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Introduction

An algebraic theory of surgery on chain complexes with an abstract
Poincaré duality should be a ‘simple and satisfactory algebraic version
of the whole setup’ to quote § 17G of the book of Wall [25] on the surgery
of compact manifolds. The theory of Mishchenko [10] describes the
symmetric part of the surgery obstruction, and so determines it modulo
8-torsion. The theory presented here obtains the quadratic structure as
well, capturing all of the surgery obstruction. Our theory of surgery is
homotopy invariant in geometry and chain homotopy invariant in
algebra.

An n-dimensional algebraic Poincaré complex over a ring 4 with an
involution =: 4 - 4; a+> a is an A-module chain complex C with an
n-dimensional Poincaré duality H*(C) = H,_,(C).

We shall use »n-dimensional algebraic Poincaré complexes to define
two sequences of covariant functors

L» {L,}: (rings with involution) - (abelian groups) (n € Z)

. such that L°(A) {respectively L,(A4)} is the Witt group of non-singular
symmetric {quadratic} forms over A. The quadratic L-groups L,(4) will
turn out to be the surgery obstruction groups of Wall [25], with a
4-periodicity

Ln(A) = Ln+4(A) (n € Z)

The higher symmetric L-groups L™(4) (n > 0) were introduced by
Mishchenko [10], and are not 4-periodic in general (contrary to the claim
made there). The lower symmetric L-groups are defined to be such that

L™4) = L,(4) (n < -3).
There are defined symmetrization maps
1+7: L,(4) > LMA) (neZ),

which are isomorphisms modulo 8-torsion for general 4, and actually
isomorphisms if 2 is invertible in 4.
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The symmetric {quadratic} L-groups L™4) {L,(4)} (n € Z), are to
the symmetric {quadratic} Witt group L°(A4) {L,(A4)} what the algebraic
K-groups K,(A) (n € Z) are to the projective class group Ky(4).

Part I of the paper covers only those algebraic aspects of the theory
which are needed for the applications to topology considered in Part II
(Ranicki [17]), namely the construction of the L-groups by means of an
algebraic Poincaré cobordism relation, algebraic surgery, the identification
of the quadratic L-groups L, (Z[#]) with the surgery obstruction groups
L, (w), and the products

®: L™A)®, LM(B) - L™t"(4 ®, B)

(m,n € Z).
®: Lm(A)®Z Ln(B) - Lm+n(A ®Z'B)

Part II uses algebraic Poincaré complexes to give a chain homotopy
invariant account of geometric surgery theory, including formulae for the
surgery obstructions of products and composites of normal maps of
geometric Poincaré complexes. Later parts will be devoted to the following
topics:

a change of rings exact sequence for a morphism f: 4 — B of rings

with involution

e > LM(f) ——> In(4) —Ls In(B) — In(f) —> Lr1(4)

—_— ...,

s Ly ) —> Lod) =1 L(B) — L(f) — Loa(d)

—_ ...,

involving relative L-groups L*(f) {L.(f)};

a localization exact sequence, identifying the relative L-groups of a
localization map 4 - S-14 inverting a multiplicative subset S of 4
with the L-groups of algebraic Poincaré complexes over A which
become contractible over S—14;

Mayer—Vietoris exact sequences for cartesian and localization-comple-
tion squares of rings with involution

A— B

|

C——> D
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of the type

{ .. > L*Y(D) » LMA) - LMB)® L*C) - LMD) - L*Y(4) - ...,
w.> 1L, (D)~ L,(A)-> L, B)® L,(C) - L,(D) > L, _,(4) - ...;
splitting theorems for the L-groups L*(D) {L,(D)} of a free product

with amalgamation D = B %, C, of the type

A—> B

L, l 1 = Cappell’s Unil,, L,(D)= L,(4 - B®C)® Unil,,

C——> D

and similarly for generalized Laurent extensions;
simplicial spectra L*(4) {Ly(4)} such that

{ ma(L*(4)) = L™(4)
7oL (4)) = L, (4)

the application of algebraic L-theory to the classification of topological
bundle structures on spherical fibrations, and of topological manifold
structures on geometric Poincaré complexes;

codimension-2 surgery (for example, knot theory) and the Cappell-

Shaneson I'-groups, involving the algebraic cobordism groups of
quadratic complexes over 4 which become Poincaré complexes over
B, for some morphism of rings with involution 4 — B.

The reader is referred to Ranicki [18, 19] for a preliminary account of
some of these topics, and to Ranicki [20] for an application of the theory
to the surgery obstruction of a disjoint union.

A ‘surgery’ on an n-dimensional manifold M is the process of obtaining
a new manifold M’, by first cutting out from M an embedded S*x D»-*
(0 € r < n), and then glueing in D7+l x §n—r-1

M’ = M\ 87" x D" Ugygn-r-1 DT+l x Sn-r-1,
If M is compact, oriented, smooth and closed then so is M’, and the
(n+ 1)-dimensional manifold
N = M x [0, 1]Ugrypr-rsq D71 x DP—T
is an oriented cobordism from M to M’, that is
ON =Mu-M'.
The surgery technique was initiated by Milnor [9] (where the idea of

surgery is credited to Thom); it was proved there that every oriented
cobordism is obtained by stringing together such elementary cobordisms.

€ 2);
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Surgery has turned out to be instrumental in the classification of compact
manifolds, particularly in dimensions greater than 4, starting with the
classification of homotopy spheres due to Kervaire and Milnor. In
the applications it is necessary to keep track of the behaviour of the stable
normal bundle v), of M under the surgeries, in order to produce further
embeddings 8 < M with trivial normal bundle (that is, with an exten-
sion 87x D*»r C M) on which to perform surgery. The situation was
formalized by Browder [2], who introduced the concept of a ‘normal

map’. This is a degree 1 map from a manifold M to a geometric Poincaré
complex X
fiM->X

together with a covering map of stable bundles
b: Vy —> Vx-

Surgery obstruction theory has to determine whether a normal map
(f,b): M - X extends to a normal bordism

((g9; £if")s (e; b,0)): (N; M, M') > (X x[0,1]; X x 0,X x1)
such that f': M’ - X is a homotopy equivalence. For example, a geo-
metric Poincaré complex X is homotopy equivalent to a smooth manifold
if and only if there exists a stable vector bundle vy in the Spivak normal
class for which the resulting normal map (f,b): (M,v,) - (X,vx) obtained
.by the Browder-Novikov transversality construction is normal bordant
to a homotopy equivalence. The surgery obstruction theory of Wall [25]

associates to an nm-dimensional normal map (f,b): M - X (» > 5) an
element of an abelian group

0(f,0) € Ly(my(X))
such that 6(f,b) = 0 if and only if (f,b) is normal bordant to a homotopy

equivalence. The surgery obstructions take their values in the algebraic
L-groups L,(n) defined for » (mod 4) by

Ly, (w) = the Witt group of non-singular (- )’quadratic forms over Z[=],
Ly ,1(m) = the commutator quotient of a stable (— )*unitary group over
Z[n].
The construction of 6(f,b) makes use of the geometric intersection
properties of the kernel Z[,(X)]-modules
K\ (M) = ker(fy: Hy (M) > Hy(X))

remaining after surgery below the middle dimension. The present paper
views the L-groups L,(w) as being defined for # > 0 by the cobordism
groups of n-dimensional Z[n]-module chain complexes C with a quadratic
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Poincaré duality : H»*(C) ~ H,(C), and makes use of homotopy
theory to express the surgery obstruction (without preliminary surgeries) as

0(f,6) = (C,¢) € Ly (m(X))
for some Z[m,(X)]-module chain complex C such that
Hy(C) = Ky(M).

An ‘algebraic Poincaré complex’ in the sense of Mishchenko [10] is a
chain complex of finitely generated projective 4-modules

d d d d
c:C,—>C,_, > ... > O, > G

together with a collection of 4-module morphisms

@ Cv ™8> (0, (s20)

such that
dpg+ (= )ped* + (= )" HPey +(— ) Tsy) = 0: O > C,

(90—1 = 0),
and such that the chain map

@: C"* > C
is a chain equivalence, inducing abstract Poincaré duality isomorphisms
@o: H*7(C) -~ H/(C).
Here, C** is the chain complex of dual A-modules

Cr = C¥ = Hom 4(C,, 4)
with
(Cn—*)' — Cn—r, dcm_. — (_ )rd*: cn—r - Cn—r+1’
and T is the duality involution
T: Hom 4(C?,C,) - Hom 4(C9,C,); ¢ — (= )P%* (C3* = G,).

The definition was inspired by the symmetry properties of the chain
equivalence
¢o = [M]o —: C(M)"* > C(M) ([M]=1¢€ H,(M)=12)
inducing the Poincaré duality isomorphisms
¢o = [M1n—: H~"(M) - H(M)

of a compact oriented n-dimensional manifold M, with ¢, a chain homotopy
between ¢, and T'p,, @, a higher chain homotopy between ¢, and T¢,, and
so on. The ‘algebraic Poincaré bordism’ groups Q,,(4) of Mishchenko [10]
(which we denote by L"(4)) are the abelian groups of equivalence classes
of such n-dimensional symmetric Poincaré complexes over A (C,p) (as
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we shall call them) under a cobordism relation given by abstract Poincaré-
Lefschetz duality, with addition by

(C,p)+(C',¢') = (CaC, p@ ') € LMA).

An n-dimensional geometric Poincaré complex X determines in a
natural way an n-dimensional symmetric Poincaré complex over Z[m,(X)],

o¥(X) = (C(X), p2),

with X the universal covering space of X. The ‘higher signature’ of
Mishchenko [10] is the symmetric Poincaré cobordism class

o*(X) € L{Z[m(X)]).

The symmetric signature (as we shall call it) is a geometric Poincaré
bordism invariant which is a =,(X)-equivariant generalization of the
signature.

Given a degree 1 map of n-dimensional geometric Poincaré complexes

i M->X

there is defined a kernel n-dimensional symmetric Poincaré complex over

Z[m (X)),
o*(f) = (C(/"). ¢y),
such that up to a chain equivalence preserving the symmetric structure
o*(M) = o*(f) ® o*(X),
where C(f') is the algebraic mapping cone of the Umkehr chain map

f!: C(X) _([_X_]n;))—l C(Xyn* ___f*__> C(M )+ _(_[_M]n_—)) C(M).

Here, M is the covering space of M induced by f from the universal cover
X of X, and o*(M) is constructed using J rather than the universal cover

of M. The Z[n,(X)]-module chain complex C(f') has homology modules
Hy(C(fY) = Ke(M) = ker(f*: H*(M) - *(X))
A normal map of geometric Poincaré complexes
(f: M - X, b: Vl” —> Vx)

is a degree 1 map f together with a covering map b of Spivak normal
fibrations. The ‘quadratic construction’ of §1 of Part II of this paper
refines the symmetric structure @, in the kernel o*(f) = (C(f'), ) of a
normal map (f,b) to a quadratic structure ¢, depending only on the fibre
homotopy class of b. The surgery obstruction of (f,b) is the equivalence

class
ou(f,b) € Ly(Z[m(X)])
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of the quadratic kernel
ox(f,0) = (C(f"), )
in the abstract cobordism group of such n-dimensional quadratic Poincaré
complexes over Z[m,(X)].
In the first version of the present theory of quadratic structures an
n-dimensional quadratic Poincaré complex was defined to be a chain
complex of finitely generated projective 4-modules,

d d d d
0: On 7 'n—-l > I k4 Cl > 00,

together with a collection of 4-module morphisms,
Y O8> C, (5= 0),

such that
d‘)ba + ( - )r‘/‘s a*+ ( - )n-s—l(‘/’.ﬂ-l + ( - )°+1T¢3+1) = 0: On—r=s-1 Cr
and such that the chain map
(L4+T)y: C»* > C

is a chain equivalence, inducing abstract Poincaré duality isomorphisms

(1+T)y: H=*(C) - H,(C).
The cobordism groups L,(A4) of n-dimensional quadratic Poincaré
complexes over A (C,y) turned out to be 4-periodic,

L‘n(A) = Ln+4(A) (n = 0),
agreeing with the surgery obstruction groups of Wall [25] for a group ring
A = Z[n], l

Ly (Z[n]) = Ly(m) (n(mod 4)).

There remained the problem of exhibiting such a quadratic structure ¢ on
the chain complex kernel C(f') of a normal map (f,b): M - X, without
the use of preliminary surgeries below the middle dimension. Graeme
Segal pointed out that for the chain complex C = C(X) of a topological
space X and 4 = Z such collections ¢ = {i,| s > 0} are cycles of homology
classes in the ‘quadratic construction’

e H,((S°x X x X)/Zy) = H,(W ®z42,(C(X)®,C(X)))
with the generator 7' € Z, acting by the antipodal map on S® and by the
transposition 7': (z,, z,) > (25, 2,) on X x X, and

1-T 1+ 7T 1-T
W= C(8®): ... — Z[Zg] —> Z[Z,] —— Z[Z,] —> Z[Zs).

This led to the present formulation of the quadratic theory, in which a

quadratic structure on an A-module chain complex C is defined to be a
class ¢ € @,(C) in the Z,-hyperhomology group

@n(C) = Hy(Z, C® 4 C) = Hy(W @2,(C®,40))
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with T € Z, acting on C® ,C by

T:C,®4C,~> C,®0,4C,; 20y — (— )Py ®w,
which corresponds to the duality involution 7' on Hom ,(C*, C) under the
natural identification C®,C = Hom,(C*,C) for finitely generated
projective C. In turn, this led to the present formulation of the
symmetric theory, in which the symmetric structure {p,|s > 0} of

Mishchenko [10] is considered as a cycle of a class ¢ € @*(C) in the Z,-
hypercohomology group

Q@"(C) = H"(Z,,C®40) = H,(Homg,, (W,0® ,0)).
Transfer defines a map from quadratic structures to symmetric structures
(147): @u(C) = @™C); > (1+T),

(L+T), ifs =0,
1+T)), =
(L+T)), 0 i£5> 1.

The problem was reduced to finding a natural lifting of the Z,-hyper-
cohomology class @, € @Q*(C(f')) appearing in the symmetric kernel
a*(f) = (C(f'),¢;) of a normal map (f: M - X, b: vy > vx) to a Z,-
hyperhomology class ¢, € @,.(C(f')) such that

(1+T)y = @5 € @C(F)
Ib Madsen suggested using a more refined version of the construction of
the Arf invariant used by Browder in [2, § ITI.4] which involved the S-dual
of the induced map of Thom spaces 7'(b): T'(vy) - T(vx), & stable map
F: 22X, — Z°M, inducing the Umkehr f': C(X) - C(M) on the chain
level. (Specifically, note that there is a natural map
IHOEEk Xz, I,;[ M) > QOEeM, (M, = Mu{pt.})

which is a group completion in homology, with the symmetric group X,
on k letters acting by permutation on the k-fold cartesian product [T, M,
and EX, a contractible space with a free Z;-action. The image of the
fundamental class [X] € H,(X) under the composite

(adjoint F'),
- % ﬂ”

5[’: Hn(X) = Hn(X-i-) (QcozooM+)

- ( @ H, (B, %z, I M))) ®znZIZ]

k=1

PIOJCCHOR, B (B (M x H1)) = @u(C(N))

— Q)
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(where e = inclusion: C(M) - C(f"), N ={1,2,3,...}) is a Zy-hyper-
homology class ¢, = $[X] € @,(C(f*)) such that (14T, = @, € QMC(f")),
and which agrees with the class ¢y, constructed in § 4 of Part II by a direct
chain level operation.) This led to the observation that an abstract
Z,-hypercohomology class ¢ € @*(C) lies in im((1+7T'): @,(C) - @~(C)) if
and only if .

Srp = 0 € Q*t?(SPC) (p large),
where SC is the suspension of the chain complex C (SC, = C,_;) and

S: @Q™C) - @Q*+(8C); ¢ — So,

Py ifs>21,

8p), =
(S)s 0 ifs=0

(Proposition 1.3). If there exists a m,(X)-equivariant map
F:32X_ > 3eM, (p>0)

inducing the Umkehr f!: C(X) - C(M) on the chain level then the Z,-
hypercohomology class ¢, € @Q®(C(f")) is of this type, and the stable

m,(X)-equivariant homotopy class of F determines a Z,-hyperhomology
class yp € @,(C(f") such that

(1+T)p = ¢5 € QUC(fY)
(Proposition II.2.3). A normal map of n-dimensional geometric Poincaré
complexes (f: M - X,b: v;; > vx) gives rise to a m,(X)-equivariant
geometric Umkehr map F: 22X, > Z°M, via an equivariant S-duality
theory (Proposition II1.4.2), and ¢, = Y5 € @,(C(f')) defines the kernel
n-dimensional quadratic Poincaré complex over Z[,(X)],

ax(f,0) = (C(f"), ).

The quadratic Poincaré cobordism class

ox(f,b) € Ly(Z[m,(X)])
is the surgery obstruction of Wall [25] (Proposition I1.7.1).

The theory presented here was developed over a period of some five
years, and I should like to express my gratitude to the following
institutions for their support in the years indicated:

Trinity College, Cambridge (1972-1973, 1974-1977);

Institut des Hautes Etudes Scientifiques, Bures-sur-Yvette (1973-1974);

Princeton University (1977-1978).

I should also like to thank W. Browder, I. Madsen, J. Morgan, W. Richter,
G. Segal, L. Taylor, C. T. C. Wall, and B. Williams.
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The sections of Part I are as follows:
§1. Algebraic Poincaré complexes;
§2. Forms and formations;

§3. Algebraic Poincaré cobordism;
§4. Algebraic surgery;

§5. Witt groups;

§6. Lower L-theory;

§ 7. Dedekind rings;

§8. Products;

§9. Change of K-theory;

§10. Laurent extensions.

1. Algebraic Poincaré complexes

Given a ring with involution 4, an element ¢ € 4 such that £ = el € A4,
and an 4-module chain complex C, we define the Z,-hypercohomology
{respectively Z,-hyperhomology, Tate Z,-hypercohomology} group @*(C, ¢)
{respectively @,(C, ¢), @*(C, ¢)} of n-dimensional e-symmetric {respectively
e-quadratic, e-hyperquadratic} structures on O, depending only on the
chain homotopy type of C. The @-groups are related to each other by an
exact sequence

H 1+7T J
L — Qn+1(0, &) —> Q,(C,¢€) —+—>‘ Q™ C,e) — Qn(C, €)

—> @,,(C,e) — ...,

and there is defined a forgetful map
Qn(C) 8) - Hn(o ®4 C)’ ® = @,

An n-dimensional e-symmetric {¢-quadratic} Poincaré complex over A4 is
an n-dimensional finitely generated projective 4-module chain complex C
together with a class ¢ € @Q¥(C,¢) {¢ € @,(C,¢)} such that slant product
with ¢,®@ H,(C®,C) {(1+ T, € H,(C®,4C)} defines Poincaré duality
isomorphisms

po: H**(C) - Hy(C) {(1+T)o: H**(C) > H,(C)}.

In §2 below we shall express the theory of n-dimensional ¢-symmetric
{e-quadratic} complexes over 4 (C,p € @Q(C,¢)) {(C,¢ € @,(C,¢))} forn =0
(respectively 1) in terms of e-symmetric {e-quadratic} forms (respectively
formations) over 4. In §2 {§4, §9} of Part II we shall show that an
n-dimensional geometric Poincaré complex X {a normal map of geometric
Poincaré complexes (f: M — X,b: vy, - vy), a stable spherical fibration
p: X > BG over an n-dimensional CW complex X} determines in a
natural way an n-dimensional 1-symmetric Poincaré {1-quadratic Poincaré,
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1-hyperquadratic} complex over Z[m (X)] o*(X) {o4(f,b), *(p)} such that
(1+T)ox(f,b) ® o*(X) = o*(H),

Jo*(X) = 0*(vy).

A ring with involution A is an associative ring with 1, together with a

function
—tA—>A;at—>a
such that
(@+ +b,

a

ab) = (b)ia),
a
1

S

(

=
fl

(a,b € A).

Given a left A-module M let M* denote the right A-module defined by
the additive group of M, with 4 acting by

MxA > M (x,a) — az.
We shall be mainly concerned with left A-modules, so that ‘an A-module’
is to be taken to mean ‘a left 4-module’ unless a right A-action is
specified.
The dual of an A-module M is the 4-module

M* = Hom ,(M, 4),
with 4 acting by

A x M* > M*; (a,f) — (z — f(x).8).
The dual of an 4-module morphism f e Hom (M, N) is the A-module
morphism
[¥: N* > M*; g — (x> g(f(2))).
The dual of a finitely generated (f.g.) projective A-module M is a f.g.
projective A-module M*, and there is defined a natural A-module
isomorphism
M - M**; x > (f — f())
which we shall use as an identification.

The homology {cohomology} A-modnles H,(C) {H*(C)} of an A-module
chain complex C,

d d
¢:...—> C,,, —> C,.—> C

r-1

— ... (reZ,d*=0),
are defined by
H,(C) = ker(d: C, - C,_,)/im(d: C,,, - C,)

H"(C) = ker(d*: O - Cr+1)/im(d*: G - C)
5388.3.40 G

(reZ, Cr =C}).
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A chain map {homotopy} of A-module chain complexes {maps}
f:C—>D |
{ g: f~f':C->D

is a collection of A-module morphisms {fe Hom ,(C,, D,)|r e Z}
{{g € Hom 4(C,, D, ,)| r € Z}} such that

{ dpf=fdo: C, > D,
f,_f= dDg,+gdC: C,—~ D,
A chain equivalence is a chain map which admits a chain homotopy
inverse.

An A-module chain complex C is n-dimensional if it is chain equivalent
to a f.g. projective A-module chain complex of the type

d d
C: .. > 0 > C, > Cphy > ... —> () > G, > 0

(re Z).

for some integer » > 0. We recall that a chain map f: C — D of finite-
dimensional 4-module chain complexes is a chain equivalence if and only
if it induces 4-module isomorphisms f,: H,(C) - H,(D) in homology (or,
equivalently, if it induces 4-module isomorphisms f*: H¥(D) - H*(C) in
cohomology). A finite f.g. projective A-module chain complex C is n-
dimensional if and only if H,(C) = 0 for r < 0 and H*(C) = 0 for r > =.
We shall be mainly concerned with finite-dimensional chain complexes.

Given A-module chain complexes C, D, let C'® 4D, Hom 4(C, D) be the
abelian group chain complexes defined by

(C'o4D), = X CL®,D, dog,p(r®y)=20dp(y)+(—)dc(x)®yY,

pt+a=n

HomA(O’ D)n = Z HomA(Cp)Dq)’ dHomA(C,D)(f) = de+(— )qde'

q—p=n
The slant chain map
\:C'®,D - Hom (C*,D); z@y (f"'hf(_x)-?/)

is a chain equivalence (respectively isomorphism) if C is finite-dimensional
(respectively f.g. projective), where C—* is the 4A-module chain complex

defined by _
(C_*)f = C_r, dc—. = (dc)*.

Let ¢ € A be a central unit such that
E=¢1e€ A,

for example, ¢ = + 1. Given an A-module chain complex C let the generator
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T € Z, act on C'® 4 C by the e-transposition involution
T,: 40,40, - Ct®,4C 2@y — (- Py ®ex,
and define the Q-groups
Qi n(C,e) = H,(Homg, (W[s,j],C'® 4 0))
QuNC,e) = Ho(W[i,j]®z2,(C'®4C))
with W[¢,5] the Z[Z,]-module chain complex given by

o Z(Z,] ifi<r<y,
W[?”J]z = [0

—0<i<)j<oo,nelZ)

otherwise,

dyigy = 1+ (=)T: W[i,5], > Wl,jl,y (<7 <)

An element ¢ € @ ;(C,¢) { € @(C,¢)} is represented by a collection

of chains
{ P = {903 € (C[®Ao)n+sl (A} S.7}

'/‘ = {‘l's € (Ct®A0)n—-s| 1< 8 s.7}
such that

Boig,cl@s) + (=) Hpsy + (= )*Tps1) = 0 € (('® 4 O)ny s
(0 <s<4, 91 =0),
Bog,cls) + (=) Msur + (= )P Tghsr) = 0 € (C'®4C)psa
(t <8<y P =0).
The notation is somewhat redundant, allowing identifications
QF{,;’](C, €) = Q[z—ky—k]( (= )ke) = eric;l{'k_i](a; (=)tte) (ke Z).
For i = j we have
Q4(C,e) = H, (C'®,0), QF(C,¢) = H, ;(C'®,0).

The isomorphism type of the @Q-groups @& ,(C,¢) {Q%)(C,¢)} depends
only on the chain homotopy type of C, despite the quadratic nature of
the construction.

ProposITION 1.1. (i) An A-module chain map f: C — D {homotopy
g:f~f": C - D} induces a Z-module chain map {homotopy}

r* y y
{ . f'%: Homgz,(W[i,j], C'® 4 C) > Homgz (W[i, j], D'® 4 D),
g O: cd :

Ja . .
{ L W, j1®z2)(C'® 4 C) > Wi, j]1®zz(D'® 4 D).
9% fou = fa
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(ii) If C is an m-dimensional A-module chain complex then

)

{ QinCe)=0 n+i>2morn+j <0,
Qlff"'](C,a)=0 n—j>2morn—i <0,

(iii) For —o0 <t <J <k < o0 there is defined a long exact sequence of
Q-groups
{ vor > Q1 1(Cr 8) = @ 1a(Cre) > QF 1(Ce) > @3t 1n(Cle) - ... e
n .
o => QIO £) - QUHC, &) — QUHLEN(C, &) — Q1) (C,¢) — ...
Proof. (i) Given ¢ € Homy, (W[i,5], C*® 4 C), set

f%(ﬁp)s = (f‘ ®Af)§ps € (D®AD)n+s’
9%°(@)s = (f'®49+ (=) ® 4 f )ps+ (=) ® 4 9) [P

[ o]
€ (D'®4D)pys41 = qz_oo'Diz-q+s+1 ®4D, (<8<], 0y =0)

The other case is similar.

(ii) By the chain homotopy invariance (verified in (i)) it may be assumed
that C, = 0 for r < 0 or r > m.

(iii) Given intervals [3,5],[¢",5'] such that ¢ <¢
Z[Z,)-module chain map W[i,j] > W[i',5'] by

L Wi, jl, = 2[2;) > W[, 5], = 2(25] (V' <7 <j).
There are induced contravariantly {covariantly} abelian group morphisms
€01 8) > € 5(Cs )
QAT e) - (0, )
For —o0 <% < j < k < oo there is defined a split short exact sequence of
Z[Z,])-module chain complexes
0> W[,j] > Wi, k] > W[j+1,k] - 0.

Apply Homg, (—,C'®4C) {—®zz,(C*'®4C)} to this sequence, and
consider the associated long exact sequence in homology.

’

<j <j define a

(n € Z).

(The chain homotopy invariance of the @-groups is fundamental to the
methods of this paper—it is further clarified by the following discussion.
Define the Z,-isovariant category, with objects Z[Z,]-module chain com-
plexes and morphisms f: C - D Z,-hypercohomology classes,

f € HYZy; Homy(C, D)) = Hy(Homg (W, Hom,(C, D))
(W = W[O,d)]),
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with T' € Z, acting on Hom,(C, D) by
T: Hom,(C,D) - Hom,(C, D); g — TpgTo,.

A Z,-isovariant morphism f: C — D is thus an equivalence class of
collections {f, € Hom,(C,,D, )| r € Z, s > 0} such that

des + ( - )s_lfsdc’ + ( - )s_l(fs—l + ( - )sTDfs—lTC) = 0: 0,. g Dr+8-1
(f22=0),
corresponding to a Z-module chain map f,: C — D together with a Z-

module chain homotopy f;:fo~ TpfyTc: C - D and higher chain
homotopies fy, fs, ... . The diagonal Z[Z,]-module chain map

8 WEi,j) > W&, Wil 1> SL,8(T.) (<5 <))
can be used to define products
H(Zy; Hom,(C, D)) ®2 Q1 11(C, €) > @ (D, ¢); f®@ > (fOP)A,
so that a Z,-isovariant morphism f: C' - D induces abelian group
morphisms
F*: Q@ ;(C,e) > Q 1(D, €)
in a natural way. An A-module chain map f: C - D of A-module chain
complexes induces a Z[Z,]-module chain map f!'®,f: C'® ,C - D'®4D
of Z[Z,]-module chain complexes, but an A4-module chain homotopy
g:f~f':C—>D does not in general induce a Z[Z,]-module chain
homotopy f!'®@,f~f"®,f':C®,C - D!® D. However, f!®,f and
f"*®f' represent the same Z,-isovariant morphism C'®,C - D'® 4D,
so that
f*= f’%: Qﬁ,j](ai &) > Q[’%,jJ(D’ €)
(as was explicitly verified in the proof of Proposition 1.1(i)). Note that

for the singular chain complex C(X) of a topological space X the Eilenberg—
Zilber theorem gives a natural Z,-isovariant equivalence

C(X x X) - C(X)®, C(X),

as used in the construction of the Steenrod squares in singular
cohomology (cf. § 1 of Part II).) :

Given an A-module chain complex C define the Z,-hypercohomology
{Z,-hyperhomology, Tate Z,-hypercohomology} groups of the Z,-action on
C'® 4C by the e-transposition involution 7,

Qn(O, 8) = Qi’a’w](o, 8) = H.,,(Homz[zs]( W, ¢ ®4 0))
Qn(C,e) = Q‘,?"”‘(C, &) = H (W ®zlzzl(0‘ ®40)) (n € Z),
Q“(C', 8) = Q["_wml(C', 8) = H“(Homz[z’](W, Cl ®A 0))
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with W = W[0,00] a free Z[Z,]-resolution of Z and W = W[—c0,00] a
complete resolution for Z, (cf. Cartan and Eilenberg [4, Chapters XII and
XVII)). If C is n-dimensional

Qn(os 8) = Q{l,'),'n+1](09 8)
@n(C,€) = QL™(C,e)
Q”(Os 8) = Q’[n—m,—l’n.pl](os 8)
by Proposition 1.1.
ProrosiTION 1.2. Given an A-module chain complex C there is defined a
long exact sequence of abelian groups
H 14T J H
oo > G0, 6) = Qu(Ce) = Qn(Cre) —— (r(C,e) —
Qn-1(C,e)—> ... (nelZ)
wilh
H: Qv (C,¢) > Q,(C,¢); 6 — {(HO), = 0_,_,| 8 > 0},
(1+T)y tfs=0
1+ 7,: @u(C,e) > @™(C,e); Y > {(1+ T ), = , ;
0 ifs>1
{go,s ifsz=0 l

IJ =
(o), 0 ifs<—1

l

Proof. This is just the special case of the exact sequence of Proposition
1.1(iii) for @, with ¢ = —00,j=-1, k = c0.

J:@*(C,e) > Qn(C,¢); o —

(The exact sequence of Proposition 1.2 is related to the EHP sequence
in homotopy theory, cf. Proposition 5.1 of Part II.)

An n-dimensional e-symmetric {e-quadratic, e-hyperquadratic} complex
over A (C, ) {(C,¢), (C,0)} is an n-dimensional 4-module chain complex
C together with an element ¢ € Q*(C,¢) {y € @,(C,¢), 8 € ¢*(C,¢)}. The
e-hyperquadratization {e-symmetrization, e-quadratization} of an n-dimen-
sional e-symmetric {s-quadratic, e-hyperquadratic} complex over A4
(C,e) {(C,¢¥), (C,0) such that H™(C)= 0} is the n- {n-, (n—1)}
dimensional e-hyperquadratic {e-symmetric, e-quadratic} complex over 4

J(C,p) = (C,Jg € Q"(C,¢)),
(1+T)(C.¢) = (C,(1+ T}y € @Q"(C, ¢)),
H(C,0)= (C,HO e Q,_,(C,¢)).

If there exists a central element @€ A such that a+a =1 (for
example, a = %) the e-symmetrization map (1+7)): @,(C, &) > @™(C,¢)
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is an isomorphism (the inverse being given by Q™(C,¢) - @,(C,¢);
@y = {‘/’s = (1®a)(1+T)(1®a)p, if s=0, ;=0 if s> 1}) and
Q"(C,e) =0 so that there is no difference between n-dimensional
g-symmetric {e-hyperquadratic} complexes over A and n-dimensional
e-quadratic {chain} complexes over A. The groups Q"(C,¢) are of
exponent 2 (for any 4).

An n-dimensional e-symmetric {¢e-quadratic} complex over A4
(C,p € @™(C,¢)) {(C, ¢ € Q,(C,¢))} is a Poincaré complex if the evaluation
of the slant products

\: H(0)®z H,(C'®4C) > H,_(C); f® (x®y) > f(x)y

on ¢,€ H(C'®,0) {1+T),€ H,(C'®,C)} defines A-module iso-
morphisms

@o: H"(C) > I,,_,(C)

0<r<na)
(1 + Ta)‘/'tﬁ HT(C) -> Hn—r(c)

The e-symmetrization of an n-dimensional e-quadratic Poincaré complex
(C,¢) is evidently an n-dimensional e-symmetric Poincaré complex
(1+T)(C. ).

A map (respectively homotopy equivalence) of n-dimensional e-symmetric
{e-quadratic, e-hyperquadratic} complexes over A

f:(C,0) > (C', ")
[ (C) > (C,¢)
f:(C,6) > (C,6)
is an A-module chain map (respectively chain equivalence)
f:C=C

f(p) = 9" €@C'e),
f%('/l) = ‘)L' € Qn(o's E),
fu6) =6 € Q(C,e).

such that

Homotopy equivalence is an equivalence relation.

In §2 below we shall identify the homotopy equivalence classes of
n-dimensional e-symmetric {e-quadratic} complexes over 4 for n =0
(respectively 1) with the (stable) isomorphism classes of e-symmetric
{e-quadratic} forms (respectively formations) over 4.
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For ¢ = 1 € A we shall contract the terminology by writing

Qn(C,1) = @~(C),
@.(C, 1) = @,(0),
Q~(C,1) = @(0),

calling 1-symmetric {}-quadratic, 1-hyperquadratic} complexes symmetric
{quadratic, hyperquadratic}.

Our notion of a symmetric Poincaré complex is a chain homotopy
invariant version of an ‘algebraic Poincaré complex’ due to Mishchenko
[10].

For f.g. projective A-module chain complexes C the slant map iso-
morphism C'®_,C - Hom (C*,C) allows us to represent elements
e @QVC,e) {$€Q,(C,e), 0eQ@QnC,e)} by collections of A-module
morphisms

{p; € Hom (C*+s5,C,)| r € Z, s > 0}

{, € Hom 4(Cn—5,C,)|re Z, s > 0}
{0, € Hom ((C"»—"+5,C,)| r € Z, s € Z}

such that
([ Aot (=) @se+ (= )" Hpey + (=) Tipsm) = 0: CP7THe71 > €
(s20,9.,=0),
Aoy + (= Vbl + (= =M+ (= )41 T, ) = 0: Cr=r=s1 > C,
(s = 0),
Ao+ (=)0, d% + (= )2 +s10,_; + (= )*T.8,_y) = 0: On-r+s-1 5 C,
' (s € Z),

where 7! is the e-duality involution
T,: Hom 4(C?, C,) > Hom 4(C9, C,); 6 — (—)P%.6%.

An n-dimensional e-symmetric {e-quadratic} complex (C,¢ € @Q™C,¢))
{(C, ¢ € Q,(C,¢))} with C f.g. projective is a Poincaré complex if and only

if the chain map
@o: Cv* > C

(14 T)y: Cr* > C
is a chain equivalence, with

(Cn—*)r = On-—r’ dcn_. = (_ )rdé; Cn—-r . (n~r+1,
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The suspension of an 4-module chain complex C is the 4-module chain
complex SC obtained by dimension shift —1

(SO),. = Cr—l’ dSC = dC"

We shall denote the inverse operation by QC ((QC), = C,,,, dqc = dg),
and can identify

H/(SC) = H,_,(C), H,QC)= H,,,(C),
[ (8C) 1(0) (QC) +1(0) SQC — QS0 = C,

H7(SC) = HY(C), Hr(QC) = Hr+((C),

{ Q(C.6) = @it 4n(SC, ) = QIF(SC, —),
QUA(C, &) = QUz1I-1(SC, &) = QUAL(SC, —e).

In particular,
Qn(o’ 6) = Qn+1(so, 8)'

The skew-suspension of an n-dimensional e-symmetric {e-quadratic}
(Poincaré) complex over A (C,p € @™C,¢) {(C,¥ € @,(C,¢))} is the
(n+ 2)-dimensional (— e)-symmetric {(— ¢)-quadratic} (Poincaré) complex
over 4 _ _

S(O’ ?) = (SO> S? € Qn+2(SO, —¢)),
S(C, ) = (8C, S'/’ € Qn+2(SO: —&)),

with S: @Q*(C, &) - @*+2(SC, —¢) {8: Q,(C, &) - @,,2(SC, —¢)} the abelian
group isomorphism induced by the isomorphism of Z[Z,]-module chain
complexes

8:C'@,C - Q¥SC'®,8C); 2@y (- P2y (xe€C,, yeC).

Here T' € Z, acts by T, on C'®,C and by T'_, on SC'® ,SC. An (n+2)-
dimensional (—¢)-symmetric {(—e¢)-quadratic} complex over A
(D,p € Qnt3(D, —¢)) {(D,y € @, 1o(D, —¢))} is the skew-suspension of an
n-dimensional e-symmetric {¢-quadratic} complex over 4

(QD,8-1(p) € Q*(QD,¢)) {(QD,8(Y) € Q,(QD, ¢))}
if and only if QD is an n-dimensional A-module chain complex, that is if
Hy(D) =0, H"¥D)=0.

Thus the study of »-dimensional e-symmetric {e-quadratic} Poincaré
complexes (C, ¢) {(C, )} such that H,(C) = 0, H"(C) = 0 for r < ¢ reduces
to the study of (n— 2:)-dimensional (— )‘%-symmetric {(— )c-quadratic}
Poincaré complexes (QC, 8-i(p)) {(Q*C, S())} for n > 2i.
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Given an 4-module chain complex C define the suspension chain map

S: Homg,(W,C'® 4 C) - Homy, (W[—1,00],C'® ,C)

= QHomziz,,](W, S8C'®,480); ¢ > {(S¢)s =@sql 82 O} (p-1 = 0)
S: W@zz,(C'®4C) - W[1,00]®4z,(C'®4C)

= Q(W ®z2,1(SC'®480)); ¢ = {(8)s = 4118 > 0}

using the natural chain map
W[-1,00] - W[0,00] = W {W = W[0,00] = W[1,0]},

so that there are induced suspension maps in Z,-hypercohomology
{Z,-hyperhomology},

8:@(C,¢) > @80, ¢),

8:Q,(C,¢) > @, 11(SC, ¢).
Now W[—o00,0] = Lim, W[ —p, c0] so that the Tate Z,-hypercohomology

-
groups are the direct limits
@(C, ¢) = Lim@+?(87C, ¢)
—_

»

of the directed systems of suspension maps

S S 8
Q™(C, ) —> Qm(8C,e) — Q@ t3(82C, &) — ...

with J:Q®(C,¢s) > Q*(C,¢) the natural map. Thus the relation
kerJ =im(1+T,) in the exact sequence of Proposition 1.2 can be
interpreted as saying that an n-dimensional e-symmetric complex
(C,p € @*(C,¢)) is the e-symmetrization (1 + T.)(C, ¢) of an n-dimensional
e-quadratic complex (C, ¢ € @,(C, ¢)) if and only if SPp = 0 € @**+?(8SPC, ¢)
for some p > 0. This is the mechanism by which we shall obtain quadratic
structures in the topological context, in the ‘quadratic construction’ of
§1 of Part II.
The exact sequence of Proposition 1.2 admits a generalization:

PROPOSITION 1.3. Given an A-module chain complex C there is defined in
a natural way a chain equivalence of Z-module chain complexes

C(8?) ~ S(W[0,p — 1]®zz,(C'®,40))

for each p > 0, with C(SP) the algebraic mapping cone of the p-fold suspension
chain map

8#: Homg (W, C'® 4 C) - Q¢ Homy, (W, S7C'® 4 87C),
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and there is also defined a commutative braid of exact sequences of Z-modules

J

QUr-1(C,¢) - Q~(C, e) Q(C,¢)
. / M /' \ o \ A
Qn+p+1(8PC, &) Q.(C,¢) Qr+P(8C, ) Q..(C,¢)
A N o N Ar N 7N
Qn+1(C, ) Qn+(8PC, £) g QVrI(C, )

N~

If C is n-dimensional then for p > n+1
Qn+p(Sp0, 8) = 0, Q,[,?’p](o, €) = Qn(oa £), Qnﬂ)(SpC, €)= Qn(C’ 8)’

and the braid collapses to the exact sequence
H 1+ 7, J
er T Qn+1(0’ 3) - Qn(c, 8) — Qn(a, 3) —_— Qn(oi 8)

— @,4(C,e) —> ...
Proof. Applying Homy, (—,C'®4C) to the chain equivalence of
Z[Z,)-module chain complexes
SW[-p, —1] > C(W[-p,0] - W[0,0])
arising from the split short exact sequence
0> W[-p, —1] > W[—p,00] > W[0,00] > 0
we have a chain equivalence of Z-module chain complexes
C(8?) = C(Homgz,(W[0,0], C'® 4 C) - Homy (W[ —p, 0], C'®4C))
— Homgz (SW[—p, —1],0'® 4C) = S(W[0,p — 1] ®z4z,(C' ® 4 C))-

To obtain the braid apply —®z,(C'®,C) to the commutative diagram
of split short exact sequences of Z[Z,]-module chain complexes

/\/—\

W[0,p—
/ ~N \ /' \
0 W[-oc0,p—1] W0, 0]
Wi-c0, ~1] W[—c0,] Wp, )

\\_// ~_ 7 N~ \\¥/f
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and consider the associated long exact sequences of homology groups
(which are all special cases of those of Proposition 1.1(iii)).
Given 4-module chain complexes C,C’ there are defined direct sum
operations
®: Qi (C, ) @Q%;H(C',¢) > QR p(Ca s e); (p,¢') = 9@ ¢,
@: QE(C, &) @QEIC, e) > QEUC D C'e); (,§) = Y@ Y.
The direct sum of n-dimensional e-symmetric {e-quadratic} (Poincaré)
complexes over 4 (C,p € Q™C,¢)), (C", 9" € @M(C',¢)) {(C,¢ € Qu(C,¢)),
(C', ¢y’ € Q.(C', £))}is an n-dimensional e-symmetric {e-quadratic} (Poincaré)
complex over 4
{ (C.p)@(C¢)=(Cal,.pap c@Cal,¥),
C.he(C,¥)=(Cal . joi e, (Cale).
The Z,-hypercohomology {Z,-hyperhomology, Tate Z,-hypercohomology}
groups behave as follows under the direct sum operation.
ProrosiTioN 1.4. (i) Given A-module chain complexes C,D there are
natural direct sum decompositions of abelian groups
QU C@®D,e) =Q™C,e)®QUD, ¢)® H,(C'®4 D),
@.(CO® D, ¢) = Qu(C,e)@Qu(D,e)® H,(C'® 4 D),
QrC@ D, ¢) = G(C, )@ Qn(D, ¢).
The e-symmetrization (1+T,): @,(C®D,e) >~ QC®D,¢) is an isomor-
phism on H,(C'® 4D).
(i) Given A-module chain mapsf,g: C — D there are defined factorizations

y£94¢ p e, D)

—— Q™(D, )

(
(f+9)*—f*—g*: @x(C,e) — H,(C'®,C

d ¢
(f+9)%—fu—9%: @u(C,6) —> H,(C'®,0) .L@)_Ag H,(D'®4D)

> Qa(D; €)

\ (f+g)*—f%—g* = 0: @n(C,e) —> Qn(D,¢)
with
Q™(C,¢) > H,(C'®,4C); o > @0,
(1+T)0 ifs=0
0 if s > l]’

H,(D'®4D) > Q™D,s); 0 [% =

Qu(C, ) > H,(C'®,40); > (1+ T ),
0 ifs= 0}

H,(D'® D) > Q.(D,e); 6 — {‘/’s = {0 ifs>1
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Proof. (i) Applying H,(Homg, (W[i,j], —)) to the direct sum de-
composition of Z[Z,]-module chain complexes

(CeD)e,(CeD)=(Co,C)o(D'o,D)e (C*®D)® (D'®,C))
we have a direct sum decomposition of abelian groups
QiaC@D,e) = Q (0, e)©Qp (D, ¢)
® H,(Hom,z, (Wi, j1, (C'®.4 D)@ (D'® 4 0)))
with 7' € Z, acting on (C'® D)@ (D'®,C) by
T, Che4D,0D,®,C, - Ci®,4D,®Di®,0C,;

(w®v,20y) = ((—)"y @z, (= )P eu).
By direct computation

H,(Homg, (W[0,0]}, (C'® D)@ (D'®4C))) = H,(C'® 4 D),
H,(Homgz (W[ —oco0, —1],(C'® D)@ (D'®4 () = H,(C'® (D),
H,(Homgg, (W[ —00,00]), (C'® 4 D)® (D'® 4 C))) = 0.
(ii) Substitute the decomposition
QMCaC,¢e) =Q™C,e)@QMC,e)® H,(C'® 4C)

1\ %
1 %
(f+9)*: @(C,e) —(—)> @Ca0l,¢) Yoy QYD e)

and similarly for Q,, Q™.

in

An A-module chain complex C is strictly n-dimensional if each C, is a
f.g. projective A-module, and C, = 0 for r < 0 and r > =,

d d d d
C: .. > 0 C, C.1 > > ... > Cy

n—2
d
> G > 0 > e
The chain equivalence classes of n-dimensional A-module chain
complexes are in a natural one—one correspondence with the stable
isomorphism classes of strictly n-dimensional 4-module chain complexes,
the stability being with respect to the chain contractible complexes. We
shall now obtain an analogous result for algebraic Poincaré complexes.
An n-dimensional e-symmetric {¢-quadratic, e-hyperquadratic} complex
over A (C,¢) {(C,¥), (C,0)} is strictly n-dimensional (respectively
contractible) if the underlying A-module chain complex C is strictly
n-dimensional (respectively chain contractible). Note that the @-groups
of a chain contractible complex C are 0, by Proposition 1.1 (i).
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A stable isomorphism of strictly n-dimensional e-symmetric {¢-quadratic,
e-hyperquadratic} complexes over 4

[f1: (C.9) - (C', ")
[f1: (C, $) > (¢, ')
[f1: (C.6) - (C",8')
is an isomorphism
f:(C,e)@(D,0) > (C', p")® (D', 0)
[ (C. )@ (D,0) »> (C",¢) o (D’,0)
f: (C,0)® (D,0) - (C',6")o® (D', 0)
for some chain contractible strictly n-dimensional A-module chain
complexes D, D’.

PropoSITION 1.5. The homotopy equivalence classes of n-dimensional
g-symmetric {e-quadratic, e-hyperquadratic} complexes over A are in a natural
one—one correspondence with the stable isomorphism classes of strictly
n-dimensional e-symmetric {e-quadratic, e-hyperquadratic} complexes over 4.

Proof. We need only consider the ¢-symmetric case, the e-quadratic
and e-hyperquadratic cases being entirely similar.
Given a stable isomorphism of strictly n-dimensional e-symmetric

complexes :
(f1: (C.p) > (€', ")
there is defined a homotopy equivalence, namely the composite
1

0 10
g: (C,p) — (C,p)®(D,0) SR (€, ¢"Yo (D',0) £9 (©,¢).

Given an n-dimensional A-module chain complex C there exist a strictly
n-dimensional 4A-module chain complex ¢’ and a chain equivalence
g:C->C
(by definition). It follows that for any =n-dimensional e¢-symmetric

complex over A (C,p € @Q*(C,¢)) there exist a strictly n-dimensional
e-symmetric complex over 4 (C’,¢’) and a homotopy equivalence

g9: (C,p) > (C', @),

o' = g*(p) € QMC', ¢).
Given a homotopy equivalence of strictly n-dimensional e-symmetric
complexes

defining

g: (C,) > (C",9')
there is defined a stable isomorphism

[f1: (C,p) > (C', ¢"),
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as follows. The algebraic mapping cone C(g), as defined by

(=) ,
dC(a) = (0 i ) : C(g)r = C;C'D C’r-l - O(g)r—l = Cr—1® Cr—zs

is chain contractible. Choose a chain contraction

Lk
P = (gl h) : C(g)' = 0;® Of-—l —> 0(g)7+1 = C1"+]|.(-B Or’
such that

dC(o)F+FdC(a) =1: C(g)r - C(g)r’

and define chain contractible strictly »-dimensional A4-module chain
complexes D, D’ by

([d' (=) _y
[ ]  Dn = °°ker((( g); C, > o;,,@on_l)
0 d d
d S ‘ - Dn—l = O;l—1® Cn—Z’
D — ( ! (_ )"_lg) D C'oC D o ®C
: r = U, y— - r1 = Cy -
0 d 1 1 1 2
k (0<r<n=-1),
( (_)n
( d ) . D;; =LUpa—> D;’&—l = C’n—l@ C’n—zy
dD' = { d (—)
L (0 d):D;=0’60’—1_>D;—1=0r-1®0_2 0gr<n-1)

The isomorphism of 4-module chain complexes

f:CeD->CoD,
given by

f (9 [1 +(=)""g99" (- )"‘19h]) _
0 —dg’ 1—dh |
(" )
C,® D, = C,® coker p :C, > CroC,_,

- C;-,'@D;»L = C;@ On—l)

~
I

g 1+(=)g9" (-)"gh

1 (=) (=)

0 0 1

GeD, =Celol_~>CeoD, =Celol.,

\ (0<r<n=1),
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defines a stable isomorphism of strictly n-dimensional e-symmetric
complexes over A

[f]: (C.e) > (C",¢").

The sequence of homology 4-modules H,(C) is the fundamental chain
homotopy invariant of an A-module chain complex C. We shall now
associate to an algebraic Poincaré complex over 4 (C,¢) a sequence of
functions

v(p): H*(C) - (subquotient group of 4),

which is a fundamental chain homotopy invariant of (C, ). The functions
will be called ‘Wu classes’, because they are closely related to the Wu
classes of algebraic topology—the connection between the geometry and
the algebra will be made precise in §9 of Part II. The Wu class v(p)(z)
is the obstruction to performing an algebraic surgery on (C,¢) to kill a
cohomology class x € H*(C), in the terminology to be developed in §4
below.

Let T € Z, act on A by

T:4 > A4;a— ea,

and define the Z,-cohomology {Z,-homology, Tate Z,-cohomology} groups

( (ker(1-T,: A > 4) ifr=0,
H7(Z,; A,e) ={A7(Z,; 4,¢) ifr > 1,
L0 ' ifr <0,
{ coker(1-T,: A - A) ifr=0,
H(Z,; A,¢) = { A™+Y(Z,; A, ¢) ifr>1,
0 ifr <0,
\ A7(Zy; A,6) = ker(l— (= )"T: A > A)/im(1+(~)"T,: A > 4) (r e Z).

The function
A xH'(Zz; A,e) > H’(Zz; A,¢); (a,x) — axa

defines an A4-module structure on H7(Z,; 4,¢) (which is of exponent 2,
and vanishes if 4 € 4). The functions

Ax HYZ,; A,¢) > HYZ,; A,¢); (a,z) — axa
Ax HyfZy; A,e) > HyZ,; A, ¢); (@, ) > axa

are not linear in 4, and so do not define 4-module structures. Neverthe-
less, we shall write Hom (M, HYZ,; A,¢)) {Hom (M, Hy(Z,; A,))} for
the abelian group of functions f: M — H%Z,; A,¢) {f: M — Hy(Z,; A, ¢)}
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defined on an A-module M such that

flax) = af (x)d € B2y 4,c) (ac A,z e M),
Hy(Z,; A,¢)
calling such functions ‘4-module morphisms’. For ¢ = 1 € 4 we write
Hr(Zy; 4,1) = H'(Zy; 4),
H\(Z,; 4,1) = H(Z,; 4),
H'(z2§ 4,1) = H'(Zz; 4).

The cohomology classes f e H™(C) of an A-module chain complex C
may be regarded as the chain homotopy classes of 4-module chain maps

f:C— 8SmA,
where 8™A4 is the A-module chain complex defined by
A ifr=m,
(8m4), =
0 otherwise.

The induced abelian group morphisms

f%: Q{é,ﬂ(o’ 8) - Qn’j](SmA,a); P = (fl ®Af)9p2m—n (¢2m—n € Cin ®A Om)
f%: Q[,f'ﬂ(C’, g) = Q%J](SmA’ €); ‘/’ > (f‘ ®Af)¢'n—2m (¢n—2m € Oin ®4 Cm)

depend only on f € H™(C), on account of the chain homotopy invariance
of Proposition 1.1 (i). Using the Z[Z,]-module isomorphism

A->A®4;a—1®a

as an identification we have that these morphisms take values in

( (H2m—n—i(Zy; A, (—)™%) if 2m—mn < j # 4,
Q2 A(SmA, ) = { Hy(Z,; A, (—)»—m*¢) if 2m—mn =j # 1,
(%)) ’ A if 2m—n =j — 2:,

\0 otherwise,

(H, o _i(Zy; A,(—)"%) ifn—-2m<j+#1,
HYZ,; 4,(—)""™*) ifn—2m=7j#1,

i Sm4, g) =
n(5m4,e) ‘A ifn—2m=j=1i,

\0 otherwise.

Define the rth e-symmetric {e-quadratic, e-hyperquadratic} Wu class of an
element ¢ € @Q*(C, &) {§ € @,(C,¢), 8§ € Q7(C, &)} for some A-module chain
5388.3.40 H
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complex C to be the 4-module morphism

(v = ,(p): H'(C) > Qn(S™"A, ) = H*(Zy; 4, (= )""s);

J (f'® 4 f)Pn-ar

) v =0(): H*7(C) > Qu(8"74,6) = Hy,_n(Zy; 4,(=)""¢);

f (f'®af W
8, = 3,(0): H*"(C) > QMS™"A,¢) = A*(Zy; A,€); f > (f'®4 f)0psr
\ (f Cn-r -> A’ Prn—2r l/’2r—‘n’ o'n—zr € 051—9' ®A Cn-r)'

Note that v, = 0 for 2r > n {v* = 0 for 2r < n}, and that the Wu classes
satisfy the addition formulae (cf. Proposition 1.4(ii))

[ v@)(f+9)—v@)(f) —vip)9)
L+ Ty (' ®49)p € HYZy; A,(—)e) ifn=2r,
0e A%Z,; 4,(-)%) if n > 2r,
{ o @) +9) = @)f) v $)g)

(F'@49)(1+ Ty € HyZy; A,(—)) if n=2r,
- [O e AYZ,; A, (—)+) if n < 2r,

\ 3,(0)(f+9)~5,(60)(f)—5,(6)(g) = 0 € A(Zy; 4,(~)e) (r € Z).

The Wu classes are compatible with all the maps appearing in the braid of
Proposition 1.3. In particular, the Wu classes commute with the suspen-
sion maps:

Q(C, &) —=— Hom ((H""(C), H"(Zy; 4, (— )*"s))

Sl lS(:id.ifn>2r)
QnH1(SC,8) — > Hom (H*"+4SC), HA-3r#(Zy; 4, (- )v=r+1e)

Qu(C, £) ——> Hom (H""(C), Hy_(Zy; 4, (— )""e))

SI JS(:id.ifn<2r)

Qnﬂ(SC, £) — v > HOmA(H""'“(SC,) Hzr—n+1(zz§ A, (-)r-rHg))
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and also with the skew-suspension isomorphisms:

Qn(C, &) — > Hom ((H"(C), H"*(Zy; 4,(~)""e))

5 Ja

Qm(SC, — ) —=t> Hom 4(H-r+1(SC), H*~¥(Zy; 4, (= )*"s))

r

Qu(C, &) ——> Hom ((H""(C), Hyy_n(Zy; A, (~)"e))

S‘ lid.
vr+1

Qn4a(SC, —&) ———> Hom ((H*+(SC), Hy,_(Zo; 4, (= )"""e))
The composite
Qu(C.) 75 @G, 6) —> Hom ((H™7(0), H™*"(Zy; 4, (- =)
is 0 for n # 2r. For n = 2r there is defined a commutative diagram

er(o’ 8) _-i—i) er(as €)

1 + 17(—)'3
Hom 4(H"(C), Hy(Z,; 4, (—)"e)) ——> Hom 4(H"(C), H%Z,; 4,(-)"¢))

There is also defined a commutative diagram
Qn+1((}, £) _&_*_'_1_., Hom ,(H™"(C), Hrﬂ(zz; 4,¢))
Hl lH(=id. if 2r > n)
r

Qu(C, &) ———> Hom ,(H""(C), Hy,_(Zy; 4, (= )""e)

In §2 below, and elsewhere, we shall need the following notions.
The reduced Oth Wu class of an n-dimensional e-symmetric complex
over 4 (C,p € @Q*(C,¢)) is the composite

3o(g): H(C) 2B Fnz,; 4, (= yme)

—J> An(Z,; A,(—)") = AYZ,; A,¢).
(For n > 0, dg(p) = vy(p).)
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An n-dimensional e-symmetric complex over 4 (C,p € @*(C, ¢)) is even if
bolp) = 0: H*(C) -~ A%Z,; A,¢).
For example, skew-suspensions of e-symmetric complexes and e-sym-
metrizations of e-quadratic complexes are even.
Finally, we investigate the behaviour of our constructions under a

change of rings.
Given a morphism of rings with 1

fiA->B
(such that f(1,) = 15) regard B as a (B, 4)-bimodule by
BxBxA — B; (b,x,a) — b.z.f(a),

so that an A-module M induces a B-module B® , M, with B® A = B.
If f is a morphism of rings with involution, with

fl@)=f@)e B (aed),
then for any f.g. projective A-module M there is defined a natural iso-
morphism of f.g. projective B-modules
B M* > (B®, M)*; b®g > (c®m > c.fg(m).b).
For any A-module chain complex C there are defined natural Z-module

chain maps
C->B,Ciz—1@u,

C* > (B®40)*; g~ (b®z — b. fy(x)),

inducing the change of rings maps in homology {cohomology}

{ f: Ho(C) > Hy(B®40),

f: H*(C) » H*(B®_,0).
If e € A is a central unit such that £ = ¢e~1 € 4 and such that y = f(¢) € B
is central (necessarily such that 7 = 7! € B) then there are also induced
change of rings maps
[ [ QhanC,e) > Qnp(B®4C,m),
f: QR0 e) > Q4B ,C, 7).
An n-dimensional e-symmetric {e-quadratic} (Poincaré) complex over 4
(C,e) {(C,¢¥)} induces an n-dimensional z-symmetric {»-quadratic}
(Poincaré) complex over B,
B®4(C,p) = (B®4C,109) {BR4(C,¥)=(B®,C,10%)}

The Wu classes remain invariant under change of rings, in the sense that
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the following diagram commutes

Hn—r(G) _L_> Hn—-r(B ®A' C)

v,(qo)J lvr( 1®¢) (p e @"(C,¢))
f

H~(Zy; A, (= )*~e) ——> H*¥(Zy; B,(~)""1)
and similarly for Q,, Q.

2. Forms and formations

We shall now identify the homotopy theory of n-dimensional e-
symmetric {¢-quadratic} complexes over A for n = 0 (respectively n = 1)
with the isomorphism (respectively stable isomorphism) theory of
e-symmetric {e-quadratic} forms (respectively formations) over 4.

Given a f.g. projective A-module M define the e-duality involution

T : Hom (M, M*) - Hom (M, M*); p > (ep*: x > (y = e.0(y)())),
and define the abelian groups
QM) = ker(1—T,: Hom (M, M*) - Hom ,(M, M*)),
QCwp(M) = im(1+ T,: Hom ,(M, M*) ~ Hom ,(M, M*)) < Q+(M),
Q.(M) = coker(l —T,: Hom (M, M*) - Hom (M, M*)).

An e-symmetric {e-quadratic} form over A (M,p) {(M,)} is a f.g. pro-
jective A-module M together with an element ¢ € Q*(M) {y € Q,(M)}, and
it is non-singular if ¢ € Hom (M, M*) {(1+ T.,)¢ € Hom (M, M*)} is an
isomorphism. A morphism (respectively isomorphism) of e-symmetric
{e-quadratic} forms over 4

{f= (M,p) ~ (M',¢")
[ (M) > (M, 4)
is an A4-module morphism (respectively isomorphism) f e Hom ,(M, M")
such that
{ F*¢'f = e @),

fHf = ¢ € Q).

The Wu class of an e-symmetric {e-quadratic} form over 4 (M, ¢) {(M, )}
is the quadratic function

{ val@): M > HYZy; A,6); 2 > o(z)(a),
W) M — Hy(Z,; A,¢); x +— P(x)(x).
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An ¢-symmetric form (M, ) is even if
@ € ker(6,: QM) — Hom ,(M, B%(Z,; 4,¢)))
= Q<vp)*(M)
=im((1+17,): Q (M) — @(M)) = @(M),

that is if it is the e-symmetrization (M, (1+ 7.)¥) of an e-quadratic form
(M, ).
An e-symmetric form over 4 (M, ¢ € Q¢(M)) is the same as a sesquilinear

e-symmetric pairing on a f.g. projective 4-module M

AL M x M > 4; (z,y) — Ax,y) = p(2)(y)
such that

A=z, y+y') = Az, y) + A=z, y'),
Az, ay) = aA(z,y),

A(x>y) = A(y,.’b) (x’y eM,ae A)
The above definition of an e-quadratic form (M,4 € @,(M)) over an
arbitrary ring with involution A4 is a generalization due to Wall [26] of the
definition due to Tits [23] for division rings A4, which itself goes back to
the work of Klingenberg and Witt [6] on the invariant of Arf[1] for 4 = Z,.
(In fact, the Arf invariant had been previously obtained by Dickson in
[5, §199]—I am indebted to William Pardon for this reference.) As shown
by Wall in [26] this definition is equivalent to that given by Wall in
[25, § 5], as a triple
(M,A: MxM—~ A,p: M - HyYZ,; A,¢))
such that (M, A) is an e-symmetric pairing and p satisfies
N@,z) = p(@) +ea(@) € HYZy; 4,2),
A®,y) = px+y) — (@) —p(y) € HyZy; 4,¢),
plox) = ap(x)d € Hy(Z,; A,¢) (x,y € M, a € A).
The transformation (M, ) > (M, A, ) is given by
Az, y) = $(x)(y) + ed(y)(z) € 4,
p(x) = (P)(x) = (x)(x) € HyZ,; 4,¢).
This definition of e-quadratic form is also equivalent to that of Ranicki [13].

ProrosiTION 2.1. The homotopy equivalence classes of 0-dimensional
(even) e-symmetric {e-quadratic} complexes over A are in a natural one—one
correspondence with the isomorphism classes of (even) e-symmetric {e-
quadratic} forms over A. Poincaré complexes correspond to non-singular
Jorms.
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Proof. For any f.g. projective 4-module M we can identify the e-duality
involution
T,: Hom (M, M*) - Hom (M, M*); ¢ > ep*

with the e-transposition involution
T,: M¥ @, M* >~ M* @ M; fog—> g®¢f,
using the slant map isomorphism
\: M@, M* - Hom (M, M*); fo g > (& > (y > g(y).f))).
Thus for any 0-dimensional A-module chain complex C we can identify
Q%(C, ¢) = @*(H(C)),
Qo(C, &) = @ (H%C)).
Given a O-dimensional e-symmetric {¢-quadratic} complex over A4
(C,p € QYC,e)) {(C,¢¥ € Qy(C,¢))} there is defined an e-symmetric {e-
quadratic} form over 4 (HYC),p € Q¢(HYC))) {(HC),¢ € Q,(H(C)))},
such that the Oth e-symmetric {e-quadratic} Wu class
volp): HYC) > HYZy; A,8) {0°(4): HY(C) ~ Hy(Z,; 4,¢)}

of the complex (C, @) {(C, )} is just the Wu class of the form (H(C), ¢)
{(H(0),¥)}. In particular, we have that (C,¢) is an even e-symmetric
complex if and only if (H%(C), ¢) is an even e-symmetric form.

Conversely, an e-symmetric {e-quadratic} form over 4 (M,¢) {(M, )}
can be considered as a fixed point {an orbit space} of the e-duality involu-
tion 7, on Hom ,(M, M*), corresponding to a Z,-cohomology {Z,-homo-
logy} class ¢ € HYZ,; Hom (M, M*)) {§ € H|(Z,; Hom (M, M*))}, and
there is defined a strictly 0-dimensional e-symmetric {¢-quadratic} complex
over A (C,p€Q%C,¢)) {C,y €QyC,¢e))} with Cy=M*. Now apply
Proposition 1.5.

Given an e-symmetric {e-quadratic} form over 4 (M, € Q*(M))
{(M,4 € Q,(M))} and a submodule L of M define the annshilator of L to be

the submodule
L* = ker(j*¢: M - L*)

Lt = ker(j*(+e*): M > L*)

of M, with j € Hom (L, M) the inclusion. A sublagrangian of (M,e)
{(M,§)} is a direct summand L of M such that j*@j = 0 e QM)
{j*)j = 0 € Q(¥)} and j*p € Hom (M, L*) {j*(y + e*) € Hom ,(M, L*)}
is onto, so that the annihilator L* is a direct summand of M containing L,

Lc L~
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A lagrangian is a sublagrangian L such that

L =1L
that is, such that there is defined an exact sequence
. "
0 > L J > M Ml > L* > 0,
y y % *
0 > L J > M J (‘/’+€l/’ﬁ)\ L* > 0.

An e-symmetric {e-quadratic} form is hyperbolic if it admits a lagrangian,
in which case it is non-singular. (Hyperbolic symmetric forms were
termed ‘metabolic’ by Knebusch [7], but a uniform terminology for the
e-symmetric and e-quadratic cases seems preferable here.)

Given an e-symmetric form over 4 (M,p € @Q*(M)) {a f.g. projective
A-module L} define the standard hyperbolic ¢-symmetric {even ¢-sym-
metric, e-quadratic} form over 4

0 1
(H‘(M,¢)=(M*®M,( )GQ‘(M*®M)),
£ 9

01
{ He(L) = (L@L*, ( 0) € Q(vo>‘(L®L*)),
€

01
P |

The various standard hyperbolic forms are related to each other by
(1+ T)H,(L) = H(L) = H*(L*,0).

Every hyperbolic form is isomorphic to a standard hyperbolic form, by
the following generalization of a theorem of Witt [29].

PrOPOSITION 2.2. The inclusion of a sublagrangian L in an e-symmetric
{even e-symmetric, e-quadratic} form over A is a morphism of forms

Ji (L, 0) > (M, )
J: (£, 0) > (M, ¢+ ef*)
J: (L, 0) > (M, )
which extends to an isomorphism
f: H{(L*,0)& (L*/L,p*/p) > (M, ),
[ H(L)© (LY/ L,/ + e(fH/)*) > (M, + &*),
[ B(L)® (L*/L, /) > (M, ).
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Proof. A morphism of e-symmetric {e-quadratic} forms
g: (N,v) = (N',v)
{ g: (N, x) > (N',x")
with (N,v) {(IV, x)} non-singular extends to an isomorphism
9 94): (N,v)@ (N4 ) > (N',Y)
{ 9 g4): (N, x) @ (N4 xt) > (N',v')
with g+ € Hom 4(N+, N’) the inclusion of
Nt =ker(g*v': N' - N*)
{ Nt = ker(g*(x' +ex'*): N' > N¥*)

and vt = (gY)%gt € QN') {x* = (gY)*x'g* € Q(N")}, since the exact
sequence

L *,,7

0 - N+ g > N’ S, N > 0
L *'+ %

0 s N9 TEe™) . 0

is split by gv—! € Hom (N*, N’) {g(x + ex*)! € Hom (N*, N')}.

The inclusion of a sublagrangian L in an e-symmetric {even e-symmetric,
e-quadratic} form over A, (M,p e Q«(M)) {(M,Y+ep* € @Qv)*(M)),
(M,4$ € Q,(M))} extends to a morphism of forms

( 0 1
g = (J k): H(L*, k*pk) = (LeaL*,( )) - (M, 9)
e k*ok

01
{ 9= (5 (k—gk*Jk)): H(L) = (L@L*,( 0)) > (M, §+ )
&€

0 1
\ g = (J (k—gk*Jk)): H(L) = <L®L*, (o o)) - (M, )

with k € Hom ,(L*, M) any A-module morphism such that
J*ok =1 € Hom ,(L*, L*)
§*(+ep*)k = 1 € Hom ((L*, L¥),
\ j*(Y+ep*)k = 1 € Hom ,(L*, L*).
Now He(L*, k*pk) {H*(L), H/(L)} is non-singular, so that g extends to an
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isomarphism of forms

f = (g k): H(L*, k*pk)® (L*/L,p*/p) - (M, p),
f= (g h): H(L)® (L*/L, /) +e(f/)*) > (M, + &%),
[ =(gh): H(L)® (L*/L,§+/) —~ (M, ).

An (even) e-symmetric {e-quadratic} formation over 4 (M,p; F,G)
{(M,y; F,Q)} is a non-singular (even) e-symmetric {e-quadratic} form
over A (M, ) {(M, )} together with a lagrangian F and a sublagrangian G.
The formation is non-singular if G is a lagrangian. An ¢somorphism of
(even) e-symmetric {e-quadratic} formations

{ fi(M,p; F,G) > (M',¢'; F',G')
[ (M, ; F,G) > (MU', §'; F',G')
is an isomorphism of forms
{ i (M, 0) > (M',¢")
[ (M) > (M, ")
f(F)=F', f@)=@"
A stable isomorphism of (even) e-symmetric {¢-quadratic} formations
[ [f): (M, @; F,G) > (M, ¢"; F', &)
[f): (M, ; F,G) > (M, {'; F', ()
is an isomorphism of the type
[ f: (M,p; F,Q)® (HP); P,P*) > (M',¢'; F',G')® (H*(P'); P',P'*)
f: (M, $; F,@)@ (H(P); P,P*) > (M',y'; F', @)@ (H(P'); P', P'¥)
for some f.g. projective A-modules P, P’.
Formations first appeared (as ‘pairs of subkernels’) in the work of Wall
[24] on the classification of quadratic forms on finite abelian groups (with
A =Z). The obstruction to surgery on odd-dimensional compact mani-

folds was obtained by Wall in [25, §6] as an equivalence class of the
matrix of an automorphism of a hyperbolic + quadratic form

a: H+ (L) - H+ (L) with L a based f.g. free A-module. The work of
Novikov [12] made apparent that only the structure of the non-singular
+ quadratic formation (H+ (L); L,«(L)) was relevant. Moreover, the
obstruction to proper surgery on odd-dimensional paracompact manifolds
(Maumary [8]) is an equivalence class of non-singular + quadratic
formations (H + (F); F, @) with f.g. projective lagrangians F, G for which
there may be no automorphism «: H + (F) - H + (F) such that o(F) = G.

such that
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(See also Pedersen and Ranicki [30].) Thus formations cater for a wider
range of surgery obstructions than automorphisms of hyperbolic forms.
The algebraic properties of + quadratic formations were studied by
Ranicki in [13)].

We shall now relate formations to 1-dimensional algebraic Poincaré
complexes. It is convenient to treat the e-symmetric and e-quadratic
cases separately.

The Wu class of an e-symmetric formation over 4 (M, p; F,G) is the
quadratic function

v(M,; F,G) = [vy(@)]: M/(F +G) -~ HAYZ,; A, ¢);
[z] — p(@)(x) (x € M).

Note that (M, ¢; F,R) is even if and only if vy(M,p; F,G) = 0.
A 1-dimensional e-symmetric {e-quadratic} complex over 4

(C’ ? € QI(O’ 6)) {(C: ‘l’ € QI(O: 8))}
is connected if Hy(py: C*—* - C) = 0 {Hy((1+ T )pp: C** - C) = 0}. In

particular, Poincaré complexes are connected.

ProrosiTioN 2.3. The homotopy equivalence classes of commected 1-
dimensional (even) e-symmetric complexes over A are in a natural one—one
correspondence with the stable isomorphism classes. of (even) e-symmetric
formations over A. Poincaré complexes correspond to non-singular forma-
tions.

Proof. By Proposition 1.5 it suffices to show that the stable isomorphism
classes of connected strictly 1-dimensional (even) e-symmetric complexes
over A are in a natural one—one correspondence with the stable iso-
morphism classes of (even) e-symmetric formations over A.

Let (C,p € QY(C,¢)) be a strictly 1-dimensional e-symmetric complex
over A. The Z,-hypercohomology class ¢ € Q1(C, ¢) is represented by a
cycle ¢ € Homg, (W, Hom ,(C*, C)),, as defined by 4A-module morphisms

®: C°—> 0y, $o: C' > C), ¢: C* - C,
such that
doy+@d* = 0: C° - (|,
dpy—@o+epy = 0: C1 > G,
p1—epf = 0: C > (.
The algebraic mapping cone C(p,: C*~* —» C) is given by

(5%)
d*
C(p,): 0 > (0 > o1

0 1
(ed  @o) = (epg @) ( )
, € 9”1>

Co > 0.
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If (C, p) is connected then (epf d): C*@ C; - C, is onto, and the dual

&

( %): 0 > C,® C

d*
is a split monomorphism, so that there is defined an e-symmetric forma-
tion over 4

(M,6; F,G) = (H(C", ¢y); €, C°)

0 1 - [[&Po
=|C,e (", ; Cp,im " : 00> Ci@CY)).
€ @

The exact sequence of 4-modules

0 —> HYC) %> H(0) —> Hyfpy) —> HYC) —2> HC) —> 0
can be identified with the exact sequence
0> FnG@—-FnG*+—>G/G - M/(F+G)—> M/(F+G*+) - 0,
and the Oth e-symmetric Wu class of (C, ) is the Wu class of (M, 0; F, ),
v(p) = vo(M,8; F,G): HY(C) = M/(F +G) > A%Z,; 4,5).
It follows that the complex (C, ¢) is a Poincaré (respectively even) complex
if and only if the formation (M,0; F,G) is non-singular (respectively
even). Moreover (C,¢) is contractible if and only if (M,0; F, Q) is iso-
morphic to (H*(F'); F, F'*).
Let (C,p), (C',¢') be isomorphic connected strictly 1-dimensional

e-symmetric complexes over A. Given an isomorphism of e-symmetric

complexes
f:(C,9) > (C',9")

we have an isomorphism of chain complexes

d
C: .. - 0 > 01 > 00 > 0 >
f |

dl
c' .. > 0 > O} > Cy > 0

Choosing representative cycles
@ € Homgp, (W,Hom 4(C*,C));, ¢’ € Homy, (W,Hom ,(C'*,C")),
we have that |
f*(p)—¢' = dx € Homyz,(W, Hom ,(C"*,C")),
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for some chain y € Homgy, (W, Hom 4(C'*,C")),, which is represented by
an A-module morphism y, € Hom 4(C'?, C}) such that

foof* =y = —xo8™*: 0 > C5,
Joof *— o4 = d'xe: O > G,
forf*—p1=xo+exg: OV > C1.

The A-module isomorphism

5 *)—1
. (f Exolf*) ): 6,60 > 060"
0 (f¥1

defines an isomorphism of the associated e-symmetric formations

&
h: (H‘(01,§91); Cl,im((dio): Cco 01(90’1))

8- ’
- (Hs(orl,soi); i,im((;:): Cc' — 0160’1)).

Every e-symmetric formation is isomorphic to one of the type
(He(F'*,A); F,G) (by Proposition 2.2) and so determines a connected
strictly 1-dimensional e-symmetric complex (C,¢ € QY(C,¢)), as follows.
Write the inclusion of G in F @ F* as

(‘y): G > Fo@F*,
7

and let
d=p*:C, =F > C)=G*%

@o = ey Hom (G, F),

Po = y*+p*A € Hom ,(F*,G*),

¢, = A € Hom ,(F*, F).
Given an isomorphism of e-symmetric formations

h: (He(F*,A); F,G) - (Hs(F'*,X"); F',G")
write the restrictions of 4 to the (sub)lagrangians as
a=hl: F>F', B=h|:G-> G,

and define an isomorphism of the associated A-module chain complexes

f: C->0C
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by
C:.. > 0 > IL > G¥ > 0 —
C': ... > 0 > - G'* >0 >
Then

f:(C.p) > (C',9)
is an isomorphism of the associated strictly 1-dimensional e-symmetric
complexes.

Given a 1-dimensional e-quadratic complex over 4 (C, ¢ € @,(C, ¢)) with
C a f.g. projective 4-module chain complex
d
C: .. > 0 > C) > G, >0 — ...

we have that the Z,-hyperhomology class ¢ € @,(C,¢) is represented by
A-module morphisms

Po: C° > Cp, hp: Ot > C,, 3,2 C0 > C,

dibo+Pod* + ¢y — e = 0: C° > G,
The algebraic mapping cone C((1+ T,),: C*~* — C) can be expressed as

(5‘/’0 + ‘ﬁ:)
d*
0 . C0 > C,0C

such that

01
(ed  (Jo+ &) = ((Eho+¥3)* d) (s 0)
> C, > 0.

Thus if (C, ) is connected there is defined an e-quadratic formation

0 1 &y + 8
(H(C)); C,,C% = (C e, (0 O); C'l,im(( i+ ): C° - C]®Cl)),

which is non-singular if and only if (C,y) is a Poincaré complex. The
formation (H,(C,); C,,C°) does not involve ;. In Proposition 2.4 below
we shall show that homotopy equivalence classes of connected 1-dimen-
sional e-quadratic complexes correspond to the stable isomorphism
classes of e-quadratic formations together with the extra structure
afforded by i,, the ‘split e-quadratic formations’.
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Given a f.g. projective A-module M and a direct summand L define the
abelian group

Q.(M, L)
_ {4, 6) e Hom (M, M*)® Hom 4(L, L*)| j*j = 6 —£6*}
~{x—ex* j*xj+v+e*)| (x,v) € Hom (M, M*)@ Hom 4(L, L*)}’

so0 that there is defined an exact sequence

0 o
Q.M, L) — @) > @ L)
with j € Hom 4(L, M) the inclusion and
0: Q(M,L) - Q(M); (,0) = o, Jjo: QM) - Q,(L); ¢ = j*y.

A hessian for a sublagrangian L of an e-quadratic form (M, € Q,(M))
is a choice of lift of Y € @ (M) to an element (¢, 0) € Q,(M, L) such that
0y, 0) = Y € Q,(M). Every sublagrangian admits hessians, since

J*j = 0e€Q,L),

but they are not unique. A connected 1-dimensional e-quadratic complex
(C,¢ € Q,(C,¢)) (as above) determines an e-quadratic formation

, . (H(C,); €\, CY)
together with a hessian

0 1
((O O), - (¢1+d¢o)) €Q,(C,®CL,CY for C°in H/(C,).

A split e-quadratic formation over A (F,Q) = (F, ((:),B)G) is an
e-quadratic formation over 4 (HB(F); F,im((:;): G—>F @F*)) (with

(Z) G > F@F* the inclusion) together with a (—¢)-quadratic form
6 € Q_,(Q) such that

y*u = 60— e0* € Hom (G, G*).

This determines a hessian ((g (1)),0) cQ(F®F*,G) for G in H(F),

since y*u € Hom (@, G*) is the composite

W0

. . (r* p*)
y*u: G ——> FoF* — FroF 55 g,
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An ¢somorphism of split e-quadratic formations over A
) (o"ﬁ’ 'l’) (F:G) - (F,’G')
is a triple

(isomorphism « € Hom (¥, F’), isomorphism 8 € Hom 4(@, &),

(—é¢)-quadratic form over 4 (F*,§ € Q_,(F*)))
such that
(1) ay+alp—sf*)*u = y'B € Hom ,(G, "),
(i) a*p = p'B € Hom (@G, F'*),
(iii) 6+p*pp = B*0°B € Q_,(G).
A stable isomorphism of split e-quadratic formations over 4
[0, 8,¥]: (F,G) - (F', &)
is an isomorphism of the type

(o, B,9): (F,G)® (P, P*) - (F',G')® (P', P'*),

for some f.g. projective A-modules P, P’ with (P, P*) = (P, (((l))’ O)P*).

The choice of hessian ((3 ;), 0) € Q,(F @ F*, @) is the only difference

between a split e-quadratic formation (#, @) and an arbitrary e-quadratic
formation (M,y; F,G) up to isomorphism, since every e-quadratic
formation (M, y:; F,G) is isomorphic to one of the type (H,(F); F, &) (by
Proposition 2.2) and the following result holds:

PrOPOSITION 2.4. A (stable) tsomorphism of split e-quadratic formations ‘

[, B,4]: (F,G) - (F',&)
determines a (stable) isomorphism of the underlying e-quadratic formations
[f1: (H(F); F,G) -~ (H(F'); F',&).

Conversely, every (stable) isomorphism of e-quadratic formations [f] can be
lifted to a (stable) isomorphism of split e-quadratic formations [, B, ].

Proof. Given an isomorphism of split e-quadratic formations over 4
(B, 4): (F,G) > (F', &)
define an A-module isomorphism
(a ol —e*)*

0 oa¥-1

): FoF* > F'@F'*,
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This fits into a commutative diagram

¢—L @
W
B f Iy
FoF*—— F'@oF'*
so that there is defined an isomorphism of e-quadratic formations over 4

[ (H(F); F,G)~ (H(F'); F',Q").

Stable isomorphisms can be dealt with similarly.
Conversely, suppose given a stable isomorphism of ¢-quadratic forma-

tions over A
Lf]1: (H(F); F,Q) — (H(F'); F', &),

as defined by an isomorphism
f: (H(F); F,G)® (H(P); P, P*) - (H(F'); F',@")® (H,(P'); P, P"¥)

for some f.g. projective A-modules P,P’. The restrictions of f are A4-
module isomorphisms

a a, b b,
o= :FoP—>F'oP, B= :GOP* > G'@ P>
a, a b, b
The isomorphism f can be expressed as

« a(L/l—s‘/J*)* ’ ’ ’ !
f= o .t ): (FoP)e (F*@o P*) > (F'oP)o (F'*® P'*)

for some 4-module morphism

s 8
x/r=( 3):F*@P*—>F®P,
s

Sz

and there is defined a commutative diagram

Go P* i — '@ P'*
y O y' 0
(0 o) (0 0)
w O w' 0
(o /] NG )
f

(FeP)o (F*g P*) — (F'oP)o (F'*oP'¥)
5388.3.40 I
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It follows that

('y*,u, 0) (;,L* 0) (8—88* 81—88’2") (p. 0)
+
0 0 0 1/\sy—esf¥ s3—es¥/\0 1
b* b¥\ [y'*u’ O\/b b
=( 2)( g )( '): 6o P* > a*aP,
b¥f b¥/\ 0 0/\b, b

sg—esy = b¥y'*u'b,: P* > P.

and in particular

01
Choose a hessian ((0 O), 0') €Q,(F'®F'* @) for G’ in H(F'), and define

6 = b*0'b— p*sp € Q_(G).

The isomorphism of split e-quadratic formations

a a)\ (b b\ [s &
(b4 = ((a,2 a)’(b2 b)’(32 bfo'bl))'
(F, <(7) 9)@) o (P, P*) > (F ((") e')d') o (P, P'¥)
p p

defines a stable isomorphism of split e-quadratic formations
[e,B,4]: (F,G) > (F', &)

covering the stable isomorphism of e-quadratic formations [f].

An ¢-quadratic {split e-quadratic} homotopy equivalence of 1-dimensional
e-quadratic complexes over A

[ (Cofh) > (C',¢)
f:C=C

{ Ju@)—¢' = H(6) € @1(C',¢)

fa@p)—¢" =0€@y(C',¢)

for some Tate Z,-hypercohomology class 6 € Q*(C’, ¢) such that
8,(0) = 0: HY(C") - AY(Z,; A, ¢).

(A split e-quadratic homotopy equivalence is the same as a homotopy
equivalence.)

is a chain equivalence

such that

PROPOSITION 2.5. The (split) e-quadratic homotopy equivalence classes of
connected 1-dimensional e-quadratic complexes over A are in a natvral one—
one correspondence with the stable isomorphism classes of (split) e-quadratic



THE ALGEBRAIC THEORY OF SURGERY. 1 131

formations over A. Poincaré complexes correspond to non-singular forma-
tions.

Proof. Given a connected 1-dimensional e-quadratic complex

(C.¢ € Qy(C,¢))
with C a f.g. projective complex of the type
d
C: .. > 0 > () Co > 0 > ...

choose a cycle representative ¢ € (W ®4,,Hom 4(C*,(0)), for ¢ € @,(C, ¢),
and define a split e-quadratic formation

(o2 sl ()

(The e-quadratic Wu class »* of (C, ) is then given by
vi(): HOC) = Fn G =ker(u: G - F*) > AYZ,; A,¢); = — 0(x)(x).)

If ' = Y+ H(0) € Q,(C, ¢) for some 6 € Q%(C, ¢) choose a cycle representa-
tive § € Homgy, (W, Hom 4(C*, C)),, as given by A-module morphisms

p: Ct > C,, 6_,:C°>C,, 8.,:0'—>C), 0_,:C°=C,
such that
By+e0F =0, dBy—0_—ef*, =0, O,d*+0_,+ef*, =0,

d0_y +6_,d% +0_,— 6%, = 0.
Thus
Yo =Po+0_: C° > C,

$o = Po+0_4: C* > C,,
1= +6_5: C° > G,

If 6,(6) = 0 then (CY, 6, € Q—*(C")) is an even ( — ¢)-symmetric form over 4,
and there is defined an isomorphism of the e-quadratic formations
associated to the e-quadratic homotopy equivalent complexes (C, ), (C, §)

1 g3 [ (B
(O . :): (HB(CH); 01,1m(( od* 0): C° — 0'1@01»

. =0, 1%
> (H,(C'l); C, im((e¢°+ ° ); co > 01@01)).

a*
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Conversely, given a sp]@t e-quadratic formation (F, ((Z), O)G) define a
connected 1-dimensional e-quadratic complex (C, 4 € @,(C, ¢)) by
C,=F, Cy=G* d=p*eHomy((,C), C,=0 (r+#0,1),
;po = gy € Hom 4(C°, C}),
$o = 0 € Hom ,(C?, C,),
Yy = —0 € Hom 4(C°, Cy),

for any representative § € Hom ,(G, G*) of § € Q_,(G). Every e-quadratic
formation is isomorphic to one of the type (H,(F); F,G) (by Proposition

2.2), and choosing a hessian ((g (1)), 0) € Q(F o F* @) for G in H(F) we

obtain a split e-quadratic formation (F,G) such that the e-quadratic
homotopy equivalence class of the associated complex (C, ¢) depends only
on the stable isomorphism class of (H,(F); F,G).

The detailed verification that the (split) e-quadratic homotopy equi-
valence classes of connected 1-dimensional s-quadratic complexes corre-
spond to the stable isomorphism classes of (split) e-quadratic formations
is omitted, as it is so similar to the e-symmetric case (Proposition 2.3).

The hessian 6 € @_,(G) in a non-singular split e-quadratic formation

(F, ((Z), O)G) does not affect the cobordism class (surgery obstruction)

of the associated 1-dimensional e-quadratic Poincaré complex defined
in §3 below.

3. Algebraic Poincaré cobordism

We define now an equivalence relation on algebraic Poincaré complexes
which is analogous to the cobordism of manifolds, and which we shall
also call cobordism. In §4 we shall analyse algebraic cobordism by a
method analogous to surgery on manifolds, and which we shall also call
surgery. The cobordism classes of n-dimensional e-symmetric {e-quadratic}
Poincaré complexes over A define an abelian group L™(4,¢) {L, (4, ¢)}, for
n > 0, with respect to the direct sum @®. The symmetric L-groups
LMA4) = L*(A,1) are the ‘algebraic Poincaré bordism’ groups of Mish-
chenko [10]. In §§4 and 5 we shall show that the e-quadratic L-groups
are 4-periodic, L,(A,e) = L, ,(A4,¢), and that the quadratic L-groups
L,(4) = L,(4,1) are the surgery obstruction groups of Wall [25]. In §10
we shall construct an example to show that the e-symmetric L-groups are
not 4-periodic in general, L*(4, ¢) # L*t4(A,¢). In Part II we shall relate
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geometric cobordism and surgery to their algebraic analogues—in par-
ticular, the surgery obstruction of an =n-dimensional normal map
(f: M - X, b:vyy > vy) will be identified with the quadratic Poincaré
cobordism class o,(f,b) € L,(Z[7,(X)]) of an n-dimensional quadratic
Poincaré complex over Z[m,(X)] naturally associated to (f,b). We shall
also define the cobordism groups of n-dimensional even e-symmetric
Poincaré complexes over A L{vy)™(A4,¢) (n = 0), which we shall use in §6
to define lower e-symmetric L-groups L™(4,¢) (n < —1).
Given an A-module chain map

f:C—-D
define the relative Q-groups
Qi (f &)= Hysa(Homgg (W, 51, C(f'® 4 f)))
(—0<21<j< o0, neZ)
QA (f,e) = Hya( Wi, 1@z, C(f'®4 f))

with C(f'®, f) the algebraic mapping cone of the Z[Z,]-module chain
map f'®,f: C®,C > D'® 4D, taking T € Z, to act by the e-trans-
position 7. An element (8¢, @) € QrH( f e) {84, ) € QA (f, €)} is repre-
sented by a collection of chams

{(8?” P)s = (8¢s’¢s) € (D‘®A D)n+s+1® (0‘®A C)n+sl 1<8< .7}

{30, 9)s = (Bbg ) € (D'® 4 D)y 11 @ (C'® 4 C)ps| 4 < 8 < 5}

such that

( d(3p,¢),
= (dpte,p(8p,) + (= )"¥(8p,_y + (— )*T8ps—1) + (=)™ f' ® 4 f)@s),
Aot o(@s) + (= )" pey + (= ) T,ps4))
4 =06 (D'® D)p1s@(C'®4C)pssr (E$5<],80;1,=0,0,,=0),
d(3, ),
= (dpte,p(0) + (= )" (Othgyy + (= )T T8y 1) + (= )"(f © 4 ) o),
dete,cs) + (= )" Poyr + (=) Thgia))
| = 0e(D'®4D)y®(C'®4Cnigy (i <8<y Sir = 0, Py4 = O).

For ¢ = 1 € A we shall write
Q£ 1) = QriHSf),
QA1) = Q).
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ProrositioN 3.1. For any A-module chain map f: C — D there is
defined a long exact sequence of Q-groups

(o QE(fe) — QR(C.e)

f%

— @ ;(D, &) — @ ,(f.e) — ..
— QI (f, &) — QUI(C,¢)

| Ju —=> QUA(D, g) —> Qi) f,e) —> ...,

b ]

with
Qui(f.e) > @R 4(C,¢); (8o, ) — o,
QinD,e) — Qi (S, e); dp — (39, 0),
QAL (f, &) = QN(C, ); (8, ) > b,
Q5D, &) — QF(f, €); 8 — (84, 0).
An (n+ 1)-dimensional e-symmetric {e-quadratic} pair over A
(f: C—> D,(3p,9) {(f: C—> D,d4))}

for » > 0, is a chain map f: C - D from an n-dimensional A-module
chain complex C to an (n+ 1)-dimensional A-module chain complex D,
together with a relative Z,-hypercohomology {Z,-hyperhomology} class

(e, @) € @Q"H1(f, &) = Qt k(S o),
(0, 4) € Quya(fs€) [1?3] f e,
and it is a Poincaré pair if the relative homology class

(Bpo o) € Hya(f' @4 f) {((1+T)8¢0, (1 + T o) € Hy o (f'®4 S}
induces A-module isomorphisms

H"(D,C)= H'(f) > Hyyy (D) (0<7<0+1)
(Poincaré-Lefschetz duality) via the slant product

\: H'(f)®z H, 11 (['®4 f) = H,y1-(D);
(9, h)® (u®v, z®y) - g(u)v +h(z) f(y)
(9. ) e D@ C Y, u®v e (D'® 4 D)yiy 2@y € (C'® 4C),)-

The boundary of an (n+1)-dimensional e-symmetric {e-quadratic}
Poincaré pair over A

(f: C—> D, (3p,9) € Q™*1(f,¢)) {(f: C > D, (8, ¢) € Qp11(f,2))}
is the n-dimensional e-symmetric {¢-quadratic} Poincaré complex over 4
(C,p € @ (C,¢)) {(C,¢ € @,(C,¢))}. A cobordism of n-dimensional e-sym-
metric {e-quadratic} Poincaré complexes (C, o), (C’',¢") {(C, ), (C',¢")} is
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an (n+1)-dimensional e-symmetric {e-quadratic} Poincaré pair with
boundary (C,9)® (C’, —¢') {(C,4)® (C’, — ')}, say

(f f):CeC > D,0p,p0—-¢") Q™ ((f [')e)
((f f):CoC" > D, (8, ®—4") € Quua((f f')e)).

In Proposition 3.2 below we shall prove that cobordism is an equi-
valence relation on algebraic Poincaré complexes, such that the cobordism
classes define abelian groups under the direct sum ®. The verification of
the transitivity of cobordism requires the following algebraic glueing
operation.

In §6 of Part IT we shall show that geometric cobordisms give rise to
algebraic Poincaré cobordisms.

Define the union of adjoining e-symmetric {e-quadratic} cobordisms

¢c=(fc fe):CoC > D,0p,p@—¢") €@ (fc fe)e))
[ c=(fo fe):CoC' - D,(8%,y0—y¢') € Quinllfc Sfe) el
¢ =((for fe):C'@C" > D', (3", 9’ @—9") € @ (for fer)re))s
{ ¢’ =((fer fer):C'@C" > D', (84, @—4") € Quin((fr fee)re))s
to be the e-symmetric {e-quadratic} cobordism
cue’=((fo for): COC" > D", (3", p@—9") €@ (fo fco)e)
{ cue’ =((fo for): CaC" > D", (3", y@—¢") € Quunllfo fo-)e))
given by |
dp (=)fe O
dp»=1 0 deo 0
0 (=)' e dp
D;=D,eC, 0D, - D], =D, ,0C,_,0D,_,,

. Cr‘—> D;.’ = Dr@ 0:._1@1);"

:C, > D, =D,®C,_ 0D,
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( Sp, 0 0
o = | (=)""oif& (—)nr+etiTol 0
0 (=)*f oo g,

Di'n—r+s+l — Dn—r+s+1® 0'n-r+s®D’n—r+s+1
- D, =D,0C,,0D, (s>0),

ﬁ LI/ 0 0
sup = | (= rify (=T, O
0 (=)feds s
D7n—r-s+l — Dn-r-s+l g ('n-r-s @ D'n—r—s+1
\ - D, =D,08C,,0D, (s>0).

We shall normally write
8p" = 8pu,, 8¢,

Sy = Spuy, 8.

ProrosrtioN 3.2. Cobordism is an equivalence relation on n-dimensional
e-symmetric {e-quadratic} Poincaré complexes over A, such that homotopy
equivalent complexes are cobordant. The cobordism classes define an abelian
group, the n-dimensional e-symmetric {e-quadratic} L-group of A L™(4,¢)
{L.(4,¢)}, for n > 0, with addition and inverses by

C.p)+(C,¢") = (Cal,p@¢"), —(C,p) =(C, —9) € L(4,¢),
(C,)+(C¢) = (Cal . yay), —(C.¢¥)=(C,—y)e L,(4,¢).

D" =Dug D',

Proof. Given a homotopy equivalence of n-dimensional e-symmetric
{e-quadratic} Poincaré complexes over A

{ f: (C, P) = (¢, 9"),
[ (C¢) = (C', ),

let ¢ € Homyz (W, 0'®40),, { € (W @2z, (C'®4C)),} be a cycle repre-
senting ¢ € Q™(C, ¢) {Y € Q,(C, ¢)}, so that

[ @' = f*(p) € Homgz (W,C"®,C"),
P = fo(h) € (W @22, (C"®4C")y

is a cycle representing ¢’ € @Q*(C’,¢) {y’ € @,(C’,€)}. There is then defined
a cobordism

{ (f 1):CaC ->C,(0,p0—9¢') €e@"((f 1)¢)
((f 1): C®C’ -> C’s (O: lﬁ@—lﬁ') € Qn+l((f ])'8))
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from (C,p) to (C',¢') {(C,¢¥) to (C’,¢¥')}. This verifies that homotopy
equivalent algebraic Poincaré complexes are cobordant, and in particular

that cobordism is reflexive.
If
{ (f f):CoC - D,0%p,p0—¢') €@ (f f')¢))

(f f):CeC" —> D,@,¢@--¢') € Quu((f f')2))

is a cobordism, then so is
{ (f" f):C"@C—~ D,(-d,9'®@—9) €@ (f" [)e))
((f" [):C0C—>D,(=8'©—y) € Qun((f" [)e)),

thus verifying the symmetry of cobordism.
The union operation ensures that cobordism is transitive.

The correspondence between low dimensional (n = 0,1) algebraic
Poincaré complexes and forms and formations of §2 will be extended to

the L-groups in §5 below, and L%A,¢) (respectively Ll(4,¢)) {Ly(4,¢)

(respectively L,(4,¢))} will be identified with the Witt group of non-

singular e-symmetric {e-quadratic} forms (respectively formations) over 4.
We shall denote the symmetric {quadratic} L-groups by

L*(A4,1) = L™4) {L,(4,1)= L,(4)}
The symmetric L-groups L™®(A) are the ‘algebraic Poincaré bordism’
groups Q,(4) of Mishchenko [10], except that Q,(A4) was defined using
only f.g. free (rather than f.g. projective) A-module chain complexes—

the difference this makes will be studied in §9 below.
In §4 we shall establish that

Ln(A’e) = Ln+2(A: —¢) = Ln+4(As8) (n > 0).

The quadratic L-groups L,(4) are thus the analogues of the surgery
obstruction groups of Wall [25], defined using f.g. projective (rather than
based f.g. free) 4-modules—the difference this makes will also be studied
in §9 below.

The e-symmetrization of an (n+ 1)-dimensional e-quadratic (Poincaré)
pair over A (f: C — D,(8¢,¢) € Q,.1(f,€)) is the (n+1)-dimensional
e-symmetric (Poincaré) pair

(A+T)(f: C = D, (&, ¢) = (f: C > D, (1 +T)(8¢h, ¢) € @**(f, ),

where
(1 + T,)00, (1 + T )osy) € (D' ® 4 D)1 ® (C'® 40),

(1 + 71;)(8'/’, l/")s = ifs = 0,
(0,0) € (D'® 4 D)yt 641@ (C*® 4 O)s ifs > 1.
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The e-symmetrization of a null-cobordant ¢-quadratic Poincaré complex is
thus a null-cobordant e-symmetric Poincaré complex, and there are
defined e-symmetrization maps in the L-groups

(1+1T,): Ly(4,¢) > L™4,¢); (C,4) = (C, (1 + T, 1)

We shall prove that these are isomorphisms modulo 8-torsion in § 8 below.
The skew-suspension of an (n + 1)-dimensional e-symmetric {¢-quadratic}
(Poincaré) pair over 4

(f: € = D, (8¢, 9) € @"*(f,¢)) {(f: C > D, (3,¢) € @nsa(f, &)}
is the (n+ 3)-dimensional (—e)-symmetric {(—¢)-quadratic} (Poincaré)
pair over 4

8(f: C — D, (5p,9)) = (8f: SC - SD,8(8p, ) € Q"+3(8f, —¢)),

8(f: C > D, (56, 4)) = (8f: SC - 8D, 3(34, ) € Quis(Sf, —)),
with 8: @ +1(f, &) = @*+3(Sf, —¢) {8: @ura(f:€) > @uis(Sf, —€)} the rela-
tive version of the isomorphism defined in the absolute case in §1. Thus
the skew-suspension of a null-cobordant =n-dimensional e-symmetric
{e-quadratic} Poincaré complex is a null-cobordant (n+ 2)-dimensional
(—e¢)-symmetric {(—e¢)-quadratic} Poincaré complex, and there are
defined skew-suspension maps in the L-groups

§: Ln(4,¢) > Lr+¥(4, —¢); (C, ) - (SC, Bp)
SZ Ln(A, 8) —> Ln+2(A, _8), (C’ S[‘) = (SO’ S'/l)

In §4 below we shall prove that S: L,(4,¢) > L, (4, —¢) is an
isomorphism for all 4,¢,n > 0 (Proposition 4.3). It will also be proved
that S: L™(A, ¢} — L"+%(A4, —¢) is an isomorphism if 4 is noetherian of
finite global dimension m and n+2 > 2m (Proposition 4.5).

Define the 0th Wu class of an (n + 1)-dimensional e-symmetric pair over

A (f: C - D, (3¢, p) € @Q*1(f, €)) to be the function
vo(3p, 9): H™Y(f) > BYZ,; A, ¢);

(¥, 2) = (80511 (Y @ Y) + (- )"Pa(z @ 7))
(x e C*, y € D, n > 0).

n 2= 0).

It is possible to define higher Wu classes for e-symmetric pairs, as well as
Wu classes for e-quadratic pairs, generalizing the absolute Wu classes
of §1. However, we shall only need the relative v,,.

An (n+ 1)-dimensional ¢-symmetric pair over 4

(f: C > D, (8p,9) € @v41(f,¢))
vdp,p) = 0: HoH(f)  AYZ,; 4,¢).

is even if



THE ALGEBRAIC THEORY OF SURGERY. 1 139

Then (C,p € Q™(C,¢)) is an n-dimensional even e-symmetric complex
over 4, since

0o(p): HH(C) ———— Hoi(f) 222V =0 poz . 4 .

The n-dimensional even e-symmetric L-group of A L{vy)™(4,¢) (n > 0) is
the abelian group with respect to the direct sum @ of the cobordism
classes of n-dimensional even e-symmetric Poincaré complexes over 4

(C, @ € Q<wpy™(C, &) = ker(dy: Q™(C, &) > Hom (H™(C), B%Z,; 4,¢))),

where the cobordisms are required to be (n+1)-dimensional even e-
symmetric Poincaré pairs.

The e-symmetrization of an e-quadratic complex (respectively pair) is an
even e-symmetric complex (respectively pair), so that the e-symmetriza-
tion map factors through the even ¢-symmetric L-groups

14T,
1+ T: L(A,¢) ——> L{vy™(4,e) —> L*(d4,¢) (n > 0).

The skew-suspension of an n-dimensional e-symmetric complex (res-
pectively pair) is an (n+2)-dimensional even (-—é)-symmetric complex
(respectively pair), so that the skew-suspension map in the e-symmetric
L-groups factors through the even e-symmetric L-groups

S: L*(4,¢) —S—> Llygynt3(4, —e) —> L34, —¢) (n = 0).

In Proposition 4.4 below it will be shown that the skew-suspension maps
S: L4, ¢e) > L{wy)"**(4, —¢) (n > 0) are isomorphisms. Thus we shall
be mainly concerned with L{v,>*(4,¢) for n = 0, 1.

If 2 is invertible in A the various types of L-groups coincide

L,(A,¢e) = L{vyy™(4,¢e) = L*(A,&) (n > 0).

More generally:

ProrosrrioN 3.3. If A is such that A*(Z,; A, ) = 0 then the natural maps

1+7,: L,(4,¢) - L{vyy™4,¢e), L{vyy™4,e) > LM A4,e) (n>0)

are isomorphisms. In particular, this is the case if there exists a central
element a € A such that a+a = 1 € A (for example, a = } € A).

Proof. If A*(Z,; A,¢) = 0 then @*(C, &) = 0 for any finite-dimensional
A-module chain complex C (by Proposition 1.4(i)), so that the e-sym-
metrization map in the @-groups (1+7.): @,(C,¢) - @*(C,¢) is an iso-
morphism (Proposition 1.2), and there are natural identifications

(e-quadratic complexes over 4) = (even e-symmetric complexes over A4)
= (e-symmetric complexes over A4).
Similarly for the relative @-groups, and hence for the L-groups.
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We shall now define the notion of homotopy equivalence appropriate
to algebraic Poincaré pairs. It turns out that the homotopy equivalence
classes of e-symmetric {¢-quadratic} Poincaré pairs are in a natural one-one
correspondence with the homotopy equivalence classes of certain
e-symmetric {e-quadratic} complexes (Proposition 3.4). This allows for
considerable conceptual simplification, giving the e-symmetric {¢-quad-
ratic} L-groups an expression entirely in terms of e-symmetric {e-quadratic}
complexes. In §4 we shall use this expression to establish the 4-periodicity
in the e-quadratic L-groups, L, (4,¢) = L, . ,(4,¢), and in §5 we shall use
it to identify the low dimensional L-groups with Witt groups of forms and
formations.

Define a homotopy equivalence of n-dimensional e-symmetric {e-quadratic}
pairs over 4 :

(9, h; k): (f: C - D, (3¢, 9) € @"(f,¢))
- (f': C" > D', (8¢, ¢") € @™(f', €))
(9.k; k): (f: C > D, (84,4) € Qu(/, )
> (f': 0" D', (&', §') € @u(f', ))
to be a triple (g, ; k) consisting of chain equivalences
g:C->C', h:D->D
together with a chain homotopy
k:f'gx~hf:C > D’

(9, h; k)*(p, @) = (39", ") € @™(f", &),
(9,75 k)o (8, ) = (8", 4') € Qu(f ', €),

such that

where

([ (9, h; k)*(3p, p),
= ((h®42)(0p,) + (— )" (hf ® k)(py) + (—)P(k® ['g)ps)
+ (=) Pk @ k) (Pe-1): (9®9)(®5))
€E(D"®4D")p4s® (C"®4C' )15
] (9.h; E)x(8¢,9),
= (A ®4R)(8) + (= )" Rf @ E)(s) + (= )P(k® f'g) ()
+ (= )2k ® k) (h41), (9©9)(e))
€ (D"®4D")p-s®(C"®4C" g1

\ 630, ("9, D), = 3 Dje,D)).
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An n-dimensional e-symmetric {¢-quadratic} complex (C,p € Q*(C,¢))
{(C,¢ € Q,(C,¢))} is connected if

Hy((1+ T )y: C* > C) = 0.
In particular, Poincaré complexes are connected. For » = 0 ‘connected’
is the same as ‘Poincaré’.

Define the boundary of a connected n-dimensional (even) e-symmetric
{e-quadratic} complex over 4 (C, ¢ € Q™(C, ¢)) {(C, ¢ € @,(C,¢))}, forn > 1
to be the (n—1)-dimensional (even) e-symmetric {e-quadratic} Poincaré
complex over A

{ 9(C,p) = (9C, dp € @*1(2C, ¢))
o(C,¢) = (0C, 0y € Q,_,(2C, ¢))

given by
( )"®o
rd*
Adory = : 60,. =C _ 00" > 30,-1 = OrG') 0n—r+1’
9C r+1
r(1 + T ),
rd*
( n—r—lT ( - )r(n—r—l) &
_( T
d ocr-r-1 = Cn-rgC,,, > 0C, = C,,,0C",
0
= (1 ) ocr—r-1 = Crre C,,, > 0C, = C,,,®C" T,
(( )" P 0)
= 0 :
‘ ogn—r+s-1 — 0n—r+a@ Cr—s+1 - 30' — Cr+1® Ccn—r (S > 1)’
(( i 4 0)
0 :
oCn—r=s-1 = On=r-8 C,, 44y - 9C, = C, ;@ C" .

| (Motlvatlon: let M be an 'n-fd:’mensional manifold with boundary oM,
and let o*(M,0M) = (f: C(0M) > C(IH),(p,dp) € @*(f)) be the n-
dimensional symmetric Poincaré pair over Z[m,(M)] associated to the
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universal cover J in § 6 of Part II. The n-dimensional symmetric complex
(C.0) = (C(H, 010), (p, 0p) € QUC(HT, 510)))
obtained from the pair o*(M,dM) by collapsing
o*(2M) = (C(61), 0 € @ (C(6H)))

has boundary 0(C, ) homotopy equivalent to o*(0M). In §5 we shall
show that the boundary operations on ¢-quadratic forms and formations
defined in §3 of Ranicki [13] are special cases of the boundary operation
on ¢-quadratic complexes.)

ProrosiTiON 3.4. (i) There is a natural one—one correspondence between
the homotopy equivalence classes of n-dimensional (even) e-symmetric
{e-quadratic} Poincaré pairs over A and the homotopy equivalence classes of
connected n-dimensional (even) e-symmetric {e-quadratic} complexes which
preserves boundaries. Poincaré pairs with contractible boundaries correspond
to Poincaré complexes.

(i) A connected n-dimensional (even) e-symmetric {e-quadratic} complex is
a Poincaré complex if and only if its boundary is a contractible (n—1)-
dimensional (even) e-symmetric {e-quadratic} Poincaré complex.

(i) An n-dimensional (even) e-symmetric {e-quadratic} Poincaré complex
1s null-cobordant if and only if it is homotopy equivalent to the boundary of a
connected (n+ 1)-dimensional (even) e-symmetric {e-quadratic} complex.

Proof. (i) Given a connected n-dimensional e-symmetric {e-quadratic}
complex (C,p € @*(C,¢)) {(C, ¢ € Q,.(C, ¢))} with boundary
AC, ) = (8C,0p) {9(C,¥) = (9C, )}
there is defined an n-dimensional e-symmetric {¢-quadratic} Poincaré pair
{ (ig: 9C — C"* (0, 0p) € Q™(¢¢, €)),

(ig: 9C - C"=*,(0,0)) € @, (30, ¢)),
with
ig = (01): 9C, = C,,,® O™~  (C™%), = Cn~r.

Given a homotopy equivalence of connected n-dimensional e-symmetric
{e-quadratic} complexes f: (C,p) = (C',¢") {f: (C,¢) — (C',¢¥')} choose
cycle representatives

{ @ € Homy (W, Hom 4(C*,()),,¢" € Homgy, (W, Hom 4(C'*, C")),,
Y € (W ®gzyHom 4(C*,C)),,, " € (W @z, Hom 4(C'*,C")),,

so that
{ f*(@)—¢" = d(v) € Homg, (W, Hom ,(C"*, (")),

Ju) =" = d(x) € (W @z, Hom ((C"*,C")),
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for some chain
v € Homg, (W, Hom 4(C'*,C")), 41 {X € (W ®zzy Hom ,(C'*,C")), 14},
with
fosf * =05 = dove+ (= )vdE + (=) o(vey + (= )Ty y): O > G
Fbaf* = = doxs+ (=) X8 + (=) (Xora + (=) L Xs41) !

C'n-r-s - C,
(S = O, Vo = 0)
(taking C and C’ to be f.g. projective, as we may do without loss of

generality). Let f': C’ - C be a chain homotopy inverse for f: C - (',
and let g: f'f~ 1: C - C be a chain homotopy, with

f'f-1=dog+gds: C. - C, (9 € Hom,(C,,C,,,)).

The A-module morphisms

( [ —feg*+(=)vf'*
of = ( ° ): 30, = C,, @ C"—" — 3C", = Cpy & C'n=

0 f'*
ﬂ (f —fA+T)og* + (=) (L + T)xof ’*)
of = :
0 f'*
\ 0C, = C, ®C™ "~ 00, = L, 0 C" "

are such that

{ (@f,1; 0): (ig: 8C — Cn—*,(0,dp)) - (i¢: 8C" — C'n—*,(0,39"))
(@f,1; 0): (ig: 8C — C»=*,(0,d)) > (i¢: 90" — C'n=*,(0, "))

is a homotopy equivalence of n-dimensional e-symmetric {¢-quadratic}
Poincaré pairs over A. (The definition of the boundary 9(C, ) {2(C, )}
depends on a choice of cycle representative for ¢ € @Q*(C, ¢) {¢ € Q,.(C, ¢)}.
In particular, we have just shown that a different choice of representative
defines an isomorphic complex.)

Conversely, given an n-dimensional e-symmetric {¢-quadratic} Poincaré

pair over 4 (f: 0C — C,(p,dp) € @*(f,¢)) {(f: 9C - O, (}, %)) € Qu(f, &))}
define a connected n-dimensional e-symmetric {e-quadratic} complex
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(C', 9" € @UC",e) {(C", ¥ € Qu(C',¢))} by C" = C(f) and

(o ESI—
Ps = :
(- )n—r-l a?sf * (- )n—r+s]: 0Ps-1
Q'n-r+s = On-r+s g gQn—r+s-1 0," = 0,_ ® 3Cr-1 (s > 0),

J

we(_ . o)

DA (- T )

\ C'n-r-8 = Cn-r-sgoCn-r51» C, = C,®0C,_, (s> 0).
(This is an algebraic analogue of the Thom complex construction in
topology, being just the collapsing of the boundary (9C,dp) {(oC, &p)}.)
There is defined a homotopy equivalence of n-dimensional e-symmetric
{e-quadratic} Poincaré pairs

[ (99,9; h): (ic: 8C" — C'7*,(0,89")) - (f: 9C - C, (p, 0p)),

(99,9; b): (Eo: 8C" — C'n=*,(0,8)')) = (f: aC — C, (, o)),

with
{(?0 J220)
g=  Q'n-r = Cn—rg oCn—r-1 C',.,
(L+ o f(1+T,)0)
(0 1 0 ap)
og = :9C, = C,,,®0C,®Crr@aoCr1 » oC,,
[(0 10 (1+T) )

h=((=) 0 0 0):3C.=C,,,®3C,®Crr®aC" > C,,,.

(ii) Given a connected n-dimensional e-symmetric {¢-quadratic} complex
(C,p € @MC,e)) {(C,¢ € Q,(C,¢))} we can identify SoC = C(p,: C»* - C)
{SaC = C((1 + T.)p,: C»* — C)}, so that oC is chain contractible if and
only if (C,¢) {(C,¢)} is a Poincaré complex.

(i) is immediate from (i).

4. Algebraic surgery

We shall now develop an algebraic surgery technique on algebraic
Poincaré complexes, which is analogous to the familiar geometric tech-
nique of surgery on manifolds. Given an n-dimensional e-symmetric
{e-quadratic} Poincaré complex over 4 (C,p) {(C,¢)} and an (n+1)-
dimensional e-symmetric {¢-quadratic} pair

(f: C—> D, (%, 9)) {(f: C— D, (&)}

we shall construct a cobordant n-dimensional e-symmetric {e-quadratic}
Poincaré complex (C',¢') {(C',¢')} ‘by an algebraic surgery killing
im(f*: H¥(D) -~ H*(C))’. In §7 of Part II we shall show that the chain
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level effect of a geometric oriented {framed} surgery is an algebraic
symmetric {quadratic} surgery killing the 4-module generated by a single
cohomology class € H*(C). Here, we shall apply algebraic surgery to
obtain the 4-periodicity in the e-quadratic L-groups

Ln(A:s) = Ln+2(A’ —&) = Ln+4(A’8) (n > 0).

An n-dimensional e-symmetric {e-quadratic} pair

{ (f: C— D, (3¢,¢) € @"{f,¢))
(f: C = D, (34, 4) € Qu(f, )

is connected if

3,
Ho(( ): Dn—* C(f)) = 0,
Pof *

Ho(( (1+T,)8¢g
(L+ T )of*

In particular, Poincaré pairs are connected.

Define as follows the connected n-dimensional e-symmetric {e-quadratic}
complex (C', ¢’ € @QMC’,¢)) {(C', ¢’ € @,(C’,¢))} obtained from a connected
n-dimensional e-symmetric {e-quadratic} complex (C,@ € @MC,¢))
{(C,¢ € Q,(C,¢))} by e-symmetric {e-quadratic} surgery on a connected (n + 1)-
dimensional e-symmetric {¢-quadratic} pair

(f: C > D, (8p,9) € @v*'(f,)) {(f: C > D, (84, $) € Qusa(f, )}

In the e-symmetric case let
" dg 0 (—)Higyf
do=| (=)f dp (=)3p
0 0 (-)d}
C,=CeaeD, oD 5 C, | =C,_;®D, @D+

):D”‘*—>C’(f)) = 0.

Po 0 0
eo=| (=)0"fLey (=)"TSp (=)
0 1 0
O’n—r — Cn—r®Dn-r+1@ Dr+1 - C; = O,-@ Dr+1 @ Dn—r+1’
Ps 0 0
Co=| (=) fLpsrr (=) TS0, 0
0 0 0
Q'n—-r+s — Cn—r+s@Dn—r+s+1®D7_s+l - C"_ — Cr®Dr+1®Dn-—r+1

5388.3.40 K
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In the e-quadratic case let
de 0 (=)"{1+T)f*
doo=| (=)f dp (=) (1+T)3%,
0 0 (=)dp
C,=CeD,,, 0D > C_, =C,_,©D,@Dr 4,

do 0 0O
do=] 0 0 0
0 10

¢'rr=CrreDv1g¢D,,, »C,=C,@D,,,0DrrH,

b (=YTTPef* 0
o= 0 (=)"HI3p,, O
0 0 0
C'nr=s = Cn-r~s@ D"+ D, . .. — C. = C,® D,,, ® Dr-r+1
(s=1).

(We are using matrix notation as if C,D were f.g. projective chain
complexes.)

It may be verified that performing e-symmetric {¢-quadratic} surgery
using a different cycle representative of

B¢, @) € Q1 (f,6)  {(344) € @nia(fs )}

leads to an isomorphic e-symmetric {¢-quadratic} complex (C’, @) {(C’, ¢')}.
Note that the e-symmetrization of the e-quadratic surgery on

(f: C > D, (8, 9) € Qnsa(f,#))
is the e-symmetric surgery on (f: C — D, (1+ T.)(8¢, ¢) € Q7+1(f, €)).

Let (C,p € @Q*(C,¢)) {(C,¢¥ € @,(C,¢))} be a connected n-dimensional
e-symmetric {¢-quadratic} complex. The (n—1)-dimensional e-symmetric
{e-quadratic} Poincaré complex obtained from (0,0) by surgery on the
connected n-dimensional e-symmetric {¢-quadratic} pair

(0: 0> C,(0,0) € Qn(0,¢)) {(0: 0= C,(0,4) € Q,(0,2))}
is just the boundary 9(C, @) {9(C, )}, as defined in §3 above. We can thus
interpret Proposition 3.4(iii) as stating that an n-dimensional ¢-symmetric
{e-quadratic} Poincaré complex is null-cobordant if and only if it can be
obtained from (0, 0) by surgery and homotopy equivalence. This is a special
case of the following result: cobordism is the equivalence relation on
algebraic Poincaré complexes generated by surgery and homotopy
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equivalence. There is an obvious analogy here with Theorem 1 of Milnor
[9], which showed that compact oriented manifolds are cobordant if and
only if one can be obtained from the other by a finite sequence of geometric
surgeries.

ProPOSITION 4.1. (i) Algebraic surgery preserves the homotopy type of the
boundary, sending algebraic Poincaré complexes to algebraic Poincaré
complexes.

(i) The n-dimensional e-symmetric {e-quadratic} Poincaré complexes
(C,9), (C", ) {((C.$), (C", )} are cobordant if and only if (C", ') {(C',4")}
can be obtained from (C, p) {(C, )} by surgery and homotopy equivalence.

Proof. (i) Let
(f: C > D, (39, 9) € @"+(f,¢)), (C", @' € @™(C", ¢))
(f: 0 - -D: (8‘/’: ‘/’) € Qn+1(f: 8))’ (C,’ 'ﬁ' € Qn(o" 8))

be as in the definition of e-symmetric {¢-quadratic} surgery. Then the
A-module morphisms

(1 0)
0 0

- 0 0
0 1

0 0
\(=)rm=nf 0

60, = C,,,® 0" > 3C, = C,,® D, ,® D@ C»* @ D"+ D, ,,
define a homotopy equivalence of the boundary (n—1)-dimensional
e-symmetric {e-quadratic} Poincaré complexes

h: o(C,p) - 0(C', ¢'),

h: 8(C,¢) - o(C", ).

Proposition 3.4(ii) states that (C,¢) {(C,4)} is a Poincaré complex if and
only if 9(C, ) {9(C,4)} is contractible. It follows that (C,¢) {(C,¢)} is a
Poincaré complex if and only if (C’, ¢’) {(C’, ')} is a Poincaré complex.

(ii) Continuing with the above notation assume also that (C, @) {(C, ¥)}
is a Poincaré complex, and define an (n+ 1)-dimensional e-symmetric
{e-quadratic} Poincaré pair

(9 97:CoC' > D, (0,p0-9¢) @™ (g 9)¢)
(9 9):CaC' > D', (0,4@—y') €Quullg ¢)2)
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((dc ( — )n+1¢of *)
0 (-)dp

dp = < : D, = C,@ D1

(dc - )nﬂ(l + Tﬁ)‘l’of *) -> D;-l = Or-l @ Dn—-r+2,
\

0 (=)dp

1
9= (0) : G, Dy = C,@ D4,

1 0 O
v= (0 0 1): C, = C,@ Dy, @ D"r41 > D, = C,@ D"+,

We thus have a cobordism from (C, ¢) {(C,¢)} to (C’,¢’) {(C’,¢')}, so that
surgery preserves cobordism classes.

Conversely, suppose given a cobordism of n-dimensional e-symmetric
{e-quadratic} Poincaré complexes

{ (f f):CeC - D,0p,p0—¢") @ (f f)e))

((f f):CeC" > D, y@—y') € Quia((f [),2))
Let (C",¢") {(C",¢")} be the n-dimensional e-symmetric {e-quadratic}
Poincaré complex obtained from (C,¢) {(C,¢)} by e-symmetric {e-
quadratic} surgery on the connected (n+ 1)-dimensional e-symmetric {e-
quadratic} pair

(9: C—> D', (8¢",9) € @"+(g,¢)) {(g: C — D', (8¢, ) € Qr1a(9, €))}
defined by

dp, = (dD (=)f ')
D = :
0 dg
D,=D,®C,;,~D,, =D, ,0C,_, (D'=C0C(f")),

g= (ﬁ) C,» D, =D,®C,_,
( (8909 (— )sf'gp; ) .

3¢, =
0 (=)t Te,
D'n-r+s+l = Dn—r+sti g (O'n—rt+s D;- = DrG') 01"—1

(20,9, =0),
= (&/,s (=)f ¥ )
Co\o (mpenryl)

\ D'n—r-s+l — Dn—r—s+1@0"n—f—3 - D;_ = D,@ 01’--—1 (S = 0)
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The A-module morphisms
h=0 0 1 0 0):C,=CeD,,,0C,eDHeC"">C,
h=(0 0 1 0 —Tyg):C;=C,®D,,®C,0 D10 - C,
define a homotopy equivalence of n-dimensional e-symmetric {¢-quadratic}
Poincaré complexes
h: (C",9") > (C', ),
h: (C", ") - (C",4).
Thus (C',¢") {(C',¢')} may be obtained from (C,¢) {(C,¢)} by an e-sym-
metric {e-quadratic} surgery followed by a homotopy equivalence.

We shall prove that certain skew-suspension maps in the L-groups are
isomorphisms using the following criterion.

PROPOSITION 4.2. The skew-suspension map
S: LA, e) - Ln+2(A, —¢) {S: L,(4,¢) > L, 54, —¢)}
is onto (respectively ome-to-ome) if for every comnmected strictly (n+2)-
(respectively (n+ 3))-dimensional (— &)-symmetric {(— ¢)-quadratic} complex
over A (C, ) {(C,¢)} with a boundary o(C, p) {0(C, )} which is contractible
(respectively a skew-suspension) it 1is possible to do (—e)-symmetric
{(— ¢)-quadratic} surgery on (C, @) {(C, )} to obtain a skew-suspension.

Proof. It is immediate from Propositions 1.5 and 4.1(ii) that the
claimed condition for

S: L*(A,e) > L**2(A4, —e) {S: L,(A4,¢) > L, o(4, —¢)}

to be onto is both necessary and sufficient.
Assume the claimed condition for

§: Ln(d,e) > LA, —¢) (§: Ly(d, &) > Lyyy(4, —))

to be one-to-one, and let (C,p) {(C,4)} be a strictly n-dimensional
e-symmetric {e-quadratic} Poincaré complex over 4 such that

8(C,p) = 0 € L4, —¢),

S(C, '/J) =0¢€ Ln+2(A’ —é&).
By Proposition 3.4(iii) we have that S(C,¢) {S(C,)} is homotopy equi-
valent to the boundary 9(D,v) {9(D, x)} of a connected strictly (n+ 3)-
dimensional (—é¢)-symmetric {(—e¢)-quadratic} complex (D,v) {(D,x)}
By hypothesis, it is possible to do surgery on (D,v) {(D, x)} to obtain the
skew-suspension S(D',v') {S(D',x')} of a connected (n+ 1)-dimensional
e-symmetric {e-quadratic} complex (D’,v’) {(D’,x)}. It now follows from
Proposition 4.1(i) that (C,¢) {(C,y)} is homotopy equivalent to the



160 ANDREW RANICKI
boundary &(D’,v") {o(D’;x")}, and so
(C,p) =0€ L™4,¢),

(C,¢) =0€ L,(4,¢).
Therefore the stated condition is sufficient to ensure that the skew-
suspension map is one-to-one.

As a first application of our algebraic surgery we shall establish the
4-periodicity in the e-quadratic L-groups, L,(4,¢) = L, ,(4,¢), by
analogy with the familiar result that it is always possible to perform
framed surgery below the middle dimension and the consequent 4-
periodicity L,(w) = L, 4(m) of Wall [25].

ProrosiTioN 4.3. The i-fold skew-suspension map

gi: Ln—2i(A» ( - )ie) - Ln(Are) (n 2 27’)
18 an wsomorphism for all A,e. The inverse isomorphism
Qi = (89)-1: L,(4,¢) > L,_o(A4,(—)) (n=2io0r2i+1)
sends the cobordism class of a strictly n-dimensional e-quadratic Poincaré

complex (C,y € Q,.(C,¢)) to the cobordism class of the (n— 2i)-dimensional
(- )ie-quadratic Poincaré complex corresponding to the non-singular (—)-
quadratic form { formation}

( da* 0
(coker(( ) :
(=) 1A+ Ty d

Cci-1 @ 0‘+2 - Ct @ C‘-{-l)’ [‘f)o (:)]) 'l:f n = 2‘1:,

. C [(A+ T
(H(—)%(Ciﬂ); C‘.;+1,1m(( od* ° z):

Q0. ¥) = |

\

Proof. Given a connected strictly n-dimensional e-quadratic complex
(C, ¢ €Q,(C,e)) let (C',¢' €Q,(C',¢€)) be the connected n-dimensional
e-quadratic complex obtained from (C,y) by surgery on the connected
(n + 1)-dimensional e-quadratic pair (f: C - D, (0,y) € @,,,,(f, €)) defined
by

P 1 C D [C’, ifr>n—2 = do)
= : r - r = = .
[o 0 ifr<n—s > °
Now

H(C') = H((1+ T )fy: C** > C) (r<19),

H(C)=0 (r>n—i),
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and for » = 2+ 1 also
Hy((1+ T): C™* > C') = 0.
Thus if the boundary 9(C, ¢) is contractible (respectively an i-fold skew-
suspension) then (C’,y’) is the i-fold skew-suspension Si(C”,4") of an
(n— 2i)-dimensional (— )%e-quadratic complex (C”,4") which is a Poincaré
(respectively connected) complex. Applying Proposition 4.2 we have that
Si: L, (A4, (—)e) > L,(A,¢) is onto (respectively
S-i: Ln—zi—l(A’ ( - )ie) => Ln-l(As 8)
is one—one). If » = 2: or 2¢+ 1 and (C, ¢) is a Poincaré complex define as
follows a strictly (n— 2:)-dimensional (— )*e-quadratic Poincaré complex
(B, 0 € Q,_s4(B, (—)%)) and a homotopy equivalence
9: (B,0) > (C",4").

In the case where n = 23 let

a* 0 *
B, = cok : : -1 C CioC ,
o = CO er(((—)i+1(l+ﬂ)¢o d) ®@Ci >0t i+1)

1 0
0 0
(projection)* _ 01 )
o> (0 C)* = G0 O ——— C;
= 0{ ® 0’i+1 ® CH-I,

with 6, € Hom ,(B?°, B,) any representative of the (— )’%-quadratic form

(Bo,[% d]e@_,z‘,(m)).
0 0 :

In the case where n = 2:+1 let
(1+ Ty d) )*
=im :C@C > Cp @ CHL)
(™ 9000,

[1 0]: B°- B, +dd, 0
8, ={ oy [”b‘ bo . B > B,
0: B! > B,

1 0o o

1
(0): B, > 0] = C;19Cyy,

g=
(1 + qc)'/‘O * .
: By > Cy = C;@ C+2,
ed* 0
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If n = 2¢ {n = 2¢+ 1} the correspondence of Proposition 2.1 {Proposition
2.5} sends (B,0) to the non-singular (- )%-quadratic form {formation}
QiC, ).

It is claimed by Mishchenko in [10] that the double skew-suspension

maps in the symmetric L-groups
S2: Ln(4) > L*4(4) (n > 0)
are isomorphisms for every ring with involution 4. Such is indeed the
case if € A when L, (4) = L*(4), by Propositions 3.3 and 4.3. However,
the algebraic surgery technique of §4 of Mishchenko [10] used to establish
this 4-periodicity breaks down if 4 ¢ 4: the new algebraic Poincaré pair
(C,°C,d, D) may not satisfy property (a’) of §3, since the A-module
morphism
0pn—2i-1 Dn—zi—lf;)

0Pn—2i-1 —
0 0

Cn—i-t = On—i-194* - C, ;= C,_;® 4

need not map A* < Cr—i-1 = On—i-1@ 4* into °C,_, =°C,_, < °C,_; if
D*%-18 # 0. In Proposition 4.4 below we shall prove that the skew-
suspension maps

S: Lr(A4, &) - L{vgy"*%4, —¢) (n > 0)

are isomorphisms. This implies that if AY(Z,; 4,¢) = 0 then the skew-
suspension maps
S: L™A4,e) - L*+2(4, —¢) (n > 0)

are isomorphisms (Proposition 6.1). In Proposition 4.5 below we shall
prove that if 4 is noetherian of finite global dimension m then the skew-

suspension maps
S: LMA,e) > L"*2(A, —¢) (n+2 > 2m)

are isomorphisms. In particular, for a noetherian ring 4 of global dimen-
sion at most 1 (such as a Dedekind ring) we have that the double skew-
suspension maps

S2: LM(A,e) - L"H(A4,e) (n > 0)

are isomorphisms. The L-theory of Dedekind rings will be studied further
in §7. In §10 we shall give examples of noetherian rings 4 of global
dimension at least 2 for which the skew-suspension maps

S: LMA,e) > LA, —¢) (n > 0)
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are not all isomorphisms, and such that e-symmetric L-groups are not
4-periodic.

ProrosrTIiON 4.4. The skew-suspension maps
S: LMA,e) > L{vp)™+2 (4, —¢) (n > 0)
are 1somorphisms for all A, e.

Proof. We shall define an inverse isomorphism
Q: L{vgy™*t?3(A4, —¢) > L™(4,¢)
by working exactly as in the proof of Proposition 4.3. Given a strictly
(n+2)-dimensional even (—¢)-symmetric Poincaré complex over A

(C,p € Qlwe)™?*C, —¢)) define a connected (n+ 3)-dimensional even
(= &)-symmetric pair (f: C - D, (0, ¢) € Qlogp™+3(f, —&)) by

f—{l-C—>D _{Cn+2 ifr=n+2,
o § 0 ifr#n+2.

The (n + 2)-dimensional even (— ¢)-symmetric Poincaré complex obtained
from (C,p) by surgery on (f: C - D,(0,¢)) is the skew-suspension
SQ(C’, ¢') of an n-dimensional e-symmetric Poincaré complex Q(C’, ¢’).

ProrosiTION 4.5. Let A be a ring with involution which is noetherian of
finite global dimension m. The skew-suspension map
S: LMA,e) > L+2(A4, —¢) (n > 0)
is an isomorphism if n+2 > 2m, and a monomorphism if n+3 = 2m. If
m = 0 (that is, if A is semi-simple) then
L+ 4 e) =0 (k> 0).
Proof. In the first instance, note that the hypothesis on 4 is equivalent

to the property that every f.g. A-module M has a f.g. projective A-
module resolution of length not greater than m

0O->PFP,>FP, ,>..>P>F—>M-0.

Let p =2 if n+2 > 2m (respectively p = 3 if n+3 > 2m). Given a
connected strictly (n+p)-dimensional (—¢)-symmetric complex over 4
(C,p e@Q™?(C, —¢)) with a boundary &(C,p) which is contractible
(respectively a skew-suspension) we have that Hy(C) = coker(d: C; — C,)
is a f.g. A-module, with a f.g. projective 4-module resolution of length m

d d
0 > D, > D,._, > ... > D, > D, > H(C) — 0.

Let f: C - D be an A-module chain map inducing
fe = 1: Hy(C) > Hy(D) = Hy(C),
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and let @ € Homgy (W,Hom ,(C*,0)),,, be a cycle representing
@ € Qnt?(C, —¢), so that

foof*¥: D™ > D, ifn+p=2m,r=m,s=0,
F*@)s = .
0:Dr—>D,,, ,., otherwise.
In the case where n +p = 2m consider the commutative diagram
*
Dm f . Om Po > 0, fv‘D,,,

|

0 —— " ——= Gy —> Dpy

Now d € Hom ,(D,,, D,,_,) is one—one, and
* d
foof > D,

d(fpof*) = 0: D™
foof*=0:D™ > D,.

> Dy, 4,
so that

Thus, if n+p > 2m,
f%(?) =0€ HomZ(Zgl( W’ HomA(D*: D))n+p’

and there is defined a connected (n4 p+ 1)-dimensional (~ ¢)-symmetric
pair (f: C - D, (0,p) € @Q*t?+( f, —¢)). Let (C', ¢’ € Q»+P(C', —¢)) be the
(n+ p)-dimensional (—¢)-symmetric complex obtained from (C,p) by
surgery on this pair. Now

Hy(C') = Hy(f) =0,
Hr49(C') = Hy(fp,: C*1P~* > D) = Hy(p,: C*?~* —» () = 0,

so that (C’,¢’) is the skew-suspension of an (n+p— 2)-dimensiona
¢-symmetric complex. Applying the criterion of Proposition 4.2 we have
that S: L(4,¢) - L™*%(A4, —¢) is onto if n+ 2 > 2m (respectively one—one
ifn+3 2 2m).

In particular, if 4 is a noetherian ring of global dimension 1 we have that
all the skew-suspensions

S: LY(4,¢) > L***4, ~¢) (n > 0)
are isomorphisms. If 4 is semi-simple (m = 0) then the above procedure
associates to a strictly 1-dimensional ¢-symmetric Poincaré complex over
A4 (C,p e @QVC,¢)) a 2-dimensional e-symmetric Poincaré pair over A
(f: C - D,(0,p) € Q¥ f,¢)), and so

L(4,¢) = 0.



THE ALGEBRAIC THEORY OF SURGERY. I 155
(Moreover, if (C, ) is even then so is (f: C - D, (0,¢)), and we also have
Lve)'(4,¢) = 0.

It has already been proved in [16] that for a semi-simple ring with
involution 4
Ly ,\(4,6)=0 (k> 0).)
We shall find the following application of algebraic surgery of use in §5
below.
An n-dimensional e-symmetric {¢-quadratic} complex (C, ¢ € Q™(C,¢))
{(C,¢y € Q,(C,¢))} is well-connected if Hy(C)= 0, in which case it is con-

nected, that is
{ Hy(p,: C** - C) = 0,

Ho((1+ T,y C** > C) = 0.

PrOPOSITION 4.6. The n-dimensional e-symmetric {e-quadratic} Poincaré
complexes (C, ), (C’,9") {(C,¢),(C',§')} are cobordant if and only if there
exists a homotopy equivalence

[ [+ (C,e)08(D,v) > (C',¢") @ O(D",v")
[ (@) eaD,x) > (C,¢)@aD’,X)
for some well-connected (n+ 1)-dimensional e-symmetric {e-quadratic}

complexes (D,v), (D',v') {(D, x), (D', x")}-

Proof. In view of Proposition 3.4(iii) it is sufficient to prove that for
every connected (n+ 1)-dimensional e-symmetric {e-quadratic} complex
(D,v) {(D,x)} there exists a homotopy equivalence

{ f: D, w)@ oD, v') > 3(D",")
£+ 9D, )@ 3D, x) ~ 3D, x")

for some well-connected (n+ 1)-dimensional e-symmetric {e-quadratic}
complexes (D', v'), (D",v") {(D',x'), (D", x")}. Define a chain mapg: D - D'
by

d d d
.D: R .Dn+2 —> .Dn+1 — .D,n > Dn_lé cee
f d
D:..—— D, ,—/8— D,,, > 0 — 0 > ...

and let v = —g*(v) € @**1(D',¢) {X’ = —gy(x) € Qnsa(D’,€)}. Let (D",V")
{(D",x")} be the connected (n+ 1)-dimensional e-symmetric {e-quadratic}
complex obtained from (D,v)® (D',v') {(D, x)® (D', x’)} by surgery on the
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connected (n + 2)-dimensional e-symmetric {e-quadratic} pair
(9 1):DeD D', (0,v@v)e@™((g 1)),
{ (9 1):DOD" > D', (0,x®x') € Quial(g 1), 8)).
Now (D',v") {(D',x")} and (D",v") {(D",x")} are well-connected, and
Proposition 4.1(i) shows that
aD,v)®aD',v') = dD", ")
{ aD,x)® (D", x') = &(D", ")

up to homotopy equivalence.
Intuitively, e-symmetric {¢-quadratic} surgery on
{ (f: C = D, (%, 9) € @"(f,¢))

(f: 0 g D’ (8‘/" \b) € Qn+1(f’ 5))

kills im(f*: H*(D) - H*(C)), whereas a geometric surgery only kills
individual (co)homology classes. In §7 of Part II we shall show that the
chain level effect of geometric surgery on an r-dimensional spherical
homology class in an n-dimensional manifold is an algebraic surgery on a
connected (»+ 1)-dimensional algebraic pair such that

A ifs=n-r,

H¥(D) = {

0 ifs#n-—r.
We shall now break down a general algebraic surgery into a sequence of
such elementary surgeries (subject to a necessary K-theoretic restriction).

An algebraic surgery on a connected (n+ 1)-dimensional e-symmetric

{e-quadratic} pair over A

(f: C > D, (8p,p) € @"*(f,¢)) {(f: C > D, (84, ¢) € @usa(f,€))}
is elementary of type (r,n—7r—1)if D'= §*74, that is, ‘

A ifs=n-r,
D.=

8

0 ifs#n-—r.

Such a surgery will be said to kill the (co)homology class f*(1) € H*~"(C)
(= H,(C)if (C, ) {(C, )} is a Poincaré complex).

ProrosiTION 4.7. Let (C,p € QUC,¢)) {(C,¢ € @.(C,¢))} be a connected
n-dimensional e-symmetric {e-quadratic} complex over A. Then

(1) A cohomology class x € H*7(C) can be killed by an elementary
e-symmelric {e-quadratic} surgery of type (r,n—r—1) if and only if ils
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g-symmetric {e-quadratic} Wu class vanishes, that is,
v (p)e) = 0 € H*2(Zy; 4,(—)""e),
vr(¢)(x) =0¢€ H2r—-'n(Z2; 4,(-)""e),

and, in the case where r = n, x € HY(C) generates a direct summand of H%(C).

(i) If (C',¢") {(C", ')} is obtained from (C, @) {(C,¢)} by an elementary
e-symmetric {e-quadratic} surgery of type (r,n—r—1) then (C,p) {(C,¢)} is
homotopy equivalent to an e-symmetric {e-quadratic} complex obtained from
(C',¢") {(C",¥')} by an elementary e-symmetric {e-quadratic} surgery of type
(n—r—1,7).

(i) If (C',¢") {(C',4")} is obtained from (C,p) {(C, )} by e-symmetric
{e-quadratic} surgery on

(f: C~ D,(3p,9) € @"*'(f,8)) {(f: C > D, (84, ¥) € Qusa(f, )}
such that D has projective class '

[Dl= 3 (-)[D,1=0e &\4)
then (C',¢") {(C’,y')} may be obtained from (C,¢) {(C, )} by a finite sequence
of elementary e-symmetric {e-quadratic} surgeries.

Proof. (i) The vanishing of the Wu class is just the condition required to
represent € H*~7(C') by an (n + 1)-dimensional e-symmetric {e-quadratic}

pair
(f: C - 874, (3¢, p) € Q*11(f,¢))
(f: C = 874,84, ¢) € Quia(/[,¢))

such that f*(1) = 2 € H**(C). This pair is automatically connected if
r < n, but for r = n it is connected if and only if € H%(C) generates a
direct summand.

(ii) and (iii) follow from the result below on the composition of algebraic
surgeries:

Lemma. Let (C,9),(C',¢"),(C",¢") be connected n-dimensional e-sym-
metric complexes over A such that (C’', ') (respectively (C",¢")) s obtained
from (C, @) (respectively (C', ¢')) by surgery on a connected (n + 1)-dimensional
e-symmetric pair (f: C — D, (8p,¢)) (respectively (f': C' - D', (8¢, ¢"))).
Then (C”,¢") is obtained from (C,p) by surgery on a connected (n+1)-
dimensional e-symmetric pair (f": C — D", (8¢",¢)) with D" = C(g) the
algebraic mapping cone of a chain map g: QD — D'.



158 ANDREW RANICKI
Conversely, let (C”, ¢") be the connected n-dimensional e-symmetric complex
over A obtained from a complex (C, p) by surgery on a pair
(f": C > D", (5", 9))

such that D" = C(g) ¢s the algebraic mapping cone of a chain map g: QD - D',
for some (n+ 1)-dimensional A-module chain complexes D,D’. Then (C”, ")
is isomorphic to the complex (C”,&") obtained from (C',¢’') by surgery on a
pair (f': C' - D', (8¢’, ")), with (C’,¢’) the complex obtained from (C,¢)
by surgery on a pair (f: C — D, (3¢, p)).

The c-quadratic case is similar, with J's in place of ¢’s.

Proof (e-symmetric case only). Given
(f: C - D, (5p,9)), (f':C"—D',(5¢",9'))
fl = (f' g Vo)5 01'- = Cr@Dr+1@Dn—r+1 -> -D;’

write
and define (f*: C > D’, (8",9) € @v(f",e)) by
= :C, > D; =D,oD,,
fl
d 0
d’ = ( ):D: =D, @D, > D;_, =D, ,®D,,,
(=)g &

8¢" _ (8¢s (- )sf(q:?s+1)f'* - (T.8?3+1)9*) )
8 0 Sgp; :
D"n—r+8+l — Dn—ristl g D'n—r+s+l D: = D'@D; (3 > 0).

Conversely, given (f": C — D", (8¢", 9)),g9: QD - D' write

f’= (;,): C, > D: = C(9), = D,@D,’.,

~

” dpy 7, " 1 , 1 . ,
S, = Rk D"n-r+stl = Dn-risilg D'n—r+stl 5 D" = D @ D,
vy Op,
(s 2 0),
and define (f': C' - D', (8¢, ¢') € @"1}(f',€)) by
f' = (f' g v): C; = Or@Dr+1®Dn-r+l g D;.,

8¢, = g;z 4 (—)rin-ristlggyk D'n-rts+l 5 D;. (8= 0).
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The 4-module isomorphisms

(1.0 0 0 0 \

0 1 0 0 (—)tn-rilgx
=0 0 0 1 0

0 01 O 0

L0 0 0 0 1 J

Cf: =C,0D, 0 Drr1g D;+1@ D'n—r+1
- C! = C,0D,,,®D,,,® Dr-r+1g@ D'n-r+1
define an isomorphism of e-symmetric complexes over A4,
h: (C,8") > (C", ")

5. Witt groups

We shall now identify the e-symmetric {even e-symmetric, e-quadratic}

L-group

LO(A» 5) {L<7)0>°(A, 8)’ LO(A: 8)}

(respectively L*(4, ) {L{vyy*(4,¢), L (4, €)}) with the Witt group of non-
singular e-symmetric {even e-symmetric, e-quadratic} forms (respectively
formations) over 4. It will then follow from the 4-periodicity
L,(A,e) = L, 4,¢) that the quadratic L-groups L,(A4) agree with the
surgery obstruction groups of Wall [25]. We shall use this characterization
of L{wy)Y(4,¢) {L(4,¢)} to prove that a non-singular even e-symmetric
{e-quadratic} formation represents 0 in the Witt group if and only if it is
stably isomorphic to the graph formation of a singular (— ¢)-symmetric
{even (—¢)-symmetric} form. This generalizes the ‘normal form’ for the
split unitary group of Sharpe [22] (cf. Proposition 9.2 below).

The Witt group of e-symmetric {even e-symmetric, e-quadratic} forms over A
Le(A) {L<vyy*(A4),L,(A)} is the abelian group of equivalence classes of
non-singular e-symmetric {even ¢-symmetric, e-quadratic} forms over A
(M, ) subject to the relation

(M,p) ~ (M',¢") if there exists an isomorphism
[ (M,p)&(N,0) > (M',¢")® (N, 0)
for some hyperbolic forms (N, ), (N', §').

Addition is by
(M, )+ (M',¢")= (MO M, p®¢').

Inverses are given by
—(M,9) = (M, -o)



160 ANDREW RANICKI

since the diagonal A ={(z,2)e M®M|xe M} is a lagrangian of
(MeM, & —9p). There are defined forgetful maps

L(4) > L{vy*(4); (M, € Q(M)) — (M, 3} +e* € QCvg)*(M)),
Lvgy*(4) - LA(4); (M, @ € Q{v*(M)) > (M, p € Q(M))
(such that L,(A4) - L{v,)*(4) is onto).

ProposITION 5.1. There are natural identifications of abelian groups
L%A4,¢e) = LA),
Lvy)*(4, &) = L{we)*(4),
LyA,e) = L,(4).

Proof. In view of Propositions 2.1, 2.2, and 4.6 it is sufficient to observe

that if (D,v € QY(D, ¢)) {(D, x € @,(D, ¢))} is a well-connected 1-dimensional
e-symmetric {e-quadratic} complex then

{ v € QYD, £) = Q*(HYD)),
x € @1(D,¢) = 0,

and the boundary O-dimensional e-symmetric {e-quadratic} Poincaré
complex 9(D,v) {o(D,x)} corresponds to the standard hyperbolic &-sym-
metric {¢e-quadratic} form He(HY(D),v) {H(H,(D))}. Moreover, if (D,v) is
an even g-symmetric complex then (H(D),v) is an even e-symmetric form
and He¢(HY(D),v) is isomorphic to the standard hyperbolic even e-
symmetric form He¢(H, (D)), with @<v,>)'(D, €) = Q*(H(D)).

The Witt group of e-symmetric {even e-symmetric, e-quadratic} formations
over A Me(A) {M{vyy*(A), M (A)} is the abelian group of equivalence
classes of non-singular e-symmetric {even e-symmetric, e-quadratic}
formations over 4 (M, ¢; F,G) subject to the relation

(M,9; F,G)~ (M',¢'; F', &)
if there exists a stable isomorphism of the type
[f]: M,p; F,G)®(N,0; H,K)® (N,0; K,L)Y® (N',8'; H',L')
- (M, ¢'; F',G"Yo(N',0'; H,K"Yo(N',0'; K',L")& (N,6; H, L),
with addition and inverses by
(M,p; F,Q)+(M',¢"; F',G') = (MO M', o@¢'; FOF', GO @),
- (M,p; F,G) = (M,p; G, F).
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There are defined forgetful maps
M(A4) > Mvy)*(4);
(M, € Q(M); F,G)— (M, +e* € Qog)*(M); F,Q),
Mvo)(4) > Me(4);
(M, € Qvp)(M); F,G) > (M, € Q(M); F,G).
ProrosITION 5.2. There are natural identifications of abelian groups

LY(A4,¢) = M=(4),

Ly (4, &) = M{ve)*(4),

L(4,¢) = M(A).

Proof. Let (C,¢), (C',¢"), (C",¢") be the 1-dimensional e-symmetric
Poincaré complexes associated by Proposition 2.3 to non-singular e-
symmetric formations (N, 0; H,K), (N,0; K,L), (N,0; H,L). We have to
prove that

(C.p)@ (C',¢') = (C",¢") € LY(4,¥),
corresponding to the generic sum formula in the Witt group
(N,6; H K)Y®(N,0; K,L)=(N,0; H L) e Ms(A),
in order to verify that there is a well-defined morphism of abelian groups
Ms(A) - LV(A,¢); (N,0; H,K) — (C, p).
Choosing a chain homotopy inverse ¢,1: C - C'=* for ¢,: C1—* — C
define a Z,-hypercohomology class

@ = (?0_1)%“9) € Q1 C1%,¢),
so that there is defined a homotopy equivalence of 1-dimensional e-
symmetric Poincaré complexes over A

@0t (C*%,8) > (C, ).
(In fact (C—*,5) corresponds to the formation (N, —8; K, H), which is
thus stably isomorphic to (N, 6; H, K) with an isomorphism

(N,0; H K)® (H¢(K); K,K*) > (N, -0; K,H)® (H*H); H, H*).
Thus inverses in the Witt group are also given by
—(N,8; H K)=(N,—-0; H,K) € M¢(4).)
Define a chain map (f f'): C*~*@®C’' - D by

N-*gpC'. ... > 0 > K K —> H*@ L* — 0 >
f f) (1 l)j [
D: .. > 0 > K > 0 > 0 >

5388.3.40 L
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Now (C”,¢") is homotopy equivalent to the 1-dimensional ¢é-symmetric

Poincaré complex obtained from (C'-*,¢)® (C’,¢’) by surgery on the
connected 2-dimensional e-symmetric pair

(f f):C*eC" > D,(0,g0¢) e@(f f) )

C.p)@(C,¢") = (C*,g)@(C,¢') = (C",¢") € L)(4,¢)
by Proposition 4.1(i).
The correspondence of Proposition 2.3 can also be used to define a
morphism

and so

LY(A,e) > Me(A); (C,p) — (N,0; H,K)
inverse to M¢(A4) - L'(A4,¢). This is well defined provided we can show
that the non-singular e-symmetric formation (N,8; H, K) associated to
the boundary o(D,v) of a well-connected 2-dimensional e-symmetric
complex (D,v € Q¥D, ¢)) represents 0 in the Witt group

(N,8; H K) =0e MA)

(applying Proposition 4.6). Without loss of generality, it may be assumed
that D is a f.g. projective A-module chain complex of the type

d
D: ... 0 D, D, > 0 > oy

so that a cycle v € Homgy,,(W,Hom ,(D*, D)), is represented by A-
module morphisms

vg: D' > D,, v;: D' D,, #;:D*—> D;, v,: D*—> D,
such that

vot+evy +dvy—d¥ =0: D' - D,,
v+ e —vyd* = 0: D > D,,
v, +ev¥—dv, =0: D* > D,,
vo—ev¥ =0: D? > D,.
The boundary 1l-dimensional e-symmetric Poincaré complex 8(D,v)
corresponds to the non-singular e-symmetric formation

0 0
(N,6; H,K) = H«(Dleapz, (0 )) D@D,
v,

im . _g | D@D~ Die D@ D0 D!
-

a* 0
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The A-module automorphism

§ 0 0 0
# 1 0 0

=1 7 . N = D'¢ D,0 D,® D* > D'® D,® D, ® D*
—v¥ —d & v¥
0 1

a* 0 0 1
defines an isomorphism of non-singular e-symmetric formations over 4
f:(N,0; L,H) - (N,0; L,K),
where L = D,®@ D, € N = D'® D,@® D, ® D*. It follows that
(N,0; H K)= (N,0; H L)® (N,6; L,K)
= (N,0; H LY®(N,0; L,H) = 0 € M(A).

Restricting attention to even e-symmetric complexes and formations we
obtain in the same way inverse isomorphisms

Mwe)*(A) ~ L)Y (4, 8),  Lvg)(4, ) > M{wo)*(4).

Similarly, the correspondence of Proposition 2.5 can be used to define an
abelian group morphism

L,(4,e) > M(A); (C,¢) — (N,0; H,K),

with (N, 0; H, K) the non-singular ¢-quadratic formation associated to a
1-dimensional e-quadratic Poincaré complex (C, ). In order to prove that
this is an isomorphism we need the e-quadratic case of the following result.
(The even e-symmetric case is required later on.)

LEMMA. A4 1-dimensional even e-symmetric {e-quadratic} Poincaré
complex over A (C,p € @<vH}(C,¢€)) {(C,y € Q,(C,¢))} represents 0 in
L{vgyX (4, €) {L,(4, €)} if and only if it ts homotopy equivalent to the boundary
o(D,v) {8(D, x)} of a connected 2-dimensional even e-symmetric {e-quadratic}
complex over A (D,v € Q<v)¥(D, €)) {(D, x € Q4(D, €))} such that

H(D)=0, HD)=o0.

Proof. In view of Propositions 3.4(iii) and 4.1(i) it is sufficient to observe
that for any connected 2-dimensional even e-symmetric {e-quadratic}
complex over A (D,v) {(D, )} there is defined a connected 3-dimensional
even e-symmetric {e-quadratic} pair over 4

(f: D - E,(0,v) € Q(vo>3(f, €))
(f: D~ E, (O:X) € Qs(f:s))
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with
D: .. —> D, 4 > D, ¢, D, 4 > D, >
N R
E: .. > Dy ¢ > D, > 0 > 0 > ...

such that surgery on (f: D - E,(0,v)) {(f: D - E,(0,))} results in a
connected 2-dimensional even e-symmetric {¢-quadratic} complex over 4
(D', v") {(D’, x")} such that

Hy(D') =0, HXD')=0.

Every non-singular e-quadratic formation over A is isomorphic to one
of the type (H,(F); F,G), and choosing a hessian for G we obtain a non-
singular split e-quadratic formation over 4 (F,@), and hence (by Pro-
position 2.5) a 1-dimensional e-quadratic Poincaré complex over 4 (C, ).
It follows that L,(4,¢) > M(A) is onto. In order to show that this
morphism is also one—one recall from Ranicki [13] the characterization of
M(4) as the abelian group with respect to the direct sum @ of equivalence
classes of non-singular e-quadratic formations over 4 (M, y; F, @) subject
to the relation

(M,4; F,G) ~ (M',§'; F',G")
if there exists a stable isomorphism
[f]: (M,y; F,Q)®(N,0) > (M',J'; F',G')®N',6)
for some even (- ¢)-symmetric forms over 4 (N,6),(N’,6) with 9(N, 6)
defined by
(N,8) = (H(N); N,{(x,0(x)) e Ne@ N*| xz € N}).

(Only the case where ¢ = + 1 € A was considered there, but the methods
apply for all ¢ € 4.) Translating the result of the lemma into the language
of forms and formations (using Propositions 2.1 and 2.5) we have that a
1-dimensional ¢-quadratic Poincaré complex over 4 (C, ) represents 0 in
L,(4,¢) if and only if the associated non-singular split e-quadratic forma-
tion over 4 (F, @) is stably isomorphic to 8(X, x) for some ( —&)-quadratic
form over 4 (N,y € @_,(N)), where

- )

By Proposition 2.4 this occurs precisely when the underlying non-
singular e-quadratic formation (H(F); F, @) is isomorphic to 9(N,6) for
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some even (—e¢)-symmetric form (N,0 € Q{v,)~*(N)). It follows that
L,(A, &) > M(A) is one-to-one as well as onto, and hence an isomorphism.

The boundary of an (even) e-symmetric {¢-quadratic, split e-quadratic}
formation over A (M,¢p; F,G) {(M,¢; F,Q),(F,R)} is the non-singular
(even) e-symmetric {¢-quadratic, e-quadratic} form over 4

a(M,?; F,G)= (G-L/Gs?*/?):
oF,G) = (G+/G, /) (= a(H(F); F,G)).

The boundary of an e-symmetric {even e-symmetric, e-quadratic} form
over A (M, p € QM) {(M,+ep* € Qeopy (), (M, ¢ € Q(M))} is the
non-singular even (—é&)-symmetric {(— ¢)-quadratic, split (— ¢)-quadratic}
formation over 4

oM, p) = (H(M); M,{(z,p(x)) € M & M*| z € M}),
M, +ep*) = (H_(M); M,{(z,(p+e)*)(x)) € M@ M*| x € M}),

oM, §) = (M ' ((¢ +ls¢*)’¢)M) |

An n-dimensional e-symmetric {e-quadratic} complex (C,¢ € @*(C,¢))
{(C,¢ € Q,(C,¢))} is highly-connected if:

H(C)=0forr<i, H'(C)=0forr>n—i,
with » = 2¢ or 2¢ 41, and for » = 21+ 1 also
Hy(p,: C*¥+1-* () = 0,
{ H((1+T,3py: C*¥*17* > () = 0.

Then (C,¢) {(C,¥)} is connected, and the boundary o(C,¢) {2(C,¥)} is a
highly-connected (n— 1)-dimensional e-symmetric {e-quadratic} Poincaré
complex.

ProrosrTiON 5.3. The homotopy equivalence classes of highly-connected
n-dimensional e-symmetric {e-quadratic} complexes over A are in a natural
one-to-one correspondence for n = 2i (respectively n = 21+ 1) with the iso-
morphism classes of (—)ie-symmetric {(— )‘e-quadratic} forms over A
(respectively the stable isomorphism classes of (—)le-symmetric {split
(— )ie-quadratic} formations over A). Highly-connected Poincaré complexes
correspond to mon-singular forms (respectively formations). The boundary
operation on highly-connected complexes corresponds to the boundary
operation on forms (respectively formations).

Proof. The proof is immediate from Propositions 2.1, 2.3, and 2.5.
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ProPoOSITION 5.4. (i) A non-singular e-symmetric {even e-symmelric,
e-quadratic} form over A represents 0 in the Witt group L*(A) = L%A,¢)
{L<{vgy*(A4) = L{wy)*(4,¢), L(A) = Ly(A4, ¢)} if and only if it is isomorphic
to the boundary o(M,p; F,Q) {o(M,y+ep*; F,Q),0(M,y; F,G)} of an
e-symmetric {even e-symmetric, e-quadratic} formation over A

(M,p € @QM); F,G),
(M, ¢+£¢* € Q<v0>s(M); F’ G))
(M, eQ,(M); F,Q).

(i) A non-singular even e-symmetric {e-quadratic} formation over A
represents 0 in the Witt group M{vy)*(A) = L{vgyY(A4,¢) {M,(A) = L,(4,¢)}
if and only if it is stably isomorphic to the boundary o(M, p) {0(M,f — ef*)}
of an (— &)-symmetric {even (— ¢)-symmetric} form over A

(M,p € Q(M)) {(M,}—ep* € Qupy~(M))}-

Proof. (i) This is immediate from Proposition 2.2.
(i) This is immediate from Proposition 5.3 and the lemma used in the

proof of Proposition 5.2.

6. Lower L-theory

There is algebraic evidence to suggest that the e-symmetric L-groups
L*(A4,¢) (n > 0) and the e-quadratic L-groups L,(4,¢) (» > 0) should be
regarded as belonging to a single sequence of algebraic L-groups
{L™(4,¢)| n € Z} (to be defined below), with many of the formal properties
of the sequence of algebraic K-groups {K,(4)| n € Z}. For example, given
a morphism of rings with involution f: 4 — B there are defined relative
L-groups L*(f,¢) (n € Z) to fit into a change of rings exact sequence

f

o —> LM4,e) —> LMB,e) —> L*(f,¢e) —> L*H4,6) — ...
(n € Z);
we shall deal with relative L-theory in a later part of the paper. At any

rate, we shall find the lower L-groups useful in the remainder of this part.
In § 8 below, we shall define products

®: L™(d4,e)®@,LY(B,n) > L™A®;B, c®7n) (m,n € Z).
Define the lower e-quadratic L-groups of A L,(4,¢) (n < —1) by
Ln(A! 5) = L'n+2i(A’ ( - )is) (n+ 2 2 0):

extending the periodicity L,(4,¢) = L, (4, —¢) (n > 0) of Proposition
4.3.
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Define the lower s-symmetric L-groups of A L™(4,¢) (n < —1) by

Lvg)™t*(4, —¢) (n=-1,-2),
IMd,e)={
L,(4,¢) (n < -3).

Define the skew-suspension maps

S: L*(A4,¢) > L*+2(4, —¢) (n < —1)
to be the +e-quadratic skew-suspension isomorphisms for n < —5, and
the forgetful mapsif —4¢ <» < -1.

PrOPOSITION 6.1. If A, e are such that
AYZ,; A,e)={ac A| ed =a}/{b+eb|be A} =0
then the skew-suspension maps
S: Ln(A4, —¢) > L*¥(A4,¢) (n € Z)

are tsomorphisms.

Proof. The case where n < —5 has already been considered in Pro-
position 4.3, For —4 < n < —1 note that since H%Z,; 4,¢) = 0 the
category of even e-symmetric (respectively even (—é)-symmetric) forms
{formations} over A is equivalent to the category of e-symmetric (res-
pectively (—¢)-quadratic) forms {formations} over A. For » > 0 note that

every (n+ 2)-dimensional e-symmetric complex over A (C, ¢ € @Q*+%(C,¢))
is even, since

o(@) = 0: H™%(C) — H”+2(Z2; A, (—)t2%) = HO(ZE; A,¢) =0,
and similarly for pairs. Therefore we can identify
Llvgyn+i(A,e) = L*3(A,e) (n > 0),
and the skew-suspension maps
S: LnA, —¢) > Ln+%(4,¢) (n = 0)
are isomorphisms by Proposition 4.4.
We shall need the following result in the computations of §10.
ProrosiTION 6.2. (i) The even e-symmetrization map of Witt groups
1+ T : Ly(A, &) > L{vy»°(4, €)

18 onto, with kernel generated by the non-singular e-quadratic forms over A
of the type

1
(A@A*, (z b) e QB(A@A*))

with a,b € AY(Z,; A,e) = {x € A| x+&% = 0}/{y—¢j| y € 4}.
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(ii) Let A = Z[n] be the group ring of a group =, with involution by
g =g (9 € w). The skew-suspension maps
S: LYZ[x]) -» L**(Z[n], —1) (n € Z)
are tsomorphisms, and the skew-symmetrization map
1+ T ,: Ly(Z[~], — 1) > LYZ[n], — 1) = L~*(Z[~))
s onto. If m has no 2-torsion there is defined a split short exact sequence
0 —— Ly(Z, —1) —> Ly(Z[r], - 1)

1+7,
— LYZ[n), -1)—> 0.

Proof. (i) The map Ly(4, ¢) - L{vy)%4, ¢) is onto because every even
e-symmetric form is the e-symmetrization of an e-quadratic form. An
element of the kernel is represented by a non-singular e-quadratic form
over A (M, € Q,(M)) such that

01

Y+ep* = ( 0): M=LoL*—> M*=L*@L

for a f.g. free A-module L, and (M, ) can be expressed as a direct sum of
a 1

forms like (A @ A*, ( ))
0 b

(ii) This is immediate from Proposition 6.1 and (i), since
B(Zy; Z[n), 1) = 0
for any group =, and AYZ,; Z[r], —1) = AYZ,; Z, — 1) (= Z,) if = has no

(3

2-torsion. (LO(Z, —1) = Z,, generated by the Arf form
1 1
(Z@ Z,( ) €eQ_(Zo Z)).)
01
7. Dedekind rings

In a later part of this paper we shall describe the L-theory exact
sequence of a localization map of rings with involution 4 - S-14 invert-
ing a multiplicative subset S of 4,

coo. > L™MA4,e) > LMS14,¢) > LMA,S,¢) > LY (4d,e) > ... (neZ),
in which the relative terms L*(4, S, ¢) are cobordism groups of algebraic
Poincaré complexes over A which become contractible over S—14. In

particular, such a localization sequence can be used to study the L-groups
of a Dedekind ring 4. Here, we shall only develop the L-theory of
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Dedekind rings sufficiently far to compute L*(Z) and L,(Z), by reducing
the computation to the well-known stable classification of symmetric and
quadratic forms on finitely generated abelian groups. It should be noted
that a Dedekind ring 4 is noetherian of global dimension 1, so that the
skew-suspension maps
S: LA,e) > L2(A4, —&) (n > 0)
are isomorphisms (Proposition 4.5) and the e-symmetric L-groups are
4-periodic
LMA, &) = L*H4(A,e) (n = 0).

Let A be a Dedekind ring, with quotient field A = (4 —{0})~*4. Let M

be a f.g. torsion 4-module, that is a f.g. 4A-module such that

sM =0
for some s € A—{0}. Define the Pontrjagin dual of M to be the f.g.

torsion A-module
‘ M~ = Hom ,(M,A/A)
with 4 acting by

AxM” > M5 (a,f) — (x — f(x)a),
so that
M~ = 0.
The natural 4-module isomorphism
M > M™; 2 (f — f(x))
will be used as an identification. Given another f.g. torsion 4-module N
define Pontrjagin duality for 4-module morphisms

Hom (M, N) - Hom 4(N*, M?); f = (f*: g = (& > g(f(z))))-
Define the e-fransposition involution
T,: Hom (M, M") - Hom (M, M"); ¢ = (e¢™: z > (y > e.p(y)(x))).

An e-symmetric linking form over A (M, ]) is a f.g. torsion A-module M
together with an element A € ker(1 — 7.: Hom ,(M, M") - Hom (M, M")),
corresponding to an e-symmetric pairing

A MxM—>A/A; (x,y) — Az)(y).
The Wu class of (M, A) is the quadratic function
vo(M,A): M - HYZ,; A,¢); x +> u—elL
(w € A, Az)(z) = [u] € A/A).

An e-symmetric linking form (3, 2) is even if vy(M,A) = 0, that is if each
Az)(x) € A/A (x € M) has a representative u € A such that ¢& = 4. An
e-quadratic linking form over A (M,),p) is an even e-symmetric linking
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form (M, A) together with a function

p: M —>Af{a+ei|ae A}
such that
u(z+9) - p(@) - ply) = A@)(y) + N@)) € A/fa+ed a € 4},

[1(=)] = Mz)(z) € A/A4,

p(dbz) = bu(x)b € A/{a+ed|a e A} (z,ye M,be A).
An e-symmetric {e-quadratic} linking form over 4 (M,A) {(M,A,p)} is
non-singular if A € Hom (M, M") is an isomorphism. A non-singular
e-symmetric {e-quadratic} linking form over 4 (M,}) {(M, A, n)} is hyper-
bolic if there exists a submodule L of M such that

NI)L) =0 NE)L) = 0, w(L) = 0},
and also
L =ker(M — L™; x — (y — A(x)(y)))-

An isomorphism of e-symmetric {e-quadratic} linking forms over 4
fi(M,A) > (M',X)
f: (M’Asf") - (M',X,y.’)
is an A-module isomorphism f € Hom ,(M, M’) such that
N(f@N(f@) = A)y) € A/A  (x,y € M)
and in the e-quadratic case also
p(f(@) = p@) € Affa+edlac A} (ze M).

An e-symmetric form over A (M,p € Q%(M)) is non-degenerate if
@ € Hom ,(M, M*) is one-to-one.

The boundary of a non-degenerate e-symmetric {even e-symmetric} form
over A (M,p € Q(M)) {(M,p € Q{v)*(M))} is the non-singular even
e-symmetric {e-quadratic} linking form over 4

[ oM, p) = (0M,])

oM, P) = (aM’ A l“)
defined by

OM = coker(p: M — M*),

A: oM —» oM™, [x] — ([y] 99%),

p: M —> Affa+ea| a € A}; [y] H@

(x,ye M*,ze M,se A—{0}, (z) = sy € M*).
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It can be shown that there are natural one-to-one correspondences of
equivalence classes
((even) e-symmetric {e-quadratic} linking forms over 4)

<> (connected 1-dimensional (even) (— ¢)-symmetric

{(—¢)-quadratic} complexes over A which become
contractible over A)

<> ((even) (— ¢&)-symmetric {( — ¢)-quadratic} formations over 4
(M,o; F,G){(M,; F,Q@)} such that Fn @ = {0} and
M/(F + @) is a torsion A-module)

with non-singular linking forms corresponding to Poincaré complexes
and non-singular formations. The connection between linking forms and
formations over a Dedekind ring A4 was first established (in the case
where A = Z) by Wall [24]. The boundary operations

0: (non-degenerate forms) - (non-singular linking forms)
agree with the boundary operations of §5
9: (forms) — (non-singular formations).
Given a finite-dimensional A-module chain complex C write 7,(C)
(respectively T'7(C))
{F(C) = H,(C)/T,(C) (respectively Fr(C) = H(C)/T"(C))}
for the torsion submodule {torsion-free quotient module} of H,(C)

(respectively H?(C)). The universal coefficient theorem gives natural
A-module isomorphisms

T,(C) - Tr(C)* = Hom (T"(C), A/A4); z - ( Frs @)

F,(C) - F7(C)* = Hom 4(F"(C), 4);  — (9 > g(z))
(xeC,,yel,,,se A-{0}, sz =dy, fe Cr+, g € Cr).
ProrositioN 7.1. (i) The even-dimensional e-symmetric {even e-sym-

metric, e-quadratic} L-groups of a Dedekind ring A L%*(A,¢) (k > 0)
{L{vo)?*(4,¢) (k = 0), Ly, (A4, ¢) (k > 0)} are isomorphic to the Witt groups

L) {L<ve)'"4(4), Liopy(4))

of non-singular (— )ke-symmetric {even (— )*e-symmetric, (— )*e-quadratic}
Jorms over A. The cobordism class of a 2k-dimensional e-symmetric {even
e-symmetric, e-quadratic} Poincaré complex over A

(C,p € Q*(C,¢)) {(C,p € @v»*(C,¢)), (C, ¢ € Qu(C, ¢))}
corresponds to the Witt class of the non-singular (— )*e-symmetric {even
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(= Yee-symmetric, (— Y*e-quadratic} form over A
(F*(C), po: F*¥(C) - F,(C) = F¥(C)*),
(F*(C), po),
(FHC), (L4 T )y, v*(): F¥(C) > Hy(Zy; A4, (- )*e)).

(ii) The odd-dimensional e-symmetric {even e-symmetric, e-quadratic}
L-groups of a Dedekind ring A L¥+1(A,¢) (k > 0) {L{vy)¥*+Y(4,¢) (k = 0),
Lo 11(4,€) (k > 0)} are isomorphic to the abelian groups with respect to the
direct sum @ of the equivalence classes of mon-singular (— )*e+le-symmetric
{even (— )*+le-symmetric, (— )¥+le-quadratic} linking forms over 4 (M,])
{(M,X), (M,A,pn)} subject to the equivalence relation (M,X) ~ (M',X')
{(M,2) ~ (M X), (M, p) ~ (M, X, p')} if there exists an tsomorphism

f M Ne M, -XN)o(N,v) > o(P,0)@ (N',v')
fr (M N (M, —-X)— oP,0)
fr M, p)e M, =X, —p') > o(P,0)
for some non-degenerate (— )k+le-symmetric {(— Ye+le-symmetric, even
(= Yetle-symmetric} form over 4 (P,0), with (N,v), (N',')
hyperbolic (— Ye+le-symmetric linking forms over A.

The cobordism class of a (2k+ 1)-dimensional e-symmetric {even e-sym-
metric, e-quadratic} Poincaré complex over A

(C,p € @*+(Ce)) {(C,p € @Lupy™*(C,¢)), (O, € Quuea(C )}

corresponds to the equivalence class of the non-singular (— )*+le-symmetric
{even (— )ktie-symmetric, (— Ye+tie-quadratic} linking form over A

(
(2400 0: 72430) > T0) = TEOY B > (1) > D)),
(T+1(C), py),

| (7443400, 1+ T th): THC) > Affact (= FeHed| a < 4);
- (L Tt
&)

[¥]

\ (x,y € C*+1, 2z € Ok, s € A —{0}, d*z = sy € C*H),

It can be shown that a hyperbolic even e-symmetric {e-quadratic}
linking form over A is isomorphic to the boundary (P, 0) {o(P,8)} of a
non-degenerate e-symmetric {even e-symmetric} form over 4 (P, 8 € @Q*(P))
{(P, 8 € Q{vy)*(P))}, so that hyperbolic linking forms represent 0 ih the
Witt-type groups defined in Proposition 7.1(ii).
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In particular, we have that the ring of integers Z is a Dedekind ring,
with the rationals Q as quotient field.

ProrosiTION 7.2. The symmetric and quadratic L-groups of Z are given by

( Z
Z2
0
\ 0
(Z
0
Z2
\0

Inz) =

Ln(z) = {

LNZ) =

The invariants are given by

ifn=

ifn=

(0
1
2
\ 3
(0
1
2
L 3

(n > 0),

(n € Z),

ifn=-1,-2,
L.(Z) ifn<-3.

L*(Z) — Z; (C, ¢ € Q**(C)) > signature (F2(C), p,),
L%+YZ) > Z,; (C,p € Q¥+1((C)) > de Rham invariant (T'%+1(C), @,),
Ly(Z) ~ Z; (C, ¢ € Qq(0)) > }(signature (F2(C), (1+ T')s)),

Ly 1o Z) - Zy;

(C, ¢ € Qu12(C)) > Arf invariant (F2x+1(C), (1 + T')if,, v2*+1(3h)).

8. Products

We shall define now products in the L-groups
L™(A,e)®z LB, ) > L™™A®; B, e®1)
Lm(A, 6) ®Z Ln(B’ "7) g Lm+n(A ®Z B: e® "7)

For m = n = 0 these are the usual products in the Witt groups of forms,
induced by the tensor products of forms. In §8 of Part IT we shall use the
products to obtain a formula for the surgery obstruction of a cartesian

product of normal maps.

(m,n € Z).

The tensor product of rings with involution 4, B is a ring with involution

A ®, B, where

(e®b)=a®be A®,B (ac Ad,beB).
The tensor product of an 4-module chain complex C and a B-module chain
complex D is an 4 ®zB-module chain complex C®,D, with A®,B

acting by

A®;BxC®;D - C®,D; (a®b, x®y) > ax @ by.
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If e € A, n € B are central units such that £ =¢1 € 4, 7 = 91 € B then
e®1n € A®,B is a central unit such that
(e®7) = (e®n)? € 48, B,
and there is a natural identification of Z[Z,]-module chain complexes
(C'®,0)®z(D'®pD) = (C®2 D) ® 40,8 (C®z D)

with T' e Z, acting by 7,8 T, on (C'®4C)®z(D'®p D) and by T,g, on
(C®z D) ® 49,5 (C®z D). Let W be a complete resolution for Z, obtained
from a f.g. free Z[Z,]-module resolution of Z

d d e
W: ... > W, > W, > W, > Z > 0,

d d . g* d*
Wi Wy—> W, —> Wy s WO ——> W1 —s W2 ...

(We=W§= HomZ[z,](Wa» Z[Z,))).

As in §4 of Chapter XII of Cartan and Eilenberg [4] it is possible to
construct a diagonal chain map

AW —>Weo, W
(allowing infinite chains in W ®, W), and so use the restriction
AW->We,W
A: W—*> We, W+

to define a chain map
®: Homgp (W, C'® 4C)®z Homy, (W, D)@y D)
~> Homygz (W, (C®2 D) @ 4g.5 (C®2 D)); @0 > (p®6)A
®: Homy (W, C'® 4 C) @z (W ®z4z, (D@5 D))
> W ®z2,((C®z DY ® 40,8 (C®zD)); @Y > (p® $)A,
identifying Homyy, ,(W—*, —) = (W ®zy,—). The induced product in the
@Q-groups
®: @™(C, &) ®,Q™(D,n) > Qmt(C®z D, e®7)
®: Q™(C, &) ®z@n(D, &) > Qnyn(C®z D, £®1)
is just the cup {cap} product
U: (Z,-hypercohomology) ® (Z,-hypercohomology)
— (Z,-hypercohomology),
0: (Zy-hypercohomology) ® (Z,-hyperhomology)
— (Zy-hyperhomology).
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In particular, for the standard Z[Z,]-resolution W of Z

Wo=2[Zy)), d:W;>Woy; 1,13+ (=)Tq (32 0)

we can take

A3W;—>(W®zw)a= % Ivr(’gzlve-—r;la}'—> § 1,.®T§_, (SGZ),

r=—00

giving explicit formulae

(? ® 0)8 = Eo( - )(m+r) ‘P, ® Tzos—r € ((C ®z D)‘ ®A®zB(G ®z D))m+n+s

= Z (C‘ ®4 0)m+r ®z (D‘ ®p D)n+s-r
ro—0
(8 =0, pE Qm(C’ 5)» 0e Qn(D’ 77)):
(? ® l/’)a = EO( - )(m+r)s¢r ® T;'/’s+r € ((0 ®z D)‘ ®A®zB(0 ®z D))m+n—a

= Z (0‘ ®4 0)m+r ®z (D‘ ®p D)n-s—r

r=—00

(8>20,p€ Qm(o, e),ye @.(D,7)).

ProPOSITION 8.1. There are defined natural products in the symmetric and
quadratic L-groups

®: L™(4,6)®z LB, 9) > ™A ®; B, e®1),
®: L™4,&)®z Lin(B,n) > Lypyn(A®2 B, £®1),
®: L,(4,e)®z LMB,n) > L, ,(A®; B, e®7),
®: Ly, (A, €)@z Ly(B, ) > Lypyn(A®2 B, £®1),
for m,n € Z, which are related to each other by a commutative diagram

19 (1+7T)
Lm(A’ 8) ®Z Ln(B’ "7) Lm(As 8) ®Z L”(B, "7)

(1+T)®1 K ®
Y A 4

L™A, &)@y Ly(By))—2—> L, (A®,B,e®n)

10 (1+ 7)) 1+Tg,

A 4 Y

Lm(A,e)®, LY(B, ) —E—5 Lm+(4®,B,e®7)
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Proof. Consider first the case where m,n > 0.

The product of an m-dimensional e-symmetric Poincaré complex over 4
(C,p e @™(C,¢)) and an n-dimensional n-symmetric Poincaré complex
over B (D,0 eQ™D,n)) is an (m+mn)-dimensional (¢® 7)-symmetric
Poincaré complex over 4 ®, B

(0: ?)® (D’ 0) = (C®ZD’ 90@0 € Qm+n(0®zD’ e® 17))
If (f: D> E,(80,0) € @**'(f,7)) is an (n+ 1)-dimensional 7-symmetric
Poincaré pair over B then the product
(C,p)®(f: D~ E,(36,8))

=(19f: C®zD > C®.E,(p® 80, p@0) € Q™"+(10f, e®7))
is an (m +n + 1)-dimensional (¢ ® n)-symmetric Poincaré pair over 4 ®, B.
Similarly for null-cobordisms of (C, ), and also for products of other types
of algebraic Poincaré complexes. Thus the @-group products pass to the
L-groups. The above diagram actually commutes on the Q-group level.

The product of an m-dimensional even ¢-symmetric Poincaré complex
over A (C,p € Q(v,)™(C,¢)) and an n-dimensional n-symmetric Poincaré
complex over B (D, 8 € @*(D,7)) is an (m+n)-dimensional even (¢®7)-
symmetric Poincaré complex over A®, B (C,9)® (D, ). We thus obtain
products

®: L™ 4, 8) @7 L*(B, 1) - Loy™™(A®; B, 6®7) (m,n > 0).
Now Proposition 4.4 gives skew-suspension isomorphisms
S: Lm-2(A4, —&) - L{vy)™(4, ¢),

S: Im+n-2(4 ®, B, —e®7) - L{vyy™™(A®,B, ¢®1),
so that we can express these products as
®: Lm_2(A: - 8) ®Z Ln(B’ 77) - Lm+n—2(A ®Z Bs —&® 7)) (ma n 2 0)

(agreeing with the products defined previously for m —2 > 0).
We shall define the remaining products using the identifications of §5
of low-dimensional L-groups with Witt groups of forms and formations.
Define the products

®: L%4,e)®z, L7%B,n) > LA ®2 B, ¢®1) = Ly(A®2 B, £®1);
(M, —ep* € Qv (M)) @z (N, x —nx* € Q{vo)~"(N))
= (M @z N, $® (x—1x*) = (f—ef*) ®x € Q,0,(M ® N))
(f € @_(M), x € Q_,(N)),
®: L1(A4,e)®, L7%B,n) > LA ®; B, ¢®7) = L1(A®z B, ¢®1);
(M, y—ep*; F,G)® (N, x —1x*)
> (M ®z N, y® (x—1x*); FOz N, GezN).
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It now only remains to define the product

®: LY(4,6)®, LB, 7) > LA ®; B, e®n).

Given a non-singular even ¢-symmetric formation over 4 (H*(F); F, Q)
write the inclusion of the lagrangian as a morphism of even e-symmetric
forms

01
(y)i (@,0) > H(F) = (F@F*,( )GQ(%)’(F@)F*)),
e e 0

and let (C,p € @<vp)!(C, ¢)) be the associated 1-dimensional even e-sym-
metric Poincaré complex over 4 (obtained as in Proposition 2.3). Given

also a non-singular even n-symmetric formation over B (H"(I); I,J) write
the inclusion of the lagrangian as

0 1
(ﬁ): (J,O)—->H”(I)=(I®I*,( ) EQ("’o)"(I@I*))’
A 7 0

and let (D,0 € @Q{v,)}(D,n)) be the associated 1-dimensional even 7-
symmetric Poincaré complex over B. The product

(C,p)®(D,0) = (C®zD, p®0 € @vpp*(C®z D, £®7))

is a 2-dimensional even (¢® n)-symmetric Poincaré complex over 4 ®, B
on which it is possible to do surgery to kill H3(C @, D), obtaining the skew-
suspension S(E,v) of a 0-dimensional even — (¢® 7)-symmetric Poincaré
complex over A®;B (E,v e Qv )&, —(¢®n))). The complex (&,v)
corresponds to the non-singular even — (¢®7%)-symmetric form over
A®zB,

(HF); F,G)o (H(I); 1,J)

r®1

= [ coker| | 1®A |:@®,J - (F*®,J)® (e, I*)0(F®I) ],
y®B |

0 ey@p*  e@mA*
-y*®78 0 —ep*®y
-1®A u®l 0
This defines a product
®: L{wg)Y A, €) @7 L{vg)Y (B, 1) - L{v)*(4 ®z B, — (¢® 7)),

as required.
5388.3.40 M
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ProrosITION 8.2. The ¢-symmelrization map
1+7,: L, (A,e) > LMA,e) (neZ)

t8 an tsomorphism modulo 8-torsion.

Proof. Product with the generator Eg = 1 € Ly(Z) = Z (Proposition 7.2)
defines morphisms

Es@—:L*A,e) > L,(4,e) (neZ)

such that both the composutes with (1+ T,) are multiplication by 8, since
(1+T)E; = 8 € LYZ) =

For a commutative ring 4 (with any involution) we can compose the
products of Proposition 8.1 with the morphisms of L-groups induced by
the morphism of rings with involution

A®;A > A;a®b > ab
to define internal products in the symmetric and quadratic L-groups
Lm(A4)®, LMA) - Lmtn(4),
L™(A)®z Ly(4) — Lipyn(4),
L,(4)®;L,(4) > L, .(4) (m,n € Z).
These make L*(4) into a graded ring with unit
1=(4,4 > A*; a+> (b~ ba)) e LY(A),

and L, (4) into a graded L*(4)-algebra. (The productsin L*(4) and L,(4)
are such that zy = (— )=lvlyx, where | | denotes the grading.)

The suspension and skew-suspension operations S,S defined on the
@Q-groups in §1 above can be expressed as products with universal classes
defined over Z. Specifically, define Z,-hypercohomology classes ¢ € Q*(SZ),
¢ € Q%SZ, - 1) by

=18 =Z > 8Z, =17,
goo=1 S =Z > SZ, = Z.
The suspension of an 4-module chain complex C can be expressed as

8C = 8Z®,C,

S = (SZ,9)®—: Q(C, &) > Q+(SC, ),

{ 8 = (SZ,p)®— : Qu(C,6) > Qus(SC, ),
8 = (SZ,§) @~ : Q(C, &) -> Qm+¥(SC, —),
[ § = (8Z,5)®~ : Qu(C, 6) > @1a(SC, —e).

and
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9. Change of K-theory

We shall now consider the L-groups L¥%(4,¢) {L¥(4,¢)} of cobordism
classes of e-symmetric {e-quadratic} Poincaré complexes over 4 (C,¢)
{(C, )} with algebraic K-theory (such as the projective class [C] € Ky(4)
or the torsion 7(p,: C** — C) € K,(4)) restricted to lie in a prescribed
subgroup X of K,,(4) (m = 0,1).

Let X be a subgroup of the reduced projective class {torsion} group
R (A) = coker(K,(Z) - Ky(4)) {K,(4) = coker(K,(Z) - K,(4))} which is
setwise invariant under the duality involution

*: Ko(4) - Ky(4); [P] > [P*],
*. K\(4) > K,(4); 7(f: P> Q) = 7(f*: @* > P*),

denoting by [P] {=(f: P - @)} the projective class {torsion} of a f.g.
projective 4-module P {an isomorphism f € Hom ,(P, Q) of based f.g. free
A-modules P,@}. In dealing with based A-modules it is convenient (but
not necessary, cf. Ranicki [15]) to assume that 4 is such that f.g. free
A-modules have a well-defined rank. Also, we shall assume that
r(e: A > A) e X < K,(A).

The intermediate e-symmetric {e-quadratic} L-groups of A L%(4,¢)
{LX(A,¢)}, for n € Z, are defined as follows. For = > 0, let L%(4,¢)
{LX(A,e)} be the cobordism group of =-dimensional e-symmetric
{e-quadratic} Poincaré complexes over 4 (C,p € Q™(C,¢)) {(C,¢ € @,(C,¢))}
with K-theory in X, meaning:

in the case where X c Ky(4), C is a finite chain complex of f.g. pro-

jective A-modules such that

[Cl= hZ_]m(— [0 e X = By(4);
in the case where X < K,(4), C is a finite chain complex of based f.g.
free A-modules such that
(@e: Cv* > C) € X < R (4),
(1 + T)y: On* > 0) € X < K, (A).

Working exactly as in Proposition 4.3 we can show that the skew-
suspension maps in the intermediate e-quadratic L-groups

S: LX(A,e) > LE (4, —¢) (n>0)
are isomorphisms, allowing the definition
LE(A,¢) = LE,p(4, (= Ye) (n<—1,n+2 > 0).
Furthermore, define L{v,»%(4,¢) (n = 0,1) to be the cobordism group of
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n-dimensional even e-symmetric Poincaré complexes over 4 with K-theory
in X. Define L%(4,¢) (n < —1) by

Livg%™(A4, —¢) (n=-1,-2),

LX(4,5) (n < -3).

All the results of §§1-8 above have obvious intermediate L-group
analogues. In particular, L%(4,¢) {L{vy)%(4,¢), L§(4,¢)} is the Witt
group of non-singular é-symmetric {even ¢-symmetric, e-quadratic} forms
over A (M, p € QM) {(M, ¢ € Q<opy*(M)), (M, € Q(M))} with K-theory
in X (meaning [M] € X if X < K (4), and M based, 7(p: M > M*) € X if
X c R\(4) with ¢ =y +ef* in the e-quadratic case), and LL(4,e)
{L<ve)k(4,¢), LF¥(A, ¢)} is the Witt group of non-singular e-symmetric
{even e-symmetric, e-quadratic} formations over 4

(M,p € Q(M); F,G)
(M, 9 € Qvp)*(M); F, Q)
(M, €Q,(M); F,G)
with K-theory in X (meaning [¢]—[F*] € X if X < K(4), and F, G based,
g f: FoF* > GoG*) e X if X cR,(4)
with f: F@ F* > M, g: G® G* > M any of the A-module isomorphisms

extending the inclusions F -~ M, G — M given by Proposition 2.2).
The L-groups considered so far have been the case where X = K,(4),

L™A, A
(4,€) = L, ,(4,¢) nel).

L.(A,¢) = LK4)(4 ¢)
The intermediate symmetric {quadratic} L-groups L%(4,1) {LX(4,1)}
will be denoted by L%(A4) {LX(4)}, for n € Z.
The groups U,(A4), V,(4), W, (A4) (n(mod4)) of Ranicki [13] can be
identified with the appropriate intermediate quadratic L-groups
Un(4) = LE(4) = L,(4),
V.(4) = L(O}CKo(A)(A) LK;(A)(A)
W(d) = LO=Ria4),
More generally, the intermediate quadratic L-groups LX(4) can be
identified with the groups UX(4) (X < K,(4)) and VX(4) (X < K,(4))
defined for » (mod4) by Ranicki in [15] using + quadratic forms and
formations over A with K-theory in X. For a group ring 4 = Z[n] with

the w-twisted involution § = w(g)g~ (g € ) for some group morphism
w: m — Z, there are thus obtained all the various geometric surgery

L% (A,e) =
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obstruction groups. If X cKy(Z[~]) {X < R,(Z[~])} is a *-invariant
subgroup then LX(Z[~]) is the obstruction group for framed surgery on
normal maps from compact manifolds to finitely-dominated {finite}
geometric Poincaré complexes with fundamental group =, with all the Wall
finiteness obstructions {Whitehead torsions} restricted to lie in
X < RyZ[n)) {X/m < Wh(m) = R (Z[=))/{x}}.
(We recall that the finiteness obstruction of a finitely-dominated geometric
Poincaré complex X is the projective class [C(X)] € K (Z[,(X)]) of the chain
complex C(X) of the universal cover X, and that the torsion of a finite geo-
metric Poincaré complex X is 7([X]n—: C(X)»* - C(X)) € Wh(m,(X)).)
In particular, we have the surgery obstruction groups
L (m,w) = Lin=Eazlad(Z ()
Ly, w) = V,(Z[n])
Ly (7, w) = Up(Z[n))
considered by Wall [25] {Shaneson [21], Maumary [8], Pedersen and Ranicki
[80]} (see also the discussion in [25, § 17D]). Intermediate surgery obstruc-
tion groups LX(Z[r]) (X < K,(Z[n))) were first considered by Cappell [3].
We shall write L% (4, €) {LX(4, )} as U%(4, ¢) {UZX(4, ¢)} for X < K(4),
and as V% (4,¢) {VX(4,¢)} for X = K,(4), with
Un(4,e) = Uk, 4(4, ), VM4, &) = V&, 4(4:¢)
Un(4,e) = UR(4,e), | V(4,¢) = VED(4,¢)
extending the notation of Ranicki [13, 15]. For ¢ = 1 € 4 the notation is
contracted in the usual fashion, for example, U?(4,1) = U*(A4). Similarly
for the intermediate even e-symmetric L-groups L{vy)%(4,¢) (n = 0, 1).
. Mishchenko [10] considered only symmetric Poincaré complexes over A
(C,9) in which C is a finite f.g. free A-module chain complex, so that the
groups Q,(A4) defined there are precisely V*(4)(n > 0). The groups
Q,.(4) = V»(4) differ from L*(A) = UMA4) in at most 2-torsion—this is
clear from the following exact sequence, since the reduced Tate Z,-
cohomology groups A™(Z,; @) are of exponent 2.

(n€Z),

ProprosITION 9.1. The intermediate e-symmetric {e-quadratic} L-groups
of A associated to *-invariant subgroups X < Y < K,(A) (m = 0 or 1) are
related by a long exact sequence of abelian groups

. > L% (4,6) > L% (4,¢) > AYZy; Y/X)

- L% Y4,¢e) > Ly (4,e) > ...
(n € Z)
o > LX(A,€) > LY (4,¢) > A™Z,; Y/X)

- LX (4,¢) > LY ,(4,¢) > ..
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tnvolving the reduced Tate Z,-cohomology groups of the involution on Y /X
B™Zy; Y/X) = {g e Y/X|g* = (- )g}/{b+ (- )"h*| h e Y/X}.

Proof. The exact sequences in the e-quadratic case have already been
obtained, in Theorems 2.3 and 3.3 of Ranicki [13]—only ¢ = +1 € 4 was
considered there, but the methods apply for all ¢ € 4. The first such
sequence was the Rothenberg exact sequence obtained by Shaneson [21]

> La(m) = Li(m) > B™(Zy; Whim) » Ly (m) > Lh_y(m) > ...

The e-symmetric case for m = 0, n > 0 proceeds as follows.

Given a f.g. projective 4-module P define an (n+ 1)-dimensional
e-symmetric Poincaré pair over 4,

(f(P,n): C(P,n) - 8C(P,n), Op(P,n), p(P,n)) € @"*}(f(P,n),e)),
with projective classes

[CP,m)] = 3 (=)[C(P,n),] = (=)~([P]+(~)"[P¥]) € Ky(4),

re=—o0

[BC(P,) = 5 (- )[5C(P,n),] = (-)*[P) & Rofd) (n=2ior2i+1)

as follows:
ifn=2
f(P,25)=( 0): C(P,2i); =P P*—3C(P,2i),=P,

0 (—)%

¢(P)2i)0=< Y ):C(P,2i)i=P*@P—-)~O(P,2i),‘=P®P*,

1 0
C(P,2i), = 6C(P,2i), = 0 (r # 1), 8p(P,2t)=0;

ifn=2+1

P*ifr =4,
Pifr=1v+1,
C(P,2¢+1),={ P ifr=1+1, SC(P,21+1), =
0ifr£e+1,
0 ifr#94,0+1,

d=0:C(P,2+1);,, =P > C(P,2i+1);, = P¥, 8p(P,2i+1) =0,
1: C(P,2i+1)i =P - CO(P,2+1);,, = P,
¢(P’2i+l)o={ . . .
e: O(P, 21+ 1)+ = P* » C(P, e+ 1); = P¥*,
f(P,2t+1)=1: C(P,2i+1);,, =P —> 8C(P,2+1);,, = P.

Define abelian group morphisms

B: Ly(4,6) > AYZy; Y/X); (C,9) = [C)

y: L%(4,€) > L} (4,¢); (C,9) = (C, 9) (n > 0).

9: A™\(Z,; Y/X) - L% (4, ¢); [P]+ (C(P,n),p(P,n))
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The composite

Az, /X) s Ln(4,e) —> Ln(4,¢) (I)

is 0, since (f(P,n): C(P,n) ~ 6C(P,n), (8p(P,n),p(P,n))) is a null-
cobordism of y9[P] = (C(P,n), p(P,n)) with

[BC(P,n)] = (=)*~[Pl e ¥ < K\(4).

Given (C, ) € kery there exists a null-cobordism (f: C - 8C, (8p, ¢)) with
[8C] € Y < K (4), and

(C,9) = (= )"=9[8C] € im(9: A™\(Zy; ¥/X) > L%(4,¢))

so that (I) is exact.
The composite

L3(4,0) > Ly(d, ) —s AnZ,; Y/X) )

is 0. Given (C,¢) € kerB there exists a f.g. projective 4-module P such
that

[C1+ (= )"([P]+ (- )"[P*]) = 0 e K((4), [P]e X c K(4),

and
(C,p) = (C,p)@0[P] € im(y: L%(4,¢) - L% (4,¢)),

so that (II) is exact.
The composite

Ipd, o)~ Bz, v/x) -2 In(4,e) ()

is 0, for if (C, ¢) € L%+ (A4, ¢) and P is a f.g. projective A-module such that
[P] = (=)"**[C] € K\(4) then

(f(P,n)@0: C(P,n) > 8C(P,n) @ C, (3p(P,n) ® ¢, p(P,n)))

is a null-cobordism of 9B(C,¢) = o[P] = (C(P,n), p(P,n)) such that
[8C(P,n)®C) € X < K (4). Given [P] € kerd let

(9: C(P,n) > D, (0, p(P,n)) € @"*(g,¢))

be a null-cobordism of 3[P] = (C(P, n), (P,n)) such that [D] € X < Ky(4).
The union

(f(P,n): C(P,n) - 8C(P,n), (5p(P,n), p(P,n)))
u(g: C(P,n) > D, (8,¢(P,n))) = (D', 0 € Qnr(D’, )
is an (n + 1)-dimensional e-symmetric Poincaré complex over A such that

[D] = [D]-[C(P,n)]+[8C(P,n)] = [P] € A™\(Z,; Y/X).
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Thus [P] = B(D’,8') € im(8: LL(4,¢) - A\ (Z,; Y/X)), and (III) is
exact.

The cases where m = 1, n < —1 may be treated similarly.

Define the stable e-symmetric {e-quadratic} unitary group of A to be the
direct limit
U*(A,e) = Lim Aut He(A™)
m
Uy (A, e) = Lim Aut H(A™)
—_

m

of the automorphism groups of the standard hyperbolic even ¢-symmetric
{e-quadratic} forms over 4,

£

01
He(A™) = (A’“@ (A"‘)*,( 0) € Q<%>"(A’"®(A"‘)*))

(m > 1),
01
H(A™) = | A" @ (A™)*, 0 o€ Q. (A" @ (4™)¥)
the limit being taken with respect to the inclusions
Aut He(A™) > Aut H{(A™H); u —~> ud 1
(m = 1).
[ Aut H(A™) - Aut H(A™H); u > u@1

(The hyperbolic forms {H¥(A™)| m > 1} {{H(4A™)| m > 1}} are a cofinal
family of objects in the category of non-singular even e-symmetric
{e-quadratic} forms over 4.)

Define the elementary e-symmetric {e-quadratic} unitary group of A
EU*(A, e) {EU.(4, ¢)} to be the subgroup of #*(A,¢) {#,(4, ¢)} generated
by the elements of type

o 0
(1) ( . 1), for any automorphism « € Aut (4™, A™),
0 o*"

0
(i1) ( ), for any (— ¢)-symmetric {even (—&)-symmetric} form over
p 1

A (A™ 0 € Q*(A™) {(A™, @ € QLve)~*(4™))},

0 Ym~
(11]) O = (

&m 0
symmetric form given by

1
), where (4™, y,, € @+(4A™)) is the non-singular

Ym: A™ = (A™)*; (ay,ay, ..., 0y) F> ((bl,bz, ooy bp) = Zbidi)'

i=1
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Given a #*-invariant subgroup X < K (4) define a subgroup of
U A, e){U(4, )}
U% (A, e) = ker(r: U*(A,¢) > K,(4)/X),

UX(A4,¢) = ker(r: U, (4,¢) > R, (4)/X),

and let EU%(A, ) {(EUX(A,¢)} be the subgroup of E%*(A, &) (8% (A, ¢)}
obtained by restricting the generators of type (i) to be such that
7(a) € X < K,(A).

ProPOSITION 9.2. Let X < K (A) be a *-invariant subgroup.
(i) The elementary subgroup EU%(A,e) {EUE(A,¢€)} contains the com-
mulator subgroup of the stable unitary group
[%%(A,¢), U%(4,€)] {[%F(4,¢), %F(4,8)]}.
(ii) There are natural identifications of abelian groups
V{vg)k(A,e) = U%(A,e)/EU%(A,¢),
{ V1X(A, 8) = %f(A: s)/é’dkl*f(A’ 8)'
(iii) Every element of EU%(A,e) {EUX(A,¢)} is represented by an auto-

morphism w: Ho(A™) — He(A™) {u: H(A™) - H(A™)} for some m > 0 such
that, for some n > 0,

o 0 1 6%\ /1 0\/1 @'*
ooy o 1l )6 )
0 oa*Y\0 1/\p 1/\0 1

for some automorphism « € Hom 4(A?, A?) with 1(x) € X < K,(4), and some
(—&)-symmetric {even (—&)-symmetric} forms over A ((47)*,0), (47,¢),
((4P)*,8) (p = m+n).
Proof. A unitary automorphism
u: H{(A™) - H(A™) {u: H(4A™) - H(A™)}
such that 7(z) € X determines a non-singular even e-symmetric {e-
quadratic} formation over 4 (He(A™); A™ u(A™)) {(H,(A™); A™ u(4A™))}
with K-theory in X. The based analogue of Proposition 5.2 identifies
Vivpk(4,e) {V(4,¢)} with the Witt group of non-singular even
e-symmetric {e-quadratic} formations over A with K-theory in X. Given
‘unitary automorphisms u,v: Hé(A4™) - H*(A™) there is defined an iso-
morphism of formations
w: (He(4™); A™,v(A™)) > (H*(A™); u(4A™), uv(4™)).
Thus
(He(A™); A™, uv(A™)) = (He(A™); A™,u(A™)) @ (H(A™); u(A™), uv(4A™))
= (He(A™); A™, u(A™) @ (H*(4A™); A™,v(4™))

€ V(’U(Dk(A, 8),
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and we have a well-defined group morphism

£*: WA, 0) > Vodk(d, o);
(u: H(A™) - He(A™)) > (H*(4A™); A™, u(4™)).
Similarly, there is a well-defined group morphism
fo: U3 (4,6) > Vi¥(4,¢);
(u: H(A™) > H(A™) — (H(4A™); A™, u(4™)).

By Proposition 2.2 every non-singular even e-symmetric {e-quadratic}
formation over 4 with K-theory in X is isomorphic to (H*(4™); A™, u(4A™))
{(H(A™); A™ u(A™))}, for some unitary automorphism %, so that f* {f,}
is onto. The given generators of §%%(A,¢) {EUL(A,¢)} are sent to 0 by
f* {fs}, so that EU%(A,e) < ker(f*) {EUX(A,¢) < ker(f,)}. The based
analogue of Proposition 5.4(ii) characterizes the unitary automorphisms

u: HY(A™) > He(A™) {u: H(A™) > H(A™)}

such that u € ker(f*) {w € ker(f,)} as precisely those for which the forma-
tion (He(4A™); A™ u(4A™)) {(H,(A™); A™ u(A™))} is stably isomorphic to the
boundary 9(4™,p) of a (—e¢)-symmetric {even (—¢)-symmetric} form
over 4 (A™,¢p), or equivalently those for which «@® o, for some n > 0
admits a product decomposition as in (iii). Such unitary automorphisms
belong to &%%(4,¢) {E%¥(A, )}, and so

[%ff(A! 8):%§(A’ els ker(f*) = éD%E(A: &),
[UF(4, ), UE(4, 0)] < kex(f,) = BUF(4,¢).

The original definition of the odd-dimensional surgery obstruction
groups of Wall [25] was given by

L8 o (m,w) = AN Z[w), (= )0)/EUEHZ[x], (- ))) (¢ (mod 2)),

using the w-twisted involution on the group ring Z[#]. The inclusion
[U*, U*) = EU* {[Ux, U] < EUy} Was first obtained by Wasserstein [28]
{Wall [25] } using explicit matrix identities. (The quotient */[E%*,EU*]
{Uy)[EUy,EU, Y} is generated by o, so has order at most 2.) The ‘Bruhat
decomposition’ of &%, given by Proposition 9.2(iii) is the improvement
due to Wall [27] on the ‘normal form’ of Sharpe [22). The extra structure
carried by a ‘split unitary automorphism’ »: H(F) — H(F') in the sense
of Sharpe [22] corresponds in our terminology to a choice of hessian
0 € Q_,(G) for the lagrangian G = %(F') in the non-singular e-quadratic
formation (H(F); F, @), and so determines a split e-quadratic formation
(F,G).
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10. Laurent extensions

The Laurent extension A[z,27] of a ring with involution 4 is the ring
of finite polynomials 32 _. a2’ (a; € 4) in a central invertible indeter-
minate z over A with involution by Z = 271, that is

—: Afz,27Y] > Alz,27Y]; Tap = Yag.
i J

ProrosrTioN 10.1. The free e-quadratic L-groups Vi(A[z,271],¢) of the
Laurent extension A[z,271] of a ring with involution A are such that

Vi(dlz,27),e) = Vo(4,e)@ U, (4,¢) (neZ),
with Uy (4, €) the projective e-quadratic L-groups.

Proof. A splitting theorem of this type was first obtained for the surgery

obstruction groups
Li(m x Z) = Lg(m) @ Ly ()

by Shaneson [21], using geometric methods. A splitting theorem for the
quadratic L-groups of arbitrary rings A was then obtained by Novikov
[12] (modulo 2-primary torsion, with 1 € 4) and Ranicki [14], using
purely algebraic methods. In particular, in [14] there were defined natural
isomorphisms

€ B):V,(4,e)0U,_(4,¢) > V,(A[z,z],¢) (n e Z)

with € the split injection induced functorially by the split injection of
rings with involution
€A A[2,27'];a > a.

Only the case where ¢ = + 1 € A was considered there, but the methods
apply for all ¢ € A.

In Part II we shall associate an n-dimensional geometric Poincaré
complex over Z[m(X)], o*(X) = (C(X),p € @*(C(X))), to the universal
cover X of an n-dimensional geometric Poincaré complex X. In particular,
for the circle X = 8* we have the 1-dimensional symmetric Poincaré
complex over Z[Z] = Z[z,271]

o*(81) = (C,p € Q1(C))
Z[Z) ifr=0,1,
C’,={ [Z] ifr
0 if r # 0,1,
1: C* - C,,
¢o={

21: 00 > O,

defined by
d=1-2:C, - G,

P =1:0'> (C,,
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corresponding to the non-singular symmetric formation over Z[Z],
o*(8') = (HH(Z[Z])*,1); Z[Z),{(z, (2 —1)x) € Z[Z]® Z[Z]*| z € Z[Z]}).

The split injections appearing in Proposition 10.1 are precisely the
products

B=o*8Y)Y®—-:U,_,(4,¢) > V,(4[z,2'),¢) (neZ),
identifying
Z[Z)®, A = A[z,271].
For any ring with involution 4 let us write T = T_, and
L™A) = L~4, -1
-~ ) (n € Z).
L,(4) = Ly(4, —1) (= Ly,45(4))
ProrosiTION 10.2. The (k+ 1)-fold skew-suspension maps
§et: IoZ[Z2)) > L+2(Z[Z2), (= )Y) (k> 0)
are ot isomorphisms, with S*(o*(S') ® o*(S1)) ¢ im(Sk+1).

Proof. Consider first the case where k = 0. (Here, we can interpret the
result as stating that it is not possible to make the symmetric Poincaré
complex of the torus o*(S!x 8!) = ¢*(S!)® o*(S!) highly-connected by
algebraic surgery.) The products of Proposition 8.1 fit into a commutative
diagram

19 (1+7)
—_—

L(2[2%) @, Ly(2) L2[22) @, L(2)
1+T)el ®
D222 0, L) ———— L(ZIZ)
S®1 S
L2 @, Lyt) —— S Lyz(25)

The skew-symmetrization map (1+7): Ly(2(2%]) - L%(Z[Z?)) is onto, by
Proposition 6.2. Thus if ¢*(S!x 8?) € im(S: LYZ[Z2]) - L*Z[Z2])) there
exists an element € Ly(Z[Z?]) such that

o*(81 x 81) = 8(1+T)(x) € L¥Z[Z2)).
The Arf invariant 1 element ¢ € Ly(Z) = Z, is such that
o*(Stx SY)®c = Bc) = (0,0,0,1) # 0 € Ly(Z[Z?]) = Za 0000 Z,
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by Proposition 10.1. On the other hand, it follows from the above diagram
that

(S x SY)®@c = 8(x® (1+T')(c)) = 0 € Ly(Z[Z2?)),
since _ _

(1+T)(c) = 0 e LYZ) = 0.
This is a contradiction, so there is no such x € L,(Z[Z?]) and
o* (8t x 81) ¢ im(S).

For general k > 0 observe that S: L%(Z[Z2]) - L4(Z[Z2]) is an isomor-

phism by Proposition 6.2, and that
8i: LNZ[Z%]) ~ LA+*H(Z[Z%),(—)+) (j= 1)

is an isomorphism by Proposition 4.5, since Z[Z?] is noetherian of global

dimension 3.

The method of Proposition 10.2 can be used to obtain another failure of
4-periodicity in the symmetric L-groups, involving the deRham invariant
d € L\(Z) = Z, instead of the Arf invariant ¢ € Ly(Z) = Z,, as follows.

PROPOSITION 10.3. The (k+ 1)-fold skew-suspension map

Sk+1: LYZ[Z]) = 0 > L*+(Z[Z), (- )¥) (k> 0)

is not onto, with SkB(d) ¢ im(S*+1)) = 0.

Proof. Let Z[Z~] denote the ring Z[z,21] with involution

Z2=-z71
By Theorem V.1 of Morgan [11] we have that the product
4 —: Ly(Z[Z-)) = Zy > L(Z[Z")) = Z,
is an isomorphism. It follows that the product by
SkB(d) e L*+Y(Z[Z], (- )*),
SkB(d)® — : Ly(Z[Z7]) = Zy > Ly 1o(Z[Z X Z7), (- ) = Z4

is an isomorphism for each k > 0, and hence that S*B(d) # 0.

The symmetrization functor 1+7 embeds the category of quadratic
forms over a group ring Z[#] with the untwisted involution (which is the
same as the category of even symmetric forms over Z[r]) in the category
of symmetric forms over Z[n]. Nevertheless, it need not be the case that
the symmetrization map of Witt groups (1+7'): Ly(Z[=]) - L%(Z[~]) is
one-to-one, as shown by the following example.

ProrosiTiON 10.4. The symmetrization map
14T Ly(Z[Z2)) - LZ[Z2)
is not one-one, with B?(c) € ker(1 +T).
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Proof. Consider the commutative diagram

- - S
LXZ[Z%) ®, Ly(Z) —ﬁ—> Ly(Z[Z%)) «—— Ly(Z[Z?))
1®(1+T)J 1+TJ l1+T

LAZ[Z%) ®, L°(Z) AN LAZ[Z2?) «— LYZ[Z%)

in which the skew-suspensions S are isomorphisms (by Propositions 4.3
and 6.2(ii) ), and L%Z) = 0. The Arf invariant element ¢ € L(Z) = Z, is
such that
(1+T)81B%(c) = 8-Y(1+T)B?(c) = 8-1B%(1 + T)(c) = 0 e LY(Z[Z2)).
Write the product by o*(S) € LY(Z[Z]) on the e-symmetric L-groups as
B = o*(81)@—: UM4,¢) > Vr*i(A[z,271),¢) (n € Z).

ConyECTURE. The natural maps
(¢ B): V™A,e)@ UrY(4,¢) - V(A[z,271],¢)

are isomorphisms for all 4,¢,7 € Z.

Proposition 10.1 verifies the conjecture in the e-quadratic range n < —3.
The methods of Ranicki [14] can be extended to prove the conjecture in
the range —2 < » < 1 when the L-groups can be expressed in terms of
forms and formations. In particular, combined with the computation of
L*(Z) (Proposition 7.2) the conjecture would give

L¥Z2[Z2?) = I} Z)o LNZ)o LNZ)® LYZ) = 00 Z,0 Z,0 Z

with o*(S*x 8*) = (0,0,0,1) € L*Z[Z?]). Propositions 6.2 and 10.1 give
that
LYZ[Z%)) = LYZ)® L,(Z)® L,(Z)® Ly(Z) = 06 0® 0@ 8Z,

where 8Z denotes the subgroup Ly(Z) = 8Z < L%Z) = Z. The conjecture
relates the failure of periodicity L°(Z[Z?]) # L*(Z[Z?]) described by
Proposition 10.2 to the familiar inequality Ly(Z) # L%Z). For the
situation described by Proposition 10.3 the conjecture would give that
SkB(d) € L*+%(Z[Z], (- )*) = Z, (k > 0) is the generator. For the situa-
tion of Proposition 10.4 we have

Ly(Z[Z?) = LyZ)® Ly(Z)® L,(Z)® L|(Z) = 8Z© 00 0 Z,,
LZ[Z2?)) = LYZ)e LNZ)o LNZ)® LYZ) = Zo 00080,
with B2(c) = (0,0,0,1) € L(Z[Z2)).
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