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CYCLIC INEQUALITY
Mark Kisin

(112, Summerhill Road, Glen Iris, 3146, Australia)

Let a(l1), a(2), ... a(n) all be positive and have sum = 1.
We extend the sequence to be periodic by putting a(n+i) = a(i)
for all i. Let k be an integer with 0 < k < n.

Let f(x) be the sum of a power series Zcrxr converging for
|x| < all a(k+i)/a(i), and having all coefficients c z0.

Then z?v a(i)f(a(k+i)/a(i)) = f(1). There is equality

1
only when either a(l) = a(2) = ... = a(n) = 1/n, or f(x) is
linear in x.
Proof There is a well-known inequality comparing the weighted
power mean of any order j > 1 with the weighted arithmetic mean,
Za(i)xg > (Za(i)xi)j. It may be proved easily from the
convexity of the plane set in which x 2 0 and y 2 xj, there is
equality only when all the xi are equal to one another.

Putting x = a(k+i)/a(i), the power mean inequality gives

ra(i)(a(k+i)sa(i))d 2 (za(k+i))d =1
which is also trivially true when j = 0 and when j = 1, so that
we may multiply by cj and sum for 3 =0, 1, 2, ... This gives
the required result:
Ta(i)f(a(k+i)sa(i)) = £(1)

where there is equality only when either £(x) is linear in x, or

the a(k+i)/a(i) are all equal and therefore all equal to 1, so

that the a(i) are all equal.

Example 1  Put f(x) = exp(x). The result is
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Ta(i)exp(a(i+k)/a(i)) > e, which also follows from the A.M-G.M

inequality.

Example 2 Putting f(x) = x2 and kK = 1 gives
a(2)%/a(1) + a(3)2/a(2) + ...+ a(1¥ sa(n) > a(l) + ... + a(n)
for any positive a(l) ... a(n), the condition of the sum being

1 may here be dropped because this inequality is homogeneous.

Example 3 Put f(x) = 1/(m-x) where m is a constant such that
ma(i) > a(k+i) for all i. The inequality gives

sa(i)2/(ma(i) - a(k+i)) > 1/(m-1).

QUOTATION CORNER 34

*The Notice dated 6 November 1990 convening the Annual
General Meeting of the Company advised that there was one
director retiring by rotation, Mr J.P.Cummings, and he offered
himself for re-election. The Company obtained legal advice
prior to the issue of this Notice of Meeting that the proper
interpretation of the Articles was that only one director was
due to retire by rotation. The relevant Article provides for
one third of the directors to retire. The Article further
provides that "if the number of directors exceeds three and is
not a multiple thereof then the number nearest to but not less
than one third shall retire from office." The Company has now
received legal advice that in the present situation where there
are 4 directors, the number who are to retire by rotation should
be two.’

- From a notice to the shareholders of a mining company.
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STOCHASTIC MATRICES (JCMN 53, p.5287)
Terry Tao

(6, Jennifer Avenue, Bellevue Heights, 5050, Australia)

A stochastic matrix is by definition a real square matrix
M with every element non-negative and every ‘column-sum equal to
1. Is it obvious that M has a positive right eigenvector for the
eigenvalue one? This algebraic theorem has an interpretation
in probability theory, that under certain conditions a Markov

chain has a steady state.

First note that u’ = (1, 1, ... ) satisfies u’M = u’, so
that (row rank being equal to column rank for any matrix over any
field) there is a real right eigenvector v such that Mv = v.
From the triangle inequality it follows that Mw > w, where we
have written w for the vector with each component the modulus of
the corresponding component of v. But u/'(Mw) = (U/'M)w = u’w,
so that the vector Mw - w has every component non-negative, with

the sum of the components zero, therefore every component is

zero, and W is our required eigenvector.

An amusing little proof comes from interpreting the vectors
as points in Cartesian space. Any vector x that has non-
negative components with sum = 1 is a point in a simplex. The
stochastic matrix M maps the simplex into itself, and so M has

a fixed point, where Mx = x.
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ANALYTIC INEQUALITY
(JCMN 51, p.5228, JCMN 53, p.5276)

Let f be a positive function with positive derivative in the
closed interval [0, c]. In the inequality

focx/f(x)dx < fOC 4/fF7 (x)dx

can the factor 4 be improved? YES.
Lenma f;)Q(X)dX f;)l/g(x)dx.z (b-a)2 for any function g

positive in the interval.

Proof This can be regarded as the arithmetic-harmonic mean
inequality, or as the Cauchy-Schwarz inequality for the functions
Jg and 1//q.

Theorem If f and f’ are positive and f’ is continuous for
¥ in the closed interval [0, c], then

fOC x/f(x)dx < jOC K/f’ (x)dx
where K = (9/4)log 3 = 2-47188...
Proof f(x) > f(x) - £(x/3) = f;?} f’(t)dt, now use the lemma,
(2x/3)2 < f£(x) XX/3 1/£7(t) at.
Now divide by xf(x):
(4/9)x/£(x) <-(1/x)fx"/3 1/£7(t)dt = f]‘” 1/f’(xs) ds.
Now integrate both sides from 0 to c, and reverse the order of
integration on the RHS.
(4/9) [$x/E(x)ax < fslil/,}fxciol/f’(xs)dx ds.
change the variable in the inner integral on the RHS.
RS = [ (1/8) (7 1/8 (v)ay ds
I1 s (/)5 g1/E (nay as

Therefore (4/9)f6:x/f(x)dx < log 3 fgvl/f’(x)dx QED

A

What further improvement is possible? If f£(x) = xP where
1 < b < 2, and ¢ = 1, then the ratio of the integrals takes the

value b, for [x/fdx = 1/(2-b) and f1/f’dx = (1/b)/(2-b).
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ANALYTIC INEQUALITY 2 (JCMN 53, p.5277)

afx’g%ax f£:2ax > ([£2dx)2
if f(x) is any real function for which the three integrals all
exist. All integrals are from -» to «. This result can be
regarded as a special case of the following (Weyl’s inequality,

see his Gruppentheorie und Quantenmechanik, second edition,

1931). The connection with quantum mechanics will emerge
below.
Theorem 1 If f(x) is any real or complex differentiable

function for which the three integrals all exist, then
afx2|e(x)|2ax []£7(x)[2ax > (f1£(x)[2ax)2.
The multiplier 4 is the best possible.

Proof The last bit is easy, consider the function exp(-x2/2).

Let A and B be the square roots of fx2|f|2dx and of
flf’lzdx, respectively. By the Cauchy-Schwarz inequality the
functions xff’ and xf’f are both absolutely integrable, and their
integrals over the real line are both of modulus < AB.

Consider xff’ + xf’'f + ff = (d/dx)(xlflz), it is absolutely
integrable, and (for any real positive u) the integral from -u
to u is u(|f(u)|2+|f(-u)|2). This expression must therefore
tend to some real non-negative limit as u tends to infinity.
If the limit were non-zero then |f(u)|2+|f(—u)|2 would be at
least c/u for some positive c for all sufficiently large u, which
we know to be impossible because of the square-integrability of
the function f. Therefore the limit is zero. Now we have
proved that

[ffax = ~fxffrdx - [xf’fdx
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which is of modulus at most 2AB. Therefore
(f 1£Pax)? < aa?8% = af x2)£)%x [ £/ ax. QED

The result can be extended to:-
Theorem 2 If a and b are real and if the integrals all exist,
then (f|£]%ax)? < af(x-a) |£]%ax [|f’-ibf | ax.

Proof Apply Theorem 1 to g(x) = f(x+a)exp(-ibx). It gives:

(f|f(x+a)|2dx)2 < 4fx2|f(x+a)|2dx f|f'(x+a)—ibf(x+a)F dx. QED

Theorem 1 may be rewrittenaas a geometrical ineguality in
the complex Hilbert space LZ(-w, o). Let Q be the unbounded
Hermitean linear operator mapping any element ¢(x) to x¢(x).
Let D be the differentiation operator, more precisely if ¢ is an
element corresponding to a differentiable function plus a null
function then Dy is the element corresponding to the derivative
of the first plus any null function. This operator D is an
unbounded anti-Hermitean operator. Then we may rewrite Theorem
1 as "w"z < 2| el |Delf - Theorem 2 similarly may be written as
lel s 20(@-a)ell|(-iD-be].

This form of the theorem suggests its relationship to the
Uncertainty Principle of Werner Heisenberg in quantum mechanics.

See our note below.
HEISENBERG’S UNCERTAINTY PRINCIPLE
Consider the quantum mechanical system consisting of a

particle on a straight line. There are two observables, the

coordinate Q and the momentum P. To the theoretician each
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GEOMETRICAL PROBABILITY (JCMN 53, p.5281)

Suppose that three random points in the unit disc are chosen
from the distribution with uniform probability density.
Calculate the expectation and variance of the area of the
triangle formed by the three points.

We shall show that the expectation is 3;/(487) = 0+2321, and
the variance is 3/32 - (1225/2304)/1r2 = +03998, the standard
deviation being 0:1997.

Denoting the three points by A, B and C, we shall first
consider only the two points B and C, and the chord joining then.
Denote the centre of the circle by O.

Lemma 1 The joint probability of B being at radius between
r and r+dr and of the length of the perbendicular from O to the
chord BC being between p and p+dp, is
(4/m)(1-2p%+r?) (r//(?-p?)) ardp.
Proof See Figure 1. Regard p and dp and the point B as

fixed.
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The probability of C being in an appropriate position is 1/n
times the sum of the areas of the 4 thin triangles shown.
These triangles (actually not quite triangles, but near enough)
all have the angle dp//(r2~p2) at the vertex, and their long
sides are either u or v as shown. From the geometry it can be
seen that utv = 2/(1-p2) and uv = l-rz. Therefore

u2 + v2 = (u+v)2 - 2uv = 2(1 - Zﬁz + rz)
The sum of the areas is (u2+v2)dp//(r2-p2). The probability
of C being in one of the triangles is therefore
(2/m) (1-2p% +r2) //(r2-p2 )dp

As the probability of OBﬁbeing between r and r+dr is 2rdr,
the multiplication law of probabilities P(BC|) = P(C|B)P(B})
gives the result that the required probability is

(4/7) (1-2p% +£2 )rdrdp//(r2-p?) QED

Lemma 2 The probability of the perpendicular from O to BC
being between p and p+dp is
(16/37) (1-p2) 3/2ap
Proof Integrate the expression given by Lemma 1 with respect
to r from p to 1. The evaluation of the integral is
elementary, change the variable to x = /(rz-pz).

2
4 1- 2 2 4 2 3/2
;‘jé( P )(l—p +x Ixdx - F (1-p ) / (4/3) QED

Lemma 3 Given the perpendicular from O to BC to be p, the
probability of the radius OB being between r and r+dr is
(378) (1-2p2+r2 ) (1-p2)-3/2 (% - )" 1/ 2 rar
Proof This comes from the multiplicative law of
probabilities. Using the symbol r to denote the proposition

that OB is between r and r+dr, and the symbol p to denote the
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proposition that the perpendicular is between p and p+dp, Lemma
1 tells us P(rp}), and Lemma 2 gives P(p})- The multiplication

law P(rp|) = P(r|p)P(p|) gives us P(r|p), which is what we want.

Lemma 4 Given that the perpendicular from O to BC is p, the

expectation of the length BC is /(l—pz).
Proof Referring to Figure 1, where u+v = 2/(1—p2) and uv =

1—r2, note that u3+v3 = (u+v)((u+v)2-3uv) = 2/(1-p2)(1—4p2

+3r2)
and u2+v2 = 2(1—2p2+r2).

For fixed B, the expectation of BC, which is the expectation
of BC for C distributed uniformly in the four thin triangles

shown, is

20+ vy 2/ - p) 1-ap?+ ar?
32+ v?) 3 1 - 2¢% + r2

This expression has to be averaged over all points B, using

the distribution of r given by Lemma 3. We get
1 1 1-4p243r? 1-2p%er?
7 7.2 27, Tdr
2(1-p ) 1-2p~+r J(rc-p%)

To evaluate the integral, change the variable to x = /(rz-p?),

2
giving: (1/2)fy 1-p" 1 + 3x2/(1-p?)dx = /J(1-p2) QED

Side-track From Lemma 2 (the distribution of p) and Lemma 4
(the distribution of BC given p) we may find the expectations of
the side BC and of the area OBC (= %p.BC). They are

E(BC) = 128/(4571) = 0-9054
E(OBC) = 4/(97) = 0.1415
These are both easily calculated independently, and so we have

a check on our results.

Now we go on to consider the other random point, A. The
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area of the triangle ABC is h.BC/2 where h is the perpendicular
distance from A to the chord BC. If p is fixed then h and BC
are independent random variables, so that the expectation of the
product is the product of the expectations. In what follows
it is convenient to use the angle B given by p = cos B instead

of p as our basic variable. See Figure 2.

Fsut
Plo

LN/
~_|

Figure 2

Lemma 5 For fixed B (with p = cos B) the expectation of h is
(1 - 2B/m) cos B + sin B (5 + cos 2B8)/(3w).

Proof The distribution of the point A is uniform over the
disc, so that the probability density of the parameter ¢ (see
Figure 2) is

(2/m) sinZp do = (1/7)(1-cos26)ds for 0 < ¢ < .
As h = |coso - cos BI, the contribution to E(h) from points
A below the chord (see Figure 2) is
(2/w)¥f(cos ¢ - cos B)sinZs de
= (2sinB + sinB cos?p + 38 cosB)/(3m).
The contribution from points A above the chord is similarly (or

by putting #~B for B in the formula above):
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(2sinB + sinB cos B + 3(w-B)cosB)/(37), and the sum is:
(4sinB + 2sing cos?p + 3w cosB - 6BcosB)/(37) QED

Lemma 6 For fixed B (and p = cos B) the expectation of the

area of the triangle ABC is:
(4-B/7)sinB cosB + sin?B(2+cos?B)/(37)
Proof with B fixed, the random variables h and BC are
independent, so that the expectation of the area is
E(4h.BC) = %E(h)E(BC)
From Lemma 4 we know that E(BC) = sinB, and E(h) is given by

Lemma 5.

Theorem 1 The expectation of the area ABC is 35/(48w) =
0.2321.

Proof Take the result of Lemma 6, and average over B using
the result of Lemma 2 that the probability density of 8 is given
by the factor 1ssin45/(3n)d3. This leads to the integral:

uy; . _ 2 _ 3
1/(3u)f() (1-2B/w)sin2B(1-cos2B)° + (5+cos28)(1 cos2B)’ /(3x)dB

which without much difficulty may be evaluated as 35/(48%).

Lemma 7 The expectation of the square of the area ABC is
3/32.

Proof With a suitable rotation the 3 random points may be
taken as (z, 0), (u, v) and (x, Y). The five variables u, v,
x, y and z are all uncorrelated (the expectation of a product is
zero). The random variable z is statistically independent of
the other four; each of u and v is statistically independent of

each of x and y. The expectation of a square is 1/4 in the

case of u, v, x and y, and is 1/2 in the case of z. The area
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of the triangle is *%((x-z)v-(u-2z)y). From the square of ihis
expression it is easy to pick out the four terms with non-zero
expectation, they are the four squares. The square of xv has
expectation 1/16, similarly the square of zv has expectation 1/8,

etc. Hence the result.

Theorem 2 The variance of the area ABC is:
3/32 - 1225/(48w)2 = 0-03988.

Proof This comes at once from Theorem 1 and Lemma 7.

GEOMETRICAL PROBABILITY 2
J.B.Parker

(Oak Tree Cottage, Reading Road, Padworth Common, RG74QN, U.K.)

Suppose that three random points on the unit circle be
chosen from the distribution with uniform probability density.
Calculate the expectation and the variance of the area of the

triangle formed by the three points.

GEOMETRICAL PROBABILITY 3

Two random points in the unit disc (from a uniform
probability distribution) give a random line segment (ending at
the two points). Find the probability that two such random

line segments intersect.
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FACTORIZING COMPLETE GRAPHS
(JCMN 42, p.5015, 50, p.5216, 51, pp.5235-6 and 5244)
Terry Tao

(6, Jennifer Avenue, Bellevue Heights, 5050, Australia)

The question was asked in JCMN 51 (Factorizing Complete
Graphs) whether the complete graph on 2n nodes was a union of n
simple (and therefore Hamiltonian) paths. An eguivalent
proposition is that the complete graph on 2n+1 nodes is a union
of n simple circuits. We shall consider the former question,

the answer is YES.

Proof Represent the 2n nodes as equally spaced points on a

circle. The n(2n-1) edges are the chords that join the points.

These chords may be classified into 2n equivalence classes of

parallel chords. These 2n classes are of two types; each

class of the first type consists of n edges, and every node is

an end of one of the edges. Each class of the second type

consists of n-1 edges, all parallel to a tangent at a node.
Labelling the nodes A, B, C, ...

in order as shown, take all the C

chords parallel to either AB or AC.

This gives a simple path starting

at B and ending at the diametrically
opposite node. The other paths are
obtained by rotation.
The idea is best understood from a diagram, the figure above
shows the case where n = 4. The path shown may be rotated by

45", 90" and 135" to give the other three paths. See below.
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ARROWS IN THE TARGET

King Arthur had been worried by reports of a Saxon raiding
party landing near Colchester (in what we now call Essex) while
a fleet of longships in the Channel was threatening the castle
of Camelot itself. He would have to divide his army into two.
The grooms and carters prepared the baggage train for an
expedition to the East, while the soldiers had a day of archery
practice.

The King and Sir Lancelot set up a round target and measured

a distance of thirty paces to a mark from which the archers were

to shoot. "From here" commented Sir Lancelot "it is hard even
to hit the target." "Of course," answered King Arthur "for my
idea is that the weakest archers need the most practice. Each

man is to continue shooting until he has put 4 arrows in the
target. You will go first."

When Sir Lancelot had reached the required score the King
showed him the target

"You see the pattern,"” he said, "one is inside the triangle
formed by the other three. That is a sign of a man in a
castle. Therefore you will be in command of the garrison

staying to defend Camelot. And 1 want you to stay here at the
butts today, and to look at the pattern of four arrows in the
target produced by each soldier. Those that have one arrow in
a triangle as you did are to be with you in the Camelot garrison.
The others, those whose arrows form a convex gquadrangle, are to
come with me to hunt down the raiders on the East coast."

How many of the other 335 soldiefs did King Arthur expect
to come with him?

Would his expectation have been more or less if the target

had been square instead of round?
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HYPERBOLOID AREAS (JCMN 44 p.5058)

P

D ,_———~—”"—W

K H
¢ b——-—
A L B

It is known that if a plane quadrilateral ABCD is divided
into four by the joins of the mid-points of opposite sides, then
the sum of the areas of a diagonally opposite pair of the small
quadrilaterals is equal to the sum of the other two. In the
picture above AEKG+KHCF = GKFD+EBHK. Is the same true of skew
quadrilaterals? NO.

Every skew quadrilateral ABCD determines a unique parabolic
hyperboloid containing all four sides. We take the origin at
the centroid of the four corners, the guadrilateral may be

denoted in vector notation as shown below:

b-a-c b atb+c
-a a
c-a-b a-b-¢c
~-b

The hyperboloid is given parametrically by x = sa+tb+stc.
The generators are the lines s = constant and t = constant.
It is a parabolic hyperboloid because it meets the plane at
infinity in two 1lines. One of these lines (where s is
infinite) is where the plane at infinity meets the plane through
the origin containing the vectors a and c. The other is given
similarly by b and c.

For a simple example take the hyperboloid xy = z, given
parametrically by x = (x, y, 2) = (s, t, st). An infinitesimal
vector in the surface is Jx/dsds + ax/datdt = (ds, dt, tds+sdt).
The infinitesimal vector element of area is the vector product

(ds, 0, tds) x (0, dt, sdt) = (t, -s, 1)dsdt
The area of any set is therefore [f/(1+s?+t?)dsdt, an integral
over the appropriate region of the s-t plane.

A typical quadrilateral is formed by the generators s = ath

and t = btk (these parameters a and b are not related to the
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vectors a and b mentioned above). Let b(a, b, h, k) be the

difference A(1) - A(2) + A(3) - A(4), where A(l), ... A(4) are
the areas of the four quarters of the guadrilateral as shown

below.
s=a-h s=a generator t = btk

A(2) A(1)
generator t = b

A(3) A(4)

generator t = b-k

We shall determine the second derivative 42D/dhik; for this

idea we are indebted to Terry Tao.
B(2) B(1)—t=b+k+dk
generator t=b+ik

generator t=b

t=b-k
B(3) B(4)
D(a, b, h+dh, k+dk) - D(a, b, htdh, k) - D(a, b, h, k+dk)
+ D(a, b, h, k) = B(1) - B(2) + B(3) - B(4), where B(1), ... B(4)

are the areas of the small skew quadrilaterals in the corners as
shown. For instance B(1) is the area bounded by the generators
s = ath, s = at+h+dh, t = b+k and t = btk+dk. Now divide by
dhdk and let dh and dk tend to zero. This gives:-
32D/dhak = J(1+(a+h)2+(b+k)?) - J(1+(a-h)?+(b+k)?) +
J(1+(a-h)?*+(b~k)?) - /J(1+(a+h)?+(b-k)?).

Consider the RHS of this equation as a function of h and k.
Expanding it in a power series, the leading term is

4hk(0?/4aab)/(1+a?+b?).

Now we can see that if D is expanded in a power series in
h and k, the leading term is 4h?k?(d?/dajb)/(1l+a?+b?).

Knowing D for all infinitesimal‘skew quadrilaterals, does
it help us to find D for any one? Yes. It is a matter of
convolution products.

Consider the algebra of convolution of functions on the
infinite rectangular lattice. Firstly, in one dimension
(1, -1)*(1, 2, 3, 4, 3, 2, 1) = (1, 1, 2,1, -1, -1, -1, -1),
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and similarly for longer strings, in fact (1, -1) is a
convolution factor of the function consisting of a string of n
values 1 followed by an equal number of values -1. The idea

extends to two dimensions, for example
-1 1) * 1 2 3 2 1 = -1 -1 -1 1 1 1
" 1 -1 2 4 6 4 2 -1 -1 -1 1 1 1
1 2 3 2 1 1 1 1 -1 -1 -1
| 1 1 1 -1 -1 -1

Coming back to the question of areas of skew quadrilaterals,

a simple example is as follows. Suppose that we bisect the
sides to give four smaller quadrilaterals and then do the same
again. We get 16 little areas as shown below.

A B C D

E F G H

I J K L

M N (] ) 34

The convolution equation:-

-1 1+ 2 1f = -2 -2 1 1
1 -1 2 4 2 -1 -1 1 1
1 2 1 1 1 -1 -1

1 i -1 -1
tells us that (C+D+G+H)=-(A+B+E+F)~(K+L+0+P)+(I+J+M+N) (where A,
B, ...P are areas as in the diagram above) is expressible as the
sum of the following 9 differences
(B+E-A-F) + 2(C+F-B-G) + (D+G-C~H)
+ 2(F+I-E-J) + 4(G+J-F-K) + 2(H+K-G-L)
+ (J+M-I-N) + 2(K+N-J-0) + (L+O-K-P).
similarly any skew quadrilateral may be divided into a large
number (2m){2n) of smaller ones by partitioning the parameters
s and t into equal sub-intervals.
Now we can express D(a, b, h, k) as a double integral over
a rectangle in the s-t plane. The integral will be the limit
of the Riemann sums given by the convolution method described
above, in fact the sum:-
£D(x, Yy, h/m, k/n)(m-m|x-a|/h)(n-n|y-b|/k)
Letting m and n tend to infinity gives the integral,
Sfa(h-|x-a|)(k=]y-b|)xy(l+x?+y?)” “dxdy.
It is clear that this in general will be non-zero.
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ACUTENESS OF RANDOM TRIANGLES

John Parker and Terry Tao

Taking three points A, B and C in the plane at random, let
p be the probability that the triangle ABC has an obtuse angle
at A. Then the probability of the triangle being acute is
1-3p. Before asking what p is, we must first make the question
precise by defining the distribution from which our three random
points are drawn. For example:-—
(a) Uniform distribution on a circle.
(b) Uniform distribution in a disc.
(c) Uniform distribution in a square.
(d) Gaussian distribution over the whole plane.
For case (a) the calculation is not hard, it gives p = 1/4.
For the other cases we can offer no more than some Monte Carlo
estimates. They indicate values p = 0:250 for (b), p = 0.276
for (c) and p = 0:-249 for (d).

EXPONENTIAL MEANS

in the book "Inequalities"™ by Hardy, Littlewood and Pélya,
(Chapter 3) is mentioned the following "“generalized mean".
Take any monotonic continuous function ¢. Then for any values
X, Y, -.. having weights p, q, ... the mean m is defined by
(p+ g+ ... )e(m) = pp(x) + qe(y) + ...
The case p(x) = x gives the arithmetic mean

The case p(x) = xP gives the power mean of order p.

The case w(x) 1/x gives the harmonic mean.
The case ¢(x) = log x gives the geometric mean.

The essential feature of this generalized mean is worth

noticing. The feature ensures, for example, that (using the

notation M{ ... ) for a mean with equal weights) we always have
M(M(a, b), M(c, d)) = M(a, b, c, d), etc.

To explain this better, an algebraic notation is needed. A

typical element of the algebra is a pair (x, p), (think of x as

a value and p as its weight). In the algebra a binary
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operation ¥ is defined by (x, p)(y, q) = (m, p+q) where m is the
mean given by (p+g)e(m) = pp(x) + qe(y). This operation 4 is
easily seen to be commutative and associative, i.e. uly = viu and
ul(viw) = (ulv)lw, so that without ambiguity we may write
ullyllyl | etc.

The idea is not purely artificial, it reflects the way that
scientists treat data. As different measurements of an
observable come in, the current estimate for the true value
(which is a kind of mean of the available measurements) is made
by taking a weighted mean of the new measurement and the
previously calculated mean, for this gives the same answer as
recalculating the mean from all the measurements. The estimate
does not depend on the order in which the data have been
received, or on how they are grouped.

An example of a generalized mean is what we might call the
exponential mean, obtained by taking ¢(x) to be exp x.

Theorem The exponential mean of any set of convex functions is
convex.
proof Firstly note that (because of the associativity mentioned
above) it is sufficient to prove the result for a set of two
functions. Secondly , it is sufficient to prove the result
only for the case of equal weights, because p exp(f(x)) +
g exp(g(x)) = (1/2)exp(f(x)+log(2p)) + (1/2)exp(g(x)+log(2q)).
Thirdly, it is sufficient to consider only twice-differentiable
functions, because they can approximate uniformly any convex
function. The proof is now reduced to a simple exercise in
differential calculus.

log(exp(£(x)) + exp(g(x)))
has second derivative equal to
(frexp £ + g" exp g)/(exp £ + exp g) + (£'-g’)?/(2+2cosh(f-g))
which is non-negative if f" and g" are.

Another way of stating this theorem is that if two functions
f and g both have the property that the graph looks convex when
drawn on log-log graph paper, then the sum f+g also has that
property.

The theorem above holds if the exponential mean is replaced
by the power mean of order p 2 1, but not with the geometric or

harmonic means or the power mean of order p < 1.



