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VARIATIONS ON PYTHAGORAS
H.S. M. Coxeter, G.F.D. Duff and I.. Havercamp
1. Sturm’s Inequality Generalized.

In any Euclidean space E®, consider a finite set of vectors u; ..., un. Since
y p 1, N
N

1
> - uj)2 =3 (u; - uj)1
ij =1 j=1
1 NN N N NoON
=5 uiZl—ZZuiEuJ+}:IZuJ‘
=t Bl j=l =l =
N N2
=N 2:“3_ X:W
i=] =1

N ‘ .
The sum of the squares of the {2] mutual distances of N distinct points is less

than or equal to N times the sum of the squares of ‘rhe distances of the N points
from another point O, with equality only when O s the centre of gravity of the N

points.

The case when N =3 is a known property of a triangle, described in a book by
R. Swrm {11, p. 71]; see also [1, p. 117 (12.53)).

As a corollary, we see that The moment of inertia, about a point Q, of equal
masses at fixed points Py,...PN, is a minimum when O is the centre of gravity of the
poinis P,

In particular, if N poinis are all ar the same distance R from their centre of

N
gravity, the sum of the squares of their [ 2] mutual distances is equal to NPRZ,

J.J. Seidel remarks that such a set of points (with R = 1) is a spherical 1-design
[3. pp. 259-261].
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The present note evolved from the empirical observation that the sum of squares
is N'R? whenever the N points are the vertices of a regular or semi-regular
polytope.

The particular case of two pairs of opposite points on a circle is readily seen to
be cquivalent to Pythagoras’ theorem.

Though terms such as “barycentre’, “centroid’ or “centre of mass’ might be pre-
ferred in certain instances, for consistency we shall use “centre of gravity” throughout.

2. Mass distributions.

Let y; be a measure in E°. Then

[ Jx =y du,ap,
E°E*

[ o = 20y + yhu,dn,
E"E®

[, [y 2[5, [y + [
o E* E* E* E* F

i

I

ijzdulj'dpy -2 [jxdu,Jz
£ B B

= 2MM, - M})
where = [xXdy,, k =0,1,2. We note that (the total mass) and M, (the
X 2
E* +

moment of inertia about the origin) are scalars. M, is the vector first moment of the
mass distribution about the origin so that M,/M, gives the position véctor of the cen-
tre of gravity. The quotient MM, is often set equal to R?, where R is the radius
of gyration of the mass distribution about the origin. Hence the above integral is cqual
to

2M2R? - M} .

If the measure consists of a number N of discrete masses my at positions u,,
then we have




~4210~

N s N , N N 2

Y mmy-u)t = Y omd Y ome - Y oma |
j<x =1 k=1 k=1

Note that the sum on the left contains only terms with j < k. The sum of the doubly

weighted squares of the muwual distances between the masses is less than or equal to

the total mass mulriplied by the moment of inertia about the origin, with equality only

when the origin is the centre of graviry.

The earliest derivation of this identity was given by Lagrange in a memoir sub-
mitted to the Berlin Academy in 1783 (5], where he gives the following verbal
description: “La somme de produits de chaque masse par la carré de sa distance 2 un
point quelconque donné est €gal au produit de la somme des masses par la carré de la
distance de ce point au centre de gravité de toute ces masses, plus la somme des pro-
duits des masses multipliées deux 2 deux entre elles et par la carré de leur distances

respectives, cette demidre étant dividée par la somme méme des masses.”

Lagrange suggests finding the centre of gravity by finding RZ? for 2 number of
given points, and constructing spheres or circles of radius R about them, so that the
centre of gravity is determined by their intersection.

Lagrange also refers to this identity in the Mécanique Analytique [6, Premiere
partie, Section II1, §1V, Para 20; Oeuvres, vol. 11, pp. 65-68]. He does not scem to
have formulated the identity as a minimum property.

In his Mécanique Celéste, (8, vol. 1, Chap. I, pp. 88-89), Laplace describes the
identity in a somewhat different way, but without giving an explicit reference to
Lagrange. H. Lamb, in his textbook on Statics [7, pp. 165-167] records the result as
the second of two theorems of Lagrange.

In the classical n-body problem, this same identity reappears in the study of
homographic solutions and of collapse to the centre of gravity [4, Vol. I, Chap. 111, pp.
242,258; 8, vol. 1V, p. 694]. Laplace showed that under Newtonian gravitation there
exist possible motions of n bodies wherein their position vectors remain mutually in
a constant cross-ratio while the angular velocities about the centre of gravity are all
equal. The equilateral triangle of the Trojan satellite positions is an example of such a
homographic solution. Earlier, Euler and Lagrange had found one and two
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dimensional homographig solutions. When the number of bodies is at least 4, homo-
graphic motion in three space dimensions is possible, ecach particle moving on a
straight line through the centre of gravity in a homothetic configuration. In the event
of collapse to the centre of gravity, the above quadratic sums must vanish at that
instant [4, Chap. 22; 10, p. 43].

3. A Probabilistic Analogue.

Let X,

where j=1,..,N be independent random variables with probability
density functions fi(x) 2 0 where }t}(x)dx =1, [2,p. 9 12, p. 8]. The joint proba-
bility density of X|,..,Xy is then ;;X,)fz(xz) - INXN), [9, p. 159]. The expecta-
tion of X; is EX)) = }xjfj(xj)dxr Then

E [Z(xi - xo’] = %E[‘Eim - xj)z]

i i=lj=1

ne -
= 133 Jmm o - fadx - dx
imljEl . =

N N -
- % E{F):{ [ o = 2xx; + xR (xdxdx;
- 133 [ 1. - 2E(X)E 1 2]
= ZZ_,;E EQXOY; - 2EQGEX) + LEX)

N N 2
= NYEX) - | TEX)
i=1 w1

The expecration of Y (X; - Xj)2 is less than or equal to N times the expecta-
iq

N N
tion of EXiz, with equality only if the expectation of Y. X is zero.
= : =1
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BINOMIAL IDENTITY 1%

P. A. Moran
. N N3
It N = 2M then = K
k=0

5N g. NY/fiNe2i0r (n-2)1)¢
i= 2j iyt )t 1
j=0 (M+j)' (M=3) ' N!

2 . .
. N2 -2 J/~ cosh(x—y)coshx coshy dx dy
0 0

k /N)3
The sum with alternating signs, ZE(—I) K

is the subject of Binomial Identity 7 in JCMN 21, p.78
and JCMN 32, p.4012.

FROM CAPTAIN COOK'S JOURNAL

Monday, 26th December, 1768 - A Fresh breeze of Wind
and Cloudy weather; passed by some Rock Weed. At
noon the Observed latitude 26 miles to the Southward of
the Log, which I believe is chiefly owing to her being
Generally steer'd to the Southward of her Course.
Yesterday being Christmas Day the people were none of
the Soberest. Wind N.; course S.W.; distance 158 m. ;
lat. 40° 19' S., long. 54° 30' W.

DECK OF CARDS

J. B. Parker

You go through an ordinary pack of 52 cards one by
one, if you come to successive cards the same regardless of
suit (say two sixes or two kings) you call it a failure.
What is the probability of success?
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TWO PROBLEMS
Blanche Descartes

(1 Is it true that any Gaussian integer a + bi (a and
b integers) can be expressed in one and only one way as
a finite sum of distinct integral powers of (i - 1)/2?

(2) Define a finite sequence p(0), p(1), ... p(N) of
integers to be "phondic' when

p(2™n) & p(2M(ne1)) (mod &)

for any non-negative m and n with Zm(n+1).$ N.
The definition extends in the obvious way to infinite
sequences.

The problem is as follows. Let
0 & s(0) < s{1) « ... < s(M) & N

be a sequence of integers. Prove that there exists a
phondic sequence P(n) (for n = 0, 1, ... N) such that
R(n) = P(s(n)) 1is also phondic. A supplementary
question is whether the same is true for infinite
sequences.

QUOTATION CORNER 21

The Japan Halley's Comet Association has rented
one of the Siding Spring Observatory's telescopes and
set up three of its own 20mm reflecting telescopes at
vantage points around the town.

The Weekend Australian 28-29 Dec. 1985
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HILBERT'S TENTH PROBLEM
Jamie Simpson

A diophantine equation is an equation in which the
coefficients and absolute term are integers, and for which
we seek Iinteger solutions. A well known example is the

equation associated with Fermat's Last Theorem.
Hilbert's 10th problem asks:

"Given a diophantine equation in any number of unknown

quantities and with rational integral coefficients: to
devise a process according to which it can be determined
by a finite number of operations whether the equation is

solvable in rational integers."

The problem was settled in 1970 when Y. Mati jasevic
{2] showed that no such process exists. His result uses
earlier results by Martin Davis, Hilary Putnam and Julia
Robinson. A complete account of the solution is given

by Davis in [1].

The proof uses objects called "diophantine sets'.
A set S of integers is diophantine if there exists a
polynomial f(x, ¥y, Yp5 «++ yn) with integral
coefficients such that S contains exactly those x for which

_ fix, Yi» Ygs tees yn) =0 (1)
is solvable in the y,, ¥y, «++y Y-
EXAMPLE The set of even integers is diophantine, since

these are the values of x for which
x -2y =20

is solvable for y.

Another property that a set of integers may or may
not have is that of being 'listable". Roughly speaking
this means that: the set can be listed by a computer. Any
diophantine set is listable. This can be seen by noting
that we can list all (q+1)—cuples (X, ¥gs oo y,) and
check to see if they satisfy equation (1).
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Matijasevic's great achievement was to show that any listable
set is diophantine,. Assuming this, the argument then
proceeds as follows. The set of diophantine sets is
countable. List them as Dl’ D2, e Now let
¢ - {irien}
We claim that the complement of C is not listable, Suppose

it is, then it is diophantine and appears somewhere on our
list, say as set Dk' We then get a Cantorian-type
contradiction when we try to decide whether or not k belongs
to the set Dk‘

It is easy to show, however, that C is listable. 3
It is therefore diophantine and associated with some equation

FOx, ¥y ¥pu oovy yy) = 0. 2)

Now suppose that the process that Hilbert desired does exist,
We could apply it to equation (2) with x taking the values

0, -1, 1, -2, 2, -3, ... Each x would then be assigned
either to the set C or to its complement C. Thus we
would be listing C. This contradiction completes the
proof.

References

(1] M. Davis, '"Hilbert's tenth problem is unsolvable"
American Mathematical Monthly, March, 80 (1973) pages
233-269.

(2] Y. Mati jasevic *The Diophantineness of enumerable

sets", Doklady Akad. Nauk. SSSR, 191 (1970) 279-282;

translation in Soviet Mathematics Doklady 12, (1971), 249-254

o,

Editor's Note We would like to print articles on
Hilbert's other problems. “
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BINOMIAL IDENTITY 13 (JCMN 40, p.4190,

George and Esther Szekeres

n

= (‘J?)<-1)J'j“ = (1)
j=1

This is actually an ancient identity going back
to Abel. It is in Netta's old book on combinatorics
(the first of its kind), also in Riordan's Combinatorial
Identities. Its more general form is

n n <
'z() -1 (x=§)" =
j=otJ

identically in x.

The first equation may be proved as follows.
Consider words of length n written with an alphabet of

n letters. The number of words that use the whole of
the alphabet is n!. The number that can be written
using part or all of the alphabet is (:)nn = n", A

term (?)jn counts the number of words that may be written

by first choosing a subset of J of the alphabet, and
then writing all possible words with this subset. The

n :
equation = (n) -0

j=1 %
follows from the inclusion-exclusion principle.

A similar argument can be applied to show:

n .
'Z;(?)(—I)J jk=0 where 0 < k < n.
J:
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COCKED HATS
J. B. Parker

Readers who have followed the recent contributions
on the symmedian point of a triangle will recall the
position lines that are drawn by a navigator on a (plane)
chart to represent the information from observations of
position. The triangle formed in this way from three
observations is sometimes called a 'cocked hat'. There
is a theorem in the Admiralty Manual of Navigation that
the probability of the true position being inside the
cocked hat is 1/4. This result does not depend on the
errors being Gaussian or of any other particular type of
distribution, but only on the true position having
probability % of being on each side of the position line.

The analogous problem for four position lines
might be suitable for JCMN. Given four position lines
in the plane, what is the probability that the true
position is inside the (triangular) convex hull of the

six points of intersection of the four lines?

Or perhaps instead of the convex hull PQR above it might
be better to consider the region PQRS, which consists of
all points that are inside two of the four cocked hats
that may be obtained by omitting one of the position
lines.

There is an analogous one-dimensional problem.

Given n estimates X, < % 8 .. sxn for an unknown,

what is the probability of the true value being between

?
X !
Xl and
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THE HONEYMOON PROBLEM

A lucky bride and bridegroom had two wedding
presents, one was a round-the-world air ticket for each of
them with stops at N places, and the other was a voucher for

a fortnight's hotel accommodation at any one of the N places

at which they would call. They knew nothing in advance
about the N places at which they might stay. How should
they choose where to stop? This is a one-person game
{note - '"made one flesh'" - from the marriage service) and in

its abstract form is as follows.

There are N objects, arranged in an order of merf{t
unknown to the player. They are offered to the player in
turn and at stage r (r = 1, 2, ... N) the player is told the
ordering of the r objects already offered, and must decide
whether to accept the currently offered object. The game
is over when an object is chosen. The player must choose
one of the objects, and therefore must take the last object
if none of the first N-1 has been chosen. The player
tries to choose an object as near as possible to the top of
the list. The score is calculated by giving N-1 points if
the best object is chosen, N-2 if the second best, etc.

A strategy for the player is a sequence (s(1), s(2),
... s(N)) with the meaning that at stage r the object will
be accepted if it is among the top s{r) of the r already
offered. The last element s{N)} of the strategy must be N.
For example if N=3 the best strategy is (0,1,3) which means
to reject the first object offered, then to accept the
second if it is better than the first, and otherwise to
reject the second and take the third. The expected score
for this strategy is 4/3. For N=4 the two strategies
(0,1,1,4) and (0,1,2,4) are equally good, they each give an
expected score of 17/8.

Different settings for this problem have been
appearing in various places for years. One of the latest
is in the "Puzzle Corner" of the Bulletin of the IMA (Volume
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£4, 1986, page 30) in which there is a deplorably sexist
story of a bachelor trying to choose the best of N girls for
a wife. Other versions describe it as "The Secretary
Problem" and tell a story of how someone interviews in
succession N candidates for a job as secretary, and must
decide at the end of each interview whether to offer the job
to the candidate. Many of these problems ask for the
best of the "restricted strategies' defined as follows.

A "restricted strategy' is a strategy (s(1), s(2),

} in which s(N)=N and s(r) for all r = 1,2,...2 all =0,
and all other s(r)=1. The expected score for a restricted
strategy may be calculated as follows. The probability
that no choice has been made before stage r (where 2 < r <
NJ) is reached can be seen by induction to be z/(r-1), the
probability of the choice being made at stage r being
‘1/riz/{r-1) = z/(r-1)-2/r. The expected score if the
choice is made at stage r is the expectation of the largest
of r numbers chosen at random from the set {0,1,2,...,N-1},
which is (Nr-1)/(r+1). The probability of the last object
being chosen is z/(N-1) and in that case the expected score
is (N-1)/2. The expectation of score at the end of the

game is therefore:

gif 2z Nr-1 .,z
r=z+1 ri{r-1) r+1 2
- ZNZ ! - LZ‘“l- v+ z/f2

T— T+ rir-1)(r+1)

= N - M E + 1
2 N z+1

The integer z to maximize this is easily calculated

numerically. For large N the first approxiwation is
z =4N - 1, and this gives an expected score of
N -¥N+ % 4 0(1/0N).
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It is easy to see that the best strategy for N
greater than 4 is not one of the restricted strategies,
for an investigation of s(N-1) for the best strategy
shows that it should be (N-1)/2 if N is odd and either
N/2-1 or N/2 if N is even.

A computer search finds the best strategies for N up
to 9 to be as shown in the table below.

Score from the

N Best strategy Expected best restricted
score strategy

3 (0, 1, 3) 1-33333 1-33333

4 (0, 1, 1 or 2, &) 2-125 2:125

5 (0, 1, 1, 2, 5) 2+95 2.9

6 (0,0,1,1 or 2,2 or 3,6) 3.78333 3-66667

7 (0,0,1,1,2,3,7) 4-72381 4-52381

8 (0,0,1,1,1,2,3 or 4,8) 56 5375

9 (0,0,0,1,1,2,3,4,9) 6°50397 6+22222

For larger N what can we say about the expected score
of the best strategy? It is greater than the expected
score of the best restricted strategy, therefore

> max (over all integer z) N - Nelfz + 1
2 \N z+1

DN - (141/N)((4N+1) % - 1)/2

-

This last inequality would make a nice little exércise
for an elementary calculus class.
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BESSEL FUNCTIONS (JCMN 38, p.4157)

J. B. Parker

oo
How can we find‘//J Jo(x) dx ? Call it W.
0

Hankel's transform of order zero tells us that

T 00 O
£(x) =‘/ﬁ t Flt) Jgixe) dt when Flt) = x £(x) Jg(xr)dx.
o] 0
Putting F(t) = 1/t we find that
L 00
f(x) =‘j( Jolxe) dt = W/x
0
©
and therefore F(t) = W Jo(xt)dx = Nz/t and so
0
w2 =1 and W = +1. The ambiguity of sign was to be

expected because changing the sign of Jo will not affect
the validity of the Hankel Transform formula.

In order to decide between the two signs we use the
differential equation Ja + Jé/x +Jg = 0, the first terms

of the power series J,(x) 1 - x2/4 + ... and Bessel's

fl

integral formula Jo(x) =_$ / cos(x siny) dy which
0

bounds the function between -1 and 1.

X X
[;)Jo(t)dt = JHL0) - J4tx) -f; J(')(t)/tdt

(now integrating by parts)
X X 2
= - JHix) 4 [(1—J0(t))/t]o +‘/(; {1-J45(t) ) /" de.

The third term is positive and the first two terms tend
to zero as x tends to infinity, and so we must give W
the plus sign.

As a bonus we have found another formula

Yo o 2
f(l—JOm)/c dt = 1.
0
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QUOTATION CORNEK 22

Those who write books without indexes will be the

librarians' assistants in Hell.

Quoted by Lt. Col. R. W. 0Oldfield (10th. October, 1930; as

being a favourite saying of a distinguished contemporary
librarian.
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