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CAPTAIN COOK

This issue of JCMN has been edited by Jamie Simpson, as the
regular Editor, Professor Basil Rennie 1is holidaying in St
Helena. Readers will be aware that Basil is not the only

celebrity to have spent time on this island.

"Arriving at St. Helena Cook was ‘extremely annoyed in
finding that Hawkesworth’s edition of Cook’s Journal not only
contained inserted material, which insulted the worthy people of
St. Helena, but contained an entirely fallacious statement that
Cook had approved of Hawkesworth’s manuscript. With apparently

justified indignation he wrote:

I am well convinced that the island in many particulars has
been misrepresented. It is no wonder that the account which is
given of it in the narrative of my former Voyage should have
given offence to all the principle Inhabitants. It was not less
mortifying to me when I first read it, which was not till I
arrived now at the Cape of Good Hope, for i never had the perusal
of the Manuscript nor did I ever hear the whole of it read in the
mode in which it was written, notwithstanding what Dr Hawkesworth
has said to the Contrary in the Introduction. 1In the narrative
my Country men at St Helena are charged with exercizing a wanton

cruelty over their slaves, they are also charged with want of

1
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ingenuity in not having Wheel carriages, Wheeel Barrows and
Porters Knotts to facilitate the task of the 1labourer. With
respect to the first charge, I must say, that perhaps, there is
not a Europeean settlement in the world where slaves are better
treated than here, out of the many of whom of whom I asked these
questions not one had the least shaddow of a complaint. The
Second charge, tho’ of little consequence is however erronious
for I have seen every one of the three Articles that are said not
to be used on the island; they have Carts which are drawn by
oxen, and Wheel Barrows have been used on the island from the
first settlement and some are sent annually out from England in

the store Ship."

from "The Explorations of Captain James Cook 1in the
Pacific as told by Selections of his own Journals 1768-1779" by

A. Grenfell Price

R. L. GRAHAM PROBLEM

At the last Summer Research Institute in Newcastle Graham
began a talk with this problem.
Simplify:

(x-a) (x=-b)...(x-2)
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k-FOLD REAL FUNCTIONS
H.Burkill and B.C.Rennie

If k is a positive integer or w, a k-fold real function on an
interval is one that takes each of its values exactly k times. An
example given by Marta Sved (JCMN 31, p.3180) of a 2-fold function
on R with infinitely many discontinuities led to the formulation
of a general problem ([1] JCMN 38, pp. 4174-4180), namely the
evaluation of A(k), the minimum number of discontinuities of a
k-fold real function on an open interval, and of u(k), v(k), the
corresponding numbers for half open and compact intervals,
respectively. The question was taken up by Jordan Tabov ([2] JCMN
39, pp-4188-4190) who, in particular, proved that A(2)=v(k)=w.

The results of [1] and [2] together are summarised as follows:

A(2) = e, u(2) =1, v(2) =
A(3) = o0, w(3) =1, v(3) =
1=u(4)=2, v(4) = 1;
for k = 2r+1 (r=1,2,...),
Alk) = 0, 1=u(k)=r, 1=v(k)=r;
for k = 2r (r=2,3,...),
1=u(k)=r, 1=v(k)=r-1;
Alw) = 0, p(w) = 0, v(io) = 0.

We now show that a(2r) = 1, u(2r) = 2 (r=2,3,...) and obtain small
bounds for w(2r+1), v(2r), v(2r+1).

In the first place, examples (Al)‘ (AZ)’ etc show that
A{4)=1, A(B)=1, etc. The left hand portion of each graph (A1L
(A2) consists of the graph of a continuous 3-fold function on
(0,1) with range (-«,0), followed by the upper half of the graph
of a continuous 3-fold function on (0,2) with range (-w,). In
(Al)‘ (Az), etc., the right hand portions are the graphs of
continuous 1-fold, 3-fold, etc. functions on (2,4), all with range

(-0, ).

LS

-5175-

-3 4
\f/
(c,)
|
I
$N
A
5%




-5176-

THEOREM 1. For k = 4,6,8,..., A(k) = 1.
Proof: 1In view of the examples (Ai) it is only necessary to prove
that a(k)=1.
Let k = 2r, where rz2, and suppose that the function f: s

(0,1)> R is k-fold and continuous.

We may assume that 0 is a value of f. Then there exist
i i= = g
points a, (i=1,...,2r) such that O<a1<a2<...<a2P<1 and f(ai) 0 for
i=1,...,2r.
For each ie{1,2,...,2r-1}, at least one of

}

mi=inf{f(x):aisx5ai+l}, Mi=sup{f(x):aisx531+1
is not O. Now mi<0 for at least r values of i or Mi>0 for at
least r values of i; for, if neither statement is true, there are
r values of i for which mi=0 and r values of i for which Mi=0’ S0
that there is an 1 for which m, = Mi= 0, which is impossible

Suppose that mi<0 for s values of i, where szr, and denote them by

Jl,...,Js’ wher§
m, = =m, <0
J1 Js
Note that
m.1= 1nf{f(x):a15 a2r).
Also f takes the value m\j at points bi (i=1,...,2r), where b1<
1
b2<"'<b2r There are now two possibilities.
(i) bl,...,b2re (al,aZF). For i=1,...2r-1, put
Ni=sup(f(x):b15x5bi+lL
Then N_1>m\j (i=1,...,2r-1) since f cannot be constant in
1
[b.,b

]. If N is the least of the Ni’ then- each value in

(mj ,N) is taken at least twice in each interval (bi’bi+1) and so
1

b3
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at least 2(2r-1) times in (bl’bZr)' As 2{(2r-1)>2r, we have a
contradiction.
(ii) At least one of bl""'bZr is not in (al,a2r). We may
suppose that bl<a1. Then every value in (mj ,0) is taken at least
s

once in (O,al) and at least twice in each of the intervals

(

oo lay, ), therefore at least 2s+1 times

AR Jg igh
altogether. Since 2s+1>2r, we again arrive at a contradiction.
Examples (Bl)’(cl) prove that u(4)=2, u(7)=3. For both (Bl)
and (Cl) the graphs on (0,1), (1,2) are those of 3-fold functions
with ranges (-®,0), (0,«), respectively. In (Cl) the graph on
(2,4) is the basic one common to the examples (Ai)' In (Bl) and

(Cl) the right hand portion can be replaced by the graphs of

k-fold functions (k=3,5,...) to yield u(8)=2, u(8)s2, ...,u(9)=3,
p(11)=3,.... Using also results from [1] we now have

1=u(5)=2, 1=u(k;=3 (k=7,9,11,...).
THEOREM 2. For k = 4,6,8,..., u(k)=2.

Proof: After the examples EI.1 we need only show that u(k)=z2.

Let k=2r, where rz2, and suppose that the function f:[0,1) >
R is k-fold. It is known ([1], p.41768) that f cannot be
cont inuous. Suppose that f has exactly one discontinuity. By
[1}, pp.4176-4177, we may assume that f is bounded; and then from

(1], p.4180, the discontinuity is simple and lim_f(x) exists.
X1
The rest of the proof is divided into several sections. A

letter, when used in more than one section, need not retain the
same meaning from one section to another.
I: f discontinuous at a € (0,1).

The essence of the argument is to show that our assumptions
lead to the identity f£([0,a))=f((a,1)).
(1): f£(l0,a))sf((a,1)).

Suppose that there exists Y € f([0,a)) such that Yef((a,1)).
Since f((a,1)) is an interval, f{(x)<Y for all xe(a,l) or f(x)>Y

for all xe(a,l).
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(1): f£(x)}<Y for xe(a,1).
Let
M=sup{f(x):0=x<a)}.

If f assumes the value M in [0,a), then, since f(x)<Y=M for

x€(a, 1), the 2r points in [0,1) at which f takes the value M are

all in [0,a]. Thus there exist points a; (i=1,...,2r-1) such that
05a1<az<...<a2r_1<a and f(ai)=M for i=1,...,2r-1. Moreover
lim_f(x)sM. Some values less than M are then assumed at least
X2

twice in each interval (ai,ai+1), (i=1,...,2r-2) and at least once
in (a2r_1,a), therefore at least 4r-3 times altogether. Since

4r-3>2r, we have a contradiction.

If £ does not assume the value M in [0,a), fhen M=lim_f(x).

x->a
Take B so that B#f(a) and
max(f(0),Y)<B<M.
There are points bi (i=1,...,2r) such that 0<b1<b2<"'<b2r<a and
f(bi)=B for i=1,...,2r. Also, for i=1,...,2r-1, let
mi=inf(f(x):b15x5b1+1),Mi=sup{f(x):b15x5bi+1).

Then, for each i, at least one of mi, Mi is not B. If r of the
miare less than B, then some values less than 8 are taken at least

twice in each of the corresponding intervals (bi‘bi+ ) and at

1
least once in (O’bl)’ therefore at least 2r+1 times altogether.
Since this is impossible, there must be r values of i for which

Mi>B' As lim f(x) > B, it follows by an argument similar to that
X2
Just used that some values greater than B are assumed at least

2r+l1 times. We have therefore again arrived at a contradiction.
(2): f(x)>Y for xel(a,l).

This is shown to be impossible by similar reasoning involving
inf{f(x):0=x<a}. Thus (i) is proved.
(i1): f((a,1))ef(l0,a)).

Suppose that there exists Yef({a, 1)) such that Yef([0,a)), so
that therefore f(x)<Y for xe€[0,a) or f(x)>Y for xel(0,a).
(1): fi{x)<Y for xe[0,a).

&

P
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Let
M=sup{f(x):a<x<1}.

If f assumes the value M in (a,1), then there are points a;
(i=1,...,2r-1) such that a1<32<.,.<a2r_1<1 and f(ai)=M for
i=1,...,2r-1. Since lim+f(x), lim_f(x)=M, f assumes some values

X->a X1

less than M at least 4r-2 times, which is false.
If f does not assume the value M in (a,1), at least one of

the inequalities leim+f(x), M=lim f(x) is an equality.

X-a x->1
in the case of one equality we may assume that M=1im+f(xL
X3
and M>1lim_f(x). Take B so that B#f(a) and
x>1
max(lim £(x),Y) < B < M.
x->1
There are points bi (i=1,...,2r) such that a<b1<b2<...<b2P<1 and
f(bi)=B for i=1,...,2r. It then follows as in (i), (1) that f

takes some values at least 2r+1 times, and this cannot occur.

Now suppose that M = lim+f(x) = lim_f(x). Then the value
X-a x-1
m=inf{f(x):a<x<1}

is assumed by f in (a,1). There are 2r points in [0,1) at which f
takes the value m and so there exist points ¢y (i=1,...,2r-1) in
[0,1)Ma} such that 0sc <c,<...<c, ,<1 and f(ci)=m for
i=1,...,2r-1. Note that at least one of the <5 lies in [0,a),
then m is also the infimum of f in [0,a). Suppose that exactly n
of the ¢, are in [0,a), so that O=n=2r-2.

If n=0, then f assumes some values greater than m at least
2(2r-2)+2=4r-2 times. If nzl, then f takes some values greater
than m at least 2(n-1)+1 times in [0,a) and at least 2(2r-n-2)+2
times in (a,1), therefore 4r-3 times altogether. So in either
case there is a contradiction.

(2): f{x}) > Y for xe[0,a)
A contradiction is obtained in a similar way. Hence (ii)

holds.
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(iii): By (i) and (ii), f([0,a))=f((a,1)).

In the interval [0,a), f must attain at least one of

inf{f(x):0=x<a} = inf{f(x):a<x<1},

=
I

sup{f(x):0=x<a} = sup{f(x):a<x<1}.

Suppose that f takes the value m in [0,a) and therefore also in

(a,1). Then there are points 5 (i=1,...,2r-1) in {0, 1)\{a} such
that 05C1<02<"'<02r~1<1’ cle[O,a), c2r_le(a,1) and f(ci)=m for
i=1,...,2r-1. A contradiction is now obtained as in (ii), (1).

II: f is discontinuous at O.
Take any two points p,q such that 0<p<g<l and f(p)=f(q). The
function g: [p, 1+p)> R defined by

fx-q) for gsx<p+q

£{x) for p=x<q,
glx) = {
f(x-p) for p+q=x<l+p

is then k-fold and continuous except at the point.qs(p,p+1) since

glq) = f(0) = 1im+f(x) = lim+g(x)‘ By I, this is an impossible
x-0 X9
situation.
Finally we consider w(k). It follows from examples (D1L

(El) that v(8)=3, v(7)=4. In (Dl) the graph on (0,2) is of a
similar type to that in (Al) except that 7-fold functions are used
in the construction rather than 3-fold ones. For El’ the graphs
on (0,2), (2,4) are copies of the (0,2) portion in (Bl)' In both
(Dl) and (El) replacement of the right hand continuous portion by

the graphs of k-fold functions (k=3,5,...) gives wv(10)=3,

v(12)=3,...,v(9)=4,.... By use also of [1] and [2] we therefore
have

1=v(6)=2, 1=v(k}=3 (k=8,10,...),

1=v(5)=2, 1=v(k)=4 (k=7,9,...).

“
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BINOMIAL IDENTITY 24 (JCMN 47, p.5120)
J.B. Barker

F o § 0y
ng r —jzl r+1-j° "3

Proof: First note that

(T Ly, f dher
r & r

r & s -s
N N+1
which follows by repeated application of the (N;l) = (r) + (r—l)
formula. So,
m : m j-=1 .
n+j-1 _ n J-1 n
.Z ) =ml) o+ 'ZZ Z g M g)
J=1 J=2 s=1
n, "R J1,, n
=)+ ) ' Yoo D
s=1j =s+ 1
n mil n miS‘l j+S
=m( ) + ( ) (~.7)
r s TS =0 Y
m n-j +i-1
=n(0) o+ ZZ(P+?_.) et
J= J sk
So the identity is proved if we can show that
m=j i
=7 chH =
s=0 J
Proof of this is by induction on m. Set
m=—j i
emy= § TITH-(h,
s=0 J
-1
and note that f(j) = 0. Then f(m+1} = f(m) + (?) + (jTl) - (mj )=
f{m) using the above formula, and hence f(m) = 0 for all mzj and

the result is proven.
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OVERARM AND UNDERARM THROWING

Imagine a machine for throwing balls, consisting of a

holder at the end of an arm (of length = a) rotating at speed (W

(in either direction) about a fixed horizontal axis.
can be released with
speed V = aW at
any position of
overarm
the arm. (see under-
arm

the picture)

Does the "over-arm' or the "under-arm" throw give greater

range? Use the simple theory of projectiles, regarding the

ball as a particle in a uniform gravitational field g.

In the limit when the radius a becomes zero, there is no
distinction between overarm and underarm, the range is determined
by the "enveloping parabola" (familiar to every schoolboy, one

hopes) . The trajectory (you recall) is given in terms of the

time of flight t and the angle « of elevation by

x = Vt cos« and y = Vt sina - %gt2
so that the accessible points (x, y) satisfy
g2x2 + 2gV2y < V4
with equality when V = gt sine« and y/x = -cot 2.

QUOTATION CORNER 27

Dr Victor Morris ... said: "The molecule looked

hexagonal or a little like blancmange. We were astonished

at the results."

—— Description of "tunneling microscope'" in the "Australian"

(newspaper). Tuesday, October 4th 1988, page 29.

The ball

Y
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BINOMIAL IDENTITY 25 (JCMN 47, P.5123)
J.B.Parker

ﬁTSJ - “r(mz“:p]/ (2r+1) = (-4)™k/(4m+p+1)

where for any p = 0,1,2 or 3 the numbers j and k are as follows.

Proof: First define, for i= 1 to 4,
m+ r 4m+
= (amepr1) Frd 0T ANP) s caren).

These I(.1 correspond to the possibilities of the table. K4 is easy

for this is

Zim+1(_l)r (4m+3)! 4m+4
=0 (Zr) 1 (4m-2r+3)! 2r+l
m+1 m+4.
-1)° 2r+1/°

and this is zero since the r terms cancel with the (2m+1-r) terms.

By considering separately the summands for r = 0 to m-1 and r =

m+1 to 2m and using the well-known identity ( ) = (s+1) - (:) we
get
ko= ﬁ So-1 32:1)
= P EnTEM .
Similarly K, = In (-DT (M2
= 2P -0TEME s "G,
and since (gﬁ:?) = (g::i) we have K, =



-5184-

K, =omlentgm)
= I -7 - et
=2:=0('1)P‘C§::? * 2;2]’ - Z§=1"1)r{(3:jf * 2;2)} -1
NS il IR IS i G Pl sy I
25 o1 Giy) * D™ iy
= Kz
So if we can prove the identity for K1 we are done. Now
&= (70 = (50 o Gad) ¢ G
which is (1+i)4m+;; (1_1)4m+1

but (1+41)%= 21 and (1-1)%= -21 so (1+1)*™ = (1-1)%"= (-4)"

1+i-(1-1)

51 } o= (—4)m, the required result.

So K, = (-)™

QUOTATION CORNER 28

In all 758 people were surveyed.... The balance of members
between city and country was evenly divided with 47.5% being
metropolitan Adelaide members and 52.5% from country South
Australia. The remaining members are from interstate.

- From "National Trust News", the official publication of the

National Trust of South Australia.
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BINOMIAL IDENTITY 26 (JCMN 48, p.5145)

In the summer of 516 A.D. King Arthur and his knights
were called to South-eastern England to repel a landing by the
Saxons. Queen Guinevere and her ladies-in-waiting travelled
with the knights to set up a base camp. The spot chosen was
at Broadhalfpenny Down, ten miles from the Channel coast, and
just within the region where King Arthur's influence was strong.
After a short campaign the returning warriors were welcomed back
to the camp, and although they had no Round Table they were able
to sit down to a memorable feast. Afterwards the Queen said
to King Arthur "We must stay here for a few days, for some of
the wounded are not yet fit to travel." "That would be wise,"
answered the King, 'but some of the young men will be restless
with nothing to do. Merlin, what do you suggest?" "This
Broadhalfpenny Down is a lovely stretch of turf, your Majesty,"
answered Merlin, '"and in about a thousand years the people here
will invent a game to play on it. They will call it cricket."”
"That's great news,'" said the King, "and there's no need to wait
a thousand years, we'll have the first game tomorrow. Tell us
what we have to do." Merlin looked into the distant future,

a worried frown gathering on his face. "The laws of cricket,
sire, will be very complicated, and will be changing a lot over
the years." "I don't want to know about the difficulties,
Merlin, I am tired and I'm going to bed. Tomorrow morning
when I get up you will have made all the arrangements. Get
some of the knights to help you. Call yourselves the Merlin
Cricket Committee, or M.C.C. for short." "It shall be done,
your Majesty."

In a few minutes Merlin was standing with Sir Gawain and
Sir Lancelot looking over the smooth green turf of the Downs in
the evening sunshine. "There must be r men in each of two

1

teams,' announced Merlin, "and we shall call one team English

and the other Australian." "But there are 2n of us,"

put in
Sir Gawain, 'so that 2n - 2r will have to be spectators.”

"Perhaps it would make it more interesting,' said Sir Lancelot,
"if we also divided the spectators into English and Australian.
We shall first choose the n English and from them choose the r

players in the team. Then we choose a ‘team of r from the n
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Australians. That gives (2;1)(;1)2 ways of arranging the
game. But before going any further we must obtain Queen
Guinevere's approval.” When this had been explained to her,

the Queen thought for a while and then commented "There is a
lot to be said for first choosing the 2r players, and then
choosing which of the players are to be called the English,

and which of the 2n - 2r spectators. And so it seems that the

number of ways of arranging the game is (2 )( Zn- 2r> - ).”

"Most interesting,'" said Merlin,'what you have pointed out shows
that (21;’1)(1;1)2/(%;1) = Zn Zr)(Zr)’ which is an even number,

and so you have answered the question that will be asked on page
5145 of JCMN 48. Now it is all coming back to me. There
will be a village called Hambledon on the far side of this
valley. The villagers will start a cricket club, and they
will beat the Rest of England at Lords in 1793, without knowing
how they have helped to clarify the theory of Legendre
polynomials!"

Looking back from the twentieth century, we can add a
footnote. The tide of Saxon invasion never reached Hambledon,
which is six miles West of the boundary of Sussex (the land of
the South Saxons). The site of King Arthur's legendary
victory over the Saxons at Mount Badon is now unknown.

BINOMIAL IDENTITY 28

n
b 2r) 2n—2r) n—-2r)2 = (r1+1)42n 1
r=0
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BINOMIAL IDENTITY 26 (JCMN 48, p.5145)
J. B. Parker

)(n)z/(zn) always an even integer, for O=r=n and n>0?
g

Proof: It is easily shown that

n,2,2n, _ .2n-2r, 2r
( )( ) /( ) = ( n-r )( r)

and that if m>0 then

2m) - 2(2m—1)
m m

(

is even. Since at least one of the terms on the right hand side

of the first equation has this form the result follows.

If 0<r<n then both terms are even and so the original

expression is divisible by 4.

GEOMETRICAL IDENTITY (JCMN 48, p.5168)
Mark Kisin
Let Al’AZ""’An be uniformly spaced around the
circumference of a circle, and let P be any point on the circle.

Then if m<n

z:_llpA |2m - (Zm)n
= n m

To prove this we used two lemmas.
LEMMA 1. Let 6 = 2n/n where n is a positive integer. Let j be a
positive integer satisfying 2j-1<n, and let B be any real number.

Then,

-1 251, _
Z?=0cos (6i+B) =
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Proof: Using a known identity {(see Gradshteyn and Ryslick,

"Tables of Integrals, Series and Products) we have,

-1 25-1,..
Z:=Ocos (8i+B)

-1 1 j-1,2J-1 oy
Zico AT Toop( Vg ) cos((2-2k-1) (61+8))

1 i-1.2j3-1 -1 P s
e DI LDy cos((2j-2k-1)(81+8)).

Now let 2j-2k-1 = N and let (2j-2k-1)B = «. The inner sum
becomes

Z?_l cos(Nei+a).
i=0
Now let AO, Al""’An be points on the unit circle with

centre O such that «A OA, = o and <A,0A,
071 i1+

Let wi be the vector ﬁxi for i=0 to n.

1 =6 for i=1,...,n-1.

-1 . _
Z?:O cos(NBi+a) = Z§=1 Wor ¥y

= WO. ZJ;=1 Wi.

The sum here equals zero since the points A .,An are evenly

1
spaced around the circle and cannot all coincide since this would

imply that n|N, i.e. nl2j-2k-1 which is clearly
impossible. o]

LEMMA 2. With 8, j, nand B as in lemma 1 and with 2j<n,

-1 23, = n(2dy 024
Z?=Ocos (0i+B) = n( J)/Z .
Proof: Using another identity from Gradshteyn and Ryslick,
-1 23,4
E?=Ocos (0i+B)

_n- -1 2] . . 2j
Do Dheg 2(55) cos(2(-k)(8148)) + ( M
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1 j-1 2J -1 . s 2
=:2—j—{<z‘1]<=0 2%)) I2p cos(2(s-0) 014811} + n(*y

The inner sum is O by the same argument as in lemma 1, which gives
the required result. a]

We can now prove our
THECREM. Let a regular n-gon, with vertices AI’A ,...,An be
inscribed in a unit circle with centre 0. Let P be any point on

the circumference, and let m<n be a positive integer. Then
== 2m ST (2m 5+ (2m _ 2m
IPA1| + |PA2| + ..+ lPAnI = m)n.

Proof: As in lemma 1 let wi be the vector Gxi for i=1 to n, let

"O = OP and let 68 = 2a/n, then

= . 2m
Tioy PRI
= T, lugw 20
i=1'70 i

e

m
.=1(w0.wo 2w0.wi + wi.ui)

%

m
.=1(1 2w0.wi + 1)

m m
=1 2701 wO'"i)

L., 2'(1 - costie + gN)"

m

il
[\¥]

-1 3
120 Lymp (§)(- costie + )"

-1 /.
= 2" Z?=O (23202](2j)(cos(ie + B))z‘j -

zg:l(zﬁ_l)(cos(ie + 8N3TY,

where m* = [m/2] or [m/2]+1 depending on whether m is,

respectively, even or odd.
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m, [m/2] M Z1.1:1 coszj(ie v B) -
E?ZO (2JT1)E?;é°°52j—l(i6 + B}

By lemma 1 the second inner sum = 0, and applying lemma 2 to the

first inner sum gives

_ oheim2]  m 235 024
2 Zj:o (2j)n(j )/2
_omoIm/2 1 om o 25, .25
=2 n2j=0 (2j)(j \ VA

The proof is completed by an appeal to the supernatural. The
sum here appears in Binomial identity 29 below. We are reliably

informed that Merlin remembers that a proof will appear in the
2m

), as
m

next issue of JCMN. This gives n(

required. o

BINOMIAL IDENTITY 29

Merlin

For integral m > 1,

(m2] , m, 2],
Lty Gy

n=2j _ (2m,
5 2 oF

QUOTATION CORNER 29

...0Output is now measured in tens of hundreds instead of
thousands,. ..

~-Country Life, December 1, 1988, page 226.
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BINOMIAL IDENTITY 27 (JCMN 48, p.5148)

o - 27

This identity has an interesting history. Marta Sved writes
that it has appeared before in JCMN in about 1982. The acting
editor has not been able to find it in his incomplete set of back
copies. Marta set it as an open problem in her article "Counting
and Recounting" in the Mathematical Intelligencer, (5(1983), 21).
It generated a number of replies all wusing path-counting
techniques which she published in "Counting and Recounting : the
Aftermath", (Mathematical Intelligencer 6{(1984), 44-45). Among
the solvers was Charles Pearce who proved it verbally immediately
after reading the article. The following very neat proof is due
to John B. Parker.

For |vl < 1 we have

(I-V)_l

[(1-v)"1/2)2

™~
o
]

_ 2r, r_-2r 2s, s,-2s
Lo V2 T ((Dv2

The result is then obtained by picking out the coefficient of

n .
v on each side.

BICYCLES AND SHERLOCK HOLMES

In JCMN 48, page 5166, R. A. Lyttleton asked how Sherlock
Holmes in "The Adventure of the Priory School" was able to tell
the direction of motion of a bicycle by examining its tracks.

On a modern bicycle (figure 1), if the axis about which the
handlebars turn is extended it meets the ground close to the point
at which the front wheel touches the ground. Thi; point will not

depend on the angle at which the handlebars are turned relative to
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the bicycle’s frame, and hence the distance between the front and
back wheels’ points of contact is fixed. Say this distance is d.
Furthermore the point will lie in the same plane as the bicycle’'s
frame. The rear wheel also lies in this plane, so if we take a
tangent to its path, extend it a distance d, we will meet the path
of the front wheel. See figure 2. By drawing tangents to each
track in each direction at a few points the direction of motion of
a modern bicycle may be determined.

Sherlock Holmes had a more difficult problem. The bicycle in
the (1904) "Adventure of the Priory School" was probably similar
to the Rover Safety Bicycle of figure 3, which was introduced in
1895. In this case the axis about which the handlebars turn meets
the ground at a point in front of the front wheel’s point of
contact. A tangent to the front wheel extended a distance f, and
to the rear track extended a distance b will meet at this point.
Knowing this Holmes was able to determine which track was which

and the direction in which the bicycle was travelling.

SYLVESTER CONFIGURATIONS

W.F.Smyth

Modern interest in Sylvester configurations begins, as does
so much else, with Erdés in 1833; articles by Crowe & McKee
(Math. Mag. 41 (1868) 30-34) and Kelly & Moser (Canad. J. Math. 10
(1958) 210-219) give historical references. More recently,
related work has been done by Erdds, Mullin, .Sés & Stinson
(Disc, Math. 47 (1983) 48-62), Lin (Amer. Math. Monthly 95 (1988)

932-933}, and Erdés & Purdy (Congressus Numerantium, to appear).

Imagine that in the Euclidean plane R? all parallel lines in
a direction ¢ meet in a single point p¢, and let T denote the
collection of all points p¢, 0O s ¢ < m. Then take T to be the

"line at infinity", so that R? U T is a model of the projective
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plane, here called simply the plane. A Sylvester configuration,

or simply configuration, is a finite set of n = 2 points in the
plane together with all possible straight lines through them. A
configuration is trivial if all its points are collinear. A line
is ordinary if it contains exactly two of the n points; otherwise,
special. If every line of a configuration C is ordinary, then C
is said to be maximal. A point is ordinary if it lies on at least
one ordinary line; otherwise, special. The notation ci,j is used

to denote a configuration on 1 ordinary and j special points.

Configurations of particular interest are the trivial

configuration C0 o the failed Fanoc plane C3 2 the near-pencil

C , and the maximal configuration C .
n,o, n,o
Failed Fano Plane Near-Pencil

The Sylvester graph of a non-trivial configuration C is the
undirected graph whose vertices are its ordinary points and whose
edges are its ordinary lines. Then the Sylvester graph of C is
complete if and only if every pair of ordinary points defines an
ordinary line. A non-trivial configuration will be called
complete if its Sylvester graph is complete. Imagine now that a
positive integer weight is assigned to every point of a Sylvester
configuration, and that the weight of a line is defined to be the
sum of the weights of the points on it. Then a configuration is
said to be magic if its points can be given weights in such a way
that the weights of all 1its lines are equal. With these

definitions several interesting conjectures can be stated.

(A) If j =z 6, then the special points of every configuration Ci 3

»

are collinear.
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(B) Every configuration Ci 3 for which i < j is either the failed

Fano plane or trivial.

(C) (Due to Sylvester.) A configuration C is complete if and

only if C is either the failed Fano plane or maximal.

(D) (Due to Murty, Amer. Math. Monthly 78-9 (1971) 1000-1002.) A
configuration C is magic if and only if C is one of: the failed

Fano plane, a near-pencil, trivial, or maximal.

It is easy to see that if (A) is true, then (B) holds for all
J = 6. A more difficult chain of reasoning shows that (C) implies
(D), and a lengthy but elementary argument then establishes the

fact that (C) is in fact true whenever j < 6 or i z j. Indeed,
(A) v (B) » (C) » (D)

In order to establish (A) or (B), it appears that the proof of yet
another conjecture is required. Given a configuration C, let S
denote some non-empty subset of the special points, and let P
denote the largest non-empty set of points with the property that
for every p € P and every s € S, the line ps contains no other
point of P v S. Then {P,S} is called an S-partition of C, and the

new conjecture is as follows:

(E) Suppose {P,S} is an S-partition of a configuration C. Then
if either [P| = 1 or |S| = 1, there exist at least |P| + |S| - 1
points of C not in P U S; otherwise, at least |P| + [s| - 2.

This conjecture is equivalent to a conjecture of Erdés &
Purdy. It appears to underlie not only conjectures (A)-(D), but
also the following conjecture, due to Sylvester, perhaps the most

famous one of all in this area:
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(F) Every configuration on n points contains at least f(n—l)/Z]
ordinary lines.

Kelly & Moser showed that there were at least 3n/7 ordinary
lines. It is claimed that a doctoral dissertation written about
10 years ago contained a very lengthy and complex proof of (F),

but the result is unpublished.

R.L.GRAHAM PROBLEM

The solution to the problem on page 5173 is 0. Consider the
24th term.

PUZZLE

Find the deliberate mistake in this issue of JCMN.



