JAMES COOK MATHEMATICAL NOTES

Volume 5 Issue number 50

October 1989



-5198-

Editor and publisher: B. C. Rennie
Address: 66, Hallett Road,
Burnside, SA 5066
Australia

The '"James Cook Mathematical Notes" is published
in three issues per year, in February, June and October.

The normal subscription rate for one year (3 issues)
is 30 Singapore dollars, and for retired or unemployed
subscribers it is 15 Singapore dollars. Cheques {or
other forms of money) in any currency are acceptable, the
exchange calculated at the rate current when the money is sent.
The subscription rate includes air mail postage to anywhere
outside the country where the issue is posted (now Australia).
Some exchange rates at the time of writing (September 1989) are

One Singapore dollar = 67 cents Australian

= 32 pence U.K.
= 51 cents U.S.A.

We do not send out invoices or subscription reminders.
Please make cheques payable to B.C.Rennie.

For information on the availability of back numbers,

please enquire.

-5199-

CONTENTS
Editorial Note
Non-binomial Identity Jamie Simpson
Binomial identity 29(1) Marta Sved
29(2) Bob Clarke
29(3) Mark Kisin
29(4)
29(5) C. C. Rousseau
Spherical triangle problem Yang Lu

Spherical triangle inequality

Orthocentres

Binomial identity 28 C. C. Rousseau
Binomial identity 28(2)

Historical note

More history

Probability problem Jamie Simpson
Binomial identity 30 C. C. Rousseau

Sums of powers of distances in regular polygons

and polyhedra Jordan Tabov
Geometrical identity
Monte Carlo integration
Convergence question

Edge-coloured graphs

5200
5200
5201
5201
5202
5202
5203
5204
5204
5204
5205
5206
5207
5207
5208
5208

5209
5212
5214
5215
5216



-5200-

EDITORIAL NOTE

Firstly we must record our grateful thanks to Jamie
Simpson, who at short notice took over all the work of being
Editor and Publisher for JCMN 49. The reason for this
arrangement was that my wife and I found ourselves able to go
away to visit our son Alastair and his family on the island
of St. Helena, where he had recently taken a job. St.
Helena is one of the most inaccessible parts of the world.
For both passengers and mail the only transport to and from
the island is by a ship which sails from England and South
Africa in alternate months. The island was first settled
by colonists from England about 1673, and was governed by the
East India Company until it was transferred to the Crown in
1833. Until the opening of the Suez Canal in 1869 it was a
busy place with hundreds of ships per year calling for food
and water. When Captain Cook stopped there in May 1771 there
were two ships of the Royal Navy and twelve of the East India
Company anchored off the island. His Journal makes no
mention of going ashore, his only comment on the island was
"Pleasant weather." I can confirm about the weather, and

add that the hills are lovely for walking.

NON-BINOMIAL IDENTITY

Jamie Simpson
[~ o4
For real positive x, zgnzl[Z_nx + 5] = [x]

where [...] denotes integer part.
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RINCMIAL IDENTITY 29
(JCMN 49, p.51906)
This identity ]
s (e - )

appeared in our last issue with Merlin's prediction that this

issue would contain a proof. He was even more right than
usual, for we are able to print five proofs below.
A comment on notation — it is often convenient to regard

all summations as being over the set of all integers, for it is
agreed that the binomia%»sof%ficienc (2) must be regarded as
zero for negative r and fog«integer n < r. Also there is
usually no need to specify the dummy variable over which the
summation is taken, for a little thought will often show that
only one is logically possible. These conventions make the

typing easier.

BINOMIAL IDENTITY 29(1)
Marta Sved

S is a set consisting of m married couples. The task
is to count the number of ways in which it is possible to
choose m people from the set S of 2m. For any choice, let
there be 2i couples from which we choose either both or neither,
of these 2i couples we must choose both partners from exactly
i, to get our total right. Then there is just one to be
chosen from each of the remaining m-2i couples. Therefore
the required number is 2:(52)(2% >2m—2i. But also we know
that the number is ( ;1), and so the identity is established.

BINOMIAL IDENTITY 29(2)
Bob Clarke

By the trinomial theorem

(VX<+1/VX)2m = (x+2+1/x)" = 2: {7—%%72! xi_k 23 where the

summation is over all non-negative i, j and k with sum = m.




-5202-

Now pick out the constant term on both sides of the equation.

(%) - zi!i!r?ri\—Zi)!zm_Zi - Z_(I;i)(zii) 22t

BINOMIAL IDENTITY 29(3)

Mark Kisin

King Arthur was leading a mixed army of Britons and
Caledonians. At the end of a day's march he called Sir
Lancelot and showed him the m points where sentries would
have to be posted round the camp, saying ''The watch must be
changed in the middle of the night, and so we need 2m men.

We shall use m Britons and m Caledonians. You must draw
up the orders showing which duties are to be taken by Britons

and which by Caledonians. Then each of those two groups will

work out among themselves the men to go on watch."

Sir Lancelot began thinking about the number of ways in
which he could make the plan. "If at r of the posts Britons
take both watches," he said to himseif '"then it must be at the
same number r of posts that Caledonians take both watches.
Then at all the other m- 2r posts I can choose either BC (a
Briton taking the first watch and a Caledonian the second) or
CB. Therefore the number of ways is Z (r:)<m;r) 2™2Y g1
allow for all possible choices of r." Soon afterwards he
realised that the answer was simply (i?), so that he had

Z(r:)(m;r)zm—Zr _ (2mm)
which by the multiplication rule (g)(lc)) = (2) (g:g) may

also be written 2(2";)(2;) am-2r (anln)

found the result

BINOMIAL IDENTITY 29(4)

In a trigonometric polynomial (i.e. a sum of finitely
many multiples of exp(inx) with integer n) the constant term

is rather special, and we often have to pick it out from the
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others. One importance of the constant term is that it is
the integral mean of the function, for which we use the

notation IM.
Mt e )T

is clearly zero if n is odd, and if n is even, say n = 2j, it

IM cos™x = 2

is Z-Zj (%f). But also
M coszmx = IM(%+hc0os 2x)™ =  IM(%+%cos x)™
2m Z(?) IM cos®x

The terms of the sum are zero for odd r, and so we put r =2j,

and (using the value above for IMcostx) we have

27E(A) - meos®™x - 2y (272 %)

which is essentially the result remembered by rerlin.

Binomial Identity 29 (JCMN 49, p. 5190)

C. C. Rousseau

3 () ()= (),

For integer m > 1,

Proof. We use the fact that 2% (’.’) is the average value of cos* z over an interval of
length nw (n = 1,2,...). Thus

lm/2) 70N\ (2 3 ) om r2x [Im/2) 70 .
. il DAt p—— . g lde
,{%(21)(]) 27r/o g (2]) cos

_ 2"‘ 271 m _ m
= 2"/0 2{(1+c050) + (1 —cos8)™} do

2¥m rir 2m @ 2m 9
_ L s 2m 7 9
m /0 {cos 2 + sin 2 d

(w)

In the last step, we again use the average value result and that it holds for sine as well as
cosine. ’
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SPHERICAL TRIANGLE PROBLEM
Yang Lu (via George Szekeres)

Let ABC be a spherical triangle, and let D, E and F be
the mid-points of the sides. If DEF is equilateral, then
must ABC be equilateral? If not then determine all non-

~equilateral ABC for which DEF is equilateral.

SPHERTCAL TRIANGLE INEQUALITY
(JCMN 46, p.5104)

This problem from John Parker noted that we had seen in

these pages three inequalities for the sides of a spherical

triangle,
a € b+ c
sinka = sinkb + sinkc
and sina <« sinb + sinc,

and asked if more generally sinka £ sinkb + sinkc for any
k in the open interval between 0 and 1.

The answer is YES. To see this, observe that the
three numbers ka, kb and kc satisfy the four inequalities
(each is less than the sum of the other two, and the sum of
all three is less than 21r) that are characteristic of the
lengths of the sides of a spherical triangle. From these
four the required inequality follows analytically as explained
by Archie Brown in JCMN 44, pp.5057-5058.

ORTHOCENTRES

The intersection of the altitudes (the perpendiculars
from each vertex to the opposite side) of a plane triangle
is called the orthocentre. Why? Of what is it the

centre?
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Binomial Identity 28 (JCMN 49, p. 5186)

C. C. Rousseau

i (Zr) (Zn - ZT) (n —2r)* = n(n +1)27"!

o \T n—r

Proof. For simplicity of notation, let

2
aﬁ=Th(:), (r=0,1,2,...).

Squaring both sides of the binomial series

1

(o]

(-2 =3"a = (2] <1),
r=0

and comparing cofficients of 2" on each side, we obtain

n
Za,a,._, =1.
r=0

(1

(2

[This is J. B. Parker’s elegant solution of Binomial Identity 27 in JCMN 49, p. 5191/

Differentiating (1), we find the series expansion

2(1—2)7%% = Zi ra, 2" (|=] < 1),

r=0

and by the same technique as before (squaring both sides and comparing coefficients of

z") obtain
» n(n —1)
Z G0y, dr{n — 1) = —

r=0

From (2) and (3), it follows that

n—1)=n(n+1)

n
n
> aan-, (n—2r) =n® - ( 5 3

r=0

which is just another form of the identity

s (Zr) (Zn - fr> (n—20) = n(n + 1)22"%,

=0 \T n

3)
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PROBABILITY PROBLEM
Jamie Simpson

I have a desk with an infinite number of drawers,
labelled Dl’ D2, I have left my car-keys in one of
these drawers and I cannot remember which one. However I know
that the probability that the keys are in drawer D, is 2"k,
If I look in the drawer containing the keys I have a probability
p = 0-5 of finding them. I can look in the drawers in any
order, looking in each drawer as many times as I wish.

Question 1. What search strategy minimises the expected

number of times that I look in a drawer?

Question 2. With this optimal strategy, what is the expected

number of times?

Questions 3 and 4. How do the answers to 1 and 2 change if I

must start with Dl? and if after looking in any D; I must

look in one of Di-l’ Di and Di+1?

BINOMIAL IDENTITY 30

C. C. Rousseau

n kentky .0
Yoo (G ) = (-0 (2ns1)

1
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SUMS OF POWERS OF DISTANCES IN REGULAR
POLYGONS AND POLYHEDDRA
Jordan Tabov

Let AjAy .. An be a regular n-gon. For what positive
k does the sum .z}ArM)k remain constant as the point M moves
round the circumcircle? Note that we shall consider both
non-integer and integer values of k.

This problem is not new; I don't know its origin but the
case n=4 is in "Hungarian Mathematical Problems" by L. Csirmaz
(Budapest, 1979). An introduction and some results and
discussions appeared in the author's article '"On an application
of Rolle's theorem in geometry'" (The Education in Mathematics,
1981, pp.17-20). For the case where k is a positive integer
a proof using trigonometric sums was given by 0. Mushkarov
"Trigonometric polynomials and regular polygons" (Mathematika,
Sofia, 1982). I also had asked some students to find
extensions to regular polyhedra, and results by K. Yanakiev,

A. Petrova and S. Dokov were published in Mathematika in 1981-82.
This problem is closely related to the geometrical
identity of Mark Kisin in JCMN 48, p.5168. Indeed its answer
reduces the identity to the problem of finding the sum of the

k th powers of the diagonals of a regular n-gon.

Our purpose here is to give an exposition of the results

mentioned above. First we shall sketch the solution of

Mushkarov.

Lemma 1 If k is a positive integer, then

. 2k -2k / 2k k ,1-2kV k-1, .3/ 2k’ .
sin“"¢p = 2 < K ) + (-1)72 }:jzo(-l) < i )cosZ(k—J)¢,
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c2k+l -k Yk 3 2k+1> . .
sin”Thg < (4T Q5 -1 I(TYT) sin2k-254104

Put Z?:I(AjM)k = S(n, k) and let

R be the radius of the circumcircle.

R )
Theorem 1 Let k be a positive ///////

integer.

a) If 1 £ k € n-1, then

S(n, 2k) = n(%&)RZk;

b) If k 2 n, then
2k Y .2k 2k k/ j 2k .
S(n, 2k) = n( Kk )R + 2nR ZEE=1H](”1)Jn(k_jn>C°S jn¢g.

Theorem 2 Let k be a positive integer, then

2kel vk - ,  (jsh
S(n, 2k+1) = 2R%CEFE IR Yeos(34k) @- B /sin LT

Corollary. Let k be a positive integer, and z; k:='zg(A1Ar)k.

o2 = i (R) R

b) If k3 n then ¥, , = n’(2K)r%K . nZRZkX[.‘f{“](-l)j“(kE‘J‘.n

a) If 1€ k€ n-1, then X

Jv
_ n2k+l gk Jf 2k+1 (24+1)w
c¢) For any k, 25,2k+1 = nR j=0(_1) ( k-j cotan ‘—%H__ﬁ
Lemma 2 If the trigonometric polynomial
() = ag + alcos¢ + ... + a_cos meb

has 2m+1 different roots in the interval (0, 24}, then ag = a;

= ... =a_ = 0.
m
Theorem 3 The only positive values of k for which the sum

S(n, k) does not depend on M as M describes the circumcircle,
are k = 2, 4, ... 2n-2.

Let i
Theorem 4 et M be any point on the arc Ayt of the
circumcircle of the regular 2n+l-gon AjAy. .. LR Then

the non-negative k for which
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2k+1 2k+1 2k+1
(A M) +(A3M) o +(A2n+1M) =
(a2 Bt ) w2kl
2 4 2n
are k = 0, 1, 2, ... , n-1.
Theorem 5 Let M be any point on the circumcircle of the
regular 2n-gon AjAy ot Ay Then the positive k for which
2k 2k 2k 2k
(AM) + (AgM) + (ASM) + oo+ (Ay 4M) =
2k 2k 2k
(AZM) + (AAM) Foeee + (Aan)
are k =1, 2, 3, ... , n-1.

This completes the exposition of the results from the

article of Mushkarov.
The following theorem contains the results established

in the four notes by the three students mentioned above.

Theorem 6 In three dimensions let AjAy, o AL be a regular

polyhedron with n vertices, let the point M describe the
circumscribed sphere, and let k be a positive integer. Then
the sum }i?=l(AjM)k is constant (i.e. does not depend on M)
if and only if

a) k=2 or k=4 for n=4 (tetrahedron)

b) k=2 or k=4 or k=6 for n=6 (octahedron)

c) k=2 o0or k=4 or k=6 for n=8 (cube)

It should be noted that the values of k quoted in the
above theorems 3, 4, 5 and 6, are the only ones having the
respective properties, not only among the positive integers,
but among all positive numbers. This can be proved using
Rolle's theorem. For the regular dodecahedron and the
regular icosahedron the problem is still open. And what

happens in higher dimensions?
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GEOMETRICAL IDENTITY
(JCMN 48, p.5168)

Consider numerical integration of a periodic function.
We shall investigate the idea of estimating the integral mean
to be the arithmetic mean of the values at n equally spaced
points, with spacing equal to 1/n times che period. Let
f(x) be a function of period 2w (it may be regarded as a
function on the unit circle). Let the points be X, = 2rr/n
for r =1, 2, ... n; this involves no loss of generality
because any point can be taken as the starting point of the

period of a periodic function. If the function is e'™*

(with m an integer) then the sum of the values is

, v .
e2frlm/n . e4 im/n P eZnT'flm/n

Of course we can calculate this sum as a geometric series, but
an easier way is to note that multiplication by e%ﬁim/n will
permute the terms cyclically and therefore leave the sum
unchanged. If m/n is not an integer then the sum is zero,
because zero is the only complex number with the property that
kz = z for some k # 1. If m/n is an integer the argument
tells us nothing, but that does not matter because each term
is 1 and the sum is n.

Now we begin to see something about the accuracy of our
numerical integration rule. If the function is e ™ then
the rule gives the correct answer of zero whenever m/n is not

an integer; if m=0 the rule gives the correct answer for the

integral mean; but if m/n is a non-zero integer the rule gives

the wrong answer 1, it should be 0. Now suppose that the
function f(x) is the sum of its Fourier series, as all good
functions are, say f(x) =2E:co c_elTX, Then the error in

’ ~00 T
the numerical integration arises only from the terms in which
r is a non-zero multiple of n. In fact the error in our

estimate of the integral mean is bounded by zj:fllckn|+lc_kn|.

Our rule gives the exact answer if f(x) is a trigonometric

polynomial of degree less than n, and this gives us a way to

approach Mark Kisin's problem in JCMN 48.
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?
Af
The points A, Ags v A, are uniformly spaced round
the unit circle, and P is any point on the circle. What

is S(pA )M
In polar coordinates let A be (1, 2rTr/n) and let P
be (1, &). The distance PA_ is 12 sin(8/2 - r/n)| and

2

(PAr) =2 - 2cos( B - 2r1r/n). The sum required is

21;1(2 - 2cos{B - 2rt/n))™ and may be regarded as the sum

of the values of the periodic function f(x) = (2 - 2cos x)™
at the n equally spaced points x. = 8 - 2rrm/n. The
integral mean of the function is

2m 2m 2m

IM(2 - ei¥X _ e—ix)m = 2°7IM sinzmx/Z = 27 IMsin“'x

= (—D™ M (eIX L emixy2m (%:). If m < n then the

sum of the values is n times the integral mean, i.e. (i?)n
Using these techniques a little extension of the

previous result is possible, we shall calculate the sum in

the case m = n.

As before we write the sum Z(PAr)Zn as zif(xr) where
X, =8 - 2wr/n and f(x) = 2-2cosx)™ = (2-el¥ _ e~ixyn
= F(x) + G(x), putting G(x) = 2(-1)"cos nx, so that F(x) is

a trigonometric polynomial of degree n-1 and the previous
result applies to it. The integral mean of G(x) is zero,
so that the integral mean of F(x) is the same as that of f(x)

which (as we saw above) is (%?).

Since G(x_ ) = 2 (-1)"cosnf for all r, and (by the theory
T

|

above) }EF(xr) =nIMF(x) = n(%?), we find that the required

sum is 3 flx) = SFx )+ X60x) = n(2") | 20(-1)%0s nh.

which has maxima when P is opposite to a vertex A .
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MONTE CARLO INTEGRATION
(JCMN 46, p.5104 and 47, p.5129)

Recall from our earlier contributions under this title
that if we put g = %5-% and write x. for the non-integer

part of rg, and take any continuous function f(x) on the unit

interval, then there are interesting things to observe about
s = ¥V () - flEo ax).

Our previous contributions considered particularly the
values of S(N) when N goes through the Fibonacci numbers,

1, 2, 3, 5, 8, 13, .... Now let us return to the case of
general N.

Gerry Myerson's comment that S(N) was unbounded in the
case f(x) = x is the motivation for considering S*(N), defined
like S(N) except that the summation is from -N to N, with the
proviso that in the term for r=0 we interpret f(xo) to mean
5£(0) + %f(1).

Investigation of S*(N) is essentially investigation of
the accuracy of taking

Ny £k / (2841)
as a numerical estimate for the integral./glf(x) dx. For the
function f(x) = x it is clear that S*(N) = 0 and the numerical
estimate is exact, whatever the value of N.

Let L and U be the lower and upper bounds of S(N) for

N=1,2, 3, 4, ..., and similarly let L* and U* be the bounds
of S*(N). Now let us look at what seems to emerge from the
output of my computer. Firstly (perhaps not surprising but

not obvious) the bounds L* and U* are also the lower and upper

limits of S*(N) as N tends to infinity. Secondly L* = -U¥*,
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I did not expect this. Thirdly there are the numerical
coincidences (to five decimal places) that may be observed in

the table of results below.

£(x) Soltodx ur—vx U L
6x(1-x) 1 1 1 0
30x%(1-x)2 1 1-02819 101409 ~-01409
140x%° (1-x) 3 1 1-20275 1-10137 --10137
630x% (1-x)% 1 146470 1-23235 ~.23235
4x(1-x2) 1 1 1 0

4x(1-x)(2-x) 1 1 1 0
* 12%% (1-x) 1 1 1-04658 ~-00053
12x(1-x)2 1 1 1-00053 --04658
12x(1-x) (3x-1) 1 1 1-63198 34860
12x(1-x) (2-3x) 1 1 1-34860 --63199
4/ (14x%) +2x-4 -3 “14159 14255 --01227

Some of the bounds are attained, for example in the

case of the function 12x(l—x)2 the sum S{(N) attains its lower

bound of -15g'2 = 2160g-1335 at N=3.
CONVERGENCE QUESTION
Let g = %5 - 5. Consider the infinite series
1
Zn:l n2 | sin nWg|
Does it converge? If so then one might ask if this property

of g is shared by other quadratic irrationals.
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EDGE-COLOURED GRAPHS
(JCMN 42, p.5015)

Given any n, for what m is it true that a complete graph

on m nodes with n edge-colours must contain a monochromatic

circuit? The previous contribution under this title showed
that for n=2 the answer is all m > 5. Now it can be shown

that for n=3 the answer is all m from 7 upwards.

Lemma A graph in which the number of edges is
greater than or equal to the number of nodes must contain a
circuit. This is obvious.

Theorem If the complete graph on m 2> 7 nodes has
its edges coloured in 3 colours then it contains a
monochromatic circuit.

Proof First take m = 7. There are 21 edges, therefore
there are at least 7 edges in one of the colours. The graph
made up of these edges and the nodes to which they join must
(by the lemma) contain a circuit. This is a monochromatic
circuit in the original graph. The case of m > 7 presents
no difficulty, you just consider any 7-node subgraph.

Example The complete graph sketched below has 6
nodes and 15 edges, with 5 edges in each of 3 colours, but it
has no monochromatic circuit. The three colours are
represented on the drawing by curved, straight and dotted

lines.




