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The James Cook Mathematical Notes is now published in 3
issues per year, in January, May and September. The history
of JCMN is that the first issue appeared in September 1975, and
others at irregular intervals, all the issues up to number 31
being produced and sent out from the Mathematics Department of
the James Cook University of North Queensland, of which I was
then Professor. In October 1983 this arrangement was beginning
to be pnsatisfactory, and I changed to publishing the JCMN
myself, having three issues per year printed in Singapore and
posted from there. I then set a subscription price of 30
Singapore dollars per year. When in 1985 I changed to
printing in Australia I kept the same price, for the Singapore

dollar is a stable currency.

Now (October 1992) it has become clear that the paying of
subscriptions by readers.is an inefficient operation. Bank
charges for changing currency and for international transfers,
with postage, together absorb most of the initial input of money.
Therefore we are abandoning subscriptions as from the beginning
of 1993, issue number 60.- To those who want to give something
in return for the JCMN, I ask them to make a gift to an animal
welfare society in their own country. The animals of the world

will be grateful and so will I.

Contributors, please tell me if and how you would like your

address printed.
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ABSOLUTE PRIME NUMBERS
A. T. Kolotov and A. M. Slin‘ko

A natural number is said to be an absolute prime
if it is prime and remains prime éfter any permutation
of its (decimal) digits. Prove that the decimal
representation of an absolute prime number can coptain
no more than three distinct digits.

— A.T.Kolotov, XVIII-th SMO, 1984.

Find all natural numbers n such that every n-
digit number that has n-1 ones and 1 seven in its
decimal representation is prime.

-—-= A.M.Slin’ko, short-listed for the 1990 IMO.

The attention of mathematicians has for a long time been
attracted to prime numbers, and specially to those that have
some sort of symmetry. The "repunits" An = (10n - 1)/9
with decimal representation 111 ... 1 containing only units,
form an important class of them. For a repunit An to be
prime the number n of its digits must be prime, but this
condition is far from being sufficient. For instance A3 =
111 = 3x37 and Ag = 11111 = 41x271. Some of the repunits
are, none the less, prime: A2, A19’ A23, A317,
Alg31 are examples. The question of primeness of the

repunits was discussed by M. Gardner [1] and later in [2-4].

and probably

It is not known if the number of prime repunits is finite or
infinite.

The prime repunits are a subset of the primes that remain
prime after any permutation of their digits. The primes with
this property were called "permutable primes" by H.-E. Richert
who introduced them some 40 years ago [5], and were called
"absolute primes" by T.N. Bhargava and P.H. Doyle [6], and by
A.W. Johnson {7]. The intent of this note is to give short
proofs, not needing number crunching, of all known facts about
the absolute primes other than the repunits.

From the table of primes, we find these 21 absolute primes
less than 999, other than the repunit 11:

~6185-

2, 3,5, 7, 13, 17, 31, 37, 71, 73, 79, 97, 113, 131, 199,
311, 337, 373, 733, 919, 991.

It is easy to see that multidigit absolute primes contain
only the four digits 1, 3, 7, 9 in their decimal representation.
The digits 0, 2, 4, 5, 6, 8 cannot appear, because by shifting
this digit fo the units place we obtain a multiple of 2 or 5.

Now we can significantly confine the area of the search, and

this will help us.

Lemma 1 [6] An absolute prime does not contain in its decimal
representation all the four digits 1, 3, 7, 9.
Proof Let N be a number with all these four digits. Shifting

them to the right, we can obtain the 7 numbers

N, = 10%L + K, (i=0,1, 2,3, 4,5, 6)
where KO = 7931 = 0 (mod 7) Kl = 1793 = 1 (mod 7)
K, = 9137 = 2 (mod 7) Ky = 7913 = 3 (mod 7)
K, = 7193 = 4 (mod 7) Kg = 1937 = 5 (mod 7)
and K_= 7139 = 6 (mod 7).

6
The 7 numbers Ki have different residues mod 7, and therefore

so do the numbers Ni. Therefore one of the Ni is divisible
by 7. since all these numbers can be obtained from N by

permutation of the digits, N is not an absolute prime.

Lemma 2 An absolute prime does not contain in its decimal
representation any digit a three times with a digit b ~ a twice.
Proof Suppose that a number N contains digits a, a, a, b, b.
By permutation of the digits we can obtain ten numbers N(i, )
of the form

N(i, j) =C + (b - a)(1oi + 109)
for any i and j with 0 < j < 1 < 4, where C is a number with
its last.five digits all = a. Since 1001, 1100, 1010, 101,
11, 110 and 10100 give remainders 0, 1, ... 6 on dividing
by 7, so do the numbers obtained by multiplying by (b - a),
and so do the corresponding N(i, j). Therefore one of these

numbers N(i, j) is a multiple of 7.

With Lemma 1 and Lemma 2 and some calculation we find
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that there cannot be an absolute prime of 4, 5 or 6 digits.

Lemma 3 If N is an absolute prime of n (> 6) digits and it

ends with the digits aaaaab (where b = a), so that
N = 10°K + aa_ + (b-a)

then K is divisible by 7.

Proof By permuting the last 6 digits we can obtain the
nunbers Ni = 106K + aA6 + (b—a)loi
for i =0, 1, 2, 3, 4, 5. Since (b-a) is even and

1=1, 100=2, 10=3, 10000=4, 100000=5 and 1000=6 (mod 7), the

6 numbers 10i(b—a) have the same property, of having different
non-zero remainders on dividing by 7. If the number 106K +
aA6 had a non-zero gemainder on dividing by 7, we could find
some i such that 101(b-a) had the opposite remainder, and Ni
would be divisible by 7. Since this is not the case, it
follows that 106K + aA6

111111 is a multiple of 7, we conclude that 106K, and hence K,

is a multiple of 7. Knowing that

is divisible by 7.

Theorem 1 Every multi-digit absolute prime either is a
repunit or can be obtained from a permutation of the digits of
the n-digit number Bn(a, b) = aAn + b~ a-= (10n - 10)a/9 + b
with decimal representation aaaa....aab, where a and b are two
different digits from {1, 3, 7, 9}.

Proof Let n be the number of digits of N. We can
suppose that n > 6. By Lemma 1 N does not contain all four

of the digits listed, and by Lemma 3 it can contain three of
them only if it is a permutation of aaaa....aabc, where a, b
and ¢ are three of the numbers. Let’s show that this is
impossible. Since N is an absolute prime, the n-digit
numbers aa...aacaaaaab and aa..aabaaaaac are also absolute
primes, and by Lemma 3 the two (n-6)-digit numbers
aa...aac and aa...aab are both divisible by 7, therefore
their difference c-b is divisible by 7, which is impossible.
Hence N either is a repunit or contains only two digits.
In the latter case we need Lemma 2 once more to secure that

one of the two digits occurs only once.

The prime number 7 played a significant role in the
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precediﬁg considerations. Other useful primes also exist
and we are going to find some of them. The property of 7

i
that was most useful for us was the fact that the powers 10
for i =0, 1, 2, 3, 4, 5, 6, had all different remainders on

dividing by 7. In general, by Fermat’s Little Theorem for
. -1
an arbitrary prime p > 5, we have 10P =1 (mod p).
. . . h
Let h(p) be the least positive integer such that 10 (p) =

1 (mod p).

P 7 11 13 17 19 23 29 31

h(p) 6 2 6 16 9 22 28 15

It is obvious that h(p) is a divisor of p-1 and that

q .
10 = 1 (mod p) implies @ = 0 (mod h(p)). It is also easy

i
to see that the powers 10 for 0 £ i < p-1 have different

non-zero remainders on dividing by p if h(p) = p-1. When

this is the case, 10 is said to be a primitive root mod p.

Note that the number 10 is a primitive root modulo primes

7, 17, 19, 23 and 29, but 10 is not a primitive root modulo |

6
13, because 10 =1 (mod 13).

Lemma 4 Let N = A be a repunit and let p > 3 be a prime.
n

Then N = 0 (mod p) if and only if n =0 (mod h(p)).

n
Proof As 10 = 9N + 1, we have N = 0 (mod p) if and only if
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n .
10 =1 (mod p), and this is equivalent to n = 0 (mod h(p)).
This simple assertion gives us information about divisors
of the repunits. In particular, if n is prime and the

factorization of A into primes is A =pp ... p , then
n n 12 s

h(p ) = h(p ) = ... = h(p ) = n. For instance, A =
1 2 S 7

239x4649 and h(239) = h(4649) = 7.

Lemma 5 Let B (a, b) be an absolute prime. Suppose that
n

p is a prime, not a factor of a, and that 10 is a primitive

root modulo p, and that n 2 p-1. Then n is a multiple of
p-1.
Proof For i = 0, 1, ... p-2, consider the n-digit numbers
i p-1 i
B = aA + (b-a)x1l0 = 10 aA + aA + (b-a)xl10 ,
i n . n-p+1 p-1

obtained from B (a, b) by permutations of the last p-1 digits.
n
i
Since the powers 10 (for i =0, 1, ... p-2) yield all the
i
non-zero remainders on dividing by p, so do the (b-a)xi0 ,

and hence all the B can be simultaneously prime only in the

i
p-1
case when the number L = 10 aA + aA is divisible
n-p+1 p-1
p-1
by p. But then since A is divisible by p, and 10
p-1
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and a are not, it follows that A is divisible by p,

n-p+1

and by Lemma 4 n is divisible by h(p) = p-1.

Lemma 6 If 7 < n < 16 then B (a, b) is not an absolute
n

prime.

Proof 1If a » 7 it follows from Lemma 5 (with p = 7) that we
need to verify the cases with n = 12 only. The case a = 7
requires a bit more work. Direct calculations here seem to
be unavoidable. These calculations show that the numbers
B (7, b) by a permutation of digits can be converted to

n

multiples of 3, 17 or 19.

Theorem Let N be an absoclute prime, not a repunit, with
n > 3 digits. Then n is a multiple of 11088.
Proof By Lemma 6 we may take n > 16. Since 10 is a

primitive root modulo 17, Lemma 5 yields that n is a multiple
of 16, and hence n > 32. We can repeat this argument three-
times, uéing the primes 19, 23 and 29, to obtain that n is a

multiple of 18, 22 and 28, respectively. Hence n divides

LCM(16, 18, 22, 28) = 11088.
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Richert [5] used in addition the primes 47, 59, 61, 97,
167, 179, 263, 383, 503, 863, 887 and 983 to show that the
number n of digits of an absolute prime B (a, b) must be
n .
divisible by 321,653,308,662,329,838,581,993,760. He

also mentioned that by using the tables of primes up to

99999 and their primitive roots it is possible to show

175
that n > 6x10 .

Let’s discuss now what pairs (a, b) can appear in an
absolute prime B (a, b) with n > 3 (if such a prime exists at

n

all!y.

Theorem 3 If n > 3 and B (a, b) is an absolute prime, then
n

(a, by = (9, 7y, (9, 1), {1, 7), (7, 1), (3, 9), (9, 3).

Proof Let’s write down the following egquality

r n r n r
9A - 2x10 =10 -1 - 2x10 = (10 + 1) = 2(10 + 1).
n
By Theorem 2, n is even but not a power of 2; write n = ru,
n
where r is a power of 2 and u is odd. Then 10 + 1 is
r

divisible by 10 + 1, so that the number above is composite.

-6191-
But this number can be obtained by a permutation of the digits

of B (9, 7).
n

n n/2 n/2
Furthermore B (9, 1) =10 - 9 = (10 - 3)(10 + 3)
n

which is composite.
Finally, since n by Theorem 2 is divisible by 3, the sums

of the digits of B (1, 7) and B (7, 1) are also divisible by
n n

3. Hence these numbers as well as B (9, 3) and B (3, 9) are
n n

all divisible by 3.

References

(1] M. Gardner, Mathematical Games, Scientific American, June
1964, p. 118.

[2] H.S. Williams, Some primes with interesting digit
patterns, Math. Comp., 1978, vol 32, pp. 1306-1310.

[31 S. Yates, Repunits and repetends, Star Pub. Co., Boynton
Beach, Florida, 1982,

{4] P. Ribenboim, Primevnumber records, a new chapter for the
Guiness book.

(5] H.-E. Richert, Om permutable primtall, Norsk Matematiske
Tiddskrift, 1951, vol 33, pp. 50-54.

[6] T.N. Bhargava and P.H. Doyle, On the existence of
absolute primes, Mathematics Magazine, 1974, vol. 47, p. 233.
(7] A.W.. Johnson, Absolute primes, Mathematics Magazine,
1977, vol. 50, pp. 100-103. ‘




-6192-

SYMMETRIC SIMULTANEOUS EQUATIONS (JCMN 59, p. 6173)

Harry Alexiev, A. Brown and J. B. Parker

Problem: Solve for (x, y, 2) in terms of (a, b, c) the equations

2
x2 - yz = a, y2 - zx = b, 2" - xy = C.
. 2 2 2 y
If we write A = a+b+c, B =a“ + b + c” - bc - ca - ab,
C = AB = a3 + b3 + 03 ~ 3abc,
X = X +y + 2z, Y = x2 + y2 + 22 - yz - 2ZX = XY,

then the equations for a, b, c give

A=Y, a-b = (x-y)X, b-c = (y-2)X, c-a = (z2-x)X,

AX2 = X2Y = %((x—y)2 + (y—z)2 + (z—x)2)x2 = B

and AX = */(AB) = %/C

Note that if (x, y, z) is a solution then (-x, -y, -z) is also
a solution. With this in mind we can take (if C = 0)

x+y+z = (1/A)/C, x-y = A(a-b)/J/C, y-z = A(b-c)//C

and solve these three linearly independent equations for x, y

and z. This gives the solution:

(x, y, z2) = t(az—bc, bz—ca, cz—ab)//c.
Two special cases occur when (i) X = 0 or (ii) a+b+c = 0.

(i) (From above) a = b = c; let D = 2/(a/3). Then
x =D cos ¢, y = D cos(yp-27/3), 2z =D cos(p-4n/3)
provides a solution for every value of ¢, because

2

2(X2—Y2)D— 1 + cos2p - cos2y - cos2m/3 = 3/2, etc.

(ii) If A = a+b+c = 0, then (see above) B = sz =0

(assuming there is a solution), and bc+ca+ab = 0. Then

a2—bc = a(a+b+c) - (bc+ca+ab) = 0, etc. Therefore we have
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3 303 .
a> = b~ = ¢~ = abc, so that a, b and c are either equal (= 0)
or of the form k, kw, sz, where k is a complex number and w

is a complex cube root of unity. If these conditions are

not satisfied there is no solution. But what if they are?

For the general case, with X » 0 and A = 0, the form of

solution suggests that it might have been better to work out

a2—bc, p?-ca and c2—ab in the first place. We obtain
a2 - bc = x(x3 + y3 + z3 - 3xyz) = xXY
b2 - ca = yXy, c? - ab = zXY.

and the previous working gives XY = XA = %/C.

Another way of approaching this problem is to note that
from the original equations we find:
bx+cy+az = 0, cx+ay+bz = 0, ax+by+cz = XY.
Now use Cartesian coordinates. For points H (a, b, c), J
(c, a, b) and M (x, Yy, z), OM is perpendicular to OJ and to
OL, so the vector QM is in the direction of the vector product
od x OL. Hence (x, y, z) 1is proportional to

2 - pe, b% - ca, c® - ab)

(a
and the scalar product QOM.QH = ax+by+cz = XY = /(AB) gives the

appropriate length for OM.

The problem has another geometrical aspect.
Take an eguilateral triangle,
and consider inversion in the
circumcircle. Using trilinear

coordinates, with the triangle

as triangle of reference, the \\\\\\§~__’//////
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circumcircle has equation yz+zx+xy = 0, and its centre, K, is
the point (1, 1, 1). If P has coordinates (a, b, c¢) then
its polar is: x(b+c) + y(a+c) + z(a+b) = 0, and the line PK is
x(b-c) + y(c-a) + z(a-b) = 0. The inverse U of P in the
circle is the intersection of these two lines, and so its

coordinates (u, v, w) are given by

Since inversion is a self-reciprocal operation, the same form
of equation will give (a, b, c¢) in terms of (u, v, w). Thus

the geometry has given us an algebraic result, that if

—a_ = b = S
2 - 2 B 2
X~ - yz y o - zx 2 - Xy
then —>*— = ¥ - % (-u say)
a” - bc b® - ca c” - ab

In order to solve the given equations it remains only to

determine M. From the first of the given equations:

a = xz-yz = M2((a2-—bc)2 - (b2—ca)(c2—ab))

= Mza(a3 - 2abc + b3+ c3— abc)

3 -1/2
’

It follows that M = t(a3 + b3 + ¢~ - 3abc) and we find

again the general solution x = M(a2 - bc), etc.

The special cases mentioned above of a=b=c and a+b+c=0
have a geometrical interpretation. They correspond to the
point (a, b, c) being the centre K of the circle or a point on
the line at infinity, respectively. Generally the inverse
of any point on the line at infinity is the centre.

However, the points (1, w, w2) and (1, wz, w) are the two
circular points on the line at infinity, and their inverses
are a little uncertain. on the one hand, we like to think
that points on the circle invert into themselves, but on the
other hand we like to think that all points on the line at
infinity invert into the centre.
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BINOMIAL COEFFICIENTS

Terry Tao

We are all familiar with the binomial coefficients as set

out in Pascal’s triangle

and we represent them by the symbol (g) where n and r are non
-negative integers. But can we extend the definition to
other values of n and r? We want to do so in such a way as
to preserve what we can of the algebraic structure of the
original family. The obvious first attempt is to extend the
range of values of r to all integers, by assigning the value
zero to the new binomial coefficients. This changes
Pascal’s triangle to

...... 0 0 0 1 0 0 0
..... 0 0 0] 1 1 0 0 0 -
...... 0 0 1 2 1 0 0 e
..... 0 0 1 3 3 1 0 0 .
...... 0 1 4 6 4 1 0 ceeeen

and preserves the two simplest properties of the original:
that when you add adjacent values on one line you get the
value below, and that the pattern is symmetrical about a
vertical line. This is a useful convention, for it often
(but not quite always) means that in a summation we may sum
over all integer values of the free variable, instead of
having to worry about the range of summation. But can we go
further? Can we have negative integer values for the n?

Using the binomial expansion of (1 + x)" for negative

n, we naturally choose to extend Pascal’s triangle by
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adding the corresponding rows above that for n = 0, this

gives the pattern shown below

0 0 0 1 -2 3 -4 5 .
0 0 0 1 -1 1 -1 1 SCee
..... 0 0 1 0 0 0] 0 0
0 0 1 1 0 ¢} 0 0 .
0 1 2 1 0 0 0 0
0 1 3 3 1 0 0 o .....

We have kept the addition property but lost the symmetry.

n n s .
We no longer have (n—r) = <r)’ This is a warning of dangers
ahead!
Now look at some examples — From BINOMIAL IDENTITY 35

in JCMN 59, pp 6162-6164, we see that the identity

(%9 = = ot (9
- =

(m+s) z

s+%—l)(m—i)

may be transformed into :
i n-i

by

changing the sign of s, provided that we use the rule that

(;n) = (_1)%(n+§—l) when n and r both 2 0,

as suggested by the binomial theoren.

That was the good news, now the bad. In THE DERANGED
KNIGHTS OF CAMELOT, JCMN 52, pp 5254-5257, we find the proof
of Binomial Identity 31:

n m
2 {n
b m (m) = (—1)rm!/r! = (n2 - 2n + 2)n!
m=0 r=0
n m2 m r 5
or — (-1 t = - +
o (n-m) 1 s (-1)"/r n 2n 2

(it was proved where n = the number of knights > 1). Now

let’s check this last formula for a few values of n.
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n 0 1 2 3 4 5 6
LHS 0 0 2 5 10 17 26
RHS 2 1 2 5 10 17 26

Is there any principle like analytic extension applying

to binomial coefficients?

Confine ourselves to the case where r is a non-negative
integer, 0, 1, 2, ... etc, but n can be any complex number.
Define the function C{n, r) to be
gin—l)(n—Z)'... (n-r+1)

r!

Cc{(n, r)

Of course if n is a positive integer, C(n, r) = (2), not
only when n 2 r, but also when n < r and the function = 0.
If n is not a positive integer, how does the function behave

as r tends to infinity, with fixed n? It is easy to show
that C(n, r) ~ (-1)"c "7 1/r(-n).
Now consider the story of the deranged knights. Put
m ® 2
d(m) = = (-1)%/s! and f(n) = T C(n, m)m°d(m).
s=0 n=0

The series for f(n) will converge only if C(n, m)m2 - 0 as
m - ®, that is only if either n has real part > 2 or n is a

non-negative integer. Thus f(n) is analytic only in the
half-plane where n has its real part > 2, though the series
exists at other isolated points. We should not be upset

by the failure of the binomial identity at the two points

n = 0 and 1.

If we have a binomial identity proved for integer n 2 O,
is there a theorem by which we can show the identity to be

valid for other n?
Consider the following three rules:-

(a) Make sure the n never appears in factorials, and is
always on top in any binomial coefficient. For example
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n
n .
(n) = ( n ) is NOT suitable, but % (r) = 2 is.
n-r r=0
(b) Replace any summation over a range dependent on n

by summation over all integers.

(c) Replace (;) by C(x, y).

Conjecture With these changes, if the bincmial identity holds

for positive integer n, it holds for all n for which the

summations are absolutely convergent.

QUOTATION CORNER 39

I cannot give any scientist of any age better advice than
this: the intensity of the conviction that a hypothesis is

true has no bearing on whether it is true or not.

— P. B. Medawar, Advice to a young scientist, 1979.

(Contributed to JCMN by R. A. Lyttleton)

BINOMIAL IDENTITY 37 (JCMN 59, p.6173)

John Parker
(0ak Tree Cottage, Reading Road, RG74QN, U.K.)

n
r+m\ 2/ r\ 2 _ n+m+1\ 2/ n\ 2 +1 2 omtl
z ( m ) (m) (er+l) = ( m ) (m) (n+137/( )
r=m
Put f(n) = RHS, then f(n+l) - f£(n) is easily seen to be
(n+$+1)2<n;1)2 (2m+3), and when n = m the two sides are the

same. The result follows by induction on n.
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ADDING NUMBERS

Robert Freud

(E6tvds University, Budapest, Mizeum krt. 6-8, 1088, Hungary)

Paul Erdds has asked the following question. Let
1 = a, < a, < ... < ay < n be integers such that no a;
is the sum of (any 2 or more) consecutive aj—s. Is it

possible for k to be significantly larger than n/2?

Pomerance showed that k = 12 with n = 20 can be attained
by the example (4, 5, 6, 7, 8, 10, 12, 14, 16, 17, 19, 20};

and more generally if n = 4m with m odd, then {m-1, m, m+l,

3m-1 3m+l Sm+1 7m+1
o Ty 2m, 2m+2, 2m+3, ... , 4m)\(——3— , 3m, -5

set having % + 2 elements, which is one more than the trivial

} is a

set (2m, 2m+l, 2m+2, ... 4m)

The following construction shows that k = 19n/36 + 0(1)

may be attained.

Let x and y be positive integers, and consider the
followihg sets of numbers.
(A)  2x-2y, 2x-2y+1, ... 2x, 2xX+1, ... 2x+2y
(B) 3x-3y+1l, 3x-3y+2, 3x-3y+4, ... 3x-1, 3x+1, ... 3x+3y-1
(C) 4x~4y+2, 4x-4y+4, 4x-4y+6, ... 4x-2, 4%, ... 4x+4y-2
(D) 4x+4y+2, 4x+4y+3, 4X+4y+4, ... 8x+8y+4

Expl;ining these, we took for (A) the 4y+1 adjacent
integers round 2x, for (B) the 4y integers around 3x not
divisible by 3, for (C) the 4y-1 even integers around 4x, and

for (D) all the numbers from 4x+4y+2 to 8x+8y+4. We shall
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attain our desired Sequence by the suitable choice of x and y

and by deleting some numbers from (D).

The ‘elements in (a), ... (D) are distinct and are in

increasing order if
2x+2y < 3x-3y and 3x+3y < 4x-4y+2 ... .. (i)
The sum of two adjacent elements of (A) is never equal to

an element in (C) or (D), and such a sum cannot be an element

of (B) if
4x=4y+1 > 3x+3y-1
The sum of three or more consecutive elements of (B), (C)
or (D) is different from all elements of (A), ... (D) if

9x~9y+7 > 8x+8y+4

The sum of five or more consecutive elements (of (A)) is

different from all elements in (A), ... (D) if
10x-10y+10 > Sx+8y+a (iv)
Now we turn to the final stage of our construction.
There are altogether 4x+16y+3 numbers in (A), ... (D). We
delete those elements that are equal to a sum of some
consecutive elements. It is clear that only elements of (D)

have to be deleted, namely those that are:
I. sums of three consecutive elements of (A)
II. sums of two consecutive elements of (B)
III. sums of four consecutive elements of (A)
IV. sums of two consecutive elements of (c)

V. sums of two or three consecutive elements at the border

of (A)-(B), (B)-(C) or (C)-(D).
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our construction guarantees that sets I and II coincide,
and that III and IV coincide, hence we have to delete
altogether (4y-1)+(4y-2)+5 = 8y+2 elements. The conditions
(i), ... (iv), in fact basically (iii), require x > 17y-2.
Choosing here equality, our sequence contains 76y-~7 elements
up to n = 8x+8y+4 = 144y-12, which yields the proportion 19/36

as claimed.

As for an upper bound, it is easy to prove that the
proportion cannot exceed 2/3, moreover this holds if we
(and for this case it is the best

exclude only a; = aj + aj+l

possible)

Later I learned from D. Coppersmith and Steven Phillips
(Thomas J. Watson Research Center, Yorktown Heights, NY, USA)
that they had rediscovered my result above and improved it;
they have a construction giving 13n/24 + O(1). They also

improved the upper bound to 2/3 - 1/3584.

Consider an infinite sequence. Let A(n) denote the
number of elements < n. We can achieve 1lim sup A(n)/n =
19/36 using the previous construction. We simply repeat the

construction with very rapidly growing values of y and omit a

few problematic terms.

More precisely, assume that we have repeated the process
several times, and the sum of all our elements is T. Choose
now (say) y = T2, and form the next segment of the sequence,
using the (finite) construction described above. Now we

delete the sets of elements z for which the following
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inequalities hold:-

2x-2y+1l < z < 2xX-2y+T

C4x~4y+T < 2 < 4xX-4y+2T+1
6x-6y+2T+3 < 2z < 6x-6y+3T+3
8x-8y+3T+1 < z < 8x-8y+4T+6 .

For the remaining elements no one is the sum of consecutive

others and the "loss" of about 4T = 4/y elements is negligible \

compared with n = 144y-12, hence the proportion 19/36 is not

violated.
R

FUNCTIONAL INEQUALITY

Given any positive integer n, for all non-negative real

functions f(x) on the unit interval with the property that

2 f(x/2) + Lesa v oo+ g/ <1,

f(x) + 3

find the maximum of Jéf(x) dx.
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ADDING NUMBERS 2
Paul Erddés

An old problem of Harzheim and myself asks:~

Let a; < a, < .. < ay < n be such that all the sums
v .
¥ a. are distinct. Is it true that kK = o(n)?

j=u

(It is easy to prove that for an infinite sequence the lower

density must be zero) Can one find a large k (such as for

v
example n/power of log n) for which the sums % aj are
j=u

distinct?
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ORTHIC TRIANGLES (JCMN 58, p.6138, 59, p.6145)

Terry Tao
Given a plane triangle, consider the operation of forming
the orthié triangle, with vertices ét the feet of the altitudes.
Repetition of the operation gives a sequence of triangles
converging to a point. The original question — where is this

limit point? — has not yet been answered in our pages.

Nevertheless, there are interesting observations to be made
about the shapes of the triangles of the sequence. The shape
of any triangle'may be represented by the angles (A, B, C), all
> 0, and with sum = 7. The operation of forming the orthic
triangle gives a new family of angles (A’, B’, C’) as follows:

If the triangle is acute—énqled then

Al =7 - 2A, B’ =7 - 2B and cr = 7w - 2C.

If the triangle has an obtuse angle at A, then

A’ = 2A -7, B’ = 2B and c’ = 2C.

Similarly for other obtuse-angled triangles.

Now we shall form a geometrical picture of the algebraic

operation described above for any (A, B, C).

Take (A, B, C) to be trilinear coordinates of a point in an
equilateral triangle. Joining the mid-points of the sides, we
obtain an inner triangle containing all the points that represent
acute-angled triangles{ the boundary lines, 2A = B + C, etc.
represent right-angled triangles. Let our
original triangle be represented
by the point P, and let Q
represent the image, that is the
orthic triangle. If P is in

the inner triangle, then Q is as

x
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shown, with 2PO = 0Q, and POQ a
straight 1line, where O is the
centroid. If P represents an

obtuse-angled triangle, then Q is Q

as shown in the second picture.

Let’s label our space of triangles by the letters a, b, ¢
and 4 in each of the four triangular subsets as
shown. To describe the position of any point !
P in the space we use as first approximation the
letter a, b, c or d of the region in which the b
point is. Note that if P is in d, then its
image Q can be anywhere in the space, therefore we may subdivide
d into da, db, dc and dd, according to where the image Q is.
Ssimilarly a, b and c all map into the whole space, and therefore

each of them may be subdivided in the same way.

Thus we obtain this picture, with 16 subdivisions of our

space:- |
:
d
a

b |'i| a
c ) da
b dd
bd da d
bb bc cb cc

The subdivision may be repeated in the obvious way.

a

c

b
(e}
c

The region adc, for example, is the part of ad that has its

image in dc.
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Now it is clear that the subdivision may be continued
without end, so that each elemeqt in the space (forgetting for
the moment the points on the boundaries of the little
triangles) may be denoted by an infinite sequence of the
digits a, b, ¢, and d. For example the element

-adadadadadadad.............
is the isosceles triangle'with angles A = 108°, B = C = 36
Its orthic triangle is denoted by .dadadadadada.... and has

o °

angles A = 36 , B =C = 72

This representation of elements of our space by sequences
of digits is like the representation of the unit interval of
the real variable by sequences of decimal digits, 0, 1, ...
8, 9. There is the same difficulty that some elements do

not have unique representation. In the real variable case,
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for instance, the notations -23999999... and .2400000.... both
represent the same number. In the case of our space of
triangles, the triangle with angles A = 90°, B = 30° and C =
60° may be represented by -dbcbcbc... or by -acbcbeb. ..

In both cases we try to console ourselves by saying that
almost all the elements of our space are well-behaved, with
unique representation; this requires us to set up a measure
theory on the space (this is not guite true, the assumptions
we need are weaker, see below) but no difficulties arise, we
use the obvious Lebesgue measure in both cases. The
exceptional cases are those triangles for which the sequence
of orthic triangles comes eventually to a right-angled
triangle, and at the next stage to a degenerate triangle with
two vertices coincident, and the angles therefore

indeterminate.

The important property of our representation of triangles
is that deletion of the first digit of the representation

gives the orthic triangle.

Now, digressing for the moment to the real variable, we
define a real number to be "normal" when any finite sequence
of digits occurs with the "¢orrect" frequency. More
precisely, let d1d2 . dk be any finite sequence of digits,
and let x be in the unit interval, for any n count the number
of occurrences of the sequence in the first n digits of x,
this number divided by n-k+1 should converge to 10-k as n

tends to infinity; if so then x is "normal". It can be

shown that almost all real numbers are normal.
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Guided by these ideas, let us turn back to our space of
triangles. The earnest student of measure theory should be
able to prove that almost all triangles are normal; therefore
if we start at almost any element, and repeatedly form the
orthic triangle, we get a trajectory that is dense in the set.
Such a trajectory generates a measure on the set, in fact the
measure of any subset E is the limit (as n tends to infinity)
of (number of points in E from the kirst n points of the
trajectory)/n. This measure turns out to be the same as the
Lebesgue measure of the equilateral triangle, which was the
measure that we introduced in order to define "almost all".

In any space, there is an equivalence relation among the
possible measures, two measures being equivalent if every
subset null in one is null in the other. Therefore if
instead of using Lebesgue measure in our definition of "almost
all", we had used any other equivalent (in the sense above)
measure, we would have reached the same result — that the
trajectory starting at almost any point defines on the space a

measure equal to the Lebesgue measure on the equilateral

triangle.

Recall the questions raised in JCMN 55 (RANDOM TRIANGLES,
p.6028) about what is a random triangle and what is the
probability that it be acute-angled. Perhaps we here have
an answer — that the infinite sequence of orthic triangles

from almost any starting triangle has asymptotically one in

four of the triangles acute-angled.
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ORTHIC TRIANGLES 2 (JCMN 58, p.6138 & 59, p.6145)

Where is the limit point of the sequence of orthic triangles

starting from an arbitrary triangle? Let us call it the

"orthic limit point". If the starting triangle is isosceles,
then all the triangles of the sequence are isosceles, with the

same line of symmetry. This seems to be a simple special case

worth investigating.

As the starting triangle take the isosceles triangle with

vertices at (0, 1),

be a point (0, c).

as a function of b.

for instance b=1,

(b, 0) and (-b, 0).

The orthic limit will

It is not hard with a computer to find c

There are points where c¢ is not defined,

removable discontinuity,

b c
+99999970 »99999983
+99999980 +99999976
«99999990 «99999992
+99999995 +99999994
+99999999 + 99999999

1-00000001
1-00000005
1.00000010
1.00000020
1-00000030
1.00000040

1-00000001
1.00000004
1.00000012
1.00000016
1-00000043
1-00000048

but the computer tells us that this is a

for some neighbouring points are:-

The following figures give more idea of the function:

b o] 0+5 0.0981e6
0-1 -0-01706 0-6 0-44102
0.2 0.07554 0.7 067189
0.3 0-06063 0-8 0-73707
0-4 -0-00950 0-9 0-.93637

Having doubts about the differentiability of the
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+55625 +23514623
function, let’s look at a little bit of it in more detail. - 123
-55626 23514500
Magnify the scale by 100, so that b goes up in steps of -001. - 738
+55627 23513762
First differences are given in the last column. - 278
-55628 23513484
b c diff + 160
-55629 +23513644
553 230741 + 352
+2962 55630 +23513996
<554 233703 + 201
+1506 55631 +23514197
-555 <235209 42212
- 233 +55632 +23516409
-556 +234976 . +3461
+1171 +55633 23519870
557 «236147
+2281
«558 +238428 Now magnify the scale by 100 again.
+2803
«559 «241231 * b [¢] diff
+2870
-560 ©244101 -5562999 2351401123
. +4881 -1494
561 +248982 »5563000 -2351399629
+5514 + 559
«562 «254496 +5563001 -2351400188
+4389 -1101
+563 .258885 +5563002 -2351399087
+2864 -3459
«564 «261749 5563003 +2351395628
+3783 -2383
565 «265532 +5563004 +2351393245
+4841 . -3723
+566 «270373 5563005 +2351389522
-2726
-5563006 «2351386796
Now magnify the scale by another factor of 100, so -4889
+5563007 2351381907
that b goes up in steps of -00001. -6220
-5563008 »2351375687
+ =3990
b c diff +5563009 +2351371697
’ -3531
55618 23519440 -5663010 +2351368166
. + 803 ~-1227
55619 23520243 5563011 2351366889
+1917 -2426
+55620 »23522160 «5563012 +2351364463
- 253
«55621 +23521907
- 395 These figures suggest that c¢ is a continuous but non-
+55622 .23521512
-1168 differentiable function of b (apart from having a dense set of
+55623 +23520344
-3499 removable discontinuities).
+55624 23516845

-2222
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COMBINATORIAL QUESTION (JCMN 58, p.6137 & 59, p.6160)

James Geelen and Jamie Simpson
(Curtin University of Technology, Perth, W.A.)

Given m things, we want to choose the same number m of k-
element subsets so that no two of these subsets have more than

one element in commom. For each m, what is the largest

possible k? We will call this k(m).

The problem was discussed by Paul Erdés in JCMN 59,
p.6160, giving results equivalent to theorems 1 and 2 below.
The problem can be viewed as a problem in graph theory: in
Km (the complete graph on m vertices) what is the largest k
such that Km contains m edge-disjoint copies of Kk? The

edge-disjointness ensures that any two of the copies of Kk

have at most one vertex in common. Now Km contains (m)

2

edges, and each Kk contains (§> edges, so we must have

(2) > m(g), or m > k(k-1) + 1, giving the following

upper bound for k(m):

orem 1 k(m) < —L ¥ J(4m-3

The most interesting case ocurs when we have equality in

In this case m and k have the forms

m=n2+n+1

this theorem.
kK =n+1 ’
and the graph and its subgraphs are equivalent to a projective

plane of order n. Recall that in such a plane there are

n2 + n + 1 lines (one for each of the Kk graphs) and n2+n+1
points (the vertices of the Km). Each line contains n+1

points and there are n+1 lines through every point. The
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question of equality in theorem 1 is then equivalent to asking
for which orders n do projective planes exist.

Unfortunately this is not known. The following information
appears in A First course in Combinatorial Mathematics by I,

Anderson, Clarendon Press, (1979), and in "The non-existence

of projective planes of order 10" by C.W.H. Lam, L. Thiel and

S. Swiercz in Can. J. Math. 41 (1989) pp. 1117-1123.

(a) A projective plane is usually defined to have 4 non-
collinear points, which prohibits the existence of a plane
of order 1. If we do allow such a plane then the next
theorem gives k(3) = 2, a result which can otherwise

be obtained using theorem 1 and a construction.

(b) A plane of order n exists if n > 2 is a prime or a
power of a prime.

(c) No plane of any other order is known to exist.

(d) There is no plane of order n where n is congruent to 1
or 2 modulo 4, and is not the sum of two squares.

The proof of this

(e) No plane of order 10 exists.

result required a massive amount of computation.

With these observations Theorem 1 -leads to the following

result.

Theorem 2 If n is the order of a projective plane then

k(n2+n+1) = n+l

and if not then k(n2+n+l) < n.

We now return to our graph-theoretic version of the
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problem. If a graph exists with m vertices and with p edge-

disjoint i
joint coples of Kq’ and such that each vertex belongs to
exactly r of these copies, we say that (m, p, g, r} is good.
The projective planes correspond to good quadruples
2

2
fin® +n+ 1, n"+n+ 1, n+1, n+ 1}.

The following lemma is immediate from the definition.

Lemma 1: {m, m, g, rt is good for some r if and only if

k{m) 2 q.

Two other lemmas can be proved with a little more effort.

Lemma 2: {m, p, g, r} is gogd if and only if
{(p, m, r, q} is good.

Proof: The fact that {(m, p, r, q} is good means that the
complete graph G with vertices 93¢ Iyr -0 g has p edge
~-disjoint complete subgraphs of order . Call these
Gl’ R Now construct a complete graph H with vertices

p

hl’ ey hp' We form complete subgraphs Hl, ey Hm in H

according to the rule,

hi is a vertex of Hj if and only if gj is a vertex of G,.
i

Each H. h
3 as order r. If the edge (hl, h2), say,

belonged t .
g o both Hl and Hj we would have the edge (gi, gj)

belonging to both G1 and G2, which is impossible. Thus
H, ..., H are edge-disjoint. Let q = |Gil = the
number of elements in Gi' Finally each vertex hi clearly
belongs to g of the subgraphs Hl, «e., H_ .

m

Lemma 3: If n is the order of a projective plane then

2 2

(n” + n, n%, n+ 1, nj is good.
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Proof : Consider the complete graph and copies of Kn+l
associated with a projective plane of order n. Remove one
vertex and the incident edges. The resulting graph has
n(n+l) vertices; n+l of the original copies of Kn+l have
been destroyéd, so it contains n? edge-disjoint copies of

K Each vertex originally belonging to a copy of Kn+l

n+l”
which also contained the removed vertex.” Since this copy of

K has been destroyed, the vertex now belongs to n coples of

n+1l

K The structure we have produced here is an affine

n+l’

plane.

Using these lemmas we prove our main result.

Theorem 3 : If n is the order of a projective plane, then
k(m) = n for all m = n2—l, ey, n2+n.
Proof : From lemmas 2 and 3, (n2, n2+n, n, n+l) is good.

So we have n2+n edge-disjoint copies of Kn in a complete graph

K on n2 vertices. It follows that we have at least n2+n

n2
edge-disjoint copies of Kn in each Km for all m that satisfy
n2 < m é n2 + n. This means that k(m) < n for these values
of m, and Theorem 1 shows that K(m) £ n. This proves the
theorem except in the case m = n2—1.

Now we deal with this case. As before we have K,
with n2+n edge-disjoint copies of Kn: remove one vertex.
In doing so we will decrease the number of copies of Kn by

n + 1, leaving n? -1 copies. We thus have k(nz—l) > n.

Theorem 1 gives k(nz-l) < n, which completes the proof.

Theorems 2 and 3 give us quite a few values of k(n) for
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low values of n. The first value not given is k(14).

Theorem 4 : Kk(14) = 4.

Proof : Theorem 1 shows that k(14) £ 4. The following
collection of 14 subsets of the set (1, 2, ... 14} shows that
k(l4) 2 4.

{1, 5, 9, 13} {1, 8, 10, 12} (L, 6, 7, 11}
{2, 6, 10, 14} {2, 7, 9, 12} (2, 5, 8, 11}
{3, 5, 7, 14} {3, 6, 8, 13} {3, 9, 10, 11}
(4, 8, 9, 14} {4, 7, 10, 13} {4, 5, 6, 12}
{1, 2, 3, 4} {11, 12, 13, 14)

The next table gives the values of k(m), for m < 30, that

follow from our theorems and from the contribution below.

m K(m)
1, 2 1
3, 4, 5, 6 2
7, 8, 9, 10, 11, 12 3
13, 14, 15, 16, 17, 18, 19, 20, 22 4
21, 24, 25, 26, 27, 28, 29, 30 5
The first unknown value is Kk(23). Theorem 1 shows that

k(23) £ 5, but we have not been able to construct an example
to show that this bound is attainable. The evaluation of
k(22) = 4 in the contribution below shows that k(m) is not

monotonic, (a fact already noted by Mullin and others).
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COMBINATORIAL QUESTION
(JCMN 58, p.6137, 59, p.6160 and above)

This note is to prove that k(22) = 4; for the definition
of k(m) see the previous article. Firstly, (the hard part)

we shall show that k(22) < 5.

We suppose that we have 22 elements, and that there are

22 sets of 5 elements each, with no two sets having more than

one element in common. The word nget" from now OnN means one
of these 22 sets. The following theorems are almost
obvious.

Theorem 1 No element can be in 6 or more sets.

Theorem Every element is in exactly 5 sets.
corollary A set may be identified by any two of its

elements.

Theorem 3 To each element x corresponds precisely one

element (to be denoted by x*) such that no set contains both x

and x*. Clearly x** = X.

Theorem 4 To any set S = {a, b, ¢, 4, e} corresponds another
set Sx-= {a*, b*x, c*,6 dx, e*}, disjoint from it.

Proof There is precisely one set not meeting S (by a
counting argument as in Theorems 1 and 2), cali it S*. Take
any x in S*. This x is in 4 other sets, say J, K, L, M, all
= S. Each of J, K, L, M has one element in common with S;
therefore there is one of a, b, <, d, e not in any set
containing x, this element must be x*. Therefore x is one

of a*, b*, c*, d*,6 e*.

Theorem 5 Each set S shares one element with every one
except S* of the other 21 sets.
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Take any set, call it T = {(a, b, ¢, d, e}, and consider
the class ¥ of the 20 sets other than T and T*. Let W be
the class of all elements other than a, a*, b, b*, c, c*, d,
d*, e, e*, there are 12 of them. We shall use the symbols

1, 2, 3, 4, ... 11, 12, for the elements of W.

Each set S in I contains one element of T and one element
of T*. Therefore the 20 sets in £ may be set out in a
table as follows, the 20 rectangles other than those on the
principal diagonal. Each set can be identified by the
elements that it has in ¢ommon with T and T*, identified by
the rows and columns respectively. The rectangles on the
principal diagonal are blanked out, because a and a* cannot be
in the same set, etc. We denote the 20 sets of ¥ by symbols
such as (a, b*), meaning the set in row a and column b*, i.e.
the set that contains the elemént a of T and the element b* of
T*, Note that each element of W must occur just once in

each row and just once in each column of the table.

Now we try to fill in the table. Firstly, let 1, 2 and
3 be the elements of W in the set (a, b*), i.e. the five
elements {a, b*, 1, 2, 3} form one of our sets. There is
one element 1 in row b, and by permuting the symbols ¢, d and
e we can ensure that this 1 is in (b, c*). Next, by
interchanging if necessary the symbols d and e, we can ensure
that the 1 that is in row c will be in column d*. This
gives us the table as below.

a* b* Cc* ax* ex

There must be one 2 and one 3 in column c*, neither can
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be in row a (because they already occur in this row) nor in

row b (because 1 and 2 are together in the set (a, b*) and so
they cannot occur together in any other set, similarly for 3).
By interchanging if necessary the symbols 2 and 3, we can have
the 2 in (d, c*) and the 3 in (e, c*). This gives the table

below.

ax b* Cc* d* ex

Next consider the 3 that must be in row c. It cannot
be in column b* (there is already one in the column) or in
column d* (it cannot be in a set with 1 again) or in column e*
(because 3 is in (e, c*) therefore 3* is in (c, e*), and 3
cannot be in a set with 3%). Therefore this 3 must be in
(c, a*). Consider the 1 that must be in row e. It must be
in column a* because all the other columns already have a 1.

Filling in these two we get the table below.

a* D* c* d* e*
a 2, 3
b 1
[¢] 3 1
d 2
e 1 3
Now we come to the contradiction. Consider the 1 and
the 3 that must be in row d. Neither can be in column a* or

column b* or column c* (because both are already in each of

these columns), but they cannot both be in (d, e*).
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This contradiction has proved that k(22) < 5. The

fact that k(22) 2 4 is shown by the following 22 sets of 4

elements.
-M <
(1, 2, 3, 4) {19, 20, 21, 22}
(1, 6, 7, 19} (2, 6, 8, 18} {3, 9, 10, 18}
{1, 8, 9, 20} (2, 7, 11, 20} (3, 8, 11, 19} and
{1, 10, 11, 21} {2, 9, 12, 21) {3, 7, 13, 21}
{1, 12, 13, 22} {2, 10, 15, 22} {3, 14, 16, 22}
{4, 11, 12, 18} {5, 13, 14, 18}
{4, 9, 13, 19} {5, 10, 12, 19}
{4, 6, 10, 20) {5, 15, 16, 20) .
{4, 7, 8, 22} {5, 6, 17, 21}
Thus we have proved that R(22) = 4, as shown in the table

on p.6216 above.

NUMBER PUZZLE

in the unit interval.

Conjecture

Prove (or disprove)
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POLYNOMIAL INEQUALITY 1

Terry Tao

Let f(x) be a real polynomial of degree n such that

f(x) < M 1in the unit interval. Prove that
[£(x)] < n(n+l)(n+2)M//3
(f"(x)| < (n—l)n(n+l)(nf2)(n+3)M//lO

Can these inequalities be made stronger?

2

Is |f/(x)] € 2n°M ?

ANALYTIC INEQUALITY &

for any positive integer n and and

Question real coefficients a,, a,, n
n r n
n 1 2 3 4 5 6 7 8 9 max = |a £ cos(r+l-2t)x| £ n max| T a_ cos rx|
X r=1 t=1 x r=1 T
f(n) 1 3 7 19 51 141 393 1107 3139

How does the sequence go on?

Answer which

For positive integer n,
(n)2 r
w .

r

0
What is the asymptotic behaviour of f(n)

if w is a primitive cube root of

(=)™
r

n
unity, f(n) z on!).

Further gquestion

for large n?

The case n

fact it is max }a|+|2b cos x|
X

With n

1 is trivial, and the case n = 2 is easy, in

<

2 max |a cos x + b cos 2x]|,
x

simplifies to |aj + 2|b| < 2ja| + 2{b].

3 it becomes a little more difficult, (and so
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TITIONING N-SPACE
POLYNOMIAL INEQUALITY 2 HYPERPLANES PAR

Mark Kisin
(Monash University, Vic, Australia)

Let f(x) be a polynomial of degree n, with real
coefficients, regarded as a function on the unit interval. Into how many regions do k hyperplanes in general position

divide n-dimensional Eulidean space? Call it f(n, k).

Let ”f”p denote the norm of order p, defined as follows:

R \ The case n = 1 is trivial, f(1, k) = k+1. . In general,
Hpr = ( Jé [ £(x)|Pax )1/p, with ||f|l  denoting max [f(x){. . £ ) 9
’ if we have k hyperplanes hl' hz, ce hk in R and add
another, h then the new hyperplane will be divided

k+1'

what are the inequalities relating nfnl' ”f"2 and ”f"m? into f(n-1, k) regions by the other k: and therefore it
’ r

will increase the number of regions in the R" by £(n-1, k).

In particular, is it true that ”f”m/"f"1< 4-3903126890496 Thus we have
. + = + =1, K)o
when n = 2? f(n, k+1) f(n, k) f(n-1 ) (1)
This relation together with
£(1, k) = K + 1 et e e (2)
and f(n, 0) =1  iiiiiee. ceessess (3)

are sufficient to determine f completely.

Now we shall derive the general formula

g,k = (B) ()« (5) oo () (4)

in two different ways.

From (1), (2) and (3) by double induction it is clear
that f(n, k) is a polynomial of degree n in k. Also f(n, k)

= 2k for 0 < k £ n, so that (4) holds when k < n. But a
polynomial of degree n is uniquely determined by n + 1 values,

and so (4) holds for all k.

The second proof is simply noting that (4) clearly

satisfies (2) and (3), and it satisfies the recurrence (1)
‘k+1y  _ (k k
because ( n ) - (n) + (n-l)'

Is there a combinatorial proof of (4)?

How many of the regions are bounded?



