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The James Cook Mathematical Notes is published in 3 issues
per year, dated January, May and September. The history of
JCMN is that the first issue appeared in September 1975, and
others at irregular intervals, all the issues up to number 31
being produced and sent out by the Mathematics Department of the
James Cook University of North Queensland, of which I was then
the Professor. In October 1983 this arrangement was beginning
to be unsatisfactory, and I changed to publishing the JCMN
myself, having three issues per year printed in Singapore and
posted from there. I then set a subscription price of 30
Singapore dollars per year. When in 1985 I changed to
printing in Australia I kept the same price, for the Singapore

dollar is a stable currency.

In October 1992 it had become clear that the paying of
subscriptions by readers is an inefficient operation. Bank
charges for changing currency and for international transfers,
with postage, together absorb most of the initial input of money.
Therefore we have abandoned subscriptions as from the beginning
of 1993, issue number 60. To those who want to give something
in return for the JCMN, I ask them to make a gift to an animal
welfare society in their own country. The animals of the world

will be grateful and so will TI.

Contributors, please tell me if and how you would like your

address printed.
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FERMAT'’S LAST THEOREM

T. C. S. Tao (Princeton University)

Fermat’s Last Theorem has finally been proved. The result
was announced by Professor Andrew Wiles of Princeton, in the last
of his seminars on algebraic number theory in Cambridge.
Apparently he revealed at the very end of the lecture that the
theorem followed as a consequence of his work on the Taniyama-
Weil conjecture. The reaction was first a stunned silence,

then applause.
Wiles actually proved this result:

Theorem If E is a semi-stable elliptic curve defined over Q

(the field of rationals), then E is modular.

This implies Fermat’s Last Theorem, for if aP + pP = cp,
then the elliptic curve y2 = X(x - ap)(x + bp) over Q is
semi-stable, and hence by Wiles’s result there must exist a
modular form of weight 2 on FO(Z). But the work of Frey and

Ribet has shown that there are no such forms.

The proof of Wiles’s theorem is long and technical, with the
full length of the proof said to be more than 100 pages
(significantly more than the margin of a book on arithmetic!),
and beyond the scope of my understanding. Though the proof has
not been rigorously checked yet, many eminent mathematicians in
the field (many of whom were in the audience when Wiles announced
his result) have found the argument sound and plausible.

Further, the new methods used in Wiles’s proof of his theorem
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have promise of potential for application to many problems in

algebraic number theory.

Rumor has it that Wiles first found a partial breakthrough
seven years ago, which would have proved a significant portion
of the Taniyama-Weil conjecture and perhaps also part of Fermat’s
Last Theorem, but worked in near-secret for the following years

to complete and perfect the result.

For those not familiar with Fermat’s Last Theorem, it can
be stated as follows: for each integer n > 2, there exists

no set of positive integers a, b, ¢ such that a” + b = ¢

n.

It has been one of the best-known problems in mathematics.
Pierre Fermat (1601-1665) who was notorious for writing
mathematical statements without proofs (but which, with very few
exceptions, have happened to be correct), scribbled a claim in
the margin of his copy of Diophantus’s Arithmetika in about 1637
"I have found a truly wonderful proof of this theorem, but the
margin is too small to contain it". Of course he never came
up with the proof, and many mathematicians now believe that the
proof he thought of was flawed (perhaps assuming unique
factorization over the cyclotomic integers), especially
considering that he later devoted some effort to proving special
cases of the result. Nevertheless, it is called Fermat’s Last
"Theorem" perhaps because it is the last claim of his to be
rigorously proved or disproved. FLT has attracted the
attention of many famous mathematicians from the seventeenth
century up to the present, as well as countless cther

mathematicians and amateurs, and the number of flawed proofs of
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X L A . MARKOFF’S INEQUALITY (JCMN 60, p.6221 & 61, p.6254)
FLT known is enormous, with many universities having to assign

. Terry Tao (Princeton)
a mathematician to field all the FLT claims submitted.

Let f(x) be a real polynomial of degree n such that:

The first significant progress on FLT was made by Kummer in L= f(x) <1 when -1 <x=<1 L., ()
the nineteenth century, using techniques which would later lead Then |£/(x)| < n? for all x in the interval.
to a new field, that of algebraic number theory. Then the work This has been known since 1889, but the proofs available
of twentieth century mathematicians showed the link with elliptic are rather long. Here is a more direct approach.

curves, leading to another rich field of mathematics being

discovered. Take any positive integer n.
Theorem 1 Considering all polynomials:
2 n
. f(x) = ao + alx + a2x + ... 4+ anx ,

that satisfy (C), each coefficient is bounded.

Proof f(cosé) can be expressed as %co + Zn_l C_cos ri4,
QUICK INEQUALITY N r= r
. where ¢ = = J" f(cosd) cos r¢ d6, which is between +2.
Terry Tao (Princeton) r LA 2

Therefore f(x) = 5c0 + ZCrTr(x), where Tr is the Chebychev

If the imaginary part of z is between + /2, prove: polynomial defined by T, (cosg) = cos rg. The typical
tanh|z| < |tanh z|. coefficient in f(x) is therefore bounded by
If |z| < w/2, prove |tan z]| < tanjz]. ]asl <2 22=0|coefficient of x° in Tr(x)l.
Theorem 2 There is B = B(n) such that {£7(x)]| < B for all x

in the closed interval (-1, 1], for all f satisfying (C).

Also there is f for which the bound is attained.

Proof The existence and attainment of a bound for each f is
QUOTATION CORNER 43 o ) ) ) . i
trivial. This bound is a continuous function of the point
(ao, al, a,, e an) in a bounded closed set in a space of

I think I can safely say that nobody understands gquantum

. n+l dimensions.
mechanics.

Richard Feynman We can now concentrate our attention on the polynomial

that attains the bound B for T£7(x)]. Call it p(x).
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Theorem 3 The values p(1l) and p(-1) are +1.

Proof Suppose that p(l) is strictly between -1 and 1. By
continuity we can find € > 0 such that the inequality -1 <
p{x) £ 1 holds in the enlarged interval [-1, 1+¢]. Then
we can shorten the interval linearly, in fact put g(x) =
p(xX+e(x+1)/2). This g(x) is a polynomial of degree n
satisfying condition (C), but lg’(x)| takes a value (1+e/2)B
in the interval (-1, 1], a contradiction.

The reasoning for p(-1) is similar.

Let A and B be the set of zeros in the interval [-1, 1)
of p(x)-1 and p(x)+1 respectively, each of these sets has < n
points (in the algebraic sense, counting two for a double
zero). Of all these zeros no more than two are simple
zeros, in fact only x=-1 and x=1 can be simple zeros.
Therefore A and B together cannot contain more than n+1
distinct points. Therefore we can find a set S (of at most
n points) separating A and B, in the sense that between any

point of A and any point of B there is a point of S.

Theorem 4 The set S has n points.

Proof Suppose not. Let v be where p’(x) attains one of
the values #B. If v is not in A or in B, we can find a set
S’ as follows:

Case 1 The points of A and B alternate (i.e. between two
points of A is one of B and vice versa). The point v is
between some a‘’ in A and b’ in B. Delete the point of S

that separates a’ from b’ and replace it by v taken twice.
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Call this set S’ and let h(x) be a polynomial with these
points as zeros, then for sufficiently small (positive or
negative) B the polynomial p(x)+Bh(x) lies between smaller
bounds than 1 and has the same derivative at v as p(x), a
contradiction.

Case 2 There are two points of A not separated by a point of
B (or vice versa). Then S has < n-2 points. Add v
repeated to give S’, and proceed as before.

Finally we must deal with the case when v is in A (v in B
is similar). Clearly v = #1. Take the nearest point of S
to v, delete it and replace it by v repeated to give S’, then

proceed as before.

Theorem 5 The polynomial P(x) is a Chebychev polynomial

(possibly with the sign changed).

Proof The two polynomials n2(l—p(x)2) and p'(x)z(l—xz) are
both of degree 2n, and they have the same zeros (the points of

2n is the same in both.

A and B), and the coefficient of x
Equating them and solving the differential equation for p(x)

gives the result.

Markoff’s inequalit If f(x) of degree n satisfies (C) then

£ (x)| < n? in the interval -1 < x < 1.

Proof [f7(x)| < max|p’(x)| < max|(d/dx)Tn(x)j
Tn(cos #) = cos né, and T’'(cos ¢) sin é = n sin neg,
, - sin n¢ < pn2 , 2
|Tn(cos )| n “EYE*E‘ < n%, and so |f’(x)] < n“.

Footnote Two applications of the result above give
fEm(x)] < n2(n—l)2, but this bound is not the best possible.

V. A. Markoff (brother of A. A.) showed [£n] < n2(n2—1)/3.
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BOOK REVIEW
JOURNEY INTO GEOMETRIES by Marta Sved

(Math. Assoc. of America, 1991, xvi + 182 pages, 6% x 9 ins.)

The book consists of two parts, with a Foreword by Prof. H.
S. M. Coxeter. Part 1 after an Introduction has 6 chapters,

with these interesting titles:

1. Going Round in Circles (Circle geometry)

2. Reflections on Inversion (Inversion shown equivalent to
reflection)

3. Dr. Whatif’s Euclidean Geometry (Geometry of circles
concurrent at a point O that vanishes)

4. A Hyperbolic T-Party (Introduction to the Non-Euclidean
Hyperbolic Plane in contrast to Spherical Geometry)

5. Circle-Land Revisited (Poincaré Model of the hyperbolic
plane)

6. Into the Shadows (Introduction to the Projective Plane and

the Finite Projective Plane)

Each chapter contains delightful diagrams and illuminating
illustrations, and is developed by lively conversations of an
Alice (a student) with Master Lewis Carroll (her mathematical
teacher at school) and with Dr Whatif (Master of ’What ... if

./ mathematics, as her present teacher), followed by problens
and exercises. In Chapter 5 there appear two Hostesses, one
is White who encourages Alice in lessons by providing her with
delicate opera logical (log-ical) glasses for closer and more

intimate observation of figures, and the other is Red and shows
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her red eyes in trying to test her learning.

Part 2 contains Axiom Systems and solutions to the problems
in Part 1, followed by a list of books with which the reader can

follow up the journey.

Unfortunately there occur a good many minor misprints, which
the author is expected to correct in her book’s 2nd Edition.
Such an entertaining, illustrative and illuminating book as this
Journey into Geometries would have added value 1if it had an

Index.

As a sample of the delightful dialogues, the reviewer is
tempted to quote one: Dr. Whatif turning to Alice says

(page 9):

"With Axioms, my dear, you need a gentle touch.

They should not say too little, they should not say too much,
And on one point above all, we have to be insistent,

Though Axioms need not be true, their set must be

consistent."

Sahib Ram Mandan.
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SYMMETRIC SIMULTANEOUS EQUATIONS MORE SIMULTANEOUS EQUATIONS

(JCMN 59, p.6173 & 60, pPp.6192-6194)
Jordan Tabov

Har lexiev i i i
arry Alexie (Mathematical Institute, Bulgarian Academy of Sciences)

The previous contribution discussed the equations:

x% - vz = a y2 - 2zx = b 2% - Xy = ¢, I met another interesting example (but not quite symmetric)
noting that the case (a, b, c) = (1, w, wz) had not been % - sz_ 2 xez >
XD YYX Y L, Y = xVX -y©
P —— ’ = b.
covered (w being a complex cube root of unity). Now we Jl~x2+y2 /l—x2+y2
shall deal with this case. Firstly we need:~- Because a2 _ b2 _ X2 _ y2 the answer is seen to be
Lemma The solution of a+ B+ vy = 0 —5—5—
a + p/al-p? b + aVa?-p?
2 2 2 X = y = 2% ava -b
a”™ + BT + « = 0 \/22 -
) 5 1-a’+b V1-a24p2
is (a, B, y) = either (K, ko, ko) or (k, ko“, kw), for L
If the original equation is ¢(x, ¥) = (a, -b) then the
any complex k. . . .
solution is ¢(a, -b) = (x, y).
Proof Substituting for y, we find 02 + aB + 82 = 0, i.e.
(a - wB)(a - wzg) = 0, hence the result. These equations are related to the Lorentz transformation
x' = X =Vt tr - £ - wx
Now we return to our problem: /‘_‘—“5 ’ —
2 2 2 2 Lo v
x* - yz =1, y’ - zx = w, 27 - xy = w°. . . 2 .2 . . P 5
; , , _ , in which x“-t% is invariant (= x’/“-t-¢ ). The inverse is
Then, X 2+ y o o+ 22 - Xy - Zz - 2X = 1+ w+ w = 0. . - X! + vt" ¢ _ ot + vxt
ieer (x-y)" + (y-2)" + (2-x)° = 0 = (x-y) + (y-2z) + (z-X). V1 - o2 Vi - 42
By our lemma above: X-y = Kk, y-2 = kw, 2z-x = sz
More generally, consider the simultaneous equations
(or the second solution). Taking this first solution,
2 2
, L X =~ yE(x“-y%) _ y = xf(x%-y?)
note that k = 0 gives x = y = 2z, which is not allowable. ¢ = a, = b.
2,2 2 2,2 2
. . . 1-£2(x?- Vi-£2(x2-
Putting x = y+k and z = y-kw, and using x2 - vz =1, we find Yo (x7=y%)
) ' where f is any function with |f]| < 1.
2yk + k2 + ykow = 1. This gives y, and so also x and z. Y £
1 - k2.2 1 - k2 1 - k% The solut
_ - _ - - = e solution (as before i
X KT+ o) y k(2T oy ! z k(2% o) . ( ) can be obtained by the change
(x, y) ~— (a, -b). In fact it is:-
Putting k = (1-w)/p, these take a simpler form: 2 2 2 o
, x = &t bf(a®-b%) y = b+ af(a®-p?)
X =p/3 + 1/p, Y = p/3 + /P, zZ =p/3 + w°/p T2, 2 5. 553
V1-£2(a%-p2) Vi-£2(a2-p2)

where p is any non-zero complex number.

The second alternative given by the lemma (with y-z = Ko?

and z-x = Kkw) does not lead to a solution.
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SIMULTANEOUS SYMMETRIC EQUATIONS
In the Trinity College, Clare College and Trinity Hall

Entrance Scholarship paper on the morning of Thursday, November

9th, 1899, in Cambridge, question 3 was as follows:-

3. If y3 - z3 = aye,
23 - x3 = azx,
X3 - Y3 = axy,
show that x3 + y3 + z3 = 3xXyz.

In those days one would assume that the variables in such
a problem were complex numbers, for fields and rings were
certainly not taught to schoolboys, and in a sense had not yet
been invented (van der Waerden’s Moderne Algebra had not been
written). on this assumpfién the proposition is untrue, as

may be shown by the example where x =y = 1, z = exp(27i/3)

and a = 0.

Suppose we were to add the condition a = 0, would the
proposition become true? Alternatively, suppose we took
the variables all to be real, would the proposition then be

true? More generally —— what was in the mind of the

examiners?

If we took an arbitrary a = 0, then would the set of
equations have a solution (%, y, z) in complex numbers, other

than the trivial x =y = z = 0?
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THE MASS OF MERCURY
Richard L. Branham, Jr.
(Centro Regional de Investigaciones Cientificas y Tecnologicas
Mendoza, Argentina)

If a planet has a satellite it is easy to find the planet’s
mass, Kepler’s third law states that, if P is the period of
revolution of the satellite round the planet, and d the distance
of the satellite from the center of the planet (more precisely,
half the sum of the maximum and minimum distances), then the sum

of the masses m and M of the satellite and planet is given by

2.3
mew o= AL (1)
GP
where G is Newton’s gravitational constant. To find the sum

of the masses we merely need to measure d and P.

But for a planet such as Mercury or Venus with no satellite,
one must wuse indirect techniques. One studies the
perturbations by the planet under study of another object, to
infer the mass of the planet. In effect one uses a
mathematical model for the solar system to calculate theoretical
positions of the object perturbed, compares the actual observed
positions with the theoretical positions, and wuses the
differences, called (0-C)’s, to correct for the mass of the
perturbing body. One linearizes the non-linear equations of
condition by a Taylor series expansion, truncated at the first
order. This technique, called a differential correction by

astronomers and the Gauss-Newton method for non-linear regression

by statisticians, is discussed in most books on data reduction.

Consider Mercury’s mass. The planet closest to Mercury,
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Venus, will be the most influenced by Mercury’s mass. We
calculate Venus’s (0-C)’s and solve for Mercury’s mass and

perhaps other unknowns. Having the observations of Venus and

a standard mathematical technigue, what could go wrong?

Plenty. The method used to solve the equations in a
differential correction is usually least squares (OLS), which
given certain assumptions calculates an optimum solution.

These assumptions are: 1) all of the experimental error

resides in the observations themselves, whereas the equations of

condition are error-free; 2) the observational errors are
uncorrelated; 3) the observational error follows the normal
distribution; and 4) the observational error exhibits no
systematic trends with time (an assumption known as

"homocedasticity"). Many of these assumptions, unfortunately,

are often violated. Take-the assumption of homocedasticity,
the figure (opposite) shows (0-C)‘s in right ascension and
declination for observations made of the asteroid Hebe between
1847 and 1975. Modern observations are more precise than their
nineteenth century counterparts; the (0-C)‘s are heterocedastic.
Observations of solar system objects, moreover, rarely lead to
errors following the normal distribution, and are frequently
correlated. Nor does one have to look far to find instances
where the equations of condition as well as the observations
incorporate error. When the latter situation prevails, to
solve the mathematical system with OLS can lead to a biased
solution; the correct procedure employs total least squares
(TLS), which allows for error in the equations themselves. In

short, on occasion we find in astronomy situations where none of

ARC
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the assumptions allowing us to infer the optimality of an OLS

solution is obeyed.

This is the probable reason for the fiascos such as Pluto’s
mass. In the year 1978 the official International Astronomical
Union (IAU) mass for that planet was 1/3,000,000, taking the
solar mass as unity, with a formal mean error of 20%. But that
very year Pluto’s satellite Charon was discovered. Equation
(1) showed that the real mass is 1/130,000,000, meaning that the
official mass was in error not by 20%, but by 4000%.

What about Mercury? The official IAU mass for this
planet, based on numerous determinations including the Mariner
flybys, is 1/6,023,600 * 250. But if this mass is correct,
then the density of the planet is anomalously high with respect
to the other terrestrial plénéts and the Moon. Because the
mass determinations have, with only one exception that I can
find, been based on differential corrections, is there a chance
that something has gone amiss and that the real mass, which if

it were 1/9,000,000 would give concordant densities for all the

terrestrial planets and the Moon, has been overestimated?

If we look at just optical observations, the possibility
cannot be lightly dismissed. If the real mass is 1/9,000,000,
but we use 1/6,000,000 in the mathematical model, a quick back-
of-the-envelope calculation shows that the difference in the
computed position of Venus could reach 0.3" of arc. This seems
large, but observations of Venus have a mean error of about 1".

A good routine for spectral analysis, however, should be able to

[
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detect a 0-3" signature IF THE DATA DO NOT SUFFER FROM STRONG
SYSTEMATIC ERRORS. venus 1is observed in the daytime with a
transit circle. Many corrections must be applied to the
observations. One of these is the day-night correction. A
transit circle defines a celestial reference system largely by
nighttime observations of stars. Daytime observations must be
reduced to the nighttime system. Venus’s image is generally
a crescent, and the observations must be reduced to the centre
of the disc. And so forth. Many of these corrections are

difficult to determine. As the upshot, systematic errors in

the observations may easily swamp a 0-3" signature.

What saves the situation, and for me makes a mass much
different from 1/6,000,000 for Mercury unsustainable, is radar.
Venus is easily reached by radar, which has a formal precision
of about 0-.004" for a planet at Venus’s distance. Although
radar determines the distance much better than angular elements,

a signature of 0-.3" will be easily detected.

I have calculated solutions for Mercury’s mass by techniques
for nonlinear regression that do not linearize the equations of
condition. When only optical data are used, it is possible to
get a mass as small as 1/8,970,000. But when radar is
incorporated the mass becomes close to the official IAU value.
I therefore harbor little doubt as to the real mass for the

planet Mercury: the mass is close to 1/6,000,000, and the

planet is indeed anomalously dense.
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FITTING

John Parker
(Oak Tree Cottage, Reading Road, Padworth Common, RG74QN)

In statistics we often want to fit a "best possible" line
to a set of points in the plane; and in navigation there is the
dual problem of fitting a "best possible" position to a set of
Sumner lines (position lines) on the chart. Both these
problems have generalizations in spaces of more than 2

dimensions.

The orthodox (and easiest) way to tackle these questions is
by the "method of least squares", that is by choosing our point
(or line or whatever) to minimize the sum of squares of the
relevant perpendicular distances (or more generally the sum of
squares of other quantities that measure the discrepancies
between the proposed answer and the data). But there may be
advantages in using the modulus instead of the square. It may
be noted that Kendall and Stuart in their Advanced Theory of
Statistics (Vol 2, p.286) discuss this question, saying that the
choice of a method of fitting is essentially arbitrary, and that
least squares is preferable because of the ease of calculation.
However, in 1961 (when their book was published) computing was

not as easy as it is now.

This will be a story about two statisticians, one, whom we
shall call LS, uses the least squares method, and the other, MP,
obtains his answers by minimizing the sum of perpendicular
distances in the geometrical cases, oOr more generally by
minimizing what in the jargon of functional analysis is called

the Ll norm.

Ihe case of one dimension (which when examined carefully

is not as simple as one might have hoped) Take the simplest

case. Suppose that there is an unknown parameter, and for

~6285-

it we have three estimates, x, y and z; these are samples
from the random variables X, Y and 2. With (x, y, z) as
data LS will say that the best conclusion to come to about the
unknown parameter is to take it to be the mean, (x+y+z)/3, but
MP will say that the best answer is the median, i.e. the
middle one of the three values x, y and z when they are
arranged in increasing order. wWhich of the two should we

trust? LS or MP? An unanswerable question!!

In real life (though not when answering a question in an
examination paper in mathematical statistics) we have very
little idea about the random variables X, Y and Z, in other
words we know very little about the accuracy (or, more
precisely, the probability distribution of the errors) of our

data.

Even when we know that the three random variables X, Y
and Z all have the same distribution, it is still difficult to
choose between LS and MP. If X, Y and Z all have the same
Gaussian distribution then LS usually (in fact with
probability 59%) gives a better answer than MP (i.e. an answer
nearer to the true value). If, however, X, Y and Z all have
the same Cauchy distribution then (as any good text-book
explains) the mean put forward by LS will have the same Cauchy
distribution, and MP’s median will probably be a better answer

(in fact it has probability 64% of being better).

If some of the three random variables are more accurate
than others (but the analyst does not know which ones), then
the median tends to perform better as a predictor of the true

value, as we shall see now.

The table below (calculated by simulation, accuracy no

more than 1%) gives the probability that the mean of three
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data values is nearer than the median to the true value of the
unknown; it is calculated for various choices of the three
random variables X, Y and Z. In each of the ten cases X, Y
and Z are of the same type (given in the first column), and
are all unbiassed, i.e. having mean equal to the true value of
the unknown. Values in the second column are for X, Y and 2
being identically distributed, and in the third column are for
X as before but Y having twice the error of X, and Z three
times, (formally stated, if t is the true value, then Y-t has
the same distribution as 2X-2t, etc.). The five types of
distribution considered are as follows; 1in each case we give
a probability density f(x) with mean zero, the "probability
distribution”" F(x) being defined by

F(x) = ff £(t) at.

o0

The variance is defined as me xzf(x) dx, and the mean error
as me [x|£(x) dx.

In general, for three samples from any random variable,
the probability density of the median is 6f(x)F(x)(1-F(x)),
and so the variance of the median is

6|2, x? £(x)F(x)(1-F(x))dx

Now to define the 5 random variables that we shall

consider.

Uniform f(x) =% if -1 < x < 1, and zero otherwise. The
variance is 1/3 and the mean error 1/2.

Triangulaxr f(x) = 1-|x| if -1 < x < 1 and zero otherwise.
The variance is 1/6 and the mean error is 1/3.

-1/2

Gaussian f(x) = (2m)
the mean error is /(2/m) = 0-7979.

Negative exponential f(x) = % exp-|x|. The variance is 2

and the mean error is 1. F(x) = &% exp x if x < 0, and

=1 - % exp-x if x > 0.
Ccauchy f(x) = 1/(n + ﬂxz). The variance and mean error are
both infinite. F(x) = % + (1/m)tan ‘x.

exp (—x2/2). The variance is 1 and
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The five distributions are listed in this order because
it is roughly the order of increasing fatness of tails; to
measure this property it may be observed that the ratio
(variance)/(square of mean error) takes the five values:
4/3, 3/2, n/2, 2, (indeterminate, but might be called )

t i e h

Distributions ratio of errors ratio of errors

of X, Y and 2 1:1:1 1:2:3
Uniform 70% 55%
Triangular 60% 48%
Gaussian (normal) 59% 48%

Negative exponential 47% 41%

Cauchy 36% 33%

The keen student may verify that the 70% in the top row

of the table above is exact.

There are other ways of comparing two unbiassed
estimators, for instance we may call one "better" than another
if the estimates that it gives have a smaller variance than
those given by the other; but this method has the awkward
feature that three values (or indeed any other number) from a

Cauchy distribution give a mean with infinite variance.

Variance of mean

Ratio Variance of median
Distributions ratio of errors ratio of errors
1:1:1 1:2:3
Uniform 5/9 = 0.556 80/93 = .860
Triangular 140/207 = 0:676 7840/7859 = 1.00
Gaussian w/(37-3/3) = 0.743 1.07
Negative exponential 24/23 = 1;04 1355200/936289
= 1-447
Cauchy @ ®
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The bottom row is a little obscure. The mean and the
median both have infinite variance, but one infinity is bigger
than the other, in a sense. If instead of the three data
values x, y and z, we had five or more, then the median would

have finite variance.

Two dimensions Consider drawing a line to fit a set of
points in the plane. The least squares solution from LS

will be a line through the centroid, and in the language of
mechanics it is the major principal axis of inertia of the set
of points regarded as equal point masses. In general the

line will not pass through any of the points.

The solution from MP, the line minimizing the sum of
perpendicular distances, will in general be a line through two
of the points. More precisely, there is always an optimal
line, but it may not be unique, and every optimal line is

through two points. This may be proved as follows.

Suppose that an optimal line, as in the picture above,
does not pass through any of the points, then it may be moved
parallel to itself without increasing the sum of the
perpendicular distances, until it meets a point; therefore
there is an optimal line through one point. Now take (if
possible) an optimal line through only one point, and consider
rotating it about that point. As long as the line does not
meet any other point the sum of the perpendicular distances,
as a function of the angle ¢ of rotation from the optimal
position, is of the form T ¢ sin |¢-a| which has second
derivative negative and therefore cannot attain a minimum
where ¢ = 0. Therefore every optimal line is through two

points.
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For both LS and MP their algorithms lead in general to a
unique answer, but there are exceptional cases. For
example, if the problem is to draw the optimum line through
the three vertices of an equilateral triangle, LS will give
any line through the centroid, but MP’s answer will be any one

of the three sides.

Fitting a linear fupction A common problem (with some

relation to the problem discussed above) is to fit the linear
form y = mx + ¢ to a number of (inaccurate) observed y values,
the x’s being known. This was essentially the question

discussed in MASS OF MERCURY (3) in JCMN 61, p.6240. Take a

simple example of this problem.

Suppose that the data is (x, y, z), where x is an
observation of £(0), y is an observation of f(1) and 2z is an
observation of f(3). We want to estimate the slope m of the
linear function mt + c fitted to f(t). The least squares
calculation leads to LS giving the estimate (52-y-4x)/14 for
m, and the estimate (5x+3y-z)/7 for c. However MP (who can
get his answer just by drawing a line from the first to the
third point on the graph) gives the estimates (2-x)/3 for m
and x for c. As before, we ask what is the probability of
the estimate for m from LS being nearer to the true value than

that from MP.

If x, vy and z are all normally distributed about their
correct values, with equal variances, then both LS’s estimate
for m and MP’s are normally distributed about the correct
value, the former with a smaller variance (in the ratio
27/28). The probability of the least squares estimate being
the nearer of the two to the right value is 1-(1/wm)arc tan 6/3
= 0.+53.

As before we can calculate (by simulation) the

probability of LS’s answer being nearer than MP’s to the true
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value, for different distributions of the random variables X,

Y and Z, (now assumed the same).

Probability that LS is nearer than MP to the right answer

for the slope m:-

Distribution Prob Distribution Prob
Uniform 52% Neg. Expon. 52%
Triangular 53% Cauchy 50%
Gaussian 53%

The lesson (or non-lesson) to be drawn from these figures
is that our simple example tells us little about the general
statistical questions of data analysis, because to find a
slope from only three points there is not much choice
available; no amount of statistical theory will take us far
from the obvious choice of the slope from the first to the
third point. What can be said about the problem with a

large number of data points?

Higher dimensions In d dimensions, given n points, we want
(if we follow the precepts of MP) to find the k~-dimensional

hyperspace (where k < d < n) that minimizes the sum of
perpendicular distances from the given points. How many of
the points must it contain? We saw above that the answer is

2 when k =1, d =2 and n > 2.
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MORE FITTING (JCMN 62, p.6284 above)

The two statisticians (see FITTING above), LS who is devoted
to least squares methods, and MP who in the geometrical problems
minimises the sum of perpendicular distances, were of course in
disagreement about what to do with measurements of a certain
quantity given by five different experimental scientists. LS
wanted to take the mean and MP wanted to take the median as the

best possible conclusion from the data.

A third statistician, VM, believed in the middle way, the
via media. He reasoned that with data arranged in order

X< X< Xa< X< X,

Xy, SO perhaps something like (x2 + 3x

LS wanted (x1+x2+x3+x4+x5)/5 but MP wanted

3 + x4)/5 would avoid
the excesses of LS who attached too much importance to the
extreme values, as well as those of MP who gave toc much

weight to the middle value x_ and discarded the information

3
probably stored in its two neighbours.

If you have three horses and want to know the fastest of
them, you should race them together a lot and either count

which of them wins most often or calculate which has the best

average speed. Let us do the same with the theories of
these three statisticians. We set up random variables to
give sets of five data values. For each trial we can pick

out which of the three is the winner (i.e. gets nearer to the
right answer than either of the other two), and we can find
the error and squared error of each. The table below gives
for each of the three statistician the probability of winning,
and the expectation of error and the expectation of the square

of the error (these last two entries normalised to sum = 1).
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In our computer simulation the data for each trial come
from similar distributions, with their errors in the ratio
1 :2:3: 4 :5, because in the real world scientists are

not equally accurate in their results.

Distribution Test LS MP VM
Uniform Winning 30% 43% 27%
Mean error +39 +30 +31
Mean square +41 <30 - 29
Triangular Winning 36% 38% 26%
Mean error «36 -32 .32
Mean square +37 +33 - 30
Gaussian Winning 36% 38% 26%
Mean error -37 *32 +31
Mean square +39 +31 +30
Negative Winning 28% 43% 29%
exponential
Mean error *43 «28 - 29
Mean square - 50 «25 - 25
Cauchy Winning 19% 49% 32%
Mean error 1 0 o]
Mean square 1 0 ¢}
Consider the simpler problem —— given five data values

all known to come from the same distribution, what is the best
estimate for the mean of the distribution? The answer (or
the non-answer) is well known; if the distribution is uniform
you should take half the sum of the smallest and biggest, if
Gaussian you should take the mean, and if the distribution is

Cauchy you should take the median of the five values.
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PLANE TOPOLOGY (JCMN 61 p.6256)
Terry Tao (Princeton)

The proposition suggested in the previous issue is untrue.

Rewording the question: In the plane are n nodes,
numbered 0, 1, 2, ... n-1, by the residue classes mod n. There
are n curves, numbered the same way, the curve C(r) joining tne
nodes numbered r and r+l, and containing no other node. Each
curve meets each other curve just once. The curve C(r) meets
C(r-1) and C(r+l1) at its ends, and where it meets each of the
others they cross in the sense of going from one side to the
other. For what n is such a figure possible? {The
suggestion was that n could not be even)

The answer is that n can be 3 or any number 2> 5. To prove
this, the following sketches indicate how n = 3 and n = 6 are
possible.

Finally, if n is possible then so is n+2.
Proof Take the fiqure with n nodes and curves, and distort it
so that curve C(1) is straight, as shown.

node 1 ’ , , node 2

| | .
T

Now replace C(1) by three curves as shown above, adding two

nodes. This gives the required figure of n+2 nodes and
curves.
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NON-DIFFERENTIABILITY
T. C. 8. Tao

(Princeton University)

The function g(4) = % + Z:=1 (-2)7"

emerged in ORTHIC LIMIT POINT OF AN ISOSCELES TRIANGLE { JCMN

cos(2n+10

), which

61, p.6250), is non-differentiable almost everywhere. To

prove this it will be sufficient to consider only the function
F(x) = .7, (-2) "eos(2™mx).

»
(-1)nsin(2nwx)| > 7.

Lemma 1 If a < x < b then |2:=1
for some a, b and M.

Proof The integral mean of the square of the function can
be made greater than 49 by taking M = 99, then the function
will be continuous and have modulus > 7 on an open set of

positive measure, therefore on an interval.
Notation {x) denotes the non-integer part of x, i.e.

(x}) = t where 0 < t <1 and x - t is an integer.

Theorem If ¢ is such that (ch) € (a, b) for arbitrarily
large n, then the function F(x) = Z:=l(—2)—ncos(2nwx) is non-

-differentiable at x = c.

Proof Put Fyu(x) = Zh_ (-2)Mcos(2Mrx),

then F(x) - Fy(x) = (—2)_N_1cos(2N+1nx) + ... has period Z_N,
and so if we put h = h(N) = 27N we find

F(x+h) - F(x) = FN(x+h) - FN(x), now use Taylor’s theorem.

= hF&(x) + (h2/2)F§(x+9h) where 0 < § < 1.
Put o(N) = Eisiﬂ%_:_ﬁigl = Fi(c) + hEli(c+sh) 2.

We shall show that ¢(N) does not tend to a limit as N -+ =,

N

Note that Fﬁ(x) = —ﬂ22n=1(—2)ncos(2nﬂx) is between % 2N+112

’
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so that hFﬁ(c+€h)/2 is between ﬂ2.
Therefore w(N+M) - ¢(N) is between F/ _(c) - Ff(c) * 2n2.
N+M N
- N+M N n
But Fﬁ+M(c) - F&(c) = -7 En=N+1( 1) 'sin(2 'wc)
(now putting g = 2Nc)
N : . . M _. M
= (-1) 'm(sin(27g)-sin(4ng)+sin(8mg)+ ... —-(-1) sin(2 7g))
and therefore |Fﬁ+M(c) - Fﬁ(c)[ > 77
by Lemma 1 because (g} = (2Nc) € (a, b).
Therefore |@(N+M) - @(N)| > 77 = 272 > 1 for arbitrarily large

N, proving our theorem.

Coreollary The function F is non-differentiable almost
everywhere, because almost all x are normal, which implies
that the points (2nx) for n =0, 1, 2, .... are dense in the
unit interval, and so infinitely many of them must be in the

interval (a, b).

Is there any point where F is differentiable?

USEFUL INFORMATION

If your computer offers you a random variable uniform on
the unit interval (0, 1), here is how you can get a normal
(Gaussian) random variable.

Let U and V be random variables, both uniform on (0, 1).
Then J=2 1og U cos 2%V and J<2 Tog U sin 2av
are both normally distributed random variables, with mean = 0
and variance = 1. And they are independent.
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ORTHIC LIMIT OF A TRIANGLE
(JCMN 58, p.-6138, JCMN 60, p.6209 and JCMN 61, p.6250)
T. C. S. Tao (Princeton University)

Represent points of the plane by complex numbers in the
usual way. Take a triangle ABC of unit circumradius with
origin at the circumcenter. Use the letters A, B and C to
represent either the points or the corresponding complex numbers.
By rotation we may make the product ABC = 1. The orthic
triangle A’B’C’ has vertices the feet of the perpendiculars from
A, B and C to the opposite sides, given by

Aar - A+B+Cc_BC _ A+B+cC-a?
- 2 A 2

Br - A+B+C _CA _ A+B+cC-pB2
2 2B 2

cr - A*B+C _AB _ A+B+cC-c?
2 2C 2

(See JCMN 30, p.3133, or, if your stock of old copies does not
go back to December 1982, the calculation is not harad)

The altitudes meet at H = A+B+C, and the points A’, B’ and C’
are on the nine-point circle with center at N = (A+B+C) /2, and
with circumradius half that of- ABC.

The orthic limit of 'the triangle is

A+B+C 2 4

2
because the partial sums of this series are the nine-point

%(A"2 +B7% +¢c7%) + %(A4 +BY + %y -
centers of the triangles of the sequence, each nine-point
center being the circumcenter of the next triangle of the

sequence.

From this formula we can derive
the result found in the previous issue
for the orthic limit of an isosceles
triangle. Take vertices A = 1,

B = exp(2i¢) and C = exp(-2i¢).
A+B+C=1+2 cos 24,

24B72%4c™2 2 1 4+ 2 cos 46, etc.

AT“4+B”
This gives the series
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v
1_1 .1 1 1 _
(3 —atg " - } + cos 24 - 3 cos 46 + 7 cos 84
_1 © .-k k+1
=3 + 2k=0( 2) cos(2 6)
for the position of the orthic limit. Subtracting cos 24

gives the height of the orthic limit above the base of the
k k+1
§),

=]

triangle, this height is % + zk=l (-2)" " cos(2

which in the notation of the previous contribution is
sin 24 f(tan 6) = g(4¢),

because the triangle has base = 2 sin 2¢ and base angles §.

Are there extensions to higher dimensions? Does the
circumsphere of the feet of the altitudes of a tetrahedron
have interesting properties? Can you use quaternions for
this question, as you use complex numbers in 2 dimensions?

QUOTATION CORNER 44

Biologists think they are biochenists,
Biochemists think they are chemists,
Chemists think they are chemical physicists,
Chemical physicists think they are physicists,
Physicists think they are God,
God thinks he is a mathematician.

— Anonymous

USELESS INFORMATION

2216193 » 33 x 14503 - 1 is a prime number.

211235 » 3 x 5 x 11 x 10343 + 1 form a prime pair.
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MEDICAL RESEARCH IN AUSTRALIA (2)

About 30 years ago Dr McBride in Australia reported having
found correlation between babies being born deformed and their
mothers having taken what was then a new drug called Thalidomide,
sometimes labelled Distaval. Other workers soon confirmed his
results and there was widespread publicity over the affair.
It was estimated that 12,000 babies had been affected. The
drug was said to have been banned all over the world.

The drug companies needed to prevent another such disaster.
As many as possible of the brochures sent out to the medical
profession advertising thalidomide were collected and destroyed.
Then strings were pulled to ensure that Dr McBride was never
given any recognition or award or honour by universities or
governments; that was easy, but they needed to do more. Dr
McBride was given funds to set up a small research institute,
which survived quietly for many years, then one of the employees
announced to the newspapers that Dr McBride had been dishonest
in his publications, that he had been "massaging" the
experimental data to make them look better. There was a formal
enquiry and the mass media tried to convince the general public
(largely successfully) that Dr McBride should be regarded as
disgraced. Few people now know that most experimental
scientists massage their data before publishing, though Captain
Cook had remarked on that usage in 1776 (see JCMN 61, p.6236).
A certain amount of massaging is often justified, but it is hard
to be dogmatic on where to draw the line.

Modern research scientists face a slightly different
temptation, to massage the data to improve their chances of
getting a research grant for the next year’s work. This
consideration is particularly strong in the medical sciences, for
the donors of research grants are often drug companies with a
concern about what is published. In Cambridge University the
Glaxo Professorship of Molecular Parasitology has recently been
created with an endowment of £850,000 from Glaxo Holdings plc.
In Australia and the U.K. the governments are pressing the
universities to finance their research laboratories by contracts
and grants from industry. In these circumstances would a
university research scientist, remembering the fate of Dr
McBride, announce that a drug put out by a big company was
harmful? How many have ever done so?

More recently (June and July 1993) it has been reported (in
the London Weekly Telegraph) that thalidomide is being given to
leprosy patients in Brazil, and that the same birth deformities
are being found as those observed long ago by Dr McBride.
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QUOTATION CORNER 45

The weakness of democracy is that the assumption that
all men are equal and capable of equal contribution to the common
good is flawed.

- Lee Kuan Yew, speech in Tokyo, November 1992.

EDUCATION IN SOUTH AUSTRALIA

Channel Seven (television) News last month screened a
controversial list of the "top South Australian schools" -—
those attended by the top 250 candidates in the 1991 public
matriculation examinations.

The government body concerned at first refused to release
the information. Journalists obtained it only after an appeal
to the State Ombudsman. Channel Seven reports that the State
government has now decided to change the law so that no such
information will ever be released again.

A little over half the schools in the list were private
(i.e. not State Government) though private schools make up only
about a quarter of the schools in South Australia.

—— Newspaper report in March.

Another feature emerged in June, that the University of
Adelaide, in using public examination marks to decide which
applicants to admit to the university, has for the last three
years had a policy (quaintly called the Fairway scheme) of
adding extra marks to the scores of candidates from certain
schools. There was a precedent elsewhere in Australia; a few
years ago in the A.C.T. all girls had two marks added to their
scores for university entrance, but this scheme was abandoned
after two years.




