{ow(f,b) € Ly, (Z[m(X)])}, without preliminary surgeries below the
middle dimension.

ProrosiTION 7.2. Let (f,b): M - X be an n-dimensional normal bundle
map, with quadratic kernel

ox(f,0) = (C(f"), expp[X]) = (C, ¥ € @,(C)).
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Then the surgery obstruction oy (f,b) € L,(Z[m,(X)]) is the class of the non-
singular (— )¢ quadratic form { formation} over Z[m,(X)],

( a* 0
(coker(( _ ) :
(=)H1+ D), d

. . [
C 1o Gy, > Ci® Ct+1):[ 00 0 )
Qig*(f, b) =

. ) (1+T)y, d
(H(-)%(Ciﬂ) 5 Gy 1m(< 2 0) :
Ci® Ciyy ~ Cy® CHI))
\

o
€ Ln(Tf1<X)’w(X)) ifn = { ?:,
2u41.

Proof. This is just the explicit inverse
Q: Ly(Z[my(X)]) > Ly—o(Z[m(X)], (- )Y)

to the i-fold skew-suspension isomorphism S¢ of Proposition 1.4.3. (It is
required that all the chain modules C, appearing in the above formulae be
finitely generated projective Z[,(X)]-modules.)

We shall now show that a geometric surgery induces an elementary
algebraic surgery on the chain level (as defined in §1.4). Let us recall the
elements of geometric surgery.
~ Anelementary oriented { framed} surgery of type (r,n—r—1) (0 <7 < n—1)

on a degree 1 {normal bundle} map f: M - X {(f,b): M — X} from an
n-dimensional manifold M to an =n-dimensional geometric Poincaré
complex X is determined by the following data:

(i) an embedding g: S*<> M with an oriented normal bundle
v,: 87— BSO(n—r);

(ii) a null-homotopy v,: D™+ - BSO(n—r) of v,: 8" > BSO(n—7),
that is an embedding §: 87 x D" < M extending g;

(iii) a null-homotopy A: D™ —+ X of fg: 8" - X;
and in the framed case also

(iv) a relative null-homotopy (3, 5,): (D™*,87)Al - (BSO, BSO(n—r))

extending 7,, of the map of pairs

(vasvp): (D1, 87) > (BSO, BSO(n—1)),

with v, : D™+l - BSO the null-homotopy of the classifying map for
the stable normal bundle v,: 8* - BSO(n—r) - BSO determined
by b: vyy > vy and h: D™ » X,
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The surgery replaces f {(f,b)} by the n-dimensional degree 1 {normal
bundle} map f': M’ > X {(f',b'): M' - X} appearing in the (n+1)-
dimensional degree 1 {normal bundle} map of cobordisms

e; Hf): N; M, M) > (XxI; Xx0, Xx1),
((e; £, F')s(a; 0,0")): (N; M, M') > (X xI; Xx0,Xx1)
defined by
N =MxIuz,D1xDr-r, M' = M\§(S"x D*")uDr+ x §n-r-1,
using A: D™ - X to extend f: M — X x 0 to a map of pairs
(e, f): (N, M) > (X xI,Xx1),

and in the framed case using v, to extend b: vy, > vx,q to a bundle map of
pairs (@,b'): (vy,var) = (Vs V). The surgery is said to k:ll

(h,g9) € mpa(f)-

ProrosiTION 7.3. Let
ffM->Xf "M ->X {fb): M- X, (f",b): M' > X}

be n-dimensional. degree 1 {normal bundle} maps such that f' {(f',b')} is
obtained from f {(f,b)} by an elementary oriented {framed} surgery of type
(r,n—r—1) killing (h,g) € m,,(f). Then the symmetric {quadratic} kernel
o*(f') {ok(f',1')} is obtained from o*(f) {o«(f,b)} by an elementary
symmetric {quadratic} surgery of type (r,m—r—1) killing the image of
(h,9) € 7,1(f) under the Hurewicz map

Tea(f) = ‘”r+1(f ) > Hrﬂ(lzr ) = K,(M).

Proof. Let
e; ) N; MM')> (XxI; Xx0,Xx1)
((e; £, f") (@; 5,0")): (N; M, M) > (X xI; Xx0,Xx1)
be the associated degree 1 {normal bundle} bordism, with symmetric
{quadratic} kernel (n+ 1)-dimensional symmetric {quadratic} Poincaré
pair over Z[m,(X)]
o*(e; £, ') = (¢ &): C(fH@C(f") > C(e), (Bp, p @ — ¢') € @™ ((2 7)),
ou(le; [, f'), (a; b,b'))

= (¢ ©): C(fYDC(f") > C(e)), B, p @ — ') € @pa((¢ 17)))-
Let k: C(e') — C(¢') be the inclusion of C(e!) in the algebraic mapping
cone of i': C(f") - C(e'), which is such that C(¢') = 8*~"Z[m,(X)] up to
chain equivalence. Use the chain homotopy commutative diagram of
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Z[,(X)]-module chain maps (with j: ki(1 0) ~ k(s ¢') any chain homotopy)

cipyocyy —s o

1 0)1 | \9 lk
o) 2= o(3r) = SnrZn (X))

to define a relative Z,-hypercohomology {Z,-hyperhomology} class
{ B, @) = (1 0),k; j)*(3p, p @ —¢') € @™H(3),

O 4) = (1 0),%; ) (8, § @ — ') € Qs (6)-
The symmetric {quadratic} kernel

{ a*(f) = (C(f), ¢" € @Q(C(f™))),

ou(f',0') = (C(f"),¢' €@u(C(f ™))
is obtained from o*(f) = (C(f"), ) {ox(f,b) = (C(f'),¥)} by an elementary
symmetric {quadratic} surgery on the (n+ 1)-dimensional symmetric
{quadratic} pair

{ (3: O(f') > 8"~"Z[m (X)), (3p, p) € @+(2)),
(5: C(f") > 8"~"Z[m(X)], (50, ¥) € @naa(9))-

We have the following partial converse to Proposition 7.3.

ProrosiTION 7.4. Let (f,b): M — X be an n-dimensional normal bundle
map with quadratic kernel oy(f,b) = (C(f"),¢ = e,y p[X] € Q,.(C(f)). If
fiM—> X is (r—1)-connected (2r <n) and n > 5 it is possible to kill
z € m,4(f) = K,(M) by an elementary framed surgery if and only if it can
be killed by an elementary quadratic surgery on o, (f,b), that is if and only if

V(f)(x) = 0 € Hy, n(Zy; Z[my(X)]),(=)*") (=01f 2r <m).

For the sake of completeness we shall now describe the effect on an
elementary geometric surgery of a change in the framing of the embedded
sphere. We recall that the investigation of such changes. played an impor-
tant part in the original proof that there is no surgery obstruction in the
odd-dimensional simply-connected case (Kervaire and Milnor [8, §6],
Browder [3, Chapter IV.3]).

Let f: M - X {(f,b): M — X} be a degree 1 {normal bundle} map from
an n-dimensional manifold M to an n-dimensional geometric Poincaré
complex X. Let ¢g: 8" < M be an embedding with a null-homotopy
h: D1 - X of fg: 8" - X on which it is possible to perform oriented
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{framed} surgery, and let
"M ->X,f""M"->X {(f.0'):M—>ZX, (f,b"): M" > X}
be the degree 1 {normal bundle} maps obtained from f {(f,b)} by oriented
{framed} surgery using two different extensions §,J: 8”x D*" < M of g
{and two different relative null-homotopies (5, 7,), (¥4, 7;) of
(vasv,): (D741, 87) » (BSO, BSO(n—1))}.
The differences are measured by elements
o € m (SOn—7)) {Ben,.,(S0/80(n—r))}
The symmetric {quadratic} kernels o*(f'), o*(f") {ox(f',b"), o4 (f",b")} are
obtained from the symmetric {quadratic} kernel
o*(f) = (C(f"), ¢ = e*pxlM] € QU(C(f))
ox(f,0) = (C(f'), ¥ = expp[X] € Qu(C(f)))
by elementary symmetric {quadratic} surgeries of type (r,n—r—1) on the
(n + 1)-dimensional symmetric {quadratic} pairs
(5: C(f') > S"~Z[my(X)], Bp, p) € @*+(D)), -
(i: O(f") > Sm—rZ[m(X)], (5p, p) € Q"*1(}))
(32 C(f') > 8"Z[my(X)], (8¢, ¥) € Qna(D)),
(E: C(fY) > 8*Z[m (X)), (5, ) € @nia(®))

defined in the proof of Proposition 7.3, with 7 = i: C(f) » 8" "Z[m,(X)].
Now Proposition 1.3.1 gives exact sequences

0
QrH(Sn—rZ[n]) — > QrHi(5) —> QR(C(SY))
(m = m(X)),
0
Quir(S%"Z[r]) — Qp11(i) —> Qu(C(F)
80 that

[_ (5. ¢)~ (5, 9) € ker(9) = im(y: Qv(Sn—"Z[n]) > @H(3)),
(86, 4)— (89, 4) € ker(9) = im(y: Quys(S*"Z[r)) > Quiali)).
Next, recall from Proposition 5.1 the morphism
[ J: m(80(n—1)) - QM1(S"~7Z),
J: mp41(80/80(n—1)) = @y 1 (S™7Z).

PROPOSITION 7.5. The algebraic effect on an elementary oriented { framed)
surgery of type (r,n—r—1) of a change of framing by « € =, (SO(n—r))
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{B € 7,,,(80/80(n—1))} is given by

[ (8o, ) — (57, 9) = ¥(j(x), 0) € @+1(3),

) G, ) — (8, ) = y(3§(B), 0) € @p1a(i),

with

[ (J(«), 0) € @Qr+Y(8"—rZ) @ H"—2-YZy; Z[n])/Z, (- )*~T) = @*(S""Z[~]),
(.7(3): 0) € Q”_H(Sn—rZ) @ Hzr—n+1(Z2; Z[’”]/z’ ( - )n-—r) = Qn+l(S"_rz[7"])‘

8. Products

We shall now apply the L-theoretic product operations of §1.8 to
obtain product formulae for the symmetric signatures of geometric
Poincaré complexes, and for the quadratic signatures (surgery obstruc-
tions) of normal maps.

ProposrTioN 8.1. (i) The symmetric signature of the cartesian product
X x Y of geometric Poincaré complexes ts

*(X x Y) = o*(X)® o*(¥) € L™(Z[m(X x Y)]),

wherem =dimX, n =dim Y.

(i) The symmetric {quadratic} signature of the cartesian product
fxg:MxN—>XxY{(fxg,bxc): Mx N - X x Y} of degree 1 {normal}
maps f: M - X, g: N> Y {(f,b): M > X, (9,¢): N > Y} of geomelric
Poincaré complexes is

a*(fxg) = o*(f)® a*(g) + o*(X) ® 0*(g)
+0*(f)® o*(Y) € L™™Z[m (X x Y))),
ox(f % 9,0 x¢) = 04(f,0) ® 04(9,¢) + o*(X) ® 04(g,¢) ’
+0x(f,0)® oY) € Ly yu(Z[m(X x Y)])-
Proof. (i) Choose a functorial diagonal chain approximation A. The
standard acyclic model proof of the Eilenberg-Zilber theorem gives a

functorial chain equivalence on the category (topological spaces)x
(topological spaces)

hxy: C(XxY)—> C(X)®,C(Y)

and the acyclic model argument underlying the Cartan product formula
for the Steenrod squares gives a functorial chain homotopy

kxy: A¥Ax®Ap)hxy =~ bk yAxxy
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in the diagram

h
C(X x Y) Xy > C(X)®,0(Y)

kX,Y Ax ® Ay

Homg, (W, C(X)®, C(X))
®z Hom gz (W, C(Y)®, C(Y))
A'
A % \
Homggzy(W,C(X x Y)®,C(X x ¥)) —=Z5> Homg (W, (C(X)®,C(Y))
®z (C(X)®,C(Y)))

AXXY

withA: W - W @, W an algebraic diagonal approximation for W = C(8®).
The product of an m-dimensional geometric Poincaré complex X and an
n-dimensional geometric Poincaré complex Y is an (m+n)-dimensional
geometric Poincaré complex X x Y, with orientation map

wXxY)=wX)xw(Y): m(XxY)=m(X)xm(Y) > Z,
and fundamental class

[Xx Y] =[X]1®[Y] € HXXY) (X x ¥; wXX¥)Z)

m+n
= H::(X)(X; w(X)Z)®zH;?(Y)(Y; w(¥)Z),

where X, ¥ are the universal covers of X, Y. It now follows from the
chain homotopy invariance of the Q-groups that there is defined a homo-
topy equivalence of (m +mn)-dimensional symmetric Poincaré complexes
over Z[m (X x Y)] = Z[my(X)]®z Z[m(Y)],

hgs: o (X x ¥Y) = (0(Xx ¥),p2,7[X x Y] € Qm(C(X x T)))
- ¥ (X)®o*(Y)
= (0(X)®,0(T), px[X]® 95 Y] € @™(0(X) ®, C(T))),
and the homotopy invariance of symmetric Poincaré cobordism gives
¥ (X xY) = o¥X)®0*(Y) € L™Z[m (X x Y)]).

(ii) Consider first the special case of the product fx1: M x N - X x N
{(fx1,bx1): Mx N - X x N} of an m-dimensional degree 1 {normal}
map f: M - X {(f,b): M - X} with an n-dimensional geometric Poincaré
complex N. Given an Umkehr chain map for f: M — X

(EX]n—)7?

ft: C(X) .w(X)C(X)m—*

_.__f*_, wX) (I ym—* ,.[ﬂf;, C(IT)

5388.3.40 R
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there is defined an Umkehr chain map forfx1: MxN > XxN

(fx1): O(X x N) G(X) ®,C(N)

L
'l cinye,om) M8 ot x &),

There are also defined a chain equivalence
b5 C(Fx 1)) = C(f'®@ 1) = O(f) @, O(F)

and a chain homotopy commutative diagram

O x F) —22 s ((fx 1))

hﬂﬁl l i

ol e, () 225 o) e 0

with e, e, the inclusions. The homotopy equivalence of (m+mn)-
dimensional symmetric Poincaré complexes over Z[m,(X x N)]

hip it o*(fx1) = (C((fx 1) e}-‘xlmxﬁ[Mx N))

> o*(f)® o*(N) = (C(f") @, C(N), ebpg [ M1® o5 N])
implies that

*(fx1) = o*(f)® o*(N) € L™+n(Z[m(X x N)]).

Furthermore, if F:XrX - 320, is a geometric Umkehr map for
(f,b): M - X then

FAlL: 22X xN), = 2 X AN, > Zo(J x N), = oM AN,

is a geometric Umkehr map for (fx1,bx1): M xN - X x N, with
quadratic construction

Yrar HQL{XN’(X xN; WXXNIZ) - Qm+n(C(M X N))
such that
ki S pal[X x N] = ¢ p[X]@ p5[N] € Qi (C(H) ®, C(N)).

The homotopy equivalence of (m+n)-dimensional quadratic Poincaré
complexes over Z[n,(X x N)],

}?'1,1'4',1'\7: ox(fx 1,bx 1) = (C((fx 1)), epas rar[X x N])

- = 0y (f,D)® o*(N) = (C(f) ®, C(N), efyp o[ X]1® @R[ N]),
implies that

ox(fX 1,bx1) = 04(f,5)® *(N) € Lypyn(Z[m(X x N))).
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In the general case express the product degree 1 {normal} map as the
composite

fxg:MxN——x—> XxN——i-é XxY,
(fx1,bx1) (Ixg,1xc)

(fxg,bxec): Mx N ————> X xN—> Xx 7Y,

and apply the sum formula of Proposition 2.5 {Proposition 4.3} to obtain
that

o*(fxg) = a*(fx 1)@ o*(1x9g)
= o*(f)® o*(N) @ o*(X) ® 0*(9),
o (fxg,bxc) = o, (fx1,bx1)®D oy,(l xg,1xc)
= 0x(f,0)® o*(N)® o*(X) ® 04(9,¢)

up to homotopy equivalence. Now o*(N) = o*(g9) + o*(Y) € L™Z[m (Y)])
(by Proposition 2.2), so that

o*(fxg) = o*(f)® o*(9) + o*(X) ® 0*(9)
+0*(f)® o*(Y) € L™™Z[my(X x Y)]),

O'*(fX g’b X G) = 0*(fs b)® 0*(9)0) + 0*(X)® U*(gs C)
+04(f,0)® 0*(Y) € L,y 1 0(Z[m (X x Y)]).

The product formula for symmetric signatures of Propositions 8.1(i) is a
generalization of the classical product formula for the signature.

The product formula for surgery obstructions (quadratic signatures) of
Proposition 8.1(ii) is a common generalization of the product formulae of
Sullivan (for m,(X) = {1}, m,(Y) = {1}, proved by Browder in [3, Chapter
II1] ), Williamson [32], Sh&neson [23], and Morgan [19] (all for =, (X) = {1},
f=1.M->X=M).

Prorosition 8.2. The periodicity isomorphism in the e-quadratic
L-groups is defined by the product with o*(CP?) € LY(Z),

82 = o*(CPY)®—: L,(A,e) > L, 4(4,6) (Z®,4 =A4,neZ).

Proof. Removing the fundamental class [CP?] € H,(CP2) by symmetric
surgery represent o*(CP?) e L4Z) by the 4-dimensional symmetric
Poincaré complex over Z, (C, ¢ € Q4(C)), defined by

Z ifr=2

C, = =1:C%*—> C,.
0 ifrsg 0 ’
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The algebraic 4-periodicity in the e-quadratic L-groups is thus
seen to correspond to the geometrically defined 4-periodicity of surgery
obstructions

L () > L, 4(7);
0x((f,0): M - X) = 0 ((fx1,bx 1): M xCP? > X x CP?)
of Wall [30, Theorem 9.9].

9. Wu classes

We shall now use the equivariant S-duality of § 3 to describe the extent
to which the n-dimensional symmetric Poincaré complex

o*(X) = (C(X), pz[X] € Q¥(C(X)))

of an n-dimensional geometric Poincaré complex X reflects the properties
of the Spivak stable normal fibration vyx: X - BG. For any stable
spherical fibration p: X - B@ over any n-dimensional CW complex X
we shall construct an n-dimensional hyperquadratic complex over

An®) 84(5) = (C)=*,6, € Q(OX)=*)

The hyperquadratic Wu classes ©,(0,): H(X) > A"(Z,; Z[m(X)]) of
6*(p) are equivariant analogues of the Wu classes v,(p) € H"(X; Z,).
In particular, for the Spivak normal fibration vyx: X — B@G of a geometric
Poincaré complex X there is a natural identification

Jo*(X) = 6*(vx)

(up to homotopy equivalence), giving rise to an equivariant analogue of the
classical Wu formula

v,(X) = v,(vx) € H"(X; Zy)

relating the diagonal structure of C(X; Z,) to vyx. The quadratic structure
in the kernel o,(f,b) of a normal map (f: M - X,b: vy > vx) expresses
the vanishing of the equivariant Wu classes of v, on

Ko(M) = ker(fy: Hy(H) > Hy(X)).

We shall also develop equivariant analogues of the suspended Wu classes
(ov),(h) € H-Y(X ; Z,) of the automorphisms %: p — p of a stable spherical
fibration p: X — BG (over any CW complex X). We shall use them to
describe the effect on the quadratic kernel o.(f,b) of a normal map
(f,b): M - X of a change in the bundle map b: v;; — vx.

To the symmetric and quadratic constructions of §1

¢x: Ho(X) > @Q*(C(X)), ¢p: Ho(X) > Qu(C(Y)) (Fe{X,T})
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we now add the ‘hyperquadratic construction’
6x: H¥(X) > Q*(C(X)*).
This is defined to be the composite

Py J
Ox: H¥(X) = Ho(Y) — Q*(C(Y)) = Q*(C(X)*) —> Q*(C(X)¥)

for any 8- (or S=-)dual Y of X. For example, if vyx: X - BG(k) is a
Spivak normal fibration of an n-dimensional geometric Poincaré complex
X, and X is an oriented covering of X with data (7, w), then the Sm-duality
between X, and T'r(vx) obtained in Proposition 4.1 expresses the stable
symmetric construction Jpz on the fundamental class [X] e H7(X; vZ)
in terms of the hyperquadratic construction 6;,,) on the Thom class
U, € H(Tn(vx); Z).

Given a group = and an Sw-duality map «: S¥ - XA, Y between
finitely-dominated CW=-complexes X, Y there is defined a chain equi-

valence of finite-dimensional R[n]-module chain complexes
Xa = ([SM\-)"1: C(Y; R) > C(X; R)N-*

for any commutative coefficient ring R, which is obtained by applying
R[7]®gzm— to the Z[r]-module chain equivalence x,: C(Y) > C(X)N-*
given by Proposition 3.8. Given a group morphism w: = - Z, endow
R[] with the w-twisted involution, and define an R[n]-module chain map

0x,,: Homp,(C(X; R),“R)
%
— X, Hom g (C(¥; RN—*,%R) = R'® gy O(Y; R)y_s
by =1®A
FLZ "X Homgy(W,0(Y; RY @ C(Y ; R))yos

%
— X2, Homy, (W, (C(X; RN*)'® gy C(X; R)N-*)y_s.

This induces R-module morphisms in homology
Oxq: HY(X; “R) > QV-H(C(X; RYV-*)

such that there is defined a commutative diagram of R-module morphisms
Hy(Y; “R)—FE— @u{(Y; B)

X Xe

HY-%(X ; vR) 27N QMC(X; R)N-*)
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with @5 the symmetric construction of Proposition 1.2. Thus for the Sn-
duality map ax: 8"t - X A Ta(vg) associated to a normalized -
dimensional geometric Poincaré complex

(X,vx: X — BG(k), px € mpi(T(vx)))
and an oriented covering X with data (m,w) we have a commutative

diagram

PX

Hy(X; vR) > QC(X; R)

Xax* x?:x
. 6
BYTn(vx); “R) ~2%%5 Qn(C(Tn(vx); R

using the untwisted dual R[r]-module structure in O(T'm(vg); R)He—*.
Evaluating on the fundamental class [X]e H7(X; “R) and using the
isomorphism y% as an identification we can write

¢i[X] = 0Tn(vx),ax(lll’x) € Qn(o(x; R))’

with U, € HY¥Tn(vx); “R) the Thom class of vy. (We are using only the
orientability of X with coefﬁcients.in R here.)

We shall now show that for a fixed finitely-dominated CW=-complex X
the composite

0 J
HYX; “R) =5 @QV-HC(X; R)™*) — Q-*C(X; B)™)

is independent of the Sw-duality map «: 8¥ - XA, Y, with J as in
Proposition I.1.2. We have the following hyperquadratic construction.

PRrOPOSITION 9.1. Let 7 be a group, w: n — Z, a group morphism, R a
commutative ring, and give the group ring R[=] the w-twisted involution.

Given a finitely-dominated CWar-complex X there are defined in a natural
way R-module morphisms

8x: HXX; “R) > @*C(X; R)™) (k> 0)
with the untwisted dual R[w]-module structure on C(X; R)~*, such that

(1) ¢f a: S¥ > X A, Y s an Sw-duality map there is defined a commula-
tive diagram of R-modules

Oxs_y QV-HC(X; RYV-*)
ayxem |7

bx Q-*(C(X; R)~*)
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(i) of f: X > Y is a w-map of finitely-dominated CWm-complexes then
there is defined a commutative diagram of R-modules

HX(Y; »R) —-o—Y—-> Q@-%C(Y; R)*)

f*l Jf*%

HYX; “R) O, Q*(C(X; R)~*)

(iii) the construction is invariant under suspension, tn that there is defined
a commutative diagram of R-modules

HEY(ZX; »R) ex, @*YC(ZX; R)™*)

BE(X; oR) —%— G-HC(X; R)™)

in which the vertical maps are the suspension isomorphisms,
(iv) ¢f h: R - S 18 a morphism of commutative rings, there is defined a
commutative diagram of R-modules

HY(X; *R) — % G+(0(X; B))
hl 1,,
BY(X; v8) —Z—> G(C(X; 5)*)
in which the vertical maps are the change of rings h: R[x] — S[x].
Proof. If a: 8¥ - X A, Y is an Sn-duality map then so is

Ta: SV > XA T,

and Proposition 1.4 gives a commutative diagram

Oxa 5 @VHOX; RNY)
B¥(X; “R) ls
m}

QN—k+1(0( X ; R)N+H1-%)

If o': ¥ > XA, Y’ is another Sz-duality map let F e {Y,Y'}, be the



HYX; “R)
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image of 1 € {X, X}, under the S»-duality isomorphism

{X, X},, _(.ﬂ;)) {SN, y',\ﬂ X} (_a\___): {Y, Y'},,.

Applying the quadratic construction of Proposition 1.5 we obtain

'/’F3 Hf'v-k(y§ “R) - QN-k(O(Y'; R))
such that

F*py — gy Fy = 1+ T)p: Hy_(Y; “R) > @QN-HC(Y'; R)).
The composite
1+7 J .
Qu-1(C(Y'; R)) —> Q¥-KC(Y'; R)) —> QVHC(Y'; R))
is 0 (Proposition 1.1.2), so that there is defined a commutative diagram

JOx .

— QHC(X; R))

Xok 22“
By (Y "’R)_'?l’ Q¥-XC(Y; R)) . @N¥-4(C(Y; R))
1 F*l l}?%

L

By (Y'; 9B 25 gu-k0(Y'; RYy—L—s GVHC(Y'; BY)
Vo A Jo P v
HYX; »R) X > Q~*(C(X; R)™*)

Thus i
JOx o = JO0x o HYX; “R) - Q-¥(C(X; R)™*)

is independent of the S7-duality maps involved, and may be written as 8 .
Applying the hyperquadratic Wu class operations 6, of §1.1 to the

hyperquadratic construction for = = {1}, R = Z,, we recover the duals of
the Steenrod squares.

ProposiTION 9.2. Let X be a finitely-dominated CW complex. The
composite ‘

. 6 0,
HH(X; Zy) —2> @ HC(X; Zo)*) —> Homg,(Hy (X ; Zy), Zy)
18 given by
6,(0x(@)(y) = <x(89")(2), 9> € Z, (x € HYX; Zy),y € Hyy ((X; Zy))
with x(Sq7) the image of Sq" under the canonical anti-automorphism y of the
mod 2 Steenrod algebra, as characterized by

S¢® ifr=0,
Y x(S¢¥)8q? =
i+j=rX( ) 0 ¢fr#£0.
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Proof. Apply Proposition 1.3 to an S-dual Y of X, and use the result of
Thom [28] that Steenrod squares in Y correspond to the duals of the
Steenrod squares in X.

We shall say that a space X is n-dimensional if it is a finitely-dominated
CW complex and the universal cover X is such that H"(X) = 0 for r > n,
in which case O(X) is an n-dimensional Z[r,(X)]-module chain complex.
In particular, an n-dimensional geometric Poincaré complex is an n-
dimensional space.

The hyperquadratic construction associates a hyperquadratic complex
to every oriented covering of the base space of a stable spherical fibration
over a finite-dimensional space.

ProproSITION 9.3. Given a stable spherical fibration p: X — BG over an
n-dimensional space X and an oriented covering X with data (w, w), and given
also a commutative ring R, there is defined in a natural way an n-dimensional
hyperquadratic complex over R[m] with the w-twisted involution, the Wu
complex of p,

6*(p) = (“O(X; BY**,00,n(T,) € @*(*C(X; R)y»*))
depending only on the stable fibre homotopy class of p.
The hyperquadratic Wu classes of o*(p) are the Wu classes of p, R[x]-
module morphisms
2(P) = 6,0200(0p)): H(X; B) > H"(Zy; R[m)) (r > 0)
such that
(i) the Oth Wu class is the augmentation map
vo(p): Hy(X; R) > A%Z,; R[n));
3 nyg% > X ng € R/2R = B%Z,; R) = A%Z,; R[n))

gemn gem
with x € Hy(X ; R) the geometric R[n]-module generator defined by any
path-component of X,
(i) if f: M - X is a map of n-dimensional spaces with induced cover M

and pullback fibration f*p: M —f> X £, BG then there is

defined a map of Wu complexes

[*: 6%(p) > 6%(f*p)
and the Wu classes are such that there is defined a commutative diagram

Bt R — s g2 By

T N

A7(Z,; R[~))
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(ili) of p: X — BG 1is stably fibre homotopy trivial then
v(p) = 0: H(X; R) > H'(Zy; E[)) (r > 0),
(iv) 6*(p) is induced via R[7]® gy xy— from the Wu complex &%(F)
associated to the universal cover & , and there is defined a commutative
diagram

H(X; R) @), g "(Zy; B[my(X)])

| |

H(X; R) 22, g "(Zy; R[n])

wn which the vertical maps are the change of rings R[m(X)] - R[=],
with m (X) — = the characteristic map of the covering,

(v) iof h: R —> 8 is a morphism of commutative rings there is defined a
commutative diagram

H(%; B) —2), gvz,; Rim)
kJ lh
H(X; 8) 2y gvz,; Sim)

tn which the vertical maps are the change of rings h: R[w] — S[n].

Proof. Choose a representative (k — 1)-spherical fibration p: X — BG(k),
evaluate the hyperquadratic construction

Opnipr: HYTn(p); “R) - Q~H(C(Tn(p); Ry ™) = @Q1C(Tn(p); BYyr+i—*)
on the Thom class U, € H¥(T'n(p); “R), and use the Thom eqmvalence

U,n—: C(Tn(p); R) - »S¥C(X; R)

to obtain an element 0,,,,(0,) € @*(*C(X ; R)»—*).

To prove (iii), that v,(0) = 0 (r > 0), let Y be a.skeleton of K(m, 1) of
dimension greater than r containing the image of the classifying map

f: X - K(m,1) of the covering X (assuming that X is finite, in the first

instance), and apply the naturality property (ii) to obtain a commutative
diagram

H(%; R)—% > 57, R) =

?)r(g*O) = r(O\)\‘ /),(0) (g =f| X > Y)

Ar(Z,; R[~))
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The mod 2 Stiefel-Whitney classes wy(p) € H*(X; Z,) of a spherical
fibration p: X — BG(k) are characterized by the property

U, nwy(p) = Sq’(%) € HH"(T(I)); Z,)

(Thom [28]), which may be expressed in terms of the symmetric construc-
tion and the symmetric Wu classes as

U,n—)"! ;
wy(p): X Z) 2270 b (T(p); Z) —PEP s QieHOT(); Z)
Z, ify<k
— % Homg (HYT(p); Zo), H*(Zg; Z)) = | ° .~
0 ifj>k

(cf. Proposition 1.3), with U, € H*(T(p); Z,) the mod 2 Thom class.
The mod 2 Wu classes v, (p) € H¥(X ; Z,) of a stable spherical fibration
p: X - BG@ over a finite-dimensional space X are defined by

v(p) = X x(Sg)wy(—p) € H'(X; Z;) (r > 0)

‘l 3=r

with —p: X — BG any stable inverse for p. The mod2 Wu classes are
characterized by the property

v ()T, 02) = {x(89")(U,), 2 € Zy (2 € H,i(T(p); Zy)).
PROPOSITION 9.4. The mod 2 reductions of the Wu classes of a stable
spherical fibration p: X - BG over a finite-dimensional space X with

respect to an oriented cover X of X with data (m,w) agree with the mod 2 Wu
classes, that is there are defined commutative diagrams

H/(X) LSRN "(Zy; Z[n])

|

H(X; Z,) —— A"(Z,; Z,) = Z,

wn which the vertical maps are the change of rings
Zln] »> Zy; X ng— X,

gen gen

Proof. Applying Proposition 9.2 we can express the mod 2 Wu classes
of p in terms of the hyperquadratic construction by evaluating the
composite

7] )
HY(T(p); Zy) 22 Q-HC(T(p); Zy)) —> Homy (., (T(p); Zy), Zy)
= Hom, (H,(X; z2>,z2> = H'(X; Z,)
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on the mod 2 Thom class U, € H¥(T(p); Z,), so that
'U,-(p) = 67'01'(1))([]1)) € H'(X; Zz)

Define the Hopf invariant function,
Z ifm=n+1,n=1(mod?2),
H: 7, o(8™) > H""YZy; Z,(—)™) = Z, ifm>n+l,n=1(mod2),
0 otherwise;
(f: §m+n > §7) = H(f),
by applying the symmetric construction to the mapping cone

X = Sm U] em+1l+1’
with

Z = Hypyy(X) 25 @reins(((X))

Un+1 H m M1 my.
—— Hom,(H™(X), H"""Y(Z,, Z, (- )™));
1> v,,4(px(1) = H(f) (H™X) = Z).
Alternatively, apply the quadratic construction to
f: Zm(87) = §m+n . Tm(§0) = 8™,
st Hy(S™) = Z - QUm-1Y(C(8?))
= Hm=n"Y(Zy; Z,(—)™); L= ¢y(1) = H(f) (n > 0).

Both these ways agree with the construction of the Hopf invariant due to
Steenrod [26], by Propositions 1.2(i), 1.3 and 1.6. The morphism j
defined in § 5 is the composite '

J H
J: m(80(m)) —— m,(SG(m)) = 7y 4, (S™) —> QY S™Z).
The diagram
7r‘m+n(‘s’m) —_— Hm—'n—l(z2; Z’ (— )m)
Zl lS(:id.ifm>n+l)
Tman1 (8™ ———> H™™(Z,; Z, (—)™*)

commutes, so that it is possible to define the stable Hopf invariant
Z, ifn=1 (mod2),

A: 78 = Lim Sm) > An+Y(Z,; Z) =
L8 Tonen(5) @i 2)=1, if n = 0 (mod 2).
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ProrositioN 9.5. The Wu classes of a stable spherical fibration
p: 8™ - BG over 8™ (m > 2) are given by
ve(p): Hy(8™) = Z - A%Z,; Z) = Zy; 2+ 22 = 2 (mod 2),
Z, ifm=0(mod?2),
On(P): Hy(S™) = Z > A™(Zy; Z) = ,
0 ifm=1(mod2);

z > 2* (stable Hopf invariant of p € =,,(BG) = #$_,).

Proof. Choosing a representative (k— 1)-spherical fibration
p: 8™ - BG(k) (k> m)
we have that the Thom space 7'(p) is the mapping cone of

pE 7Tm(BG<k)) = m+k—1(Sk)’ T(p) = Sk Up ektm,
Now

Un(P) = i+§=1nx(8q")w,(—p) = Wp(—P) = wy(p) € HNS™; Z,) = Z,,
and w,,(p) = H(p) € Z, by construction.

The rth Wu class of an n-dimensional geometric Poincaré complex X
with respect to an oriented cover X of X with data (m,w) is the rth
symmetric Wu class of the associated n-dimensional symmetric Poincaré
complex o*(X) = (C(X), pz[X]) over Z[#], the Z[#]-module morphism

v(X) = v,(p2X]): H(X) > H""(Zy; Z[w],(=)"") (r > 0).
The mod 2 Wu classes v,(X) € H"(X ; Z,) of X are characterized by
v(X)([X]ny) = <8q"(®), [X]) € Z, (y € H"(X; Z,),[X] € H,(X; Zy))

and Proposition 1.3 gives commutative diagrams relating the two types of
Wu class

(X
Hr(X) __3)_(_).) Hn-zr(zz; Z[ﬂ.]’ (- )r-T)
o,(X) l Z,if 2r <n
Hr(X; Z2) —_ Hn—zr(zz; Z2’ ( - )n—r) = { .
0 if 2r > n,

in which the vertical maps are the change of rings

Z[n) » Zy; Y ng = Ly,
gen

gem

The reduced Wu classes of X are defined by passing to the reduced (Tate)
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cohomology groups

6,%): BZ) —E) Haosniz,; 2, (- yr) M8 e ze; 20,

Note that 4,.(X) = v,(X) for n # 2r.

ProposiTION 9.6. If X is an n-dimensional geometric Poincaré complex
and X is an oriented covering with data (w, w) then the Poincaré duality chain
equivalence

[X]n-: »O(X)»* > O(X)
defines a homotopy equivalence of n-dimensional hyperquadratic complexes
over Z[n] with the w-twisted involution

[X]1n—: 6*vx) = (“O(Z)"*, 87,00 (U,,) € Q1 O(X)*))
- Jo*(X) = (C(X), Jpz[X] € Q"(C(X))).
In particular, the reduced Wu classes of X are just the Wu classes of the
Spivak normal fibration vx: X - BG,
6,(X) = v,(vx): H(X) > A"(Zy; Z[]) (r > 0).
Proof. We have already obtained the identity

?X[X] eTﬂ(vx) ax( vx) € Qn(C(X))

(just before Proposition 9.1). Now apply the J-homomorphism of passing
to the suspension limit to remove the dependence on the choice of Sw-
duality ox.

The identities Jo*(X) = 6*(vx), 9(X) = v,(vx) may be considered as
equivariant generalizations of the formulae of Wu [33] and Thom [28]
relating the mod2 Wu classes of a manifold X to the mod2 Stiefel-
Whitney classes of the tangent bundle 7, since v,(X) = v,(vx) € H'(X; Zj)
can be written as

w(X) = 3 x(Seyuiirx) € HI(X; Zo)

or equivalently
w,(1x) = » )Y qutvj( ) € H'(X; Z,).

If T € Z, acts on a group ring Z[~] by the w-twisted involution, for some
group morphism w: 7 — Z,, then the direct sum decomposition of
Z[Z,)-modules

Z[n)l=Z0Z[r])/Z

gives rise to a direct sum decomposition of Z,-cohomology {Z,-homology,
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Tate Z,-cohomology} groups,

H'(Zy; Z[n), ¢) = H"(Zy; Z,¢)® H"(Zy; Z[n)/Z,¢),

Hr(z2; Z["], 8) = Hr(zz; Z, 8)('9 Hr(zz; Z[‘”]/Z’ 8),

At(Zy; Z[n),¢) = A"(Zy; Z,)® A"(Zy; Z[7]/Z,¢),
with ¢ = +1 € Z. We shall call elements of these groups regular if they
have a decomposition of the type (?,0). The Wu classes of an orient-
able spherical fibration p: X — BG(k) with respect to the trivial cover
X = 7 x X take regular values,

Vu(P): Hy(X) = Z[m] @7 Hp(X) > B™Zy; Z[7)); 102 > (9(D) (), 0).

A map of geometric Poincaré complexes f: M —- X such that
dim M = m < dim X = n represents the homology class z € H,(X) if X is
an oriented cover of X with data (7,w) such that the composite

f

7 (M) ——> m,(X) —> = is trivial, so that f = = x M is the trivial cover

of M and M is oriented (since w(M): m(M) ——> my(X) —> 7 —> Z,
is trivial), and if the induced Z[n]-module morphism

ft Hy(M) = Z[n) @z Hp(M) = Z[n] > Hy(X)

sends the generator to f(1®[M]) = x € H,(X) for some lift f: 77 - X.
The lift is non-unique, all such lifts being given by gf =fg: M - X
(g € m), so that if x € H,(X) is representable then so is gx € H,(X) (g € =).
(Note that for = = {1} we have the result of Levitt [11] that every homo-
logy class x € H,(X) is representable in this sense, for any CW complex X.)
The homology classes z e H,(X) which are represented by maps
f: 8™ - X are spherical.

ProrosrTION 9.7. The mth reduced Wu class of a geometric Poincaré
complex X with respect to an oriented cover X of X with data (m, w)

On(X): Hy(X) > B™Zy; Z[n))

takes regular values on representable homology classes. If x € H,(X) is
represented by f: M — X then

6n(X)(@) = (o(f*vx)([M]), 0) € A™(Zy; Z[x))

. = A™(Z,; Z)® A™(Z,; Z[n)/Z),
and if M = S™ then

0,,(X)(x) = (stable Hopf invariant of f*vx € m,,(BG) = n5_,,0)
e A™Z,; Z[n)).



272 ANDREW RANICKI
Proof. Combining Propositions 9.3(ii) and 9.6 we have
6 X)(f1® [M]) = vu(vx)(f(l® [M]))
= v(f*vx)(1® [H])
= 1®v,(f*vx)([M]) € A™(Zy; Z[n)).
For spherical homology classes apply Proposition 9.5 to identify the Wu
class with the stable Hopf invariant.

The result of Proposition 9.7 restricts the +symmetric forms and
formations occurring as the symmetric kernels of highly-connected
degree 1 maps of geometric Poincaré complexes to be even, except in
dimensions related to Hopf invariant 1. (See §1.2 for the definition of
‘even’.)

ProrosiTion 9.8. Let f: M - X be an (i—1)-connected degree 1 map
of n-dimensional geometric Poincaré complexes (2¢ < n), with symmetric
kernel o*(f) = (C,p € @*(C)). The reduced ith symmetric Wu class

fip): H*H(C) = K(M) - B(Zy; Z[m(X)))
is such that 9,(p) = O for i # 2,4,8, in whick case o*(f) = Sioi(f) is the
i-fold skew-suspension of an (n—2i)-dimensional even (—)i-symmelric
Poincaré complex o*(f), and
o*(f) € im(8+1: L=+ Z[m (X)), (= )+) ~ LY(Z[my(X))))
(killing K,(M) by symmetric surgery if 2(i+1) < n); for i =2,4,8, 6,(p)
only takes regular values in B¥(Zy; Z[m,(X))).

Proof. By the Hurewicz theorem K(M)= =, ,(f), so that every
homology class z € K,(M) < H,(J) is spherical, corresponding to a relative
homotopy class

z = ((h,g9): (D, ) > (X, M) € my(f) = Ky(M).
By Proposition 9 7,
@)x) = (H(g*vy), 0) € BYZy; Z[m(X))).
Now apply the result of Adams [1] that the stable Hopf invariant map
A: ny(BG) = #§, » Ai(Z,; Z) is 0 for i # 2,4,8.

(Note that even if 2(¢+1) < 7 and 9,(¢) = 0 it may not be possible to
kill K (M) by geometric Poincaré surgery, that is obtain a degree 1
geometric Poincaré bordism to an ¢-connected degree 1 map f': M’ - X,

e; i f) (N; M, M') > (XxI; Xx0,Xx1),
since this would require every element z = (h,g) € K,(M) to be such that
g*vy = 0 € m(BQ) = 7§, and we are only given that

A(g*vy) = 0 € A4Z,; Z).)
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In the case where n = 2 {n = 2+ 1} Proposition 9.8 states that for
i # 2,4,8 the symmetric kernel ¢%(f) must correspond to a non-singular
(- )i-symmetric form {formation} which is even (under the correspondence
of Proposition 1.2.1 {I.2.3}). By contrast, the realization Theorem 5.8
{6.5} of Wall [30] shows that for » > 5 every non-singular (— )i-quadratic
form {formation} over Z[x] is the quadratic kernel o,(f,b) of an (¢—1)-
connected n-dimensional normal map (f,b): M — X, with = = (X)
any finitely-presented group.

For 7 = 2,4,8 let M be the (¢ —1)-connected 2:-dimensional geometric
Poincaré complex defined by the complex projective plane CP? = §2 U, e4,
the quaternion projective plane HP? = S%u, ¢® and the Cayley prOJectlve
plane QP? = 88 u, ¢!® respectively, with » € wZi_l(S‘) the Hopf invariant 1
elements. The symmetrlc kernels of the associated degree 1 maps
f: M — 8% are all given by the non-singular symmetric form over Z,

oi(f) = (Z,1),
with non-trivial reduced Wu class. Further, crossing with S! gives
(¢ —1)-connected (2¢+ 1)-dimensional degree 1 maps
fx1: Mx8 — 8%x 8§t

such that the symmetric kernels are all given by the non-singular sym-
metric formation over the Laurent extension Z[z,271] (£ = z-1)

0 1
o(fx1) = o*(f)® o*(8!) = (Z[z, 2@ Z[z,z71]*, (1 1); Z[z,z1),

1m(( ! 1): Z[z,z71] > Z[z,z 1] ® 2]z, z‘l]*))

 with non-trivial reduced Wu class. We can also construct simply-
connected odd-dimensional examples, as follows. For each of ¢ = 2,4,8
let N be the (¢ — 1)-connected (2: + 1)-dimensional manifold obtained from
M x I by glueing the ends together using the conjugation map M — M,
and Kkilling =, by oriented surgery. The symmetric kernel o%(g) of the
associated (2—1)-connected degree 1 map g: N — S%+1 js given by the
non-singular symmetric formation over Z of deRham invariant 1

co-fenl (o[

with non-trivial reduced Wu class, representing the generator

oi(g) = 1 € L¥Y(Z) = Z,
5388.3.40 S
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The stable automorphisms 2: p — p over 1: X — X of a stable spherical
fibration p: X — BG over a finite-dimensional space X are classified by
homotopy classes of maps h: X - G = Li_tgm G(m), or equivalently by the
relative homotopy classes of maps A: (X x D!, X x §°) - BG such that
hlxygo =pup: X x8% - BG. Define the rth suspended mod2 Wu class
of b, (ov,)(h) € HY(X; Z,), to be the image of the universal rth mod 2 Wu
class v, € H"(BG'; Z,) under the composite

*

H'(BG; Z,) ——> H7(X x D}, X x 8°; Z,)

AL ¥
_(_Ef?l)__, H'(ZX_,_; Z,) — H™Y(X; Z,).

In terms of the mod 2 Stiefel-Whitney classes this is just
(o0,)(h) = 3 x(S¢*)(E*wy(—h)) € HY(X; Zy)

T+j=r

(w—h) € Hi(X x D', X x 8°; Z,) = Hi(ZX,; Z,)).

PrOPOSITION 9.9. Let h: p — p be a stable automorphism over 1: X — X
of a stable spherical fibration p: X — BG over an n-dimenstonal space X.
Let X be an oriented cover of X with data (m,w), and let R be a commutative
ring. Then there is defined in a natural way an (n+ 1)-dimensional hyper-
quadratic complex over R[] with the w-tursted involution, the suspended Wu
complex of (p, k)

8*(p, h) = (“O(X; R)"*,6,, € Q»i(»C(X; Ry»*)),
depending only on the homotopy class of h: X — G, such that
(i) of a: Sk > Y A, Tn(p) is an Swm-duality map for some finite-
dimensional CWn-complex Y, and H € {Y,Y}, is the Sw-dual of
Tn(h) € {Tn(p), Tn(p)}, then the Z[m]-module chain equivalence

j:wO(X; B+ _U,m_—_) C(Tn(p); Ryn+e—* w C(Y; R)

sends HO,,, € Q,(vC(X; R)»*) (with H as in Proposition 1.1.2) to
$a(o[S"*I\T,) € Q.(C(Y; R)),
JalolS™\T,) = jH6, € QuC(Y ; B)),
(ii) of f: M — X is @ map of n-dimensional spaces with induced cover M
there is defined a map of the suspended Wu complexes

F*:6%(p, ) > 8*(f*p, f*h),
(iii) By0n = b5+ Oy, Op1=0,
(iv) for R = Z,, the mod 2 reduction of the rth hyperquadratic Wu class of
0,1, @8 the rth suspended mod 2 Wu class of b

G(0p,) = (ov,)(h) € Homg (H, (X ; Z,),Z,) = HY(X; Zy).
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For X = S»,
Bpy1(0p,0) = (stable Hopf invariant of b € m,(Q) = nS) € HYS™; Z,) = Z,.
Proof. The relative version of the Wu complex construction of

Proposition 9.3 applied to ~: (X x D1, X x §°) — B@ gives a relative Tate
Z,-hypercohomology class

07,00 (U,) € @11(i = (inclusion)*: »C(X x D'; R)»—*
- w0(X x 8°; R)»*).
The inclusion “C(X x 8°; R)»* —» C(i) = »C(X; R)»* sends 8z, (U;)
to the required element 6, ;, € @n*1(2C(X ; R)*).

The hyperquadratic Wu classes of the suspended Wu complex
6*(p, h) = (*C(X; R)»*,0,, € Qn*(vC(X; R)»*)) are the suspended Wu
classes of an automorphism %:p - p of p: X - BG, R[n]-module
morphisms

(0v,)(h) = 8,(0,2): H,—o(X; R) > A"(Zy; R[x)) (r > 1).
We have already related these classes with the suspended mod2 Wu

classes, in Proposition 9.9(iv) above. Note that the quadratic Wu classes
of HB,, € Q,.(*C(X ; R)»*) are given by

v (Hb,,) = H(ov,)(k): H(X; B) > Hy,_n(Zy; B[n],(=)"") (r>0)
with H: @n+(»C(X; R)»*) - Q,(*C(X; R)»*) as defined in Proposition
1.1.2, and H: A™\(Z,; R[r]) - H,,_,(Z,; R[], (—)""") the natural map.

ProrosITION 9.10. Let (f,b): (M, vy, par) > (X, vx, px) be a normal map
of normalized n-dimensional geometric Poincaré complexes with quadratic
kernel o.(f,b) = (C(f'), ¢ = e[ X] € Q,(C(f"))). Given an automorphism
c: vy —> vy of vt M — BG(k)define normal maps

(f,0'): (M, vy, Pa) = (X»VX’PSI)’ (f’b”): (M, vy, Pz'n) - (X,vyx, PSZ)

e = T(Opar € TasalT020))s Pk = T®)piy € T Tlr))
b'=b0, b”=b:VM'—>Vx.
Then the quadratic kernels of (f,b"), (f,b") are given by
ox(f,b') = 0x(£,0") = (C(f'), ¢ = ¢+ HO € @,(C(f))
with 0 = €*6, , € Qn+(C(f")), and the quadratic Wu classes are such that
v(J') = v"(p) = H(ov,11)(c): K (M) > Hpy_n(Zy; Z[n],(—)"") (r = 0).

Proof. Let (1,d): (X,vx, p%) = (X,vx, px) be the canonical equivalence
of Spivak normal structures given by Proposition 4.1. The fundamental
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Sm-duality maps
ay = Apx, oy = Ap'y: 8" > XA Tr(vy)
are such that there is defined a homotopy commutative diagram

’

o
Sn+k ___x_) X+ A, T‘n(vx)

N A

T(vx)
JT(d) 1ATw(d)

T("x)

Px A
127N
Stk ——=s X A, Tr(vx)

[w—

Let H: =*X_ - Z»X, be a m-map which is S=-dual to
Tn(d): Tn(vg) - Tn(vx)

with respect to a%, so that there is defined a homotopy commutative
diagram

’

3P
Sn+k+p —ié ZPX+ Ay T"(VX)

zpalxl w‘k 1}]/\ 1

=2 X A, T’rr(vx)—lA—Tﬂ—(d—)> zrX . A, Tr(vy)

Working as in the proof of Theorem 3.5 of Wall [29] we can take H to be
H:3vX, =X A8 > X _ASP; Ens > End(x)(s)

with d: X - G(p) a classifying map for d: vy - vy, and similarly for a
m-map G: 2”M+ - E”ﬂ_,_, Sz-dual to T'n(c): T'w(vyy) = Tor(vy,) with respect
to the fundamental Sz-duality map

oy = Appr: 87k > M A, T'r(vyy).
By the definition of quadratic kernel we have that
ox(f,0) = (C(f"), expr[X] € @.(C(f1)),
ox(f,0) = (C(f'), exp p[X] € @ (C(f1)),
with F: £pX, — SoM, (F': 2vX,_ - T2} a m-map Sn-dual to
Trd): Tn(vy) > Tr(vy) {Tn(d'): Ta(vy) > Tn(vy)}
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with respect to ays, ax {0, a’x}. Considering the homotopy commutative
diagram

’
ZPu'y

k >ZPX AT

Sn+k+p W H ,‘\1/ +A T(vy)

\‘"“I‘w 22X, A, Trlvy)

Al
22 M, A, Tr(vy) I—M el A, Trlvy)
ZpaM GFH/\ 1.
G ll
Gl
zpﬁf" Tloag) 1A Tn(b)
v 1ATn(c) 1\$ v

sz+ A Tr(vyg) kith > Zz’ﬂ+ A Tr(vg)

we can identify

F' = GFH: 22X, - =°o,.

Applying the sum formula for the quadratic construction of Proposition
1.5(iii) we obtain

Y = Yofs+¥r+fipn: HyX; vZ) > Q,(C(I)),

e p[X] — e plX] = eiho[M] € @ (C(fY)).

Further, applying the construction of Proposition 9.9(i) to the funda-
mental Sw-duality map oy : 8% — B, A, Tn(vy,) we can identify

Yol M] = H,,; € Q,(C(H))
with 6, . € @Qri(vC(M)n—*) = Qn+}(C(M)), and so
exdp[X]—expp[X] = H(€%0,,..) € @n(C(f)).

Applying the quadratic kernel sum formula of Proposition 4.3 to the
composition of normal maps

so that

(L,¢) (£,0")

(i) (M, vpr, pyg) ——> (M, vpy, p3) —> (X, vx, Px)>
we have that up to homotopy equivalence
ox(f,0") = ou(f,0")® 0k(1,¢) = a4(f,0").

The mod 2 reduction of the quadratic Wu class identity of Proposition
9.10 in the case where n = 2r = 2 (mod 4), = = {1} is the formula for the
twisting of the Arf form due to Brown [5).



278 ANDREW RANICKI

Prorosition 9.11. (i) Let (f,b): M - X, (f,b'): M - X be normal
bundle maps with b’ =bc: vy > vy for some stable bundle automorphism
C: vy = vy Classified by ¢: M — SO. The quadratic kernels,

0«(f,0) = (C,4) = (O(f"), eap #[X] € Q. (C(fM))),

ox(f,0") = (C,¥) = (C(f"), ex¥p p[X] € @, (C(f1))),
are such that if x € K (M) = H,,,(f) is the Hurewicz image of

(h,9) € mpa(f) = 7"r+1(f)
with g: 8" > M an immersion and h: D™ - X a null-homotopy of
fg: 8" - X then
V(Y ) (@) — v () () = (Hj(cg), 0) € Q,(S™"Z[x])
= Qu(8""2)® H,,_,(Z;; Z[x]/Z,(—)"") (m = m(X))

with Hj: =,(SO) J, Qn+1(Sn—Z) —i Q,.(8"Z).

(i) The surgery obstruction o4 (f,b) € L,(Z[m,(X)]) of an (2 — 1)-connected
n-dimensional normal bundle map (f,b): M - X for n=2i or 2141 ¢s
tndependent of the bundle map b: vy, — vy for 1 #1,3,17.

~ Proof. (i) The universal cover ¥ of X induces the trivial cover
8r = = x 8 of 87, so that applying Propositions 9.10 and 9.9(iv) we have

V(') () — v (§)(%) = (Hov,4.(c)(x), 0) = (Hj(cg), 0) € @u(S™~7Z[n]),
since j is the composite

J table Hopf i iant
§: m(80) —— m,(86) = m8 ——— P TN grag,; )

by construction.

(ii) Let ¢,y € @,(C(f")) be the Z,-hyperhomology classes appearing in
the quadratic kernels o.(f,b) = (C(f"),4), ox(f.b') = (C(f"), ') of (¢ —1)-
connected n-dimensional normal bundle maps

(fib): M>X, (f,ib'): M~>X
for n=2¢ or 2¢+1, with b’ =bc: vy > vy for some automorphism
c: vy = vy classified by ¢: M - SO. By the Hurewicz theorem every
element x € K;(M) = m;,,(f) is represented by an immersion g: 8¢ - M
together with a null-homotopy k: D! — X of fg: 8¢ - X, so that by (i)

V() (@) — Vi) (@) = (Hj(cg), 0) € @u(S™~*Z[m])).

Now
j(cg) = (stable Hopf invariant of J(cg) € my(SQ) = =) = 0 € A+Y(Z,; Z)

for ¢ # 1,3,7 by the result of Adams [1], so that the (— ) quadratic forms
{formations} associated to o.(f,b), o4(f,b’) are isomorphic by Pro-
position I.2.1 {Proposition I.2.5}.
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For X = 8%, ¢ =1 (mod 2) Proposition 9.11(ii) is the familiar result
that the Arf invariant of an (i—1)-connected framed 2:-manifold is
independent of the framing for ¢ # 1,3,7. Indeed, the original definition
by Kervaire in [7] of the Arf invariant of such a manifold was independent
of the choice of framing. For ¢ = 1,3,7 there exists an (¢ — 1)-connected
2¢-dimensional normal bundle map

(f,b): Stx 8t - §2%
involving an exotic framing b of 8¢ x §%, with Arf invariant
ox(f,0) = 1 € Ly(Z) = Z,.
Moreover, crossing with S* gives an (¢ —1)-connected (2¢+ 1)-dimensional
normal bundle map
(fx1L,bx1): 8x 8 xS » §2% xSt
involving an exotic framing b x 1 of 8% x 8% x S1, with surgery obstruction
ox(fx 1,0 x1) = 1 € Ly y(Z[Z]) = Z,.

Proposition 9.11(ii) has the following consequence: for n # 2, 3,6, 17, 14,
15 the bundle map b of an n-dimensional normal bundle map (f,b): M - X
determines the sequence of framed surgeries below the middle dimension

needed to obtain a normal bordant ([4n]— 1)-connected normal bundle
map (f’,b): M' - X, but the surgery obstruction

ox(f,0) = ox(f',b") € L,(Z[m(X)])
is independent of the bundle map b’. For example, let (f,b): St x S - §2
be a normal bundle map of Arf invariant 1, and let
(f',b'): M4 - §2xStx St
be the 1l-connected 4-dimensional normal bundle map obtained from
(fx1,bx1): S1xS1x8x8 - 82x81x 8! by two framed surgeries on
mo(f % 1) = Z[Z?]® Z[Z?]. The surgery obstruction

ou(fx Lbx 1) = ay(f',b) = (0,0,0,1) € L(Z[Z*]) = Z® 00 00 Z,
is independent of b’, and in fact can be expressed as the Witt class of the

non-singular even symmetric form over Z[Z?] associated to the degree 1

map
f': M4 - S2x Stx S,

a(f') = (0,0,0,1) € Lvg>*(Z[Z%]) = Ly(2[Z%)).
Added in proof. The recent paper of Koschorke and Sanderson [34] inter-

prets the approximation theorem Q®Z®X = ([I;s; EZ; x5, ([T X))/~
for a connected pointed space X (with ~ the equivalence relation given by
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2, € Z;4, and the base point) in terms of immersion theory. This interpre-
tation can be used to give a direct proof of the identification in Proposition
5.2 of the quadratic self-intersection u(f) of an immersion f: 8" — M2
defined by the quadratic construction s of §1 with the geometric self-
intersection defined in § 5 of Wall [30]. We shall give only a sketch of the
argument here, leaving the details to a later occasion.

An oriented immersion of smooth manifolds f: M™ — N (m < n) with
normal bundle v;: M — BSO(n —m) can be approximated by an embedding
f'=fxg: M = N xR® (p large). The Pontrjagin~Thom construction
applied to f’ by collapsing the complement of a tubular neighbourhood
of f'(M) in N x RP gives a stable map F: Z°N, - X*T(v;) inducing the
Umkehr chain map

E
ft: O(N) = O(N)n—* g, C(My—* = Sn-mC(M) = C(T(v,)).

Assuming that f is in general position we have that the k-tuple point set
of f,
Slc(f) = {(xl)x2> ""xk) € I’;I le(xz) =f(xj) € N: z; # xj fOI‘ @ 7&.7}/21«:!

is an (n — k(n —m))-dimensional manifold, with an immersion
Ji: 8i(f) = N; [y, 25, s ) > flay) (k2 1, 8,(f) =M, fy=1)
Let 2, act on the contractible space
EZ, = {(t,ts ..., t;) € TI R®| ¢, # ¢, for 4 # j}
k

by permutation of components, as usual, and define a map
Fy: S(f) » By x, (I1 M)

[y, @a -, ] > [(9(21), 9(%3), -, 9(®))s (1, @y -5 25)]  (RP < R®, K > 1)
The maps appearing in the approximation theorem
a: BZy xg, ([1X) > Q°Z°X (k> 1)
ke

are also defined by the Pontrjagin-Thom construction: given

b =[(ts, 5, ..0r ty), (1, %o, ..., 24)] € EZ,, Xg, ( II;IM),

let ¢: 82 > V¥_, 82 be the map obtained by collapsing the complement of a
tubular neighbourhood of {¢,,¢,,...,¢,} = Re (¢ large), define base-point-
preserving maps

x;: 8¢ > TaX = §IaX; s> saz; (1 <1<k),
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and define a,(b) € Q*Z*X = Lim, Q39X by
—

t k& Z,
a,(b): S v 80 Y yax
=1
Thus there is defined a commutative diagram
. F
11 Sx(f) ———> 11 EZ, x5, (11 M)
k=1 k=1 k
11 fi [ 11 x (I12)
k k k
adj(F)

N, ——— Q°°2°°T(v,) = (k];IlE'Ek ng( EI Twp)))/ ~

with z: M < T'(v;) the inclusion given by the zero section of v;, Now
QeE°T(vy) = (U o1 B2, %5, (1 T(v)))/ ~ is the stratified Thom space of
the extended power bundles '

lv)): BE %z, (I1 M) > BO(k(n—m))

(k> 1,T(er(vy) = EZpp< ¢, (A T(v;))) and adj(F): N, - Q°EZ°T(v,) is
transverse regular at the stratified zero section

LB, x5, (T M) <> Q=ET(),

with inverse image

S(f) = im(11 f: LLSu(f) > N) = {y e N1 f(y) # 9}
stratified by im(f: Si(f) > N) ={y € N||f~Xy)| = &}, and

. F, ex(vy)

vyt Sp(f) — EZ; xg, ( ];[M) —> BO(k(n—m)) (k> 1).
It follows that the map
adj(F)y: Hy(N) = H,(N,) > H,(Q°Z*T(v,))
=@ Hn(T(ek(Vl)))

k=1

= R@IH?{—k(n—m) (BZy xzk(ll;l M))

sends the fundamental class [N]e H,(N) (defined using w(N)-twisted
homology) to

adj(F)y[N] = k@IFk[Sk(f)] € k@jlﬂw—k(n—m)(Ezk xxk(l;[ M)),

where [S(f)] € HY 1n—m (Sk(f)) is the fundamental class of S,(f) and w
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refers to w(N)w,(e,(v;))-twisted homology, with

wilety)): m(EZyxs, (I M) = Bt () , 3, o men

Similar considerations apply to the multiple point manifolds S, (f) of a
m-equivariant immersion f: i1 — N lifting f, with N a covering of N with
group of covering translations =, taking into account the diagonal #-action
on S,(f). In particular, for an immersion f: S - N (» > 2) and the
universal cover N of N we have §" = # x 8" (= = m,(N)) and a stable
m-map F:ZeN, - Z°T#(y) such that the quadratic component of
adj(F),[N] is

Y(adj(F)4[N]) = FlSo(f)/7]
€ HP(EZ, x5, (87 %, 8) = Qy(C(S"), (=) = Hy(Zy; Z[n), (- )),
with the w(V)-twisted involution on Z[#]. The left-hand side of the equa-
tion is the quadratic self-intersection u(f) defined in § 5 above, while the
right-hand side is the geometric self-intersection u(f) defined in §5 of
Wall [30].
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