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THE LEMMA OF KONIG

George Szekeres

D. Kénig's lemma, referred to in the solution of
Blanche Descartes' problem (2), states that a (countably) in-
finite directed tree in which every vertex is of finite degree
contains a path of infinite length. A directed tree T is a
connected directed graph with no circuits and with a dis-
tinguished vertex O called the root of the tree. It is as-
sumed (for the purposes of the lemma) that (i)} all branches
at 0 are oriented away from 0, and (ii) at any other vertex P
exactly one branch is oriented towards P. The degree of a

vertex is the number of branches in the path.

A few words about Kénig himself will not be amiss.
Dénes Konig was a noted Hungarian mathematician whose
pioneering work in graph theory has been largely responsible
for the emergence of a flourishing school of graph theory in
Hungary which persists to our day. He wrote the first ever
treatise on graph theory at a time when it was still regarded
as a sort of poor man's topology. In the book (Theory of
Finite and Infinite graphs) he has established the standard
terminology of the subject, including the name "graph" (which
incidentally he attributes to Sylvester). One of his most
often quoted results states that a regular bipartite graph of

degree k (one in which every vertex has the same degree k)
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always contains a spanning bipartite subgraph of degree 1.
This is a beautiful instance of a genuinely graph-theoretical

and non-trivial theorem.

Konig taught at the Technological University of
Budapest and gave a course of calculus to first-year chemical
engineering students until 1927. I myself enrolled in the
faculty the following year and so unfortunately missed out by
one year having him as a teacher. In October 1944 he took
his own life, to avoid the sufferings and humiliation of his

impending deportation to a concentration camp.

Returning to Konig's lemma, the proof is simple

enough. Consider the endpoints P of the branches

110 Prasee-
emanating from O. Since there are altogether infinitely

many branches in T, but only finitely many Plj’ at least one
of them, say P, =P,,, has the property that there are arbi-
trarily long paths emanating from it. Let P21, P22,

be the endpoints of branches emanating (away) from P, Since
there are no closed circuits in T, these are different from O
and all the Plj' Again there is one, P2 =P21 say, from which
arbitrarily long paths emanate, etc. We obtain in this

fashion a sequence of distinct points PO:=0, Pl’ PZ’ ..., and

clearly the path POP1P2P3 ... has infinite length.

The argument is a striking instance of a pure exis-
tence proof; it gives no indication whatever how to find, say,
P Imagine that both P11 and P12 are extendible to 1000
steps. What about 1010 steps? Even if both survive 1010

steps, it is still uncertain what happens afterwards. The
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only thing that can be said with certainty is that at least one
of them will have an infinite extension. The lemma owes its
usefulness precisely to the fact that it is non-constructive,
that it makes a pure existence statement about infinity. Most
of us believe, of course, that if a statement has been proved
with the help of Konig's lemma then it must be true, even if

it cannot be verified directly.

TWO PROBLEMS OF BLANCHE DESCARTES
(JCMN 41, p. 4214)

George Szekeres

(1) Is it true that any Gaussian integer a + bi (with
a and b integers) can be expressed in one and only one way as

a finite sum of distinct integral powers of (i -1)/27?

The statement is true, provided that we agree that

an empty sum represents 0. Indeed ((1i —1)/2)-1 =-(1l+1) =g
and we show first that every Gaussian integer is a sum of dis-

tinct positive integral powers of g. Use induction on the

2-+b2. If N(a +1ib) is even then

Gaussian norm N(a + ib) = a
a+1b is divisible by g (since the Gaussian integers form a
Euclidean unique factorisation domain, N(g) =2, and the
conjugate of g is 1 -1=-1ig), hence a+bi = {(c+di)g.

Since N{c +di) = 3N(a +bi), c +di is sum of distinct powers
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of g, by the inductive hypothesis, and so is a +bi. 1f
N(a + bi) is odd, the division algorithm gives

a+bl = (c+di) .g + r + si
with N(r +si) < N(g) = 2, hence N(r + si) = 1. It follows
that r +si is one of 1, -1,1, -L There are four choices
for ¢ +di and one of them gives r +si=1. Induction can
now be applied, provided that N(c +di) < N(a +bi). The
triangle inequality shows that this will always be so, unless
N(a+bi) is 1 or 2. This leaves 8 individual numbers to be
represented so as to start off the induction. Here is

the list: 1,g,i=1+g+gz, -l1=1+g, -1=1+gz+g3+ga,

1+1=(-1).g=g+g3+g4+g5, 1-i=i.g=g+g2+g3,

For uniqueness of the representation it is suf-
ficient to show that O cannot be represented as a finite
sum or difference of 1 and distinct positive integral
powers of g. But clearly 1# + gkl + gk2 + ... since the

right hand side is divisible by g and the left hand side is not.

(2) Define a finite sequence p(0), p(1), ... p(N) of
integers to be 'phondic" when

p(2mn) # p(Zm(n+1)) (mod &)
for any non-negative m and n with 2™M(n+1) N. The
definition extends in the obvious way to infinite sequences.

Let 0 <5s(0) < s(1)g ... <s(MEN

be a sequence of integers. Prove that there exists a
phondic sequence P(n) (for n=0, 1, ... N) such that
R(n) =P(s(n)) is also phondic. A supplementary question

is whether the same is true for infinite sequences.
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We show that the statement is a consequence of the
four-colour theorem; not altogether surprising considering that
the problem comes from Blanche D. Consider a graph G whose
points are the integers 0,1, 2, ..., N and in which k =2mn,

n odd, is joined by edges to the points k + 2™ and k - 2™.

For instance, consecutive integers are joined because one of
them is odd, and 0 is joined to all points Zm, m> 0.

Now interpret residues mod 4 as colours, then a phondic
sequence is simply a 4-colouring of G in which vertices linked
by an edge receive distinct colours. The tail end of the

graph looks like this:

2m+1

The graph from 2" to is just a translation by 2™ of the

graph from 0 to 2™, with an additional edge linking 0 to 2™,

Therefore G is clearly planar.

Now, given the sequence 0 <€ s(0) < s(1) € ..<s{(M})&N
construct a similar graph G* with vertices s(0), s(1), ..., s(M)
such that s(k), k=2™n is joined to s(k +2™) and s(k - 2™), but
this time we draw the joining arcs below the number line.
Clearly the union of G and G* will still be planar (i.e.
representable in the plane without crossing edges), hence by

the four-colour theorem, 4-colourable. Any 4-colouration
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supplies a phondic sequence for G and G*. The result can be
extended to infinite sequences because the four-colour theorem
does extend to countably infinite planar graphs, by the lemma

of Konig (see article).

Following Kénig let me prove then that a countably
infinite planar graph is 4-colourable. Let QO’Ql’QZ""
be the vertices of G. Denote by Gi’ i=1,2,3, ... the
(finite) subgraph of G spanned by the vertices QO’ ey Qi'
Represent each admissible 4-colouring of Gi (with QO receiving
a fixed colour) by vertices Pil’ ceey Pik of a tree T.
There exists at least one Pij’ because of the four-colour
theorem (assumed to be true), and there are of course only a
finite number of such colourings, since G; is finite.
Let Pij
Pij has the colouring induced by Pi+1,j* in Gi(which is a

P be an edge (or branch) of T if and only if

i+1, j*

subgraph of Gi+1)' We thus get a directed tree to which
Konig can be applied. The result is a 4-colouring of G.
Of course it is again impossible to tell which among the

4-colourings of G; are continuable to a 4-colouring of

every Gj’ ji> i; we only know that such a 4-colouring does

exist.

It would be interesting to have an effective
4-colouring of Blanche Descartes' graph; perhaps the lady

should be consulted about it.

CONGRATULATIONS FROM JCMN

George Szekeres has been elected to the Hungarian academy

of Science.




-5010-

CAMELOT REVISITED

Marta Sved

King Arthur looked at his knights gathered round
the table. - Only n of you are here! -
- The others are out on a quest. -
- Well - said King Arthur - this is just lucky. I had
intelligence that we are to have an invasion of n knights from
Scotland. -
- One for each of us! - exclaimed Sir Lancelot.
- We can make arrangements who should take on whom. -
- There are too many arrangements - said Sir Bedivere -
there is a choice of n knights, and there are n of us, so
this makes n". -
- Not so fast, Sir Bedivere; what if you and I choose the
same Scottish knight, that would mean that one of them is

left out. So there is a choice of n-1 knights only, making

n
(n-1)" choices for all of us. So we have to discard that
case. That makes only n
n" - (n-1)". — corrected Sir Mordred.
- But, Sir Mordred! - interjected Sir Gawain - you did not

take into account that those n-1 knights could be selected
. n
in (n—l) ways. So we would have only

o - (7)) (0 - 1) possibilities

for the jousts. -
- You are both wrong ~ cried out Sir Gareth - You forgot that

those arrangements you excluded are counted the wrong way.
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(n-1)" possibilities for the rounds with n -1 knights chosen
only means that at most n-1 knights are in those fights.
What if we counted too many times the arrangement where at
least two Scottish knights are left out ... -

At this moment Queen Guinevere raised her voice. She had
strolled in casually and overheard the conversation.
- It is so complicated! Perhaps I am simple-minded, but the
way 1 see it is that if Sir Lancelot picks one of the knights
he has n choices. That leaves only n-1 choices for Sir
Gawain and n-2 for Sir Mordred, and so on, so that there are

nin-1) (n-2) .... 1 choices. -

- Listen to simple commonsense - said Merlin, the wise man, who
could see things past, present and future so clearly.
- The Queen has certainly the simplest solution. However, if
you, knights, would carefully continue your arguments, you
would also arrive at the correct answer. You see, there is a
simple principle; they will call it the inclusion-exclusion
principle in the future.
- 0dd name! - said Sir Gawain.

-~ As odd as the way you wanted to count the number of arrange-

ments for the jousts. -

-7 2?2 7 -
~ It goes like this. Here we have our large, round, black
shiny table. Now, in the other rooms of the castle there are

N smaller tables, but only NR of them are round, only NB are
black and only Ng are shiny. So there are T tables which are

neither round, nor black, nor shiny. -
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- Yes, there are

N-—NR-—NB--NS tables not round, black or shiny. -

said Sir Mordred.

- What of the round black tables, or the black shiny ones?

You subtracted them twice' The answer should be

N—NR-NB—NS+NRR+ NRS‘NBS .

- What if a table is round, black and shiny s - said Merlin-

- said Sir Lancelot.

It was subtracted three times by Sir Mordred, then added
three times by you, Sir Lancelot. -

With the authority so characteristic of him, King
Arthur announced:-
- The.number of tables T, that are not round, black or
shiny is

T=N-NR-—NB—NS+NRB+NRS+NBS—NRBS.

- Yes, indeed, your Majesty. This is also the way to solve

the problem of our guests:
Sir McA, Sir McB, Sir McC, ..., Sir McN.

There are (n-1)" arrangements which leave Sir McA out, and
the same applies when Sir McE or Sir McC or ... Sir McN is

left out, hence the sum subtracted from n" is

n n

(1) (n-1)".
Correct this by adding G:'(nA—Z)n arran;enents, as the sum
of arrangements leaving out Sir McA together with Sir McB or

Sir McA together with Sir McC, and so on.

The next correction is achieved by adding the sum
of possible arrangements when any group of 3 knights is

left without opponents. So we gu on Lo obtain
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n" - (P -1 (P n-2)"- e S DL LN

or if you prefer, we can instead of (?) write (n?l)' instead
of (2) put (n?z), for leaving out k knights comes to the same
as leaving in the remaining n - k.

In that case we get the same sum as above and it
reads

O e DL S T I LN DL

You can check it, that this gives the same answer as Queen
Guinevere's solution. -
Merlin's countenance changed. His eyes stared into the

distant future:

- Behold! This is just Binomial Identity 18 which will be sent

to JCMN by someone named Jamie Simpson. It will read

n
M end Pl cnna
j=1 )

(The factorial sign also represents a happy exclamation mark

as Merlin finished his words.)

BOILING THE BILLY

Jim B. Douglas

Consider boiling a saucepan of water over a gas flame.
Obviously if the flame is too low it will never boil the water.
Equally obviously if the flame is too high much of the heat passes
by the sides and is wasted. It seems plausible that there should
be an optimum level to which the flame is best adjusted, so as to

boil the water with the use of a minimum amount of gas.

Formulate a mathematical model, and solve it for the optimum.
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BINOMIAL IDENTITY 18

(JCMN 40, p. 4190)

J. B. Parker

n
Define Win, m) = 2: (g)(—l)J jom for 1 £ n> m.

The formula suggested is W(n, 0) = (-1)7 n!

Remark: Win,n) = 1-1)" -1 =1

Lemma 1 Win, m) +W(n+1, m)/tn+1) = Wn+1, m+1)

Proof
n .

Ws= > (-1djomJ__n! . n! j} + (1) (ne)nm
j=1 j' tn-j3)! j'n+1 3! -
n

L}

z: (_l)jjn—m n! (n + 1 -3+ j) +(-1)™1 (4, q)0-m
J'n + 1 - j)¢! !

j=1
1 el
- Y (“* )" s W, m e D) QED
3=t ]
Lemma 2 Win, m) = 0 for 0 < m¢n.
Proof
Put m=n in Lemma 1, giving —1+W(n+1,n)/(n+1)= -1, so

that W(n+1,n) =0 for all n; i.e. W(n, n-1) =0 as well.

Thus Lemma 2 is true for m=n-1. Now put m=n-1 in Lemma 1,
giving Win,n-1) +W(n+1,n-1)/(n+1) =W(n+1,n). Thus
(using the m=n result) W(n+1,n-1)=0. Proceeding as
before, but setting m = n-2, n-3, ... 1, we deduce Win, m) =0

for 0 < m < n, which proves Lemma 2.
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We now write m=0 in Lemma 1, giving
Win,0) +Win+1,0)/(n+1) = Win+1,1) =0 by Lemma 2.
Hence W(n, 0) = A(-1)"n! where A is some constant, easily

seen to be unity by considering the n=1 case.

EDGE~COLOURED GRAPHS

Given any n, for what values of m is the following
proposition true? If the complete graph on m nodes has its
m{m-1)/2 edges coloured with n colours, then the graph con-
tains a monochromatic circuit (i.e. contains a non-trivial

simple closed path with all edges the same colour).

For example, when n=2, the proposition holds for
m>5. The failure for m=4 is illustrated
by the graph - red edges are indicated
by dotted lines and blue edges by full
lines. The truth for m25 and n = 2

may be established as follows. Take a

complete graph on 5 nodes with edges either
red or blue. There are two possibilities. Case 1, one

node has three or four edges to it all the same colour, clearly
there is a monochromatic triangle. Case 2, every node has

two red edges and two blue edges to it. Then through each
node there is both a red circuit and a Blue circuit. For

m > 5 the result follows by considering a 5-node subgraph.
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AUTOMATIC SPECTRAL ANALYSIS ?

J. H. Loxton

Spectral analysis is o redountatle VCapan b e han': ol the
chewist and the sun-spot o clist.  Pythaporas, oy vav or historical
I y R [¥ s ) A
precedent, sav how numbers wvere the basis of music ona tiherelore wstronomy

(the vibrating strin,;: anu the nusic of the spheres) and thereby almost
discovered the fourier transform. what follows concerns an attempt 1o

play tunes with some elementary sequences and so to analyse their complexity.
Fourier, who complained a lot about mathemntic{ans, would dcubtless

disaprrove,

The famous rj(n) of Lrdos and Turin 1s the least r such
that any sequence 1 ( 51 < a2 < ee. < a.r € n of r numbers not

exceeding n must contain a three term arithmetic progression., The

best bounds so far obtained are

e~C 4log n

n rg(n) < ¢' n/logloy n .

The spectacular combinatorics of Szemeredi and the ergodic theory of
Furstenberg have shown that & sequence of integers of positive aensity
contains arbitrarily long arithmetic progressions. This is a rich area of
mathemstics -~ Szemeredi won $1000 from Erdos for Lis theorem - ana there
are many good problems still to he resolved, For example, the ideas of
Szemeredi and Furstenberg have not yet led to quantitutive results for
rk(n), defined in the same way as rg(n) tor ‘ tern arithrmetic

progressions,

The obvious way to construct Sequences not containiug three

terms in arithmetic progression 1s to use the greely algoritive. The
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resulting mequences are not very Jdense., ror example, this process yields

the sequence
A(1): 0,1,3,4,9,10,12,13,27,28,30,31,31,37,39,40,81,82 ,84,85,... .

The nuaber of terms of 4(1) not exceeding n is approximately
nlog?/log] = nO'OJ"' whiich is much spaller than rj(n) . Nevertheless,
let A{m) be the sequence obtained iy starting with gy = 0 and

51 = m and then taking each subscquent L to Le the least integer
greater than a  so that {ao, By eeny an+1} does not contain three
terms in arithmetic progression. The problem raised by Odlyzho and Stanley
is to enalyse the behaviour of these sequences, (For references to all

this and more background, sece K. K. Guy, "Unsolved problems in number

theory" (Springer, 1981), problem E10.)

Since it seemed a yood idea at the time, 1 computed some
fourier transforms, Pigure 1 is an approximation to the transform of the

exp(2 Tie 6 ),

sequence A(1) - the function 0(1(9) = Zn<1000

where & is the n-th term of the sequence, is plotted against O ,

W
o (¢ as as [$) [ [ 3

Pigure 1, CX1(6 ).

Jmx

=0 ‘1

4
P
[ ) o2
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If the terms of tne sequence were eveﬂly dastributed into the tiree
residue classes mod 3, then 0} (1/3) and C¥1(2/3) voul:! be small,

The peaks in the transform at 1/3 and 2/3  therefore indicate that

the terms &~ are not cvenly distributed mod 3 and examination of the
Sequence suggestis a is never congruent to 2 nod 3. The smaller peals
at @ = 1/9, 2/9, and so on, indicate bad distribution mod 9 and it seems
a £ 2,5, 6, 7, or 8 mod 9. Purther peaks at @ = p/3k suggest the
rule behind the sequence ia 3-adic and, in fact, expressing L in base 3
makes it clear. The elements of A1) are Just the integers whose base 3
representations do not contain the digit 2. 1t is not too hard to See
that this property yields a sequence which contajins no three term arithmetic
progressions and that atlempting to put in any number with a digit 2 in
the original construction by the greedy algoritim would form a three term

arithmetic progression,

Now consider the sequence
A(6): 0,6,7,9,10,15,16,19,27,33,34, 36, 37,42,43,46,81,87,88,90,... .,

The trensform based on the first 1000 terms, namely

o . . . . : ;
6(9) = Zn«ooo exp(2r1an6) » is shown in figure 2. Again, this

is clearly 3-adic and the rule can be discovered by rlaying around with

base 3 representations. (The answver, if needed, can be found at the end

¢ 8 8 3

[ 9] 0.2 % [- %] o8 oes o s o 1

Figure 2, 0(6(9) .
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of tle article,) In fact, if m is a pover of 3, or twice a power of 3,
the numbers of the sequence A(m) cau be described fairly simply in

terms of their base 3 representations. This means that these sequences
can be generated by finite automata which are, roughly speaking,

computers without memory. In the hierarchy of sequences, the simplest are
the periodic sequences and t'e next are these automatic sequences which
are only a little more complicated. (Tue algebraic viev of all this is
developed in S, Eilenbery, "Automata, languages and machines” (Acalemic

Press, 1974), vol, A, especially chapter 15.)
Vliat about the sequence
A(4): 0,4,5,7,11,12,10,23,26,31,33,37,38,44,49,56,73,78,80,95,... ?

Its transform, 'N4(9) = Zn<1000 exp(2 Tiane), shown in fizure 3,

18 much more ernatic and the nice 3-adic behaviour seems to be missing,
Can 4(4) be generated by & finite automaton, or is it more complicated?
If so0, why? Note that the construction by the greedy algorithm is not
automatic because it requires memory of all the earlfer terms of the
sequence. My analytic machinery is not yet sharp enough to make any firm
deductions from figure 3. Incidentally, it secems that A(4) grows at

the same rate as 4(1), but I cannot even prove this,

PFigure 3. “4(9).
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Footnote. The numbers in the sequence A(6) are
again those whose representations in base 3 have no twos,
except possibly in the three least significant digits.
These three digits can be

000, 020, 021, 100, 101, 120, 121 or 201.

POWER MEAN INEQUALITY

Dmitry . P. Mavlo

Let x be a vector of non-negative components

(xl, XKys ooy xn), and let )_(k denote the vector (xlk,..., X

Write A and " for the arithmetic and geometric means

respectively. Prove that

k

A - TR el R - reak)

for positive integer k. Find the cases of equality.

QUAINT IDENTITY

‘V1+x2+x 1+x%-x : - V2
1+x '\/1+x§

-5021-

BINOMIAL 1IDENTITY 19

(JCMN 41, p. 4213)

J. B. Parker

N
Ny 3
The identity was that if N=2M then Z (k)

k=0
! -24)1)2
-N (N+23)! (N-2]
=N 2 (ZJ){(M+_])'(M peny
50
2 ror )
_ g3N-2 -2 [ cosMN(x-y) cosMx cosMy dx dy.

o Jo

First note that (1 +x)N (1 +y)N (1 +%)

0N Ay QN )Nt NN s/ (10T
where S=x+y and T = xy.
The coefficient of unity on the LHS is the required

Z ( ) Now on the RHS we may omit the odd powers of §,

which are irrelevant, and obtain
M

™. = (1) s2T(1.1)72r
Put S (21') + irrelevant terms which we leave out. We
therefore have M 2N-2r
-~ N r-N/2r 2N - 2r u
L (Zr) T ( r ) Z ( ) T
r=0 u=20
M

The coefficient of unity is (;i)(Zr) (i?-—:r)
r -

=

N
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and we therefore have the new Binomial Identity 19*

N M
Ni3 _ N 2r 2N-2r
Z(k‘) - X (Zr)(r) (N-—r)
k=0 r=0
It holds also for odd N if the summation is taken for r from 0O
to the integral part of N/2.
To prove the last lap of B.I. 19 is straightforward, viz.:-

2 romr
23N-2 W-zf / cosM(x - y) cos™ x cosNy dx dy
0 0

M

2 [2m . : .
N N N 2 2 . N-2
o g3N-2 -2 f f cos” x cos' y E (2j)cos Jx cos Jy sin'" ¢y
o Yo 3=0

N-2j

si y dx dy

(odd powers don't contribute)

Mo(N Z 2] N-23j 2
- - J i J
- 3N-2 -2 Er (Zj){'/ cos“Y t sin t dt
3=0 0

M
. . 2
23N Z (ZN') (N+2_]‘)! (N-24)! 2‘2N1 QED
3-0 J (M+ §)! (M- j)N! J

It

In order to establish the first part of B.I.19,

express the double integral as an integral mean

2 2
23N-2 -2 [ j cosM(x -y) cos™ x cosNy dx dy
0 Jo
= 23N I.M. cosN(x—y) cosNx cosNy
(x,y)
(Now'changing the variables by Uu=x+y and v=x-y)
= 22N I.M. cost(cosu + cos V)N
(u, v)
N
= 22N . :E: (S) cos¥ u cos?NT
r=0

(u, v)
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~ Zﬁ v
= 22N E (N) (I.M. cosT u) (1 .M. cos v)
r=0 : u v

-2312j
(recalling that I.M. cos™ x is zero for odd r and 2 J( jJ)
X

where 1 =2j)

N . . .
< (N 2N-2j-2N+2j (2J ZN-ZJ)
< ‘2 ? AR

and by invoking B.1.19* the first part of B.I1.19 follows.

INTEGRAL INEQUALITY

George Szekeres

In a Ph.D. thesis on hidden variables in quantum

mechanics by D.E. Liddy, the following inequality appeared.

s T Nk
/ sin2¢ d?ﬁ/ {1 - (sin® sing cosyY +cos® cosg ) dy’
=0

$-0 ¥ ; -“ICOsG
3

for 0 € 5 /2.
It was verified by computer; 1is there an

analytic proof?
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