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Ford circles

Here is a picture, generated from two equal tangential circles and a
tangent line, by repeatedly inserting a maximal circle in the space
between two tangential circles and the line.
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The Ford circles and fractions

Thus the Ford circles, when generated in order of size, generate all
reduced fractions, in order of their denominators.

The first n stages of the Ford circle construction give the so-called
Farey sequence of order n—all reduced fractions between 0 and 1
with denominator < n.
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il j;LﬁijJCK ! The Farey sequence has a long history, going
o e e Bty LEAAEA back to a question in the Ladies Diary of 1747.

£3 Being the Third afer LEAP-YEAR.
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1. QuEsTioN 281, by Mr. J. May, jun. of Amsterdam.

end ¢

It is required to find (by a general theorem) the number of frac-
tions of different values, each less than unity, so that the greatest
denominator be less than 100?
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How did Ford come to discover its geometric
interpretation?




Henri Poincaré (1854-1912)

Poincaré made contributions to many
fields of mathematics, from algebraic
topology to celestial mechanics.

He made his name in the early 1880s,
with the theory of automorphic
functions—the theory of meromorphic
functions on the sphere, plane or disk,
that are periodic with respect to a
discrete group of motions.

Poincaré in 1889
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Poincaré made contributions to many
fields of mathematics, from algebraic
topology to celestial mechanics.

He made his name in the early 1880s,
with the theory of automorphic
functions—the theory of meromorphic
functions on the sphere, plane or disk,
that are periodic with respect to a
discrete group of motions.

In particular, in the case of the disk (or
half-plane) he discovered the role of
non-Euclidean geometry in the study of
Poincaré in 1889 periodicity.
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Non-Euclidean View of the Half-Plane

Half-plane version of Escher's Circle Limit I, showing fish that are
congruent according to the non-Euclidean metric.



Non-Euclidean Periodicity before Poincaré

Before 1820, Gauss was aware of
modular functions and their
w periodicity.

Dedekind 1877 described the
periodicity of the modular
function j by this tessellation.

From Patrick du Val: Elliptic
Functions and Elliptic Curves



Non-Euclidean Periodicity before Poincaré

From Patrick du Val: Elliptic
Functions and Elliptic Curves

Before 1820, Gauss was aware of
modular functions and their
periodicity.

Dedekind 1877 described the

periodicity of the modular
function j by this tessellation.

The values of j repeat in each
region consisting of a black and
white triangle.

More precisely,

j<az+b> i)

cz+d

for a, b, c,d € 7Z with
ad — bc =-1.



Classical picture of the modular tessellation

From Klein and Fricke Theorie der Elliptischen Modulfunction
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The Modular Group

The tessellation above is generated from a single tile, consisting of
any adjacent black and white region, by repeatedly applying the
transformations

z—z+1 and z+— —1/z.

These two generate all the transformations

= az+ b
cz+d

which constitute the modular group.

for a,b,c,d € Z with ad — bc = 1,
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The Modular Group

The tessellation above is generated from a single tile, consisting of
any adjacent black and white region, by repeatedly applying the
transformations

z—z+1 and z+— —1/z.

These two generate all the transformations

az+b
cz +

for a,b,c,d € Z with ad — bc =1,

which constitute the modular group.

All members of the modular group are isometries of the half-plane
under the metric given by

_ ldz|
y

which makes the half-plane a model of the non-Euclidean plane of
Bolyai and Lobachevsky.

ds where z = x+ iy,
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A major goal of Poincaré was uniformization (i.e., parametrization)
of algebraic curves. The two classical examples of uniformization
are those for genus 0 and genus 1:

Genus 0. The circle x> + y? = 1 is parametrized by the
rational functions
1—t? 2t
X=—7 = —.
14+ t2’ Y=1 + t2

Genus 1. The nonsingular cubic y? = x3 +ax + b is
parametrized by the elliptic functions
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A major goal of Poincaré was uniformization (i.e., parametrization)
of algebraic curves. The two classical examples of uniformization
are those for genus 0 and genus 1:

Genus 0. The circle x> + y? = 1 is parametrized by the
rational functions

1— ¢2 2t
X =—7= = —.
1+ t2’ y 1+ ¢2

Genus 1. The nonsingular cubic y? = x3 +ax + b is
parametrized by the elliptic functions

Poincaré believed that any algebraic curve of higher genus could be
parametrized by automorphic functions, but he was unable to
prove this until 1907.
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Edmund Whittaker (1873-1956)

Edmund Taylor Whittaker was born in
Southport, Lancashire, and educated at
Manchester Grammar and Cambridge
(2nd Wrangler, 1895; Smith’s Prize and
Fellow of Trinity, 1896.)

Whittaker in 1933
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Edmund Whittaker (1873-1956)

Edmund Taylor Whittaker was born in
Southport, Lancashire, and educated at
Manchester Grammar and Cambridge
(2nd Wrangler, 1895; Smith’s Prize and
Fellow of Trinity, 1896.)

Professor in Edinburgh in 1912.

He is best known for his contributions to
analysis, mathematical physics, and the
history of physics. (He controversially
claimed that Poincaré was the true
discoverer of relativity theory.)

With G.N. Watson he wrote the classic

Whittaker in 1933 Modern Analysis in 1927 (updating his
own Modern Analysis of 1902).
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Wranglers

Here are the top wranglers of 1895.

MR, J. H. GRACE
Bracketed Second Wrangler
Phato by Scott and Wilkinson, Cambridge

chn  Hilten Grace, bracketsd Second

Tangler, 18 the san of Mr. Willlam y
and way born at Haleswood, Lancashize in
1873, He was educated at the Liverpoal
Institute, and entered at Peterboase in 15ge,
baving gained a foundation seholarship

CAMEBRIDGE

MR. T. J. BEOMWICH

Senior Wrangler
Phato by T. Bromwich, Bridgnorth
_ Mr. Thomas John Tanson Bromwich, who
is Senfor Wrangler, i the sen of Mr, ehn
Y'Aneon Bramwich, and was born at Walver-
bampton in 1875 He was educated at Wal-
verhampeon Gramemar Scheol and the High
School, Durlin, South Africa. He entered at
St, John's College In 2893, where he gained &
Faundation schal nrii‘rand exhibitign,  While
at Darhan, e gall the Natal Governmant
seholarship

ME. E. T. WHITTAKER
Eracketed Second Wrangler
Photo by Scoet and Wilkinson, Cambridge

Mr. Edward Taylor Whittaker, brackeicd
Secand Wrangler, is the son af M. Jabn
Whittaker, of Birkdsle, Southport, He was

born in 18 He was educated at Manchester
Grammae I He wona small schalarhip
at Trinity Collegs in 1893, and at the end of
s first term be gained & bester ane. He also
‘wom the Shespshanks Astronomical Exhibition
lzsn Dhecember .

UNIVERSITY MATHEMATICAL TRIPOS
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Letters home

; C(] A m%‘ /{Am e While studying at

Cambridge in 1896,
i totond Cecfue Fuis  Aeow,, L5  Whittaker wrote to

his mother with
U,C Lﬂvﬁ’ A‘e ( € /\vm, 4{-7")\ ﬁ

some observations
,' e /S z 1 1
{,ﬂmﬁe&% : 4 ,,/, wewe G a ;M}, R of Cambridge life.
7 -
/

/‘ML ﬁ”"”‘*ﬁ%‘{“/& /f{e & G filn g .

/ 9 s . £
/ ¢ (e AN Feal As < /é "7”/7\.(;1{/

o g widZ A e ““7""'% "ﬁlél e
/ L]

From the letter of 24 January 1896 E. W. Hobson
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The Smith’s Prize Essay

In 1897 Whittaker won the Smith’s Prize and a fellowship at Trinity
College, Cambridge, for an essay on automorphic functions.

He solved the uniformization problem for the curve y? = x> + 1
of genus 2, using a function with the periodicity of the "Whittaker
group,” which he pictured as follows.
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This function is mentioned in Whittaker and Watson, p. 455.
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Lester R. Ford (1886-1967)

= Lester Randolph Ford was born in
f ' Missouri and studied at the University
of Missouri and Harvard. He received
an M.A. from Harvard in 1913 and won
a fellowship to study overseas.

Ford in the 1940s
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Lester R. Ford (1886-1967)

Lester Randolph Ford was born in
Missouri and studied at the University
of Missouri and Harvard. He received
an M.A. from Harvard in 1913 and won
a fellowship to study overseas.

He chose Edinburgh, where he lectured
from 1914 to 1917 and did research on
automorphic functions (presumably
Ford in the 1940s under the influence of Whittaker).
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Lester R. Ford (1886-1967)

Lester Randolph Ford was born in
Missouri and studied at the University
of Missouri and Harvard. He received
an M.A. from Harvard in 1913 and won
a fellowship to study overseas.

He chose Edinburgh, where he lectured
from 1914 to 1917 and did research on
automorphic functions (presumably
Ford in the 1940s under the influence of Whittaker).

His research included the discovery of Ford circles and their
connection with the modular group and continued fractions.
Part of his research (on continued fractions for complex numbers)
earned him a Harvard Ph.D. when he returned to the US in 1917.

Ford circles became well-known when Ford wrote them up in an
article Fractions in the American Mathematical Monthly of 1938.
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Ford in Scotland

This photo was taken on a later
visit to Scotland in 1926.

(Courtesy of Ford's grandaughter
llisa Kim, obtained by Andrew
Ranicki.)
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Ford's example of spherical periodicity

Ford begins with automorphic functions on the sphere CU {0},
and the underlying symmetric tessellations. The following pictures
are from pp. 60-61 of Ford's 1915 book on automorphic functions.
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Spherical frame Its stereographic projection
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Origin of the spherical model

Ford credits the spherical model
in the photograph to Professor
Crum Brown, who was professor
of chemistry at Edinburgh.

(Also known for pioneering
contributions to knot theory,
working with his brother-in-law
Peter Guthrie Tait.)

Alexander Crum Brown
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Same object with modern technology (POV-ray)
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How to make the stereographic projection

1. First cut out
every other triangle
in the tessellation of
the sphere.

2. Light the sphere
from inside at the
north pole.

3. Project onto a
plane parallel to the
tangent plane at
the north pole.
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The first Ford circles

In a paper of 1917,

C 33 Ford introduced his
circles for the first
time.

He arrives at them
as images of the
horizontal line

y = h under
modular
transformations.

He finds that the circle S(g) touching the x-axis at p/q has radius
1/2hq?.

Today we take h =1, so that the circles do not overlap.
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Ford circles and the modular tessellation

In a second paper of 1917, Ford related his circles to the modular
tessellation, in order to prove a theorem of Hurwitz on continued
fractions.

=4 !
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Why the connection between fractions and circles?

The key is the fact that a transformation

az+ b

Hi’
z cz+d

fora,b,c,d € R and ad — bc =1,

maps circles to circles, R to itself, and preserves tangency.
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Why the connection between fractions and circles?

The key is the fact that a transformation

az+ b

—, fora,b,c,deRand ad — bc =1,
cz+d

Z

maps circles to circles, R to itself, and preserves tangency.

So, if we have some circles that are tangent to each other and the

real axis R, the same is true of their images under z — Z’jig
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Example: the modular transformation z — z/(z + 1)

This is an example of a limit rotation of the hyperbolic plane.
It fixes 0 and maps the circles touching 0 into themselves.
Notice also that it sends 1/n to 1/(n+ 1).
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Basic properties of the Ford circles

So the circles obtained from unit diameter circles at 0 and 1, by
repeatedly filling the gap on the left by a tangential circle, touch at

1 1 1 1 1

2’ 37 47 5’ 6’
The rational positions of the other Ford circles may be explained
similarly, by appealing to properties of modular transformations.

The tangential Ford circles are
images of the initial tangential
circles.

We include the line Im(z) =1
as an “honorary” circle, touching
the real axis at co.
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Computing with circles in the complex plane

To obtain several properties of Ford circles at once, we apply the
following description of circles in terms of a complex coordinate.

z If z lies on a circle

with center zg
and radius r,

then

|z— 2> =r? thatis, (z—20)(z—2)=(z—2)(Z—Z)=1r?
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Computing with circles in the complex plane

To obtain several properties of Ford circles at once, we apply the
following description of circles in terms of a complex coordinate.

4 If z lies on a circle
with center zg
and radius r,

then

|z— 2> =r? thatis, (z—20)(z—2)=(z—2)(Z—Z)=1r?

which gives the equation

zZ — 20Z — ZoZ + \20\2 —r?=0.

Conversely, from such an equation we can read off the center z,

and then compute the radius r.
29 /34



Generation of the Ford Circles

All Ford circles are images of the line Im(z) = 1, that is
z —Z = 2i, under transformations in the modular group:

, Where a,b,c,d € Z and ad — bc = 1.
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Generation of the Ford Circles

All Ford circles are images of the line Im(z) = 1, that is
z —Z = 2i, under transformations in the modular group:

, Where a,b,c,d € Z and ad — bc = 1.

Why? Since z = =2%tb the image points w satisfy

—dw + b B —dw + b e
cw — a ow—a ) "

This equation simplifies (using ad — bc = 1) to

_ a i\ a ] 32_
wwelctae )"\ )Wt e =0

which we recognise as the equation of the circle with

center zgp = 2 + 553 and for which we easily find radius r =

1
2c2”
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Basic properties of the Ford circles

These follow immediately from properties of modular
transformations.

@ The circle touching the real axis at the reduced fraction a/c
has radius 1/2¢2.
Such a circle is the image of the line Im(z) = 1 under
z— Zig This also explains why the circles for reduced
fractions a/c and a’/c have the same radius.
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Basic properties of the Ford circles

These follow immediately from properties of modular
transformations.

@ The circle touching the real axis at the reduced fraction a/c
has radius 1/2¢2.
Such a circle is the image of the line Im(z) = 1 under

z— Zig This also explains why the circles for reduced
fractions a/c and a’/c have the same radius.

@ The circles touching z = a/c and z = b/d > a/c are
tangential to each other < ad — bc = 1.
Because such circles are the images of tangential circles,

i — — az+b
touching z = 0 and z = oo, under the map z — 7.

© The circle between these tangential circles touches at jjr'g.

Because the latter circle is the image of the circle between the
circles touching z = 0 and z = oo, namely the circle touching

_ az+b
z =1, under z — =
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The mediant property

The last property implies that in any Farey series, such as

0 1112 1 32 34 1
1 54 35 2 53 45 1
b b
the term between g and the next term but one, 7, equals ?L,.
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This property was discovered by Farey in 1816 (without proof),
and published in Philosophical Magazine 47 (1816) pp. 385-386.

LXXIX. Ona curious Property of vulgar Fractions. By
BMr. J. FAREY, Sen,

To My. Tilloch.

Sir, — ON examining lately, some very curious and elaborate
Tables of « Complete decimal Quotients,” calenlated by Henry
Goodwyn, Esq. of Blackheath, of which he has printed a copious
specimen, for private circulation among curious and practical
ealeulators, preparatory to the printing of the whole of these
useful Tables, if sufficient eneouragement, either public or indi-
vidual, should appear to warrant such a step: T was fortunate
while so doing, to deduce from them the following general pro-
perty ; viz.

If all the possible vulgar fractions of different valnes, whose
greatest denominator (when in their lowest terms) does not exceed
any given number, be arranged in the order of their values, or
quotients; then if both the numerator and the denominator of any
fraction therein, be added to the numerator and the denominator,
respectively, of the fraction next but one to it {on either side),
the sums will give the fraction next to it ; although, perhaps,
not in its lowest terms.

I am not acquainted, whether this curious property of vulgar
fractions has been before pointed out?; or whether it may ad-
mit of any easy or general demonstration? ; which are points on
which I should be glad to learn the sentiments of some of your
mathematical readers; and am

Sir,

Your obedient humble servant,

Lowland-street. J. FArEY.
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More on the modular tessellation and Ford circles

For more on the history of the Farey series, see Scott B. Guthery
A Motif of Mathematics, Docent Press 2011
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For more on the history of the Farey series, see Scott B. Guthery
A Motif of Mathematics, Docent Press 2011

The following picture, from Francis Bonahon's web site
http://www-bcf.usc.edu/~fbonahon/STML49/FareyFord.html

shows blue Ford circles on a multicolored modular tessellation.
Also see his book Low-Dimensional Geometry, AMS 2009.

34 /34



