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Abstract. The cobordism groups of quadratic Poincar6 complexes in an additive category with involution 
A are identified with the Wall L-groups of quadratic forms and formations in A, generalizing earlier work for 
modules over a ring with involution by avoiding kernels and cokernels. 
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O. Introduction 

The quadratic L-groups L.(A) of an additive category with involution A can be 
defined both as the Witt groups of forms and formations in A and as the cobordism 
groups of quadratic Poincar6 complexes in A. The main result of this paper is that these 
two definitions agree, allowing quadratic L-theory to be defined unambiguously in 
situations where it is inopportune to deal with kernels and cokernels. 

Wall [17] defined the n-dimensional quadratic L-group L,(A) of a ring with 
involution A for n(mod 4), with LEi(A) the Witt group of nonsingular (-)i-quadratic 
forms on based f.g. free A-modules, and LEi+ I(A) the stable automorphism group of 
such forms, requiring isomorphisms to be simple in the sense of Whitehead torsion. In 
Ranicki [8], the automorphisms were replaced by formations, which are forms with an 
ordered pair of Lagrangians ('subkernels' in [17]). In Section 2, the method of [-8] is 
applied to define the n-dimensional quadratic L-group L,(A) for any additive category 
with involution A and n(mod 4), with L2i (~ )  the Witt group of nonsingular 
(_)i_quadratic forms in A, and L21 + I (A)  the Witt group of ( - ) i  quadratic formations 
in ~. A ring with involution A determines additive categories with involution 

DZ(A) = {f.g. free A-modules}, 

P(A) = {f.g. projective A-modules}' 

such that 

L,(UZ(A)) = Lh,(A), L,(P(A))=L~,(A), 

with L~(A) the free L-groups and Lg(A) the projective L-groups. The original simple 
L-groups L~,(A)= L,(A) are expressed in Section 7 as the quadratic L-groups of 
•(A) = {based f.g. free A-modules} with the appropriate torsion considerations. 
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The quadratic L-groups Lh,(A) (resp. LP,(A)) were expressed in Ranicki [11] as the 
cobordism groups of quadratic Poincar6 complexes, that is f.g. free (resp. projective) 
A-module chain complexes with quadratic Poincar6 duality. In Section 3 the method of 
[11] is applied to define the n-dimensional quadratic L-group L,(/~) for any additive 
category with involution A and any n >~ 0 as the cobordism group of n-dimensional 
quadratic Poincar6 complexes in A. The method of [11] also applies to define the 
n-dimensional symmetric L-groups L*(A), but these groups are not 4-periodic in 
general, and can be expressed as Witt groups only for n = 0, 1. The proof in [11] that 
the quadratic Poincar6 cobordism groups are isomorphic to the Witt groups for F(A) 
and P(A) used kernel and cokernel modules, albeit only for split surjections and split 
surjections. An additive category need not have kernels and cokernels, although it can 
be embedded in an Abelian category. For example, the kernels and cokernels for F(A) 
and P(A) are defined using the embeddings 

~:(A) ~ P(A) ~ {A-modules}. 

In principle, it is possible to verify the agreement of the two definitions of L,  (/~) for any 
A by using an embedding of A in an Abelian category, exercising due care with the 
involution. We adopt a more intrinsic approach here, staying inside/~ throughout and 
avoiding the use of kernels and cokernels by stabilization. 

An n-dimensional quadratic Poincar6 complex (C, ~) in A is an n-dimensional chain 
complex in A 

C:...-.~O...~Cn ~ C n _  1 d~, Cn_2..-.~ 

" " ~ C 1  a--~Co, 

together with a quadratic structure ~ defining a Poincar6 duality chain equivalence 

(1 + T)~o: C"-* ~ C. 

(C, ~) is 'highly connected' if 

f{j r i, for n = 2i, 
C j = 0  i ~ i , i + 1 ,  for n = 2 i + l .  

A (-)~ quadratic form (resp. formation) in A is essentially the same as a highly 
connected n-dimensional quadratic Poincar6 complex (C, ~O) for n = 2i (resp. n = 
2i + 1). The Witt group of forms (resp. formations) in/~ is essentially the same as the 
cobordism group of the highly connected quadratic Poincar6 complexes in A, as 
recalled in Section 4. The identification in Ranicki [11] of the cobordism group L,(A) 
with the Witt group for A = F(A) and P(A) was by an algebraic mimicry of geometric 
surgery below the middle dimension. To each n-dimensional quadratic Poincar6 
complex (C, tp) there was associated an 'instant surgery obstruction' (C', ~'), a cobord- 
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ant highly connected complex such that 

C } =  ker ( [d  0 (-)n+ l(l q-(__)id,r)o~ Ci (~ cn-i+l -+ Ci- 1 (~ cn-i+2) 

f o r n = 2 i o r 2 i + l ,  

CI+ I = CI+ I f o r n = 2 i + l .  

The cobordism class (C, 0 ) s  L,(A) is the Witt class of the form (resp. formation) 
associated to (C', ~/). 

The formula defining the instant surgery obstruction (C', ~') uses the notion of 
kernel, and so does not apply in an arbitrary additive category with involution A. In 
Section 5, we associate to each n-dimensional quadratic Poincar6 complex (C, ~) in 
A an 'additive instant surgery obstruction' (C ~, ~ ) ,  a cobordant highly connected 
quadratic Poincar6 complex such that the cobordism class of(C, ~) is the Witt class of 
the form (resp. formation) associated to (C e, ~*), with 

oo ( r  ,+2.1 (Ci+2j@C ) for n=2 i ,  

I ~ (Ci-2j @ C/+2~+2) for n = 2i + 1, 
~-j= 0 

(C~)i+l= ~ ( C i - 2 j + I ~ C  i+2J+3) f o r n = 2 i + l .  
j=O 

The quadratic structure ~ and the differential 

d~:(C~)i+l ~(C~)~ (for n = 2i + 1) 

depend on a choice of contraction 

F: 1 -~ 0:C((1 + T)0o) ~ C((1 + T)Oo) 

for the algebraic mapping cone C((1 + T)~o: C"-* ~ C). In Section 8 the nonsingular 
(-)/-quadratic form defined by ((C ~ )i, (0 ~)o) in the case n = 2i is expressed as a 'stable 
radical quotient' of the singular (-)/-quadratic form 

o 

The additive instant surgery obstruction (C ~, ~ e) can be regarded as the L-theoretic 
analogue of the instant torsion of a contractible finite chain complex C in an additive 
category A, the isomorphism defined for any chain contraction F: 1 ~- 0: C --, C by 

d + F:Co~d = ~ C2j+i--* C .... = ~ C2j. 
j=O j=O 

For the additive category B(A) = {based f.g. free A-modules} this is the traditional 
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method of defining the Whitehead torsion z(C)= T(d + F)~/~I(A ). The additive 
instant surgery obstruction is also an analogue of the instant finiteness obstruction of 
Ranicki [13]. See Section 6 (resp. Section 7) for the combination of additive L-theory 
with the additive Ko (resp. K1- ) theory of Ranicki [13] (resp. [14]). 

The quadratic L-theory of additive categories with involution arises in contexts 
other than the standard examples IF(A) and P(A) for a ring with involution A. Here are 
two of these: 

(i) A fibration F ~ E p B with the fibre F an m-dimensional geometric Poincar6 
complex induces geometric transfer maps 

if: L,(Z[~ 1 (B)]) ~ L,, ,,(Z[Tz 1 (E)]), 

with L ,  - L h for finite F. In Ltick and Ranicki [4], p~ is described algebraically as 
a composite 

p': L.(7/[Trl (B)]) ~ L.({~m(7/[lrl (E)])) ~ Lm+n(7/[Trl(E)]), 

with D,,(A) defined for any ring with involution A to be the additive category of 
m-dimensional chain complexes C in ~:(A) and chain homotopy classes of chain maps, 
with the m-duality involution C ~ C"-*. 

(ii) Pedersen and Weibel [6, 7] constructed for any idempotent complete filtered 
additive category A a nonconnective delooping E(A) of algebraic K-theory, with 
~,(~(A)) = K,(A), and expressed the generalized homology groups H,(X; E(A)) of 
a compact polyhedron X as the K-groups K,+~(P(Co(x)(A))) of the idempotent 
completion of the additive category Co(x)(A) of O(X)-graded objects in A, with O(X) 
the open cone of X. Ferry and Pedersen [2] use the additive L-theory of this paper to 
obtain an analogous nonconnective delooping ~_<-~>(A) of the lower quadratic 
L-theory of an idempotent complete filtered additive category with involution 
A (Ranicki [9, 15]), and an analogous expression for the generalized homology groups 
H ,  (X; 0_ <- ~>(A)) as the L-groups L ,  + 1 (P(Co(x)(A))) of the idempotent completion of 
Co(x)(A), at least if A = ~:(A) for a ring with involution A and up to 2-torsion. See 
Remarks 6.16 and 7.24 for a discussion of such expressions for the lower K- and 
L-groups in the special case X = S i. 

The additive instant surgery obstruction (C a, ~*) has an application to the surgery 
obstruction of a normal map. 

The kernel 7/Dzl(X)]-modules of an n-dimensional normal map (f, b): M" ~ X are 
defined by 

Kj(M) = Hj+ 1(~: ]~ -* )~) 

with )~ the universal cover of X, _M -= f*)~ the pullback cover of M, and iT: _~r __. )~ 
a zc~(X)-equivariant lift o f f .  The theory of Ranicki [-12] associates to (f,b) an 
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n-dimensional quadratic Poincar6 complex in ~(Z[gl(X)] ) 

a .  (f, b) = (C, r 

such that H.(C)  = K.(M),  with C = C(ff) the algebraic mapping cone of the Umkehr 
7/[~l(X)]-module chain map 

f ' :  C(X) ( [x]n-) - i  , C()~)"-* ~7" C(M)"-* ([M]c~-), C()~). 

The Wall surgery obstruction of (f, b) is the cobordism class 

a ,  (f, b) = (C, ~) e L.(Z[n 1 (X)]), 

vanishing if(and for n ~> 5 only if) (f, b) is normal bordant to a homotopy equivalence. 
Here, L .  = Lh,. 

By definition, a normal map (f, b): M" ~ X is k-connected if Ks(M ) = 0 for j ~< k. 
Classical surgery theory below the middle dimension shows that for n/> 5 every 
n-dimensional normal map (f, b): M" ~ X is normal bordant to a highly connected 
normal map (f ' ,  b'): M'" ~ X, meaning (i - 1)-connected if n = 2i or 2i + 1. The 
standard procedure is to construct a sequence of n-dimensional normal maps 

(f(J), b(J)): M(J) ~ X (0 <. j <. i) 

such that 

(i) (f(o), b(O)) = (f, b): M (~ = M --~ X, 

(ii) (f(J), b (j)) is (j - 1)-connected, 
(iii) for 1 ~ j < ~ i  (f~i),b(J)) is obtained from (f(~-l),b(i-1)) by a sequence of 

elementary surgeries on a finite set of generators of the Z[nl(X)]-module 
Kj(M (j)) = n j+ ~(f(J)), so that (f(J), b (j)) is normal bordant to (f(J-1), b(j - ~)). 

The last normal map in the sequence (f(J), b (j)) (0 ~<j ~< i) 

(f',  b') = (f(i), b(i)): M' = M (i) ~ X 

is highly connected. The procedure involves choices, so (f ' ,  b')is only determined up to 
normal bordism (which can itself be made highly connected by surgery below the 
middle dimension). The instant surgery obstruction (C', r of the quadratic Poincar6 
complex a. ( f ,  b)= (C, ~) determines one particular set of choices, depending on 
choices of bases in the chain modules of C = C(ff). The quadratic Poincar6 complex of 
the corresponding highly connected normal map (f ' ,  b') is such that 

a . ( f ' ,  b') = (C', ~'), 

realizing the instant surgery obstruction. The additive instant surgery obstruction 
(C e, tp e) of(C, tp) is realized by another normal bordant highly connected normal map 
( fe ,  be): M e ~ X, such that 

a , ( f  e, b e) = (C e, oe). 
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Both (C', ~') and (C e, ~,e) represent the surgery obstruction a.(f,  b)~ L,(7/[nI(X)] ), 
but (C a, ~ )  is obtained from (C, ~) without using kernels and cokernels. 

1. Additive Categories with Involution 

It is assumed that the reader is already familiar with the definition of an additive 

category. 

D E F I N I T I O N  1.1. A sequence of objects and morphisms in an additive category A 

O-~L i---~M J ) N ~ O  

is split exact if there exists a morphism k: N ~ M such that 

(i) jk = I :N  ~ N, 
(ii) (i k): L ~ N ~ M is an isomorphism. []  

D E F I N I T I O N  1.2 An involution on an additive category A is a contravariant functor 

* :A ~ A ; M ~ M * ,  ( f : M ~ N ) ~ ( f * : N * ~ M * )  

together with a natural equivalence 

e: id A ~ **: A -* A; M ~ (e(M): M ~ M**) 

such that for any object M of A 

e(M*) = (e(M)-1) * :M* ~ M***. [] 

EXAMPLE 1.3. Let A be an associative ring with 1 and with an involution, that is 

a function 

- : A ~ A ; a ~ C t  

such that 

( a + b ) = 5 + ~ ,  (ab)=b'?t, Z t = a , i = l e A  (a, b eA ) .  

Define the duality involution on the additive category P(A) of f.g. projective (left) 

A-modules 

*: P(A) ~ P(A); P -* P* 

by 

P* = HomA(P, A), A x P* ~ P*; (a,f) -* (x ~f (x) '8)  

f * :  Q* - .  P*; (g: Q ~ A) ~ (gf: P ~ A) ( f e  Homa(P, Q)) 

e(P): n ~ n**; x ~ ( f~f(x)) .  

The dual of a f.g. free A-module is f.g. flee, so that the involution on P(A) restricts to an 
involution on the full subcategory ~:(A) of f.g. free A-modules. [] 
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Given an additive category with involution A, we shall use the natural isomorphisms 

e(M): M--* M** to identify M** = M. 

D E F I N I T I O N  1.4. The duality isomorphism 

TMm: Hom~(M, N*) ~ Hom~(N, M*); ~ ~ ~* 

is such that 

TN,MT~,N = 1: Hom~(M, N*) ~ HomA(N, M*) ~ Hom~(M, N*). [] 

In particular for M = N we have a duality involution 

T = TM,M: Hom~(M, M*) --* HomA(M, M*); ~ --* ~*. 

D E F I N I T I O N  1.5. For  e = _ l  and M in A let the generator T e Z  2 act on 
Homa(M, M*) by the e-duality involution 

T~ = ~T: Hom~(M, M*) --* Hom~(M, M*); ~ --* e~k*. [] 

2. Forms and Formations 

The theory of e-quadratic forms and formations over a ring with involution 
A developed in Ranicki [8] works just as well in any additive category with involution 

A, the original case being for A = P(A). We only state here the most essential 
definitions and properties of the extension of the theory to any A. 

D E F I N I T I O N  2.1. An e-quadratic form in A (M, ~) is an object M in A together with 
an element in the 7/2 -homology group 

tp ~ Q~(M) = coker(1 - T~: HomA(M, M*) ~ Hom~(M, M*)). 

The form (M, ~) is nonsingular if the morphism 

(1 + T~)~k = ~ + et//*: M ~ M* 

is an isomorphism in A. [] 

D E F I N I T I O N  2.2. A morphism of e-quadratic forms in 

f :  (M, ~) ~ (M', ~b') 

is a morphism f :  M ~ M' in A such that 

f*O' f  = t~ ~ Q,(M). [] 

D E F I N I T I O N  2.3. A Lagrangian L in a nonsingular e-quadratic form (M, ~k) is 
a morphism of forms 

i: (L, 0) ~ (M, ~k) 

such that there is defined a split exact sequence in 

0 --* L z_~ M i*(~+~*) ' L* --* 0. [] 
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DEFINITION 2.4. The hyperbolic e-quadratic form H,(L) for an object L in A is the 
nonsingular z-quadratic form in A 

with a Lagrangian defined by the morphism of forms 

i=[~] : (L ,O)~H~(L) .  [] 

DEFINITION 2.5. Let (M, ~), (M', ~k') be nonsingular z-quadratic forms with 
Lagrangians L, L', respectively. An isomorphism f:  (M, ~k) --. (M', ~') sends L to L' if 
there exists an isomorphism e e HomA(L, L') such that 

i'e = fi:L--* M', 

in which case there is defined an isomorphism of split exact sequences 

0-~ L i i*(~,+e~*) L* , M  , ~ 0  

e~ fl e*-l~ 
0 --* L'/--~ M' i'*(~'+~'*), L'* --* 0. [] 

PROPOSITION 2.6. An e-quadratic form ( M, ~ ) admits a Lagr angian L if and only if it 
is isomorphic to H,(L). 

Proof. An isomorphism of forms f :  H~(L) ~ (M, ~k) determines a Lagrangian L of 
(M, ~) with 

i: L [~-~] L O L * f ~ M. 

Conversely, suppose that (M, ~) has a Lagrangian L, and let i: L ~ M be the inclusion. 
Choose a splitting morphism j e Hom~(L*, M) for the split exact sequence 

O-~L i ~ M  i*(O+~O*)~L,~O, 

so that 

i*(~O + e~O*)j = 1 e Homa(L*, L*). 

For any k e Homa(L*, L) there is defined another splitting 

j ' = j  + ik:L* ~ M 

such that 

j'*~bj' =j*~kj + k*i*~bik + k*i*~kj + j*~bik 

=j*d/j + ke  Q~(L*). 

Thus, there exists a splitting j: L* -~ M which is the inclusion of a Lagrangian, with 
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j*r = 0 ~ Qe(L*), in which case 

(i j): H~(L) ~ (M, r 

is an isomorphism of e-quadratic forms. [] 

DEFINITION2.7. The Wittgroupofe-quadraticformsL~(A)istheAbeliangroupwith 
one generator (M, r for each isomorphism class of nonsingular e-quadratic forms in 
A and relations 

(i) ( g ,  ~b) + (M', r = (M ~ M', ~b �9 ~b') 
(ii) He(L ) = O. [] 

PROPOSITION 2.8. A nonsingular e-quadratic form in A (M, r represents 0 in the 
Witt group L~(A) if and only if there exists an isomorphism of forms 

(M, ~O) E) He(G ) ~ He(F ) 

for some objects F, G in/~. 
Proof. Immediate from the definition. [] 

In particular, for any nonsingular e-quadratic form (M, ~) the diagonal morphism 
defines a Lagrangian 

A = [ l l I : ( M , O ) ~ ( M ~ M , ~ k e - - r  

so that 

--(M, if) = (M, - r  

DEFINITION 2.9. A nonsingular e-quadratic formation in ~ (M, r F, G) is a non- 
singular e-quadratic form (M, r together with an ordered pair of Lagrangians (F, G). 

[] 

DEFINITION 2.10. (i) An isomorphism of formations in A 

f :  (M, r F, G) ~ (M', ~'; F', G') 

is an isomorphism of forms f :  (M, ~O) ~ (M', ~k') sending F to F', and G to G'. 
(ii) A stable isomorphism of formations in A 

[ f ] :  (M, if; F, G) ~ (M', if'; F', G') 

is an isomorphism of formations 

f :  (U, ~b; F, G) ~ (He(P); P, P*) ~ (M', ~'; F', G') ~9 (H,(P'); P', P'*) 

for some objects P, P' in A. [] 

DEFINITION 2.11. The Witt 9roup of e-quadratic formations M,(A) is the 9elian 
group with one generator (M, ~O; F, G) for each stable isomorphism class of nonsingular 
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e-quadratic formations in A and relations 

(i) (M,~;F,G) + (M',~k';F',G') = (M O M ' , ~ O ~ ' ; F  G F' ,G~G') ,  
(ii) (M, ~; F, G) + (M, ~O; G, H) = (M, ~,; F, H). [] 

The inverses in Me(A ) are given by 

- (M,  ~h; F, G) = (M, ~h; G, F) = (M, -~h; F, G) e M,(A). 

REMARK 2.12. As in Ranicki [8] define the boundary of a (-e)-quadratic form (P, 0) 
in A to be the nonsingular e-quadratic formation in A 

(3(P, 0) = (He(P); P, r(p,0)) 

with 

A nonsingular e-quadratic formation (M, ~; F, G) in A represents 0 in M~(A) if and only 
if it is stably isomorphic to the boundary D(P, 0) of a ( -  e)-quadratic form (P, 0) in A. 
This is a translation into the language of forms and formations of Proposition 5.2 of 
Ranicki [11]. [] 

By the proof of Proposition 2.6, every nonsingular formation is isomorphic to one of 
the type (He(F); F, G), as determined by a split exact sequence in A of the type 

0 --* G ~ F ~ F* (~* ~*) , G* ~ 0 

with V ~ HomA(G, F), kt ~ HomA(G, F*) such that 

?*/~ = 0 - e0*: G ~ G* 

for some (-e)-quadratic form (G, 0). We write such a formation as (F, If,]G). 

REMARK 2.13. The condition of 2.12 can be made more precise, making further use of 
the material in Section 5 of Ranicki [-11]. A nonsingular e-quadratic formation 
(F, [~]G) in A represents 0 in the Witt group Me(A ) if and only if there exist 
a ( -  e)-quadratic form in A (H, X) and a morphism j: F --, H* such that the morphism 
defined in A by 

;,, ] 
ez*l: F @ H --, G* @ H* J Z I 

1 

is an isomorphism. If there exist such (H, Z) andj then (F, G) is stably isomorphic to the 
boundary O(F ~ G ~ H, ~,) of any (-e)-quadratic form (F @ G ~ H, ~,) such that 

~k - cO* = Y*# 7*J* :F @ G ~ H -~ F* ~ G* ~ H*. [ ]  

-- ej7 Z--eZ* 
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DEFINITION 2.14. A nonsingular split e-quadratic format ion  (F, ([~], 0)G) in A is 
a nonsingular e-quadratic formation (F, [,~] G) with a particular choice of form 
(G, 0 ~ Q_~(G)) such that 

?*p = 0 - -  e0*: G ~ G*. [ ]  

The theory of split formations developed in Section 2 of Ranicki [11] for P(A) works 
just as well in any additive category with involution A. Again, the Witt group of 
nonsingular split e-quadratic formations is isomorphic to the Witt group M,(A) of2.11, 
so that the choice of 'Hessian' form (G, 0) does not affect the Witt class (F, G) ~ M~(A). 

3. Quadrat ic  Po incar6  C o m p l e x e s  

The theory of e-quadratic Poincar6 complexes over a ring with involution A developed 
in Ranicki [11] works just as well in any additive category with involution A, the 
original case being for A = P(A). Again, we only state here the most essential 
definitions and properties of the extension of the theory to any A. 

DEFINITION 3.1. The dual of a chain complex in A 
dc dc 

C :  . . .  ~ C r + l  > C r  ~ C r - 1  ~ " "  

is the chain complex in A 

C g :  _ _ + C  - r - 1  dc* c - r  dc" c - r + 1  �9 . .  ) ) ...+ , . ,  

defined by dc, = (dc)*: 

( C * ) r  ~- C - r  = ( C _ r ) *  ---> (C*)r_ 1 ~- C - r +  l = ( C _ r + l ) * .  [] 

DEFINITION 3.2. The n-dual of a chain complex C in A is the chain complex C n- * in 
A defined for any n ~ 7/by 

dc,  , = ( - ) ' ( d c ) * : ( C n - * )  r = C"-"  ~ (Cn-*)r  _ 1 = C n-r+ 1 [] 

DEFINITION 3.3. The algebraic mapping cone of a chain map f :  C ~ D in/~ is the 
chain complex C ( f )  in & defined by 

dc ]" 

C ( f )  r = D r • C ,_  1 --~ C ( f ) , -  1 = Dr -  1 �9 C , -  2. [] 

REMARKS 3.4. A chain map f :  C ~ D of finite chain complexes in A is a chain 
equivalence if and only if the algebraic mapping cone C(f) is chain contractible. See 
Proposition 1.1 of Ranicki [13] for an explicit proof. [] 

DEFINITION 3.5. Given chain complexes C, D in A, let Hom~(C, D) be the Abelian 
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group chain complex defined by 

dHoma(C, D): Homa(C, D), = 

ANDREW RANICKI 

Homa(C p, Dq) --* Homa(C, D),_ 1; 
q - - p = r  

f ~ d o f  + ( - )qfd c. [] 

There is a natural one-to-one correspondence between chain maps f:  C ~ D and 
0-cycles f '  e Homa(C, D) o, with 

f '  = ( - ) " f :  C, ~ D, (n e 7/). 

Similarly for chain homotopies and 1-chains. Thus, Ho(Homa(C, D)) is isomorphic to 
the additive group of chain homotopy classes of chain maps C ~ D. 

Given a chain complex C in A and e = + 1 use the signed z-duality isomorphisms 

T=: Homa(C',  Cq) --+ Homa(C q, Cp); ~O --+ (-)v%~O* 

to define an involution 

T=: Homa(C*, C) ~ Homa(C*, C), 

so that Homa(C*, C) is a 7/[7/2J-module chain complex. Let W be the standard free 
Z[7/2]-module of 7/ 

W:...--+7/[7/2] 1 - r  7/[7/2] 1+T'7/[7/2] 1-T>7/[7/2]. 

D E F I N I T I O N  3.6. The z-quadratic Q-groups of a chain complex C in A are the 
7/2-hyperhomology groups of Homa(C*, C), the Abelian groups 

Q,,(C, 5) = H,,(W| C)) (n e 7/). [] 

An element ~ e Q,,(C, 5) is represented by a collection of morphisms 

~9 = {~= ~ Homa(C"- ' -s ,  Cr) ] r e 7/, s >>. 0} 

such that 

dc$ s + (-)r$s(dc)* + (-)n-s-l(~bs+ x + ( - )S+lTJIs+l)  = 0: 

C"- ' -* -  1 ~ C,. 

D E F I N I T I O N  3.7. An n-dimensional z-quadratic Poincark complex in A (C, ~) is an 
n-dimensional chain complex in A 

dc 
C : . . .  --.+ O --) .  C n  . -+  . . .  --.} C r +  1 ) C r 

dc 
) C r _ I - -~  . . . - ~  C o .---~ O - -~  . . . 

together with an element ~ e Q.(C, e) such that the chain map 

(1 + T=)~o: C"-* ~ C 

is a chain equivalence. [] 

See Section 3 of Ranicki [11] for the details of the definition of an (n + 1)-dimensional 
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e-quadratic pair (f:  C -~ D, (6~, ~)), a cobordism ((f  f ' ) :  C ~ C' --* D, (3~, ~ E3 - ~0')) of 
n-dimensional 5-quadratic Poincar6 complexes (C, if), (C', ~'), and of algebraic surgery. 

D E F I N I T I O N  3.8. The n-dimensional 5-quadratic L-group of & L.(A, e) (n/> 0) is the 
cobordism group of n-dimensional ~-quadratic Poincar6 complexes in A. [] 

For e = 1 the terminology is abbreviated by 

1-quadratic = quadratic, T 1 = T, 

Q,(C, 1) = Q,(C), L,(A, 1) = L,(A). 

EXAMPLE 3.9. (i) The projective quadratic L-groups of a ring with involution A are 
the quadratic L-groups of the additive category with involution P(A) of f.g. projective 
A-modules 

L~(A) = L,(P(A)). 

(ii) The free quadratic L-groups of A are the quadratic L-groups of the full 
subcategory DZ(A) ___ 0Z(A) of f.g. free A-modules 

Lh,(A) = L,(~(A)). [] 

A chain map f :  C ~ D in A induces morphisms in the Q-groups 

f./o: Q,(C, 5) ~ Q,(D, ~); ~ --* fo/o ~ = { f  ~O~f* Is >~ 0} 

which depend only on the chain homotopy class off(Proposi t ion 1.1 of Ranicki [11]). 
In particular, a chain equivalence f induces isomorphisms fo/: Q,(C, e) ---, Q,(D, e). 

D E F I N I T I O N  3.10. A homotopy equivalence of n-dimensional e-quadratic Poincar6 
complexes in A 

f: (C, $) ~ (C', $') 

is a chain equivalence f:  C ~ C' such that 

f ,  jo(~) = ~/ E Q, (c ' ,  5). [] 

A homotopy equivalence f:  (C, $) ~ (C', $') determines a cobordism ((f  1): C �9 C' 
C', (65, ~ @ -$ ' ) ) ,  so that 

(C, $) = (C', $') e L,(A). 

4. High Connections 

We establish the 4-periodicity 

L,(A, 5) = L,+4(/~, 5) (n ~> 0) 

by defining maps L, (A, 5) ~ L, + 2 (A, - 5) and using algebraic surgery below the middle 
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dimension to prove that they are isomorphisms, as in Ranicki [11] for A = P(A) but 
without using kernels and cokernels. 

DEFINITION 4.1. An n-dimensional e-quadratic Poincar6 complex in A (C, 0) is 
highly connected if it is such that 

i f ~ r # i ,  for n =  2i, 
C , = 0  lr # i , i + 1 ,  for n = 2 i + l ,  

for that 

---~0---+Ci+ 1 d)c i - - - -~O- -~  i f n = 2 i + l .  [] 

PROPOSITION 4.2. There is a natural one-to-one correspondence between the 
homotopy equivalence classes of highly connected [21+1J-dimensional e-quadratic 
Poincard complexes in ~ and the [~.ble] isomorphism classes of nonsingular [~ut] (-)ie- 
quadratic I-forms -I Lformationsd in A. 

Proof A highly connected 2i-dimensional e-quadratic Poincar6 complex (C, ~k) 
corresponds to the nonsingular (-)ie-quadratic form (C i, ~o). A highly connected 
(2i + 1)-dimensional e-quadratic Poincar6 complex (C, ~) corresponds to the non- 
singular split (-)ie-quadratic formation (F, ([~], O)G) defined by 

d c = # * : C i + l = F ~ C i = G * ,  C r = O f o r r # i , i +  l, 

ee?: Ci = G--* Ci+ I = F, 

~ O = [ o : c  i + I = F* --* C i = G*, 

~1 =0: Ci = G ~ C i  = G*. 

The verification that the homotopy equivalence of highly connected complexes 
corresponds to the (stable) isomorphism of forms (formations) proceeds as in Section 
2 of Ranicki [11]. [] 

PROPOSITION 4.3. The cobordism group of highly connected [~i+l]-dimensional 
e-quadratic Poincard complexes in ~ is naturally isomorphic to the Witt group [~:!~:(~)] 
of nonsingular (-)ie-quadratic rl . . . .  q Lformationsl in /~. 

Proof The verification that the cobordism of highly connected complexes cor- 
responds to the Witt relations for forms and formations proceeds as in the case 
/~ = P(A) considered in [11]. [] 

For i = 0, Proposition 4.3 gives identifications 

Lo(A, e) = L~(A), L 1 (A, e) = M~(A). 

DEFINITION 4.4. The suspension SC of a chain complex C in A is the chain complex 
in A defined by 

dsc = dc: SCr = C r _  1 ----1. S C r _  1 = C r -  2. []  

DEFINITION 4.5. The skew-suspension of an n-dimensional e-quadratic (Poincar6) 
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complex in ~ (C, ~) is the (n + 2)-dimensional ( -  e)-quadratic (Poincar6) complex in 

g ( c ,  O) = ( s c ,  gO),  

with S~k e Q. + 2 (SC, - e) defined by 

( s~)s  = ( - ) % :  ( s c )  ~ + '  = c ~ --' ( s c ) n  § - ,  - ~  = c n _ r _ s .  [ ]  

We wish to prove that the/-fold skew-suspension maps 

gi: L(_),~(/~) = Lo(~, (-)is) ~ Lzi(/~, s), 

Si: M(_),~(/~) = L 1 (/~, (-) ie)  ~ L2i+ 1(/~, e) 

are isomorphisms for any i ~> 0. 

The highly connected n-dimensional e-quadratic Poincar6 complexes for n = 2i or 
2i + 1 are precisely the/-fold skew-suspensions si(c ,  ~) of the (n - 2i)-dimensional 
(-)/e-quadratic Poincar6 complexes (C, r 

DEFINITION 4.6. Let n = 2i or 2i + 1. An n-dimensional e-quadratic Poincar6 
complex (C, ~k) is stably highly connected if C, = 0 for r >/n - i + 1, so that 

{ C: . . . -*O--*Ci  d--~C i _ l - - * . . . ~ C o  i f n = 2 i ,  

C: ~ O ~ C i + l  d ~ c i ~ ' " ~ C o  i f n = 2 i +  1. [] 

Highly connected complexes in the sense of 4.1 are stably highly connected. 

REMARK 4.7. For a stably high connected n-dimensional s-quadratic Poincar6 
complex (C, ~) in N a chain contraction 

F: 1 ~- 0:C((1 + T~)~o: C ~-* ~ C) ~ C((1 + T~)~ko) 

includes morphisms F e Hom~(Cr, Cr+ 1) (r <~ i - 1) such that 

d F + F d =  I : C , ~ C r  ( r < ~ i - 1 ) .  

If A is fully embedded in an Abelian category, then (C, if) is homotopy equivalent to 
a highly connected complex (C', ~') with 

C ' i=ker(d :C i~C~_ l )  i f n = 2 i  or 2 i + 1 ,  

C}.I  = Ci+I i f n = 2 i + l .  

In particular, this applies to the full embedding of the additive category A = P(A) of 
f.g. projective A-modules in the Abelian category of all A-modules, for any ring with 
involution A. [] 

DEFINITION 4.8. Given any chain complex C in/~ and integers i ~< j, let C[i,j] be 
the chain complex in ~ defined by 

{C~ i f i<~r<~j ,  
C[i,j]~ = otherwise, 

dcti,jl = dc: C[i,j-I, = C~--* C[i,j]~_ t = C~_ 1 (i < r <~ j). 
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If Cj+I =0 ,  let I :C-- .C[ i , j ]  be the chain map defined by the identity maps 
1: C~ ~ C[i,j]~ (i <~ r <~j). [] 

PROPOSITION 4.9. Let n = 2i or 2i + 1. For every n-dimensional e-quadratic 
Poincar6 complex (C, ~) in A, there exists a cobordism (C G C' ~ C"-*[i, n], (6~, ~kO - ~')) 
to a stably highly connected complex (C', ~') with 

f Cr(~C n+l-r if r<~i, 

C' ,=~C~+I if r = i + l  and n = 2 i +  1, 

Lo otherwise. 

Proof. As in Proposition 5.3 of Ranicki [1 i] there is defined an (n + 1)-dimensional 
e-quadratic pair (1: C --* C[n - i + 1, n], (0, ~)). Algebraic surgery on this pair fol- 
lowed by a homotopy equivalence results in a cobordism (C �9 C ' ~  C"-*[i,n], 
(6~, ~@ - ~')) to a stably highly-connected complex (C', ~O') with 

d c . = [ ~  ( - )"+ 1(1 + T~)~k~ 
(-)'d* J: 

C/r = C r ( ~ C n + l - r ' - ~ C t r -  1 = C r - l ( ~ C  n+2-" ( r ~  i). [ ]  

PROPOSITION 4.10. For every stably highly connected n-dimensional e-quadratic 
�9 n=2i r c~176 (C'~C@~D,(Jqt',q/'~-~@)) 3 

Poincar6 complex (C', ~b') in A wzth ]-. = 2i+ 1] there exists a "homotopy equivalence (C'. O')--*(C @, o@)l 
to a highly connected n-dimensional e-quadratic Poincard complex (C e, ~b e) with 

I (Ce)i = ~ (G-2 j e  C'i-2J-1), 
j=O 

(C~)i : j=O ~ Ci -2 j '  (C~) i+I  : j=o ~ C~+l -2J '  

D r =  ~ C[_2j i f r = i , = 0 i f r # i .  
j=0 

Proof. Given a chain contraction F 1 of C((1 + T~)r C'"-* ~ C') let C" be the 
2z chain complex defined for n = [2i+ 1] by 

d" = d' + F ' :  CI' = Ci- 2j Ci -  1 Ci -  2j-  1, 
j=0 j=0 

= Ci+l Ci+1-2j ~ Ci Ci-2j, 
j=O j=O 

C;' = 0 for # i , i + l "  

The chain map f :  C' -* C" defined by 

f : C ' , ~ C / =  Ctr-2j'~X"*(N,O,O . . . .  ) r =  ( i , i +  1] 
j=O 
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is a chain equivalence, so that there is defined a homotopy equivalence of n-dimen- 
sional e-quadratic Poincar6 complexes in 

f :  (C', ~b') -0 (C", tfi") 

with ~" defined by 

r = fo/o(O') ~ Q,(C", e). 

For n = 2i + 1 (C", r is highly connected, so that we can set 

(c e, ~| = (c',  ~"). 

For n = 2i (C", ~") is cobordant to a highly connected 2i-dirnensional e-quadratic 
Poincar6 complex (C e, c e )  by a cobordism 

( ( l fe ) :  C" G C e --+ D, (6~", ~"G  - ~l,e)) 

with 

f e  = (1 0):(ce)i = C'i' O C "i-1 --+ C'[, D = C"[i,i]. 

By the chain homotopy invariance of the Q-groups this cobordism is homotopy 
equivalent to a cobordism ((C' �9 C e -+ D, (6r r 174  - ce)). []  

5. The Additive Instant Surgery Obstruction 

Given an n-dimensional e-quadratic Poincar6 complex (C, r in A let (C', r be the 
cobordant stably highly connected complex given by 4.9, and let (C e, ~e)  be the highly 
connected complex rcobordant 1 I_homotopy equivalentJ to  (Ct, ~ ' )  given by 4.10. 

D E F I N I T I O N  5.1. (C e, c e )  is the additive instant surgery obstruction of (C, if), such 
that 

I 
(Ce) i  ~ (Ci+2j@C i+2j+l) 

j= -oo  

(Ce)~ = ~ (q-2s @ C~+2s+2), 
j=O 

2i 
f o r n =  2 i + 1 '  

(Ce)~+l = ~ (C~-2~+~ @C ~+2s+3) 
j=O 

[] 

T H E O R E M  5.2. The i-fold skew-suspension morphism of Abelian groups 

S_-I: L(_),~(/~) = Lo(A, (-) 'e)  ~ L2i(A, e), 

S': M~_),~(~) = L 1 (~, (-)ie) -~ L2i+ I(A, e), 

is an isomorphism for any i >~ O, with the inverse ~- i  sending the cobordism class of 
2i a {2i+l}-dimensional e-quadratic Poincar~ complex (C,@) to the Witt  class of the 
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nonsingula r (_  )it_quadrati c yor,~ [ yorm,ao,] assocmted to the additive instant surgery obstruc- 
tion (C e, ~b~). 

Proof. As for the case A = P(A) in Proposition 4.4 of Ranicki [11] algebraic surgery 
below the middle dimension shows that L,(A, e) for any A is isomorphic to the 
cobordism group of stably highly connected complexes. The additive instant surgery 
obstruction is the extra step required to pass from stably highly connected complexes 
to highly connected complexes. [] 

REMARK 5.3. If A is embedded in an Abelian category, then the complex (C', ~') used 
to define (C a, ~b ~) in 5.1 is homotopy equivalent to the highly-connected complex 
associated to the nonsingular (-)i~-quadratic Lformation..Irf~ -1 

(M, O)= coker (--)i+1(1 -t- TE)I~O : 

o 

[~d* O] d]] 

This is the instant surgery obstruction of Ranicki [11]. [ ]  

6. Class 

We apply the additive Ko-theory of Ranicki [13] to L-theory. 

DEFINITION 6.1. The class #roup Ko(A) of an additive category A is the Abelian 
group with one generator [A] for each isomorphism class of objects A in A, subject to 

the relations 

[A �9 B] = [A]  + [B]. 

DEFINITION 6.2. The class of a finite chain complex C in A is the chain homotopy 

invariant 

[C]  = [C . . . .  ] - [Co~d] ~ go(A), 

with 

C . . . .  =~,,C2j, Codd=~,C2j+l " 
j=O j=O 

(It is assumed that Cr = 0 for r < 0.) 

An involution *: A ~ A of the additive category A induces an involution of the 
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class group 

*: Ko(A ) -~ Ko(A); [A] --+ [A]* = [A*], 
such that for any finite chain complex C and n e 2[ 

EC"-*]  = ( - ) " [ c ] *  ~ K o ( ~ ) .  

D E F I N I T I O N  6.3. The class of an n-dimensional e-quadratic complex (C, r in A is 
the class of the underlying chain complex 

[ c ,  ~,-I = Ec] ~ Ko(A). [] 

P R O P O S I T I O N  6.4. (i) The class of an n-dimensional e-quadratic Poincar~ complex 
(C, if) in A is such that 

EC, r = ( - ) " [ c ,  4,3 ~ Ko(~).  

(ii) For any cobordism ( ( f f ' ) :  C G C' --* D, (6~, r  - ~J')) of n-dimensional e- 
quadratic Poincark complexes in 

[C, ~] + [C', r = [D] + ( - ) " [ D ] *  e Ko(A ), 

and also 

[C, t/J] - [C', r = [C(f ' )]  + ( - ) " [C( f ' ) ]*  e Ko(A) 

with 

[C(f')] = [D] - [C'] EKo(A ). 

Proof: (i) C is chain equivalent to C"-*. 
(ii) The algebraic mapping cone C ( f f ' )  is chain equivalent to D "+1-*. Also, 

C(f) is chain equivalent to C(f') "+ l-* [] 

P R O P O S I T I O N  6.5. For any n-dimensional e-quadratic Poincar~ complex (C, r in 
A with additive instant surgery obstruction (C*, Ce) the classes are such that 

[c ,  r  - [ c  e, Ce] = [ e ]  + ( _ ) . [ p ] .  ~ Ko(,r 

with 

f _ ~  (-)i+21+l[Ci+2j+a] if n=2i, 
[ p ]  = j -  oo 

( - ) J [ C j ]  i f n = 2 i + l .  
k . j = i + 2  

Proof By 4.9, there is a cobordism (C �9 C' --* C"-*[i, n], (6r CG - r In the 
case n = 2i, Proposition 4.10 gives a cobordism (C' �9 C e --* D, (6r r  - ce))  with 

D,= L Ci-2i = L(Ci-2JOC'+2J+I), O , = 0  for r r  
j=o j=o 
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so that 

[C ]  - [C ~] = ( [C ]  + [C ' ] )  - ( [C ' ]  + [C~] )  

= [ C ~ ' - * [ i ,  2 i ] ]  + [ C ~ ' - * [ i ,  2 0 ] *  - [D ]  - [ D ] *  

= [P ]  + [ P ] * ~  Ko(A) .  

In the case n = 2i + 1, Proposition 4.10 gives a homotopy equivalence (C', 0') 
(C ~, ~ ) ,  so that 

[ c ]  - [ c  ~] 

= ([C 2'+1-*[i, 2i + 1]] - [C~]) - ([C z '+l-*[ i ,  2i + 1]] - [C~]) * 

= [P] - [ e ]*  ~ Ko(&). [] 

Next, we generalize the Rothenberg exact sequence of Ranicki I-8, 10] 

�9 .. ~ Lr,(A) ~ LX(A) ~ H"(712; X / Y )  

LY_I(A) ~ ... (Y~_ X ~_ /s 

to the quadratic L-theory of any additive category with involution A. 

D E F I N I T I O N  6.6. Let & be an additive category with involution , :  A ~ A. 
A subgroup X ~ Ko(A ) is ,-invariant if x* ~ X for all x ~ X. [] 

D E F I N I T I O N  6.7. The intermediate Witt group of e-quadratic forms Lx(A) is defined 

for a ,-invariant subgroup X _ Ko(A ) to be the Abelian group with one generator 
for each formal difference (M, 0) - (M', 0') of isomorphism classes of nonsingular 
e-quadratic forms in A such that 

[M] - [M'] ~ X _ Ko(A), 

subject to the relations 

(i) (M, #J) - (M, 0)  = 0, 
(ii) ((M, #/) - (M', $')) + ((N, 0) - (N', 0')) 

= (M O N , $  ~ O ) - ( M '  ~3 N' ,$ '  (~O'), 

(iii) H~(L) - H,(L') = 0 if [L] - 1-L'] ~ X _ Ko(& ). 

In particular, 

L~~ = L~(/~). 

D E F I N I T I O N  6.8. The intermediate Witt group of e-quadratic formations Mx(A) is 
defined for a ,-invariant subgroup X _ Ko(A ) to be the Abelian group with one 
generator for each stable isomorphism class of nonsingular e-quadratic formations 
(M, #/; F, G) in A, such that 

[G] - [F*l  ~ X ~_ Ko(&), 
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subject to the relations 

(i) (M, (J; F, G) + (M', tp'; F', G') = (M (~ M', tp O ~', F O F', G O G') 
(ii) (M, O; F, G) + (M, r G, H) = (M, O; F, H) if [F], [G], [H] e X. [] 

In particular, 

M~~ = M~(N). 

DEFINITION 6.9. The intermediate e-quadratic L-groups Lx(N, e) (n > 0) are defined 
for a *-invariant subgroup X ~ Ko(N ) to be the cobordism groups of n-dimensional 
e-quadratic Poincar6 complexes (C, 0) in N with class [C, r e X _~ Ko(~), and with 
the corresponding condition on the cobordisms. For n = 0 define 

LX(/~, e) = LX(/~). [] 

In particular, 

L~~ e) = Ln(/~ , e) (n ~> 0). 

THEOREM 6.10. For any *-invariant subgroup X ~ Ko(/~ ) there are natural identi- 
fications of the intermediate cobordism groups and the intermediate Witt groups 

LX(/~, e) = V L~-)'~(/~) if n = 2i, 
LM~r-),~(A) if n = 2i + 1. 

Proof. This is just the intermediate version of Theorem 5.2 and is proved similarly. 
The intermediate/-fold skew-suspension maps 

gi: L~_),~(A) = CX(A, ( - ) i  0 ~ LXi(A, O, 
~ i  : x _ x i x M(_),.(A) - L1 (A, ( - )  e) ~ L2i + l(fl~, e), 

are isomorphisms, using the additive instant surgery obstruction to define the inverses 

$-- 1 : LX(A, e) --, L x_ 2i(A, e); 

[(C e, O e) �9 H(_),~(P) if n = 2i, 

(C, 0) ~ L(C e, Ce) G (H(_),~(P); P, P) if n = 2i + 1, 

with P as in 6.5. [] 

THEOREM 6.11. The intermediate e-quadratic L-groups of *-invariant subgroups 
Y~_ X ~_ Ko(A ) are related by the Rothenber9 exact sequence 

Lr(/~,e) ~ x --.... --- --* L, (/~, e) --*/~"(;72; X/Y)  -,. Lr_l (/~, e) 

Lr_l (~, e) ~ . . .  

with the Tare 7]2-cohomology groups defined by 

iq"(7/z; X /Y)  = {x ~ X / Y  l x* = ( -  )"x)/{y + (-)"y* l y e X / r }  
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and 

Lx(A, e) ~ H"(7/2; X/Y); (C, t~) ~ [C, ~] = [C]. 

Proof. This can be proved using either forms and formations as in Ranicki [8, 10], or 
using quadratic Poincar6 complexes as in Ranicki [11]. The proofs in the original case 

= •(A) did not use kernels and cokernels, and so generalize directly to any additive 
category with involution A. [] 

For ~ = 1 we write 

Lx,(A, 1) = L,x(A). 

DEFINITION 6.12. The idempotent completion P(/~) of an additive category A is the 
additive category with objects (A, p) defined by objects A of A together with 
a projection p = p2: A ~ A. A morphism in P(A) 

f :  (A, p) --* (B, q) 

is a morphism f :  A ~ B in A such that 

qfp = f : A ~ B. [] 

The full embedding 

--. P(/~); a ~ (a, 1) 

is used to identify A with a full subcategory of P(A). 

DEFINITION 6.13. The reduced class 9roup of P(A) is defined by 

/(o(P(A)) = coker(Ko(A ) ~ Ko(P(A)) ). [] 

We refer to Ranicki [13] for the algebraic theory of finiteness obstruction in an 
arbitrary additive category A. In particular, it was proved there that a finite chain 
complex C in P(A) is chain equivalent to a finite chain complex in A if and only if 

[C] = 0 E go(P(A)). 
An involution , :  A ~ A extends to an involution 

�9 : P(A) --* P(A); (A, p) ~ (A*, p*). 

EXAMPLE 6.14. For a ring A and A = UZ(A) = {f.g. free A-modules} the additive 
functor 

P(~) + P(A) 

= {f.g. projective A-modules}; (A, p ) ~  im(p) 

is an equivalence of additive categories. The class group of P(A) is the usual class 
group of A 

Ko(P(A)) = Ko(P(A)) = Ko(A), 
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and, similarly, for the reduced class groups 

go(P(f~)) =/~o(P(A)) = Ko(A). 

For a ring with involution A and an object (F,p) in P(D:(A)) there is a natural 
isomorphism of f.g. projective A-modules 

im(p*) ~ im(p)*; f -~ (x -~ f(x)), 

so that P(F(A)) ~ F(A) is an equivalence of additive categories with involution. The 
inclusion A = F(A) -~ P(f~) ~ P (A) induces the natural maps 

L,(~:(A)) = Lh,(A) ~ L,(~(A)) -- LP,(A). [] 

PROPOSITION 6.15. The quadratic L-groups of an additive category with involution 
f~ and the idempotent completion P(f~) are related by the Rothenberg exact sequence 

�9 .. --* L,(&) -* L,(P(~)) -->/~"(Z2; go(P(~))) ~ L,_ l(f~) ~ --'. 

Proof. This is a special case of the exact sequence of 6.11, with A replaced by P(f~) 

and 

y = im(Ko(/~ ) _~ Ko(P(~)) ) c_ X -- Ko(P(f~)) 

such that 

X/Y=/r Lr,(P(f~)) = L,(f~). [] 

REMARK 6.16. For any filtered additive category A let C 1 (f~) be the filtered additive 
category defined by Pedersen and Weibel [6], with objects 7/-graded formal direct sums 
Z j% _ | A(j) of objects A(j) in f~, and with bounded morphisms. Define 

Co(A) = f~, Po(~) = P(f~), 
Ci(f~) = CI(Ci_I(A)), P,(f~) -- P(Ci(A)) (i i> 1) 

and for a ring A write 

C~(0:(A)) = C,(A), P,(0:(A)) = Pi(A) (i ~> 0). 

It was proved in [6] that for i/> 0 

Kl(Ci+l(f~)) = Ko(Pi(/~)) = K-i(Po(f~)) (= K_,(f~) for i/> 1) 

with K _,  (/~) the lower K-groups. For a ring A and A = F(A) this is the earlier result of 
Pedersen [5] that 

Ka(Ci+I(A)) = Ko(Pi(A)) = K- i (A)  (i >I O) 

with K_,(A) the lower K-groups of Bass [1], designed to fit into split exac t  sequences 

0 ~ K-i+I(A)  ~ K-i+ 1 (A[z]) �9 K-i+x(A[z-1])  

~ K_i+I(A[z ,z - -~])~ K_~(A)~O (i>i0). 
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The additive L-theory of this paper is used in Ranicki [,15] to prove the analogous 
result in L-theory, which we now state. Extend an involution *: A ~ A to an involution 

�9 : C1(/~) ~ C1(/~) by 

A*(j )  = A(j)* ( j~  7/), 

and similarly for C~(&), P,(&). The L-theoretic analogue is that for any additive 
category with involution 

L.+I(C,+I(/~)) = L.(P,(A)) = L.<--I>(/~) (i >/0), 

with L<,-*>(A) lower L-groups. In particular, for a ring with involution A 

L.+I(C,+I(A)) = L, (P , (A) )  = L<.-~>(A) (i >~ 0), 

with L<,-i>(A) = L,~-'r the lower L-groups of Ranicki [9], designed to be such that 

L.<+ ]+ l>(A[z, z -  1]) = Ln<+/l+ I>(A ) ~ L<-,>(A) (i/> 0), 

L.<I>(A) = Lb.(A), L.<~ = LP.(A) 

with the involution on A extended to A[_z, z-1]  by ~ = z-~. The additive L-theory 

Rothenberg exact sequences given by 6.15 

�9 .. --, L , (C, (A))  --+ L . (P i (A) )  ~ H"(7/2;/s 

--,  L . _ I  (C~(A))  --,  --.  

coincide with the L-theory Rothenberg exact sequences already established in [-9] 

�9 .. ~ L,<_-I + I>(A) ~ L.<--~>(A),/t"-i(Z2;/s 

/" < - i +  I > [ A ~  
a - ~ n  - i - 1 ~ , . , a ]  ~ �9 �9 �9 . [ ]  

7. Torsion 

We apply the additive Kl- theory of Ranicki [,14] to L-theory. 

D E F I N I T I O N  7.1. The torsion #roup K 1 (A) of an additive category A is the Abelian 

group with one generator z ( f )  for each automorphism f :  A ~ A in A, subject to the 

relations 

(i) T(gf: A --* A ~ A) = z(f)  + ~(9), 
(ii) v(ifi- 1: A' ~ A ~ A ~ A') = z(f) for any isomorphism i: A --* A', 

(iii) T(f �9 f ' :  A ~ A' ~ A ~ A') = ~(f) + ~(f'). [] 

EXAMPLE 7.2. The torsion group of a ring A is the torsion group of the additive 
category P(A)= {f.g. projective A-modules} and also of the additive category 

Y(A) = {f.g. free A-modules} 

K 1 (P(A)) = K 10Z(A)) = K 1 (A). []  

D EFINITI ON 7.3 1-14]. A stable isomorphism between objects M, N in an additive 
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category 

I f ] :  M --* N 

is an equivalence class of isomorphisms f :  M G X --* N �9 X in ~ under the equi- 
valence relation 

if 

( f : M  O X ~ N O X)  ~ (g:M O Y---, N G Y) 

v((g -~ (~ lx ) ( f  G l t ) : M  O X  G Y ~  M O  X G Y) = 0eKI(N) .  

The objects M, N in /~ are stably isomorphic if and only if 

[M] = [N]  �9 Ko(~). 

[] 

DEFINITION 7.4 [14]. A canonical stable structure [r on an additive category ~ is 
a collection of stable isomorphisms {[r one for each ordered pair 
{M, N} of stably isomorphic objects in A, such that 

(i) [r = [ 1 M ] : M ~ M ,  
(ii) [r = [r162 M ~ N ~ P, 

(iii) [r = [r @ [r M • M ' ~  N O N'. Q 

EXAMPLE 7.5. IfA is a ring such that f.g. free A-modules have well-defined rank, then 
the additive category g(A) = {based f.g. free A-modules} has the canonical (un)stable 
structure [r with CM,N: M ~ N the isomorphism sending the base of M to the base of 
N. [] 

EXAMPLE 7.6. For any filtered additive category/~ there is defined a canonical stable 
structure [r on CI(A ), with every object M in Cl(/~ ) stably isomorphic to 0. See 
Section 5 of [14] for details. Pedersen and Weibel [6] show that 

Ko(Ca(/~)) = 0, KI(Ca(A)) = Ko(P(A)). [] 

PROPOSITION 7.7 [141. A stable canonical structure [~b] on an additive category 
/~ determines a torsion function 

r: { isomorphisms in ~ } --* K I (~); 

(f :  M --* N) ~ r(f) = ~([~N,M]U: M ~ M) = r(f[r U --* N) 

such that 

(i) r(gf: M ~ N -+ P) = r ( f :  M ~ N )  + , (g:  N ~ P), 

(ii) ~(f O f ' : M  O M ' ~  N G N ' ) =  r ( f : M  ~ N) + r(f '  :M'---* N'). [] 

DEFINITION 7.8. The reduced torsion group/~1(/5~) of an additive category N with 
respect to a canonical stable structure [r is the quotient of KI(/~ ) by the subgroup 
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generated by the sign elements 

e(M, N) = 1 u 

for all objects M, N in N 

/~1(/~) = K1 (/~)/{~(M, N)}. [] 

EXAMPLE 7.9. For  a ring A the reduced torsion group of B(A) with respect to the 
canonical stable structure given by 7.5. is just the usual reduced torsion group of A 

/ ~  (B(A)) --/~1 (A) = coker(K~ (~) ~ K~ (A)), 

with 

s(A', A") = ~(( - 1)"": A ~ A) ~ im(K 1 (77) ~ K 1 (A)) _ K 1 (A). [] 

EXAMPLE 7.10. The reduced torsion group of C1(~ ) with respect to the canonical 

stable structure on C1(/~ ) given by 7.6 is isomorphic to the absolute torsion group 

/s (C 1 (#~)) = K x (C ~ (/~))/{e(M, N)} : K o (P(A)), 

with ~(M, N) = 0 e K 1 (C 1 (/~)) for all objects M, N in C 1 (A) by virtue of K o (C 1 (/~)) = 0. 

D E F I N I T I O N  7.1 1. Let • be an additive category with a canonical stable structure 
[q~]. 

(i) The torsion of a contractible finite chain complex C in/~ is defined by 

~(C) = z(d + F: Codd ~ C . . . .  ) ~ KI(A) 

using any chain contraction F: 1 ~- 0: C ~ C. 

(ii) The reduced torsion of a chain equivalence f :  C ~ D of finite chain complexes in 
is defined by 

z(f)  = z(C(f)) ~ g I (~). [] 

D E F I N I T I O N  7.12. A finite chain complex C in/~ is round if [C] = 0 e Ko(A ), i.e. if 

Codd is stably isomorphic to C . . . .  . [] 

We refer to Ranicki [14] for the definition and properties of the torsion z(f)  ~ KI (~) 
of a chain equivalence f :  C ~ D of round finite chain complexes in/~ with respect to 
a canonical stable structure [q~] on A, as the sum of z(C(f)) and a certain element in the 
sign subgroup {s(M, N)} ___ Kl(fi~ ). 

We now bring an involution into play. 

D E F I N I T I O N  7.13. A canonical stable structure [~b] on an additive category A is 
compatible with the involution *: A -  A if the duals of the canonical stable iso- 
morphisms qSM,~r M @ X -~ N G X are again canonical 

[(q~u,N)*] = [q~N*, M*]: N* ~ M*. [] 

EXAMPLE 7.14. For a ring with involution A the canonical stable structure on B(A) 
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given by 7.5 is compatible with the duality involution , :  B(A)~ B(A). [] 

EXAMPLE 7.15. For a filtered additive category with involution ~ the canonical 
stable structure on C1(~ ) given by 7.6 is compatible with the duality involution 
�9 : c 1 ( , ~ )  --+ c~ ( ,~ ) .  [ ]  

For the rest of Section 7 we assume that we are dealing with an additive category with 
involution N which is equipped with a particular choice of compatible canonical stable 
structure [qS]. The involution defined on K~ (/~) by 

�9 : KI(N) ~ K1 (/~); z(f: M ~ M) ~ T(f)* = v(f*: M* ~ M*) 

is then such that 

PROPOSITION 7.16. (i) For any isomorphism f :  M ~ N in 

v ( f : M ~ N ) *  = r ( f* :N*  ~ M * ) e K I ( A  ). 

(ii) For any chain equivalence f :  C ~ D of finite chain complexes in/~ 

z(f"-*:  D"-* ~ C"-*) = ( - )"z( f :  C ~ D)* � 9  (A). 

(iii) For any chain equivalence f :  C ~ D of round finite chain complexes in 

r ( f " -* :  D"-* --* C "-*) = (-)"T(f:  C --* D)* e KI(/~ ). [ ]  

DEFINITION 7.17. An n-dimensional e-quadratic Poincar~ complex (C, ~) in A is 
round if C is a round finite chain complex in A, that is if [C, ~O] = 0 e Ko(A ). [] 

DEFINITION 7.18. The round n-dimensional e-quadratic L-groups U,(A, e) are the 
intermediate e-quadratic L-groups (6.9) defined by 

L~(/~, e) = L~~176 e) (n ~> 0). [ ]  

By a special case of 6.11, there is defined an  exact sequence 

�9 .. ~ L~(A, e) ~ L,(/~, e) ~ H"(7/2; Ko(/~)) 

-+ L ~ - l ( ~ , e ) ~  . . .  

For n > 0, L~(/~, e) is the cobordism group of round finite n-dimensional e-quadratic 
Poincar~ complexes in/~. 

EXAMPLE 7.19. For a ring with involution A and /~  = U:(A), the round quadratic 
L-groups 

U,(A) = U,(~:(A)) 

are the round L-groups of Hambleton, Ranicki and Taylor [3]. [] 

DEFINITION7.20. (i) The reduced torsion of an n-dimensoinal e-quadratic Poincar6 
compelx (C, ~,) in ~ is 

r(C, O) = v((1 + T.)~o: C"-* ~ C)~ g , (~ ) .  
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(ii) The torsion of a round n-dimensional e-quadratic Poincar~ complex (C, ~) in A is 

z(C, ~) = v((1 + T,)Oo: C"-* ~ C) e Kl(A ). [] 

In both cases of 7.20, the torsion is such that 

~(c, ~)* = ( - )"~(c ,  ~). 

DEFINITION 7.21. (i) Given a *-invariant subgroup X ~ / ( l ( A )  define the inter- 
mediate n-dimensional e-quadratic L-group L,x(A, e) (n >~ 0) to be the cobordism group 
of n-dimensional e-quadratic Poincar6 complexes (C, ~O) in A such that 

z(c, ~ ) e x  _ gl(/~). 

(ii) Given a ,-invariant subgroup X ~_ K i (A) define the intermediate round n-dimen- 
sional e-quadratic L-group U.x(A.e) (n >~ 1) to be the cobordism group of round 
n-dimensional c-quadratic Poincar6 complexes (C. ~) in A such that 

~(c, q,) E x _ KI(A). 

For n = 0 set 

UoX(/~, e) = L~x(A), 

the Witt group of formal differences (M, ~) - (M', ~') of nonsingular c-quadratic forms 
in A such that 

[M] - [M'] = 0 e Ko(/~ ), 

T(M, ~) - z(M', ~ ' ) ~ X  ~ Ka(A ). [] 

As for the intermediate L-groups in Section 6 it is possible to use the additive instant 
additive surgery obstruction to prove that the intermediate L-groups LX(l~, e), U,x(~, e) 
(n >/0) are isomorphic to the corresponding Witt groups of forms and formations with 
prescribed torsion. 

THEOREM 7.22. (i) For any ,-invariant subgroups Y~_ X ~_ /~i(A), there is defined 
a Rothenberg exact sequence 

�9 -. --+ Lr(A, e) --+ Lx(A, e) --+/-)"(7]2; X/Y)  
Y ~ L.-i( /~,  e)--* "" ,  

with 

tx (~ ,  e) + &(Z~; X/Y); (C, ~,) --, ~(C, ~). 

(ii) For any *-invariant subgroups Y ~_ X ~_ Ki(/~ ) there is defined a Rothenberg exact 
sequence 

... --* L~Y(A, e) -+ L~x(A, e) ~/4"(Z2; X /Y)  

Lf f  ~ (A, e) -~ ..-. 
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E X A M P L E  7.23. Given a group n and a morphism w: n --* Z 2 = {+  1}, let A = 2 [n ]  

be the group ring with the w-twisted involut ion 

- : Z]'~] --* Z[x];  g ~ 9 = w(g)g-  1 (g ~ ~). 

Let X = im(rc --,/(1(77[~3)) be the , - invar iant  subgroup with quotient  the Whitehead 

group 

g 1 (Z[~]) /X = Wh(~). 

The original surgery obstruct ion groups of Wall [17] are the intermediate quadrat ic  

L-groups 

L,(~,  w) = L~,(7/[~]) = L,X(Z[~]). 

The original Rothenberg  exact sequence (Shaneson [16]) is 

�9 .. ~ L,~(7/[n]) --, L,h(7/[~]) ~/~"(7/2; Wh(~)) 

--, L',_  1 (Z[rc ] )  - ,  . . . .  [ ]  

R E M A R K  7.24. Cont inuing the discussion in 6.16, it is also proved in Ranicki [15] 

that  for a filtered additive category with involut ion A 

Lx+I(C,+I(A))  = L.(C,(A)) = L.<_-I+I)(/~) (i ~> O) 

with 

X = im(Ko(Ci(A)) --* Ko(Pi(A)) ) (=  {0} for i > 0) 

___.C_ K 0 ( P i ( ~ ) )  = K 1 (C ,  +1 (J~)) = / ( 1  ( C i  +1 ( ~ ) )  

such that  

/~I(C,+I(A)) /X = / (o(P , ( /~) )  (=K_~(&)  for i > 0). 

For  a ring with involut ion A the generalized Rothenberg exact 

intermediate L-groups 

x ( C , + I ( A ) ) ~ L . + I ( C , + I ( A ) )  �9 . .  ~ L n +  1 

--*/~" + 1(772;/(1 (C, +1 (A)) /X)  --* L x (C, +1 (A)) + . . -  

coincides with the exact sequence 

�9 .. ~ gn(_-~ + 1 ) ( A )  ~ L ( n - ~ ) ( A )  

-- , /~0- ' (7/2; /(_ dA)) ~ L~,-~ + I)(A) - , . . .  

which was expressed in 6.16 as a generalized Rothenberg exact 
intermediate L-groups. 

sequence for 

sequence for 
[ ]  
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8. The Stable Radical 

We interpret the additive instant surgery obstruction (C a, ~ )  of a 2i-dimensional 
e-quadratic Poincar6 complex (C, ~) as a 'stable radical quotient' of the (-)ie-quadratic 
form 

for any additive category with involution A. We start by recalling the radical of a form 
in the additive category A = P(A) = {f.g. projective A-modules}. 

D E F I N I T I O N  8.1. For a ring with involution A the radical of an e-quadratic form 
(M, 0) in P(A) is the submodule 

M a = ker(O + e~b*:M~M*) ~ M. [] 

If the inclusion j ~ Homa(M -L, M) is a split injection which defines a morphism of 
e-quadratic forms 

j: (M • O) ~ (M, ~k) 

and the sequence 

0 ~ M • J-~ M r M* J-~--~(M• * ~ 0 

is exact there is defined a quotient nonsingular e-quadratic form in P(A) 

(M, ~k)/M • = (M/M • [~]). 

Let ~ now be an additive category with involution. 

D E F I N I T I O N  8.2. A stable radical of an e-quadratic form (M, ~k) in A is a morphism 
of e-quadratic forms 

j:(L, O) --* (M, ~) 

together with a contractible chain complex in A of the type 

M• [~176 ~  

(j* k*) * L* ~ 0. []  

It is not claimed that every e-quadratic form admits a stable radical, or that stable 
radicals are unique. 

D E F I N I T I O N  8.3. A stable radical quotient of an e-quadratic form (M, ~k) is the 
nonsingular e-quadratic form in A associated to a stable radical M • by 

(M,O)/M• M ~ N ~ L * ,  0 
0 
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with (g h): M �9 N ~ L any splitting map for [~]" L -~ M ~ N, such that 

g j + h k = l : L ~ L .  
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REMARK 8.4. A nonsingular form (M, ~) has a stable radical with L = N = 0, such 
that the quotient is (M, ~k)/M • = (M, ~). [] 

REMARK 8.5. If A is fully embedded in an Abelian category and (M, r is an 
e-quadratic form in A such that the inclusion 

j: M • = ker(~b + e~*: M ~ M*) ~ M 

is a split injection in A defining a morphism of forms j: (M • 0) ~ (M, if), and such that 
the morphism 

coker(~9 + e~*) ~ ker(r + e~k*)*;f~ (x ~ f(x)) 

is an isomorphism in A, then (M, ~k) has a stable radical with 

L = k e r ( O + e O * ) ,  N = 0 .  

Moreover, there is induced a nonsingular e-quadratic form (coker(j), [~b]) in A such 
that up to isomorphism 

(M, O)/M 1 = (coker(j, [~]) ~ H,(L). 

In the terminology of Ranicki I-8], L is a 'sub-Lagrangian' of (M, ~k)/M • [] 

P R O P O S I T I O N  8.6. The nonsinoular (-)ie-quadratic form of the additive instant 
obstruction (C a, ~,~) of  a 2J-dimensional e-quadratic PoincarO complex (C, ~) in A is 
a stable radical quotient 

o 

Proof. Let (C', ~O') be the stably highly connected 2i-dimensional e-quadratic 
Poincar6 complex cobordant to (C, ~) given by 4.9, with 

C': "'" ~ 0 ~ C i ~ C i+ 1 ~ C i _ l  ~ ci+2 ~ ... 

Let (C", ~") be the homotopy equivalent complex constructed in the proof of 4.10, 
with 

= 

1=0 1=0 

C}'_ 1 = ~ C i - 2 j - 1  = ~ ( C ' - 2 j - 1  ~ Ci+2j+2), 
j=O j=O 

C; = O for r r i - l, i. 
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Define the (-)ie-quadratic form in A 

o  ol). 
The algebraic mapping cone of the chain equivalence 

(1 + r , )o ; :  C "2i-* --* C" 

is a contractible chain complex 

C((1 + T)~b;) = M• 0 ~ L Li--~ j M �9 N 

(j* k*), L* --* 0 

defining a stable radical M l of (M, 0), with 

L = C "i-1 = ~ (C i-2s-1 • Ci+2j+2), 
j=O 

N : c " i / c  'i : ~ (C i - 2 j ~  Ci+2j+l ). 
j = l  

stable radical quotient (M, O)/M • corresponds to 

ANDREW RANICKI 

M* �9 N* 

the highly connected 2i- The 
dimensional e-quadratic Poincar6 complex (C e, ce )  cobordant to (C', r given by 
4.10. 
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