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OBITUARY - J.D.E.KONHAUSER (1924-1992)

We regret to report the death at Edina, Minnesota, on 28th
February 1992, of Joseph Konhauser, at the age of 67. He had
retired from full-time work at Macalester College, Saint Paul,
Minnesota in May 1991, and is survived by his wife Aileen, his
sister Louise Glaze and his son Daniel Scott and daughter-in-law.

As well as being Chairman of Department at Macalester
College, Joseph Konhauser became well known with his work for the
Mathematical Olympiad and William Lowell Putnam competitions, and

for the Pi Mu Epsilon Journal.

POINTS AND DISTANCES IN THE PLANE (JCMN 57, p.6089)
Paul Erdés
(Hungarian Academy of Sciences, Budapest, P.0.B.127, H-1364)

The theorem that given n distinct points in the plane the
maximum distance occurs at most n times is due to Erica Pannwitz,

she proved it about 60 years ago.

Harborth in the Elemente der Mathematik determined exactly
how often the minimum distance can occur (it was a solution to

a problemn).

J. Pach and I have the following problemn. Given n (> 4{
distinct points in the plane, can it happen that every distance
except the diameter occurs more often than n
times? For n = 4 this is of course

possible, but we know of no example for n > 4.
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ORTHIC TRIANGLES (JCMN 58, p.6138)
Esther Szekeres & Basil Rennie

If we repeatedly replace a triangle by its orthic triangle
(with vertices the feet of the altitudes), do the triangles
converge to a point?

Yes. The circumcircle of any triangle has twice the
radius of the nine-point circle, which is the circumcircle of the
orthic triangle. Therefore consider the circumcircles of the
triangles of the sequence; each contains a point inside the
previous one, and is half the size; therefore the circles
converge to a point. For a formal proof we may treble each
radius and so obtain a nested sequence of compact sets.

If the sides of ABC are a, b, c, then the sides of the
orthic triangle are a|cosA|, b|cosB| and c|cosC|. The angles
of the orthic trigngle are given as follows. If ABC is acute-
angled then the angles are w-~2A, %»-2B and #-2C, and if ABC is
obtuse-angled with the obtuse angle at A the angles are 2A-w, 2B
and 2C. The area of the orthic triangle is 2|cosAcosBcosC|
times the area of ABC, this ratio is < 1/4 if ABC is acute.

In general the sequence of triples of angles will be
infinite, without repetitions, but there is one fixed point of
the mapping, when A = B =C = 60° = 7/3. If the sequence comes
to a right-angled triangle, the next step gives a degenerate
triangle with the three vertices coinciding, having no well-
defined orthic triangle. It is possible for the sequence to
be periodic, as in the following example, (angles in degrees).

A B c
94 60 26

8 120 52
16 60 104
32 120 28
64 60 56
52 60 68
76 60 44
28 60 92
56 120 4
112 60 8
44 120 16
88 60. 32

4 60 116

8 120 52
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INTEGRAL INEQUALITY (JCMN 57, p.6106 & 58, p.6139)

A. Brown, P. H. Diananda and Terry Tao

Let B(n) be the greatest lower bound of

1 2
JO f(x) dx

over all polynomials f of degree n with integer coefficients.
The previous contribution showed that B(n+l) < B(n)/2,
there are other inequalities like this as follows.
Theorem 1 (a) 18 B(n+2) < B(n)
(b) 8 B(n+2) + 2 B(n+l) < B(n)
(c) 16 B(n+2) + B(n+l) < B(n)

Proof There is a polynomial f(x) of degree n with the

integral of its square equal to B(n). consider the 3
polynomials fl(x) = x(1-x)f(x),
fz(x) = x(1-2x)f(x), f3(x) = (1l=-x)(1l-2x)f(x).
1 2 2 2 _ N 4_, 0.3 2_ 2
jOlG fl + f2 + f3 dx = J0(24x 48X~ +30x“-6x+1)f° dx

= fé(l - 6x(1-x)(1-2x)2)£(x)%dx

< Jéf(x)zdx = B(n).

Since the three functions fl’ f2 and f3 all have the

integrals of their squares 2 B(n+2), (a) follows.

Similarly (b) and (c) follow from the inequalities

B(x—xz)2 + x2 + (l—x)2 < 1 and
l6(x—x2)2 + (1-2x)2. < 1 (in almost all the interval)
’ QED
Let f(x) = a, + a,x + a x2 + a x3 +

(o] 1 2 3 et

be a polynomial with integer coefficients, the last

coefficient, a s being non-zero.

0 071
= (integer) + (integer)/3 + ... (integer)/n + (integer)/(2n+l)

1 2 _ .2 2
Theorem 2 fo(f(x)) dx = aZ + a,a, + ... + an_lan/n + an/(2n+1)
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ST, 4T, 4T, .
where Tl = (a0 + al/2 + a2/3 + a3/4 + a4/5 + ... )2
T, = (a, +a, + 9a,/10 + 4a,/5 + 5a,/7 + 9a./14 .. )2 /12
T, = (a, + 3a,/2 + 12a,/7 + 25a./14 + 25a,/14 ... y2/180
T, = (ay + 2a, + 25a,/9 + 10a_/3 ... )2/2800
T, = (a, + 5a,/2 + 45a,/11 + ... y2/44100
T6= (a5 + 3a6 + ... )2/698544 etc.

Proof The formulae come from the usual algorithm for
expressing a positive definite quadratic form as a sum of

squares. QED

The contribution in JCMN 58 established:- B(1) = 1/3,
B(2) = 1/30 and B(3) = 1/210. Now we find B(4) = 1/630.

It was shown that B(4) must be (integer)/1260, and (by an
example) must be < 1/630. Suppose that the polynomial f(x)
had the integral of its square equal to 1/1260. Then
1/1260 = (integer) + (even integer)/2 + (integer)/3 + ...
must both be odd,

+ (2a3a4)/8 + 32/9, implying that a., and a

3 4

because 1260 has a factor of 4.

Now consider the integral of the square, by Theorem 2
|T2| 2 1/1200 > 1/1260; this gives the required
contradiction, showing that B(4) = 1/630.

Theorem 3 For any n > 2, B(n) < C(n) (defined below).
Proof For any n > 2, consider any t such that n - t is
even and 0 £ t < n. Let f£(x) be the polynomial

(n-t)/2 (1 - 2x)t

£(x) = (x - x°)
To find the integral of the square, denote the integral by

F(t). Then (n-t+1)F(t) = 2(2t-1)F(t-1), and so by induction

F(t) F(t-1).(4t-2)/(n-t+1)

((2t)!l/tl)((n-t)!/nl)F(0)

(2t)! (n-t)! n!
Tl (2n+1)!
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For fixed n this expression has its minimum, denoted by C(n),
when t is the number such that n-t is even and n-4 < 5t < n+4,
that is t = n/5+a where a = 0 or *2/5 or *4/5.

n 2 3 4 5 6 7 8 9 10 11
t 0 1 0 1 2 1 2 1 2 3
An-%t| 1 1 2 2 2 3 3 4 4 4

-  From the contribution in JCMN 58, B(n) is a multiple of
D(n) = 2/(the l.c.m. of (1, 2, 3, ... , 2n+l}). Thus

D(n) £ B(n) < C(n).

For n =7, t = 1 and we may calculate D(7) = C(7) =
1/180180 = 1/(4x5x7x9%x11x13), so that this is the value

of B(7).

We may calculate B(5) easily as follqws. By Theorem
1 above, B(5) > 18 B(7) = 1/10,010, and as B(5) must be a

multiple of D(5), the only possible value is 1/6930.

Now we can note a few numerical values:

n D(n) c(n) B(n)

2 1/30 1/30 ' 1/30

3 1/210 1/210 1/210
4 1/1260 1/630 1/630
5 1/13,860 1/6930 1/6930
6 1/180,180 1/30,030

7 1/180,180 1/180,180 1/180,180
8 1/6,126,120 1/1,021,020

9 1/116,396,280 1/4,157,010
10 1/116,396,280 1/29,099,070
11 | 1/2,677,114,440 1/133,855,722
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Now consider the problem of finding B(6). We saw

earlier that it must be /180180, where g is one of {1, 2, 3,

4, 5, 6}. We eliminate the possibilities that g = 1 or 2 by
the observation that B(6) > 2B(7). Now we shall eliminate
the possibilities that q = 3 or 4. Let f(x) be any

polynomial of degree 6 with integer coefficients.

Let I = integral of the square = q/180,180.

SRR I SR TR AR RO RO S
where A, B, ... J are integers and J = ag. It follows:
g = 180180 I = 13(13860A + 4620B + .. + 1260H) + 13860J.
Therefore q = 138607 = 2J (mod 13). The possible cases are:
a6 = 0 1 12 3 +4 t5 t6
q = 2a2 = 0 2 8 5 6 11 7
This has shown that g cannot be 3 or 4. To eliminate

the possibility that q = 5, one method is from Theorem 2, but

an alternative proof will be given below.

We return to more general considerations. Consider the

polynomials po(x) = 1

pl(x) = 2x -1

pz(x) = 6x2 - 6x + 1

- 3 2
p3(x) = 20x” - 30x° + 12x - 1
p4(x) = 70x4 - 140x3 + 90x2 - 20x + 1, etc.
; - n _iyhtifn+iy/ny i

defined by pn(x) = zi=0 (-1) ( i )(i)x

(1/n1) (d/ax) " (x2-x)"

n
nj2_r n-r
= z X (x-1) .
= (D
The polynomials have an orthogonality property:

Jé Pa(X)Pp(x)dx = 6. o /(mn+l)




-6150-

easily proved from the second definition above with repeated

integration by parts.

These polynomials are connected with the Legendre

polynomials Pn' in fact pn(x) = Pn(2x—1). Legendre’s
n

£ = 5—2n 2n-2r\{ 2r

ormula Pn(coso) 2 b ( n-r )(r ) cos(n-2r)¢

r=0
tells us that -1 < Pn(cosp) £ 1, and so -1 < pn(x) <

for all X in the unit interval.

We express any polynomial f(x) as Zcipi(x), and then

Theorem 4 fé £(x)%2dx = g cf/(zi+1).

Also pi(l-x) = (-1)1pi(x). (Both obvious)

If f(x) is a polynomial with f(x) = f(1-x), then c, = 0 for
i

all odd i; and if f(x) = -f(1-x) then C; = 0 for all even i.

It may be noted that the sum of squares above is essentially

the same as that in Theorem 2, in fact (2i+1)'r.+l = 02
5 -

1

Theorem 5 1If f is of degree n and f(x) = (—1)nf(1-x), then
1 2 B(n) + B(n-1
fo f(x)* 2 A
Proof Let g(x) = (-l)nf(l—x). Then £ + g has degree n
and f - g has degree < n, but is non-zero.

1 2
4 fo f(x)%x = jé (£+9)% + (£-g)2ax » B(n) + B(n-1)

Corollary (a) 1If 3B(n) < B(n-1) then all optimal polynomials

f of degree n satisfy f(x) = (-1)nf(1-x).
(b) If 3B(n) = B(n-1) then there exists one optimal

polynomial f satisfying this condition.

Theorem 6 If T is a linear functional on the polynomials,

and f has degree n, then
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(T£)°
n . 2
T, (2i+1)(Tpy)

Jé £(x)%x 2

Proof With the notation introduced above, f = Ecipi, and
Tf = ZciTpi. Apply the Cauchy-Schwarz inequality to the
sequences ci/J(zi+1) and Tpi/(2i+l).

(r£)? = (ze;mp)% < = c?/(2i+1) £(2i+1)(Tp,)>
Further, if f has the property that f(x) = (—1)nf(1—x),
then the inequality may be strengthened by taking the

summation over only i for which n-i is even (by Theorem 4).

First Application Let Tf be the coefficient of %3 in f(x).

Recalling that (Tp,)*= (m;;)z(?)z , and that (Tf)? is

a non-negative integer, it follows that either there is no

j ) 1 2 n m+3\ 2/ m\ 2
x° term in f(x) or JO f(x)°dx > 1/Em=j ( 3 ) (j) (2m+1).

As before the sum may (in certain circumstances) be taken over
only the m for which n-m is even.
This gives a criterion for coefficients in optimal

polynomials being zero:

If B(n) < 1/E:=j (m;j)z(?)2(2m+1) then in every optimal

polynomial of degree n the coefficient of x) is zero.

Specifically, taking J = 0, the result becomes:-
If B(n) < 1/(n+1)2 every optimal polynomial has a factor x.
Now take j = 1. Note that
g (me1)%m? (2m+1) = n?(n+1)%(n+2)2/3.
If nz(n+1)2(n+2)2B(n) < 3, the formula tells us firstly that
every optimal polynomial f(x) has a factor xz, (because this
condition implies the previqus (n+l)zB(n) < 1), and secondly

that f(x) has a factor (l-x)2 because f(1-x) is also optimal.
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n .
In general, for any j, the sum T (m;])z(?)2(2m+1) is a
m=1
polynomial in n, but B(n) decreases geometrically, faster than

n

c(n), which is like 5 ', and so for all sufficiently large n

all optimal polynomials have factors x](l—x)].

Second Application Let Tf = f(%). Firstly note that

Pm(%) =0 if m is odd and

(—1/4)“‘/2 (m?Z) if m is even.

If 2x-1 is not a factor of f(x), then [f(%)| 2 2", and so:

Corollary If B(n) < 4'“/2£262] 4"2r (2§ )2(4r+1)

then 2x-1 is a factor of every optimal polynomial of degree n.
It may be verified that this is so for n = 6, so that the
optimal polynomial f(x) has factors xz(l—x)2(2x—1). But
3B(6) < 3/30030 < B(5), and (Theorem 5, Corollary) therefore

f(x) = f(1-x) and the remaining factor must be *(2x-1).

This determines that B(6) = 1/30030.

Third application Can we use Theorem 6 to find out about

1 - 5x + 5x2 being a factor of optimal polynomials?
Let u = 1+; 5 and v = 1'; 3 | the zeros of

the guadratic. Consider the two linear functionals S and
T, defined by Sf = f(u)+f(v) and Tf = [/5(f(u)-f(v)).
These functionals operating on the function x" give:-

n . 1 2 3 4 5 6

s 1 3/5 2/5 7/25 1/5 18/125

T 1 1 4/5 3/5 11/25 8/25

Each sequence satisfies the linear recurrence relation
t(n) = t(n-1) - t(n-2)/5
so their values are of the form (integer)/s[n/z] and

(integer)/s[n/z—l/z] respectively. The same must be true
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for any polynomial of degree n with integer coefficients.

1

s £(x)% ax, and

Theorem 6 tells us that (Sf)2 < (2n+2)2 f
similarly (Tf)? < 5(2n+2)? jé £(x)? dx.
We have seen that Sf is either zero or » 5 [N/2], Thus
sf = 0 or 5_2[n/2] < (2n+2)° Jé £(x)% dx. Therefore

if B(n) < 57%I"2)(5142)72 then sf = 0 for all optimal

polynomials. Similarly Tf = 0 for all optimal polynomials
if B(n) < S-I_Z[n/2_1/21(2n+2)_2. We shall see (below) that
B(n) = 0(5-276_n) for large n, and so it follows that for all
sufficiently large n, for all optimal polynomials f, Sf = Tf =

0 and 1—5x+5x2 is a factor of f.

What do we know of the asymptotic behaviour of B(n)?
Consider the function g(x) = (x—x2)3(1-2x)(1-5x+5x2). It

may be calculated that |g(x)| < M = .0005617 in the unit
n

interval. Put £ = g . Then f(x) is a polynomial of
degree n = 9m, and |f| < M®, so that B(9m) < ffzdx < M2,
Therefore lim sup B(n)l/n < M2/9 = 1/5.276... This is

asymptotically a little better than B(n) < C(n), for

C(n)l/n - 1/5. For a bound the other way, we have B(n) 2
D(n), and asymptotically D(n) ~ exp(-2n). This estimate
for D(n) is far from obvious, in fact it is essentially the
prime number theorem, see Hardy and Wright, Theory of Numbers,
§ 22.7, p.346. Our asymptotic results are thus:

1/n

5.276 < B(n) < 7.3891.

For B(9) we have a better upper bound than C(9), because
the polynomial
£(x) = x3(1 - x)3(1 - 2x)(1 - 5x + 5x?)
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gives a value 2/14,549,535 = 16D(9) for the integral of the
square, which is smaller than C(9) = 28D(9). Similarly for
B(11), the polynomial x4(1—x)4(1—2x)(1—5x+5x2) gives a value
1/191,222,460 = 14D(11).

The following table gives the known values. The column
"Sym" indicates the symmetry, whether every optimal polynomial
f(x) is known to have f(x) = (—1)nf(1—x), with Y for "yes" if

3B(n) < B(n-1), see Theorem 5, Corollary (a).

n B(n) Sym Optimal polynomials
1 1/3 N X or 1-x or 2x-1
2 1/30 Y | x(1-x)
3 1/210 Y X(1-x)(1-2x%)
2 2 2

X"(1-x)" or x,(l-x)(1-2x) or

4 1/630 N x(l-x)(1—5x+5x2) or x(l—x)(l-—Zx)2
1/6930 Y | x%(1-x)%(1-2%)
6 1/30,030 Y x*(1-x)°(1-2x)2
2,3

(x-x5)2(1-2x) or
7] 1/180,180 | ¥ | (o %2)2(1-2x) (1-5x+5x2)
8 | 171,021,020 | ¥ x> (1-x)3 (1-2x) 2

Finally, a table giving the partial information available

in the next few cases.

known
n lower bound upper bound ratio Sym factors
9 1/38,798,760 2/14,549,535 3:16 Y (x—x2)2(1—2x)

(x—x2)2(1-2x)

o)

10 1/116,396,280 1/29,099,070 1:4

11 1/2,677,114,440 1/191,222,460 1:14 ? (x-x2)2(1—2x)
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SMALL POLYNOMIALS

Terry Tao

Consider polynomials f(x) of degree n with integer
coefficients, as functions on the unit interval.

In the preceding contribution INTEGRAL INEQUALITY (pages

6146 - 6154) we considered the L2 norms, i.e. we were

1
0

the L* norm, that is max |[f(x)]. Denote the minimum (over

concerned with the integral J f(x)2 dx. Now consider
all polynomials f with integer coefficients and of degree n)

by A(n).

From Theorem 6 (page 6150 above), if we take the
functional Tf to be f(v) (where v is some number in the unit
interval), recalling that |Tpi| < 1 and T(2i+1) = (n+1)2, we
find (n+1)2jéf(x)2dx 2 f(v)z. This is for all v, and so
A(n)2 < (n+1)2Jéf(x)2dx. This is for all f, and so
A(n)2 < (n+1)2B(n). Now consider the f that minimizes
max |f(x)], the integral of its square must be < A(n)z, and
so B(n) < A(n)z. Thus we have: -

Theorem 1 B(n) < A(n)2 < (n+1)2B(n).

Theorem 2 A(n)l/n has a limit as n -+ o,

Proof Let a = lim sup A(n)l/n. For any m and n we have

A(n+m) < A(m)A(n), and so in particular the sequence is non-

-increasing. Therefore A(m) < A(n)[m/n], and

a = 1lim sup A(m)l/m < 1lim sup A(n)[m/n]/m = A(n)l/n.
This is for all n, and so a < lim inf A(n)l/n, proving that
A(n)l/n has a limit. |

corollary B(n)l/n has a limit, the square of lim A(n)l/n.
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BINOMIAL IDENTITY 36

Firasath Ali and Cecil Rousseau

(n/21 (-1)PX{B) (R-P) pn=2p _ (041 )
p=k k P 2k+1

First Proof cConsider the problem of counting the number of 0-1
sequences of length n that have exactly k occurrences of the
paétern o1. This was in the 1982 British Mathematical
Olympiad. The following calculation by Ian Goulden, given in

Ross Honsberger’s Mathematical Gems III, gives the RHS of the

identity.

Enlarge the sequences to length n+2 by adding a 1 on the
left and a 0 on the right. Consider the n+l points between the
n+2 members of the sequence, call one a "switch" if it is between
unequal digits. There will be k occurrences of 01 if and only
if there are k+l occurrences of 10, and therefore 2k+1 switches

altogether. The number of ways is therefore the RHS above.

Oon the other hand, we shall use the inclusion-exclusion
principle to show that the number is the binomial sum on the left

above.

Firstly, take an abstract view of the I-E principle.
Suppose that we have a set S of things and a set G of properties,
each thing in S may or may not have each of the properties in
G. In other words we have a bipartite graph, each edge joining
one member of S to one member of G; the existence of the edge
meaning that the thing s in S has the property j in G. Each

thing of S has a degree k (in the graph theory sense), the number
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of properties in G that it has. The function E(k) (for integer
k 2 0) is the number of things in S that have degree k. The
function W(p) for any integer p > 0 is defined as follows.
Take any p-element subset of G and count the number of s in S
that are joined to all members of the subset, i.e. the number of
things that have all the p properties; add these numbers for all
the p-element subsets of G; the total is W(p). The I-E
principle tells us the relation between these two functions.
It is
E) = =-0P(P)wep)  ana wey = 2 ()0
P k

The second equation is clear by counting, and the first may be

derived by matrix inversion. (JCMN 45, p.5081 & 47, p.5128)

Considering the present question — let S be the set of
all strings such as s = (sl, Sys oe- sn) of symbols 0 and 1.
We define G to be the set {2, 3, ... n), but each j in G can
also be regarded as a property of an s in s; in fact j is the
property that sj__1 = 0 and sj = 1. Each s in S may or may
not have each property j in G. What we want to calculate is

(for any k) the number E(k) of strings s in S that have

exactly k of the properties in G.

To determine W(p) in our case, first consider the
p~element subsets P of G; we may discard those that (as a set
of numbers) contain two adjacent numbers, for no string can
satisfy those propertieé. How many subsets P remain? We
may call them the consistent subsets.  Each is a sequence
1< j1 < j2 < ... < jp S n in which no two of the j’s are
consecutive. To such a séquence there corresponds the

sequence with lq = ]q - q, and 1 < 11< i, <... < lp < n-p.
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The numbe i i -
r of consistent sets ig therefore (npp). For

any such consistent set P, the number of strings s that
satisfy the p conditions is 2n—2p' since each condition j in

P determines two elements of the string s, the symbol numbered
J~1 must be 0 and the Symbol numbered j must be 1.

Therefore W(p) = (n-p)zn-Zp.
P

Application of the inclusion-exclusion rule now gives

(2131) = E(k) = g (-1)p'k(l‘:)sv(p) =rz>: (_1)P-k(]r:)( B pn-2p

n-
P

Second Proof Consider the polynomials

[n/2)]
£(2) = = (n-p) 2P,
p=0 ' P
Using the identit ntl-p)  _  (n-p n- i
y ( P ) ( p ) + (p-f)' it follows that
£h41(2) = £a(2) + 2£ . (z2).
The general solution of this recurrence is
_ n n
fn(z) = clxl + °2*2'

where Al and A2 are the roots of 12 = A+ oz, The initial
conditions are fo(z) = fl(z) = 1.
Straightforward calculation now yields

£.(2) = (1+42)7% 2'"'1( (1+/17az)™ - (1o Tyt )

_ {n/2]

£ (%=1 = ™n n+l \ k

ol ) o (2k+1)"
But from the definition,

x-1 [n/2] n- -
fn(T) = Z ( pp) 47P(x-1)P
p=0
= z 2—2p -1 p- n-p P
0<k<p<[n/2] b k( P )("),}

Our result now comes from equating the coefficients of o in

these two expressions.
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POINTS AND ANGLES IN THE PLANE (JCMN 58, p.6117)
Paul Erdés

(Hungarian Academy of Sciences, Budapest, P.0O.B. 127, H-1364)

Let there be given n points in the plane not all on a line.
Is it true that they determine at least n-2 distinct angles in

the open interval between 0 and »?

This question is due to Corradi, Hajnal and myself. It
had a curious birth due to a misprint. I sent it to the Math

Lapok for high school as an elementary problem but I added “no

three on a line". With this condition the problem is very
simple. Corrddi and Hajnal asked me — How did you do it?
We could not do it. I said it was trivial, but when I looked

at the problem I noticed that it was printed as above, "no three
on a line" was omitted, and I also could not do it. As far as
I know this problem which owes its existence to a misprint is

still open.

The special cases of n = 5 and 7 are shown below:-

5 points, 2 angles. 7 points, 4 angles.

(45° and 90°) (30°, 60°, 90°, 120°)

Are there any other n for which the proposition is untrue?
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COMBINATORIAL QUESTION (JCMN 58, p.6137)
Paul Erdés

(Hungarian Academy of Sciences, Budapest, P.O.B. 127, H-1364)

Put the question in another way. For any k let g(k) be
the smallest integer m such that from a set of m things one can
find m subsets of size k of which any two have at most one

element in common.

Lemma g(k) 2 k(k-1) + 1.

Proof Take a family of m elements with m subsets having the
given property. Take any element, the number of the subsets
that contain it must be < (m-1)/(k-1). This proves that mk <

m(m-1)/(k-1), that is k(k-1) < m-1.

If p is a prime or a power of a prime, then by considering
the finite plané projective geometry over the field GF[p], taking
the points as our elements and the lines as our subsets, we have
the conditions satisfied with sets of size k = p+1 and with m =
p(p+l)+1 = k(k-1)+1 elements. This shows g(p+l) = p(p+1)+1.
In particular g(3) = 7, (the geometry in
this case is the Fano plane, which has 3
points on each line and 3 lines through
each point). (In drawing a Fano plane

the 7 lines cannot all be drawn straight.)

It has been conjectured that if k-1 is not a prime or a
prime power then g(k) > k(k-1)+1, but this has not been proved

for all k. Perhaps g(k) < k(k-1) + 3 for all k.

-6161-

It has been shown recently that if 111 1l1-tuples are chosen
from 111 elements then there must be two of them with 2 elements

in common, i.e. g(11) > 111.

For any m, let k = k(m) be the largest integer such that in
a set of m elements it is possible to find m subsets, each of k
elements, with no two of the subsets having more than one element
in common. It might be thought that'k(m+l) 2 k(m), but this
has been disproved by Mullin and others from the University of
Waterloo, with the example of k = p+1 and m = p(pt+l)+1l for

infinitely many p.

In fact let f(m; k) be the largest integer for which in a
set of m elements you can find f(m; k) subsets, each of k
elements, with no two of the subsets having more than one element
in common.

For large m, f(m+l; k) - f(m; k) > 1.

In fact f(m+l; k) - £f(m; k) - o. What is the smallest m
for which f(m+1; k) - £(m; k) > 1? And what is the smallest
M such that this inequality f(m+l1l; k) - f{(m; k) >'1 holds for all

m > M?

In a set of size p2 + p + 3, can one find p2 +p+ 3
subsets of size p + 1 such that no two of these subsets have

more than one element in common?
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BINOMIAL IDENTITY 35 (JCMN 58, p.6134)
Terry Tao
(6, Jennifer Avenue, Bellevue Heights, 5050, Australia)

It was another meeting of the knights of the Round Table.
All m of King Arthur’s knights were there, although s of them
were about to go on guests and could not stay for long. King
Arthur stood up and said:

— There is a great tournament to be held today, as many of you
know. Exactly n knights are to attend this tournament.

— That is easily done, my lord, — said Sir Galahad — there

are (:) possibilities, surely?

~ Sir Mordred sneered —— You were always naive, Sir Galahad.
What about the s of us who are to go on quests today?
Surely none of us can attend the tournament.

Sir Lancelot said: — Yes, I have to leave shortly on my
quest, and so you must exclude all the arrangements that
put me in the tournament.

Sir Gawain noted thoughtfully: — Yes, there are (ﬂ:i)
possibilities that include Sir Lancelot, because after
selecting him you must £ill the remaining n-1 places from
the remaining m-1 knights.

Sir Bedivere, another questing knight, said: — So, after
subtracting for each questing knight, we get (2) - s x:i
possibilities. ,

Sir Galahad, with a slight frown on his face, asked: —
But what if two of the questing knights were selected?
You would have subtracted the number for that possibility

twice!

Merlin, who was attending the meeting, said: — oOf
course, you have to use the Inclusion-Exclusion Principle.
You must add the possibilities for two questing knights, and

-
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then subtract the possibilities for three, and so forth.

Sir Gareth volunteered: — If t questing knights were selected
there would be (::E) ways the others could be chosen.

— And also — added Sir Gawain, — the number of ways you can
choose t questing knights is (i), so the complete count must

ve  (3) - (D35 + ((RE) - (A3 + -

n
s : . 4
By this time all the questing knights had excused themselves
hurriedly to begin their quests. King Arthur looked up at
the m-s knights who remained, and exclaimed: — Of course ...

All I have to do is to select n knights from those that are
m-s

n ) possibilities.

still here, so there are only (
All the remaining knights then turned expectantly to Merlin,
who obligingly peered into the future and said after a while:

— You have just discovered what will be written as Binomial

Identity 35 in issue 58 of the James Cook Mathematical Notes
.

in the 1992nd year of our Lord:

(%) = = o3

* k k * % Kk *

It was a few weeks after the tournament, and all the m knights
were again at the Round Table. King Arthur stood up and
said:

— After our recent successes in quests and the tournament, I
have decided on a feast to celebrate. Sir Gawain, I want

you to order special seats for our n tourneying knights.

— As you wish, your Majesty. — Sir Gawain replied. — With
n special seats to distribute among the m overall, I have (2)
possibilities for the seating arrangements.
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— Unfortunately, -— said King Arthur, — it is not so
simple. I have also invited some s knights from Scotland,

all great and powerful men, to join us in this feast.
Normally, they would take the place of honour on my right, but
they would like some of the tourneying knights to sit with
them.

Sir Gawain noted distastefully: — I will have to order s
special chairs for them. (Readers may recall the story "King
Arthur and the m fat knights" in JCMN 31, p.3170 — Editor)
Now I have no idea how many possibilities there are.

—— I think I can help you. — said Sir Bedivere — If we
select t of my fellow tourneying knights to sit among the
Scots, then they, together with the visitors, occupy the first

. . . +t! s
s+t seats on the King’s right. Thus there are (St ) seating
possibilities for them.

Sir Mordred objected: — That is not quite true, if you say

that your t tourneying knights all sit WITHIN the s visitors,
then the seat number s+t to the right of the King must always

. P +t -
be occupied by a visitor. Hence there are only (S : 1)
possibilities.
Merlin commented: — You also need to account for the

remaining seats, which will be shared between the other

n - t tourneying knights and the other m - n Camelot knights.
The arrangements for these seats number (::E), so the number
of seating arrangements for the whole table is (S+§—1)(::t)
when there are t tourneying knights sitting with the visiting

knights.

Sir Lancelot summarized: — Therefore the total number of

seating arrangements is
(53R + (D) + (R + -

Sir Galahad remarked: — This formula is just as messy as the

one we considered a few weeks ago!
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At that moment Queen Guinevere, who had been listening to all
that was said, asked King Arthur: — Why don’t you seat the
tourneying knights first, and then put the Scottish knights in
the first available s seats to your right?

King Arthur nodded in agreement. — Yes, there are exactly
(m;s) possibilities. So that means
(m+s) - (s+i—1) m-i
n T i n-i
i=0
Merlin chuckled. — Your Majesty, I note that this new

identity you have discovered is related closely to the one we
discussed a few weeks ago, before the tournament.

* — I see nothing more than superficial similarity. - declared
Sir Mordred.

— Well, — said Merlin uncomfortably, — if you consider the
first identity, but replace s with =-s, then you get today’s
identity.

Many of the knights laughed on hearing this, and even King
Arthur had to smile.

— Have you been dabbling im black magic again? — King
Arthur asked. — How could we have a negative number of
questing knights? Or a negative number of Scotsmen coming
to Camelot? I am afraid, Merlin, that you seem to value

these symbolic equations more than the common sense that
created them.

Merlin, who had been muttering "Gamma one minus s over gamma
one minus s minus t" under his breath replied — I agree, your
Majesty, that there is no intuitive way to connect the two,
but formally the two identities match. . In the future people
will use these symbols and derive similar identities without
considering their original meaning. There is much to be
gained by withholding such restrictions of "common sense".
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FAMILY OF POLYNOMIALS (JCMN 57, p.6099 & 58, p.6130)
Terry Tao & A. Brown

The first few members of this family are

f(o, x) =1 f(1, x) = 3x - 2
£(2, x) = 10x%- 12x + 3
£(3, x) = 35%° - 60x2 + 30x - 4

T £(4, x) = 126x* - 280x3 + 210x% - 60x + 5

In the previous contributions three possible definitions

were given:-

n

f(n, x) = kio(-l)"+k("+§+l)(£) x )
n

- (- ok

- (o e @

The family may’also be defined by:-

n+l

% (@/ax) (¥ x - 17 (4)

3=
|

f(n, x)

(a7ax)™H(x"(x - MY (5)

or n+%

1
(n+1)!

Equation (4) may be shown equivalent to (1) as follows:-

n
xn+1(1 -x)" = 3 (-l)k(ﬁ) Nubs o
'+ k=0
th i . _n K_ [ n+k+1)/ny _k+1
n derivative = k20(—1) n!( K+1 )(k) X

which gives the result.
Similarly (5) is equivalent to (2), writing y = 1-x,

n
+ k, +k+1
(1 -y o= = CoXEy"

k=0

1
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(1 e ) (1)

0

M3

(n+1)th derivative =
k

so that (5) agrees with (2).

Also, by using the formula of Leibniz for the nth
derivative of- a product, both (4) and (5) may be shown to be
equivalent to (3).

The equivalence of the five definitions is thus

established as follows:- ¢

(1) <=> (4) <=> (3) <=> (5) <=> (2).

From (4) and (5) there is a simple derivation of the
orthogonality property, as follows:
1
JO xf(m, x}f(n, x)dx
_ _1)m+n+1 1 (g_)m( m+1 1- m)(g_)n+1( no. )n+l )d
= nrmrT Jo lax) (¥ ()7 ){ 5 x (1-x X

Integration by parts m times gives

(_1]n+l Ié xm+1(l-x)m(g§)m+n+l(xn(l—x)n+l)dx

m! (n+1)!
which is clearly zero if m > n. If m = n it gives
2n+l 1 _n+l n
(27 J5 o

which is easily evaluated as 1/(2n+2), either integrate by

parts n times or remember about beta functions.

Other properties of these polynomials may be noted:-

(a) j; £(n, x) ax = (-1)"/(n+1)
(b) fé £(m, x)E(n, x) ax = (-" "L ifm o> n.
(c) |} x*#(n, x)f(n, x) a ntl i

0 ' ' X Tz (amemy PR
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1

m if m = n+1, and = 0 1if m 2 n+2.

(d) f(n, x) has n simple zeros in the unit interval.

(e) (2n+l)x(1-x)f’(n, x) = n(n-2nx-x)f(n, x)+n(n+l)f(n-1, x)

(f) Between two zeros of f(n, x) is one of f(n-1, x).

Also these polynomials are related to those of INTEGRAL

INEQUALITY (pp. 6146-54 above) as follows:-

(g) (n+l)f(n, x) = (x-1)p, "(x) + (n+l)p (x)

(h) xf’(n, x) - nf(n, x) = pn’(x)

(1) (x-xz)f'(n, x) + (l+nx)f(n, x) = (n+1)pn(x)

n+l

Proofs (a) The function xn(x-l) has a zero of order n at

x=0, and a zero of order n+l at x=1. The n th derivative
is (-1)™hn
1
JO (d/dx)

follows from definition (5) above.

at x=0, and zero at x=1. It follows that

n+1 n+1l

xn(x—l) dx is (-l)nn!, and so (a)

(b) The constant term in f(n, x) is (—1)n(n+1) by (1)
above. Therefore we may put f(n, x) = x g(x) + (—1)n(n+1),
where g(x) is some polynomial of degree n-1, and so

LHS = Jé xf(m, x)g(x) dx + (-1)"(n+1)Jé £(m, x)dx

which, because f(m, x) is orthogonal to all polynomials of

lower degree, and by (a), equals (-1)m+n(n+1)/(m+1).

(c) Using the definition (4), m! n! x LHS =

o t8 "™ 0™ (&) T e ax
Integrating by parts m times, this gives:-
(-1)m jé xm+l(x_l)m(%§)m+n(x2n+l - nx2n + lower powers)dx
This is zero if m > n+l, and for the two cases required is

Jéxm+l(1_x)m(g§)m+n(x2n+1 - nxzn) dx, easily calculated.

(d) From (4) or (5) using Rolle’s Theorem.
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(e) Put C(n, x) = (x—xz)f’(n, x) +’nxf(n, x) = chxk

i}

and D(n, x) = nf(n, x)+(n+l1)f(n-1, x) zdkxk, and use (1)

n+k
. _ (-1) (n+k)! - < <
to find dk/(2n+1) = (RFD) T(R=1) I (n-kK) 1 ck/n for 1 £k £n,
and cy = do =Che = dn+1 = 0. Hence (2n+1)C(n, x) =

nD(n, x), which is the result (e).

(f) At successive zeros of f(n, x) the sign of f£’(n, Xx)
alternates (the zeros being simple), and therefore, by (e),

3

the sign of f(n-1, x) also alternates.
(g), (h) and (i) are obtained from (4) and (5).

* * * * * *

Binomial Identity 34 (JCMN 57, p.6098) may be written
e e TR A G THIE

and LHS = Coefficient of xk

in f(n, x) from equation (1),
and RHS = coefficient of xk in f(n, x) from equation (2).
Also, using the binomial multiplication rule
(B(d - (3=

we may rewrite the equation above (omitting the factors (E)

and (_1)n+k) as:-
(P57) - E en™ (T (Y
n-k _ _
SREEN Gy

which is a case of Binomial Identity 35 (JCMN 58, p.6134) with
2n+1 for m and n-k for s. Therefore we have two proofs for
Binomial Identity 34, one from the work in the previous issue (or
above) on these polynomials’} and one from the Camelot story in
this issue (BINOMIAL IDENTITY 35, pages 6162-5).
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ANALYTIC INEQUALITY 3 (JCMN 58, p.6135)
Terry Tao
(6, Jennifer Avenue, Bellevue Heights, 5050, Australia)

Let f(x) and g(x) be monotonic non-decreasing in [0, 1] with
their integrals equal to p and g respectively. Find the best
possible constant K in the inequality

1
Jé f(x)g(x) dx - pq > K Jé | £(x)-p|dx Jo lg(x)-q|ax.
- The answer is K = 1/4. To prove this, first take the
case where p = q = 0. Define a as where f(x) changes sign,
that is to say such that f(x) £ 0 for 0 £ x < a

and f(x) 2 0 for a < x < 1.

Define A = Ig g(x) dx and B = ‘Ii— J; g(x) dx.

Band aA + (1-a)B = 0.

A QiR

Then A < O

Lemma 1 If in an interval u(x) and v(x) are both monotonic
non-decreasing and v(x) has mean zero, then [ u(x)v(x) dx > 0.

Proof There is k such that u(x)-k has the same sign as
v(x), and so [(u(x)-k)v(x)dx 2> 0.

Lemna 2 jg £(x)g(x)dx > $(B-A) [§ 1£(x)|ax.

Proof fg f(x)g(x)dx
= Jg £(x)(g(x)-A)dx - A jg [£(x)]dx

which by Lemma 1, > - A fg J£(x)]|ax.

1

2 £(X)(g(x)-B)dx + B J; £(x)dx

Similarly I; f(x)g(x)dx = J
> B f; [£(x) |dx

Noting that Jg = J; =% jé }£(x)|dx, the result follows.

At this stage we need some more notation. For any c

0 [o} ll

in the open interval (0, 1), define

the step-function h(c, x) to be:

-1/(2c) when 0 £ x < C

=0 when x = ¢

1/(2-2¢) when c < x £1
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1
so that fo h(c, x)dx = 0, and fé In{e, x)|dx = 1.
Using this function we may verify that K = 1/4 is the
best possible constant in the inequality, for if a < b then

1 -
J‘o h(al x)h(bl x)dx = b-a 1-b

a
N (2a)(2b) "(Z=2a)(2b) ' (2=2a)(2-2b)
= @b(1i-a) which can be arbitrarily near to 1/4.

Lemna 3 (B - A)/2 = [§ n(a, x)g(x) ax
Proof Easily verified.

Lemma 2 and Lemma 3 together give
fé £(x)g(x)dx > Jé g(x)h(a, x)dx J; [£(x) |dx
and now we apply this result to the first of the two integrals
bn RHS above, taking b as the point where g(x) changes sign,
and assuming (as we may without loss of generality) a < b,
LHS > Jé n(b, x)h(a, x)dx jg lg(x) |ax Jg [£(x)|dx
where the first of these three integrals (as we saw above) has

1
the value ZBTI:ET , always > 1/4.

Now we have proved jg f(x)g(x)dx 2 § Jé | £(x)|ax Jé lg(x) |dx

with equality only in the case of null functions.

To extend the result to functions not having mean zero
is straightforward, just apply the result above to f’(x) =
f(x)-p and g’(x) = g(x)-q.

ANALYTIC INEQUALITY 4

The calculation above suggests another (simpler) problem.
If g(x) is monotonic non-decreasing with mean zero in the unit

interval and if 0 < a < 1, prove:

2 1 2 .
i-a fa g(x)dx - = fg g(x)ax 2 Jé lg(x)|ax.
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SYMMETRIC INEQUALITY (JCMN 58, p.6123)

Let r be the sum, s be the sum of squares, and t be the sum
of cubes, of three numbers a, b and ¢, all 2 0. Prove that
4t 2 rs + 3abc.

Does equality imply that a = b = ¢c?

SOLUTION 1
A. Brown

2

4t - rs - 3abc = 3(a3+b3+c3)—(a2b+bzc+c a+ab2+bc2+ca2)-3abc

L [(a-p)%(3a%3btc) + (b-c)?(3b+3cta) + (c-a)?(3c+3a+b) ]

v

0, with equality only if a = b = c.

SOLUTION 2

P. H. Diananda

By the power-mean inequality:

(%)1/3 2 (%)1/2 > g 2 (abc)l/3 with equality iff a=b=c.
t1/3 £ 2/3 g _
Hence rs + 3abc < 3(3) x3(3) + 3(3) 4t.
Alternative proof: r < /3/s and s < /r/t by the
Cauchy-Schwarz inequality, and so rs < 3t. By the
inequélity of arithmetic and geometric means 3abc < t. Add.

At each step there is equality if and only if a = b = c.
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FACTORS

Shailesh Shirali
(Rishi Valley School, 517352, Andhra Pradesh, India)

For any positive integer n, write the fraction

(2n)!
n! (n + 1000)!

in its lowest terms and define f(n) to be the largest prime that
divides the denominator of this fraction, (if the denominator is
1, let £(n) = 1). What (if any) is the largest value that f(n)
can take?

SYMMETRIC SIMULTANEOUS EQUATIONS

Harry Alexiev
(4, Antrim the First Street, 4980 Zlatograd, Bulgaria)

Solve, for (x, y, z) in terms of (a, b, c), the equations

x2 -yz = a

y2 -2x = b
2

2" - xy = cC.

Hint - there is a solution in radicals.

BINOMIAL IDENTITY 37

B AD e = (M0 e cmen
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VIBRATING RAILS

When your Editor was a boy there was a rumour circulating
among schoolboys in England that you could hear a train coming
when it was miles away by putting an ear on to the rail, because
"the vibrations travel along the rails". I was never able to
satisfy myself as to whether the idea was true or false. Long
afterwards when I had become a mathematician I tried to work out
the theory, not finding the answer, but finding some tantalising

questions.

For our model we take the rail to be infinitely long, thin,
straight and uniform, vibrating in a vertical plane; at each
sleeper the rail is simply supported at an elastic support of
rate k, i.e. if y is the upward displacement there is a downward
force on the rail of ky. The rail has mass ¢ per unit length
and stiffness EI (i.e. the bending moment is EI times the
curvature, E is Young’s modulus and I is the appropriate moment
of inertia of the cross-section), The spacing between one
sleeper and the next is w. Take a coordinate x measured along
the line, with t as time.

The equations of motion are easily written down:

Between sleepers: EI 64y/ax4 + 0 azy/atz =0

3 has a discontinuity with jump = -ky.
Consider vibrations with a time factor of e]"“'t , or (as

At each sleeper EIa3y/ax

some prefer to express it) consider this Fourier time-
-component of the variable y. Now y is a function of x
only, for as usual we oqit the time factor. The
differential equation between sleepers is
d4y/dx4 = v4y, where v = wzo/(EI).

In the interval 0 < x < w between two sleepers the general
solution of this DE is

Yy = A cosh vx + B sinh vx + C cos vx + D sin vx.
In the next interval, w < x < 2w, there will be a similar

solution, but with different parameters, A’, B’, C’ and D’.
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To find the relation between (A, B, ¢, D) and (A’, B/, C’, D')
we must look at the boundary conditions at x = w.

Consider the four functions:-

by + au_zdzy/dx2 = A cosh vx + B sinh vx
sy - 5u'2d2y/dx2 = Ccos vx + D sin vx
v_ldy/dx = A sinh vx + B cosh vx - C sinvx + D cos vx
%u_3d3y/dx3 - %u—ldy/dx = C sin vx -~ D cos vX

Of these four functions the first three are continuous at x =
w, and the third has a simple discontinuity with the jump

equal to  -ky/(2v°EI) = -k(A’ + C’)/(2v°EI)

. Now we simplify the notation a little by putting

8 = k/(4v>EI) and @ = vo

The boundary conditions at x = w are

Acosha + Bsinha = A/
Ccosa + Dsina = cC’
A sinha + Bcosha - Csina + Dcosa = B’ + D
Csina - Dcosa = - D’ + 28 (A’ + C*)

These may be written in matrix form

(a’, 8, ¢/, 0T = M, B, c, )T

where M is the 4 x 4 matrix :-

cosh a sinh a 0 0]
sinha-28cosha cosha-2Rsinha -2Bcosa -28 sina
(o] 0 cosa sina
28cosha 2Bsinha 2Bcosa~-sina cosa+2Bsina

The propagation of vibrations is governed by iteration of
this matrix M, and therefore by the eigenvalues of M. An
eigenvalue of modulus one indicates the possibility of a

progressive wave. From the symmetry of our model (reversing
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the direction of x) it is clear that if M has an eigenvalue 1,
then it must also have an eigenvalue 1/ix. Can we say
anything useful about a matrix with this property?

Simplifying the equation det(M - AI) we get the fourth
degree equation

2+28Asinha)(1-2Acosa+x2—ZBsina)+4BzAzsinhasina =0

(1-2xcosha+x
which by the transformation 2y = A + 1/ is reduced to the
qu;dratic in p:-

(4 - cosha + Bsinha)(u - cosa - Bsina) + stinha sina = 0.

If this should have a real root between -1 and 1, then we

may call the root cos 6, so that the eqﬁation for A becomes
.2+ 1/) = 2 cos 6, with the solutions x» = exp(+i®), and this
would indicate the possibility of standing or progressive
waves. What are the values of the dimensionless parameters
a and B for which this happens?

(To save you working this out) The matrix M has
determinant = 1, and its inverse is

cosha-2Bsinha -sinha -2Bsinha 0

2Bcosha-sinha cosha 2Bcosha 0
2Bsina o] 2Bsina+cosa -sina
-2Bcosa (o] sina-28cosa cosa

Both M and its invgfse are linear in B, does this tell us
anyfhing?
It should be noted that an eigenvalue with modulus one
for M is a necessary condition for the possibility of a
progressive wave, but not sufficient, for the eigenvector
might describe a standing wave. To distinguish the two
cases we should look at the energy flow.

Lemma: for any complex number ) to be of unit modulus, it is
necessary and sufficient that A + 1/) be real and be in the
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closed interval [-2, 2].
If Mu = Au then M tu = 2"ly, so that each eigenvalue of N

= (M + M_l)/z has multiplicity 2, with a 2~dimensional

eigenspace. This matrix N is reasonably simple:
N = cosha o] 0 0
(o] cosha 0 (o]
0 0 cosa 0
o] 0 0 cosa
+ B -sinha 0 -sinha (o]
0 -sinha cosha~-cosa -sina
sina 0 sina f 0
cosha~-cosa sinha (¢} sina

Now we want to see if the eigenvalues u = (A+A_1)/2 of N
'l
are real and in the closed interval [-1, 1]. They are the

%eros of the quadratic:
uz—p(cosha+cosa—Bsinha+Bsina)+coshacosa+Bcoshasina—Bsinhacosa

The resolvent R of this quadratic is
R= Bz(sinha—sina)2—23(cosha-cosa)(sinha+sina)+(cosha-cosa)2
and (recalling that the non-dimensional parameters a and B are
positive) we may observe that for any B the resolvent will be
negative for all sufficiently small a.

Also, by looking at R as a quadratic in B, we may observe

that R has a minimum (at a positive value of B) equal to

2 2

(cosha—cosa)z((sinha-sina) —(sinha+sina)2)(sinha-sina)—
which is a positive multiple of -sinha sina. YTherefore
whenever sina is positive there is some B for which R is
negative; and whenever sina is negative then R is positive
and N has real eigenvalues for all B.

When R is negative the eigenvalues of N will both be
complex, and so the eigenvalues of M can not be of unit

modulus, and progressive waves are impossible.

But what more can be said about the set of (a, B) for which
the eidenvalues of M have modulus 17? Can we be sure that
it is non-empty? 5
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KING ARTHUR’S BLUFF

Reports had come to Camelot of the approach of a fleet of
Viking longships from which a raiding party was threatening some
small fishing villages on the Cornish coast. Some of the
knights wanted King Arthur to take his army out to drive off the

invaders. But he said "No. I will not leave Camelot
undefended, for this may be a trick of theirs. But the
villagers must be protected. You must all prepare for action

while I make my plans."

Many of the knights had pages with them — boys who had left
home in search of adventure, and made themselves useful polishing
armour and looking after horses, and who hoped one day to become
knights themselves. This fact gave the King an idea, and he
summoned Merlin to talk about it. "Suppose" he said "we send

-a troop of mounted men with banners and trumpeters out along the
coast road. The Vikings will see them and will withdraw their
landing force rather than risk a fight, for they have learnt that
they have no chance against well-trained cavalry. So it will
not matter if our force is mostly composed of pages, not of
soldiers. Then with luck the Viking chief will think that
Camelot is left undefended, and they will make an attack, and we
shall have them."

"The difficulty is, your Majesty" said Merlin "that this
afternoon there will be a fog rolling in from the sea, and
possibly the Viking party will know nothing of our troop
advancing on them; and when the two forces meet our untrained
boys will be cut to pieces. What I suggest is that you choose
r of your n knights to stay to defend Camelot, sending the other
n-r to go on this expedition, and make up their numbers to n by
choosing r of the available m pages to go with them. Of course
I am no soldier and I do not know what will be the best choice
for the number r.

"The total number of choices before you is (m;n), but for

each r there are (:)(?) choices. So we have found a nice

little binomial identity: z (:)(g) = (m+n)' interesting,

n
don’t you think?" But the King wasn’t listening.
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QUOTATION CORNER 38 (JCMN 58, p.6134)

Bearing

Stator end plate
4 poles

— From Robert Smaft we have the comment that the drawing
above should be regarded not . as an attempt at perspective
drawing, but as an attempt at the much easier exercise of
isometric projection, which is a limiting case of perspective
drawing as the distance from the viewer to the object tends to
infinity. Isometric projection may be described, using
Ccartesian coordinates, as orthogonal projection on to the plane
where x + y + z = 0; it is very easy to do by hand, for lengths

along the three axes are all mapped to the same scale, and

parallel lines are drawn as parallel. It would be interesting’

to learn if the modern CAD (= computer aided design) machines can
do isometric projection correctly. Was this drawing produced

by hand or by machine?
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Below is shown what the isometric projection of a circular
cylinder with its axis should look like. To clarify the
construction we have put the cylinder in a cubical box with
transparent sides. To describe the projection more precisely,
the circular face of the cylinder is projected to an ellipse of
which the ratio of the major to the minor axes is J3, and the
minor axis of this ellipse is the projection of the axis of

symmetry of the cylinder.

d




