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COMPUTER PROOF OF MORLEY'S THEOREM

G. Szekere§

After a recent one-day course on MACSYMA at the
University of New South Wales I decided to test my newly-
acquired skills by producing a machine proof of Morley's

celebrated theorem.

Position the triangle ABC so that A is the
origin (0,0) and B is (0,1). Let &£, /3 and ¥'be the 1/3
angles (so thatel + f8 + Y =60°). Let r = AR, q = AQ,
p = BP, a = BC and b = AC as shown.

r = sin
sin(o(+ﬁ)
a = sin 3K b = —8in 3p
sin3(0(+{3)» sin 3(°(+ﬂ)
R a sin¥Y q = b sin Y
sin(60° - &) sin(60- B)

The vertices of the little triangle are
P (1 - pcos23, psin2f)
Q (q cos 2, q sin 2}
R : (r cose, r sinot)

-3
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From here the machine can dutifully express the
coordinates of P, Q and R as rational functions (with integer
coefficients) of the five symbols s = sinx , t = sinﬂ,

/1 - sz, /1 - t2 and V3. Thereupon I asked the machine

to calculate the horrendous expression for ||Q-RHZ/HP —R||2,
"rationalizing" the denominators at each step. In a few
minutes the machine produced 1 for the value of the last
expression, so proving the theorem. I imagine a great deal
of Euclidean plane geometry can be converted to a "trivial®
machine proof of this kind.

Happy tenth birthday, JCMN.

PROBLEMS

P. Erdos

(a) Let G be a graph of n vertices and [n2/41 +1 edges.
Prove that it contains a triangle with each vertex of
degree > n / 3, Also that the factor 1/ 3 is best

possible.

{b) Is it true that given 23 out of 30 consecutive
integers one can always find 4 of them pairwise relatively
prime? (For 22 instead of 23 it becomes untrue, as may be
shown by the case of all the 22 multiples of 2, 3 or 5 among
the 30.)
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THE EIGHTEEN MORLEY TRIANGLES

In trying to interpret the computer proof (p.4140 above)
by G. Szekeres of Morley's theorem, it helps to think about the
philosopy of plane trigonometry. The simple view, as taught
in my youth, is that lengths are simply distances and cannot be
negative, and that the angles of a triangle are all positive and
have sum = 180 degrees. The alternative view is that lengths
are directed segments along directed lines, and that angles are
rotations. In this algebraic formulation a triangle with (in
the ordinary sense) sides a, b and ¢, and angles A, B and C could
equally well be described as having sides a, -b and ¢, and
angles A + 180°, B and C + 180°. The sine and cosine rules for
the triangle remain true, but, for instance, the inscribed circle
becomes an escribed circle, for the algebraic formulation does not
distinguish between the inside and the outside of the triangle,
or between the internal and external bisectors of an angle. In
the algebraic form of trigonometry there are two ways of bisecting,

and three ways of trisecting, any angle.

The computer is instructed to take a strictly algebraic
view of trigonometry, and so anything that it proves about trisec-
tors of angles will be equally valid for all three ways of tri-

section.

Therefore we should look to see exactly what the com-
puter has proved. Taking any triangle ABC (which we may assume
described in the simple way with all sides and angles positive)
it has constructed the equilateral triangle PQR by using angles

%, B and 7. What has it assumed about them? Only that
3% = A, 38 =B, 37 = Cand o+(B3 +7 =+ 60°. Note the +
sign; what the computer assumes about the sum of the three
angles is that its cosine is 1/2 and its sine is 43/2 where #3
is an algebraic indeterminate with square equal to 3, and so
when we interpret this algebraic indeterminate as a real number
it can be positive or negative. There are 18 possible

-8

-4143-




-4144-

geometrical interpretations of the three angles o , 3 and 7"
to which the proof applies. They are as follows:

A/3, B/3 c/3 (the original case)

A/3 +120°, B/3 +120°, c/3 +120°

A/3-120°, B/3 - 120°, c/3-120°

A/3, B/3 +120°, €/3+120° (and two more
like this)

A/3-120°, B/3, c/3 (and two more
like this)

A/3 +120°, B/3-120°, €/3-120° (and two more
like this)

A/3 +120°, B/3-120°, Cc/3 (and five more

like this)

The eighteen equilateral triangles have combina-
torial properties awaiting investigation. Each vertex of
one triangle is clearly also a vertex of one of the others.
A corollary to Bricard's proof of Morley's theorem is that the
angle between AB and QP is o(—p in the notation abave, and
it follows that all the 18 Morley triangles are parallel
to one another. Each side of a Morley triangle is also a
side of some of the others, but of how many of the others?
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ELECTRICAL NETWORKS
(JCMN 18. p.13 and 20, p.61)

Denote by R(m, n) the resistance between nodes (0, 0)
and (m, n) in a two-dimensional square lattice of one-ohm
resistors. It has long been known that R(m, n) is the
integral mean of the doubly periodic function

{1 -cos(mx+ny))/(2-cos x-cosy).

To establish this, interpret R(m, n) as the voltage of the
node (m, n) below that of the origin when a current of two
amperes is fed in to the origin. Then it may be seen that
there is a recurrence relation

R(m, n+1) + R(m, n-1) + R(m+1, n) + R(m-1, n) = 4R(m, n) = ZJmn

and inequalities 0 € R(m, n) € [m] + |n| and the obvious sym-—
metry conditions R(m, n) = R(-n, m) =R(n, m).
We shall see eventually that these give existence and

uniqueness.
Putting u = expimx and v = exp iny, we set up

(- -]
the generating function f(u, v) = Z_ooZQR(m, n) u™",
The recurrence relation may be written

(u+l/u+v+1l/v-4) flu,v) = 2

and the theory of Fourier series shows that the Fourier
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coefficient R(m, n) is the integral mean of

WPy f(y, v) = 1 - cos(mx+ny) + i sin{(mx+ny)
2-cosx-cosy

where the sine term may clearly be discarded. We seem to

have established our result, but the careful analyst will un-

cover a few subtleties.

The difficulty is that f(u, v) =2/(u+1/u+v+1/v-4)
is not an absolutely integrable function of x and y over one
period, the Fourier coefficients do not tend to zero, and
classical Fourier theory does not apply. This objection
may be dealt with by using the theory of generalized (or
"improper") functions. Since |R(m,n)| £ Im| + |n| the
trigonometric series - R{(m, n) exp i(mx + ny) must con-
verge, and its sum, the generating function f(u, v) must exist.
From the recurrence relation we know that

(u+Wu+v+1l/v-4) f(u,v) = 2, for some A.

Remember that now we are dealing with generalized
functions. The solution is (for some A, B, C and D)

flu,v) = 2/(u+1fu+v+1/v-64h+Aad(u-1)S8(v-1)
+BS(u-1)d'"(v-1)+CE' (u-1)E(v-1) +D ' (u-1)6" (v-1).

Since R(m, n) is an even function of m and of n it follows

that £ is an even function of x and of y, and so the last three
terms must be discarded. The Fourier coefficient R(m, n) is
the integral mean (over the (x, y) in one period) of

—cos{mx+ny) + 1 sin(mx+ny) +AS(u-1)S(v-1).
2 - cosx - cosy

The integral mean of the second term is some constant, call it B.

(It is, of course, a known multiple of A.) Now note that the

function 1/(2 - cos x - cos y) has an integral mean, call it C.

u ™ E(u, v)

This C is finite because it is an integral mean in the sense of
generalized functions, it is a Hadamard finite part of the

classical integral mean which is, of course, infinite.

14
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The Fourier coefficient R(m, n) is therefore the integral

mean of 1-cosimx+ny) + B-C, where B is an arbitrary
2-cosx-cosy

constant, But now we can use the fact that R(0, 0) =0, and
so determine that B=C. Therefore R(m, n) is the integral
mean of (1 -cos(mx+ny))/(2- cosx - cosy). This function
is integrable in the classical sense, and the integral mean
may therefore be determined by classical analysis.

J.B. Parker (in JCMN 20, p.61) has determined the
values on the diagonals, where m=n

R(m,m) = (2/M(1+1/3+1/5 +...+1/(2m-1)).

The importance of this result lies in the fact

that the recurrence relation

R(m, n+1) + R(m, n-1) + R(m+1, n) + R(m-1, n) - 4R(m, n) = 2<fmn
with the symmetry conditions

R(m, n}) = R(n, m) = R{(-n, m)

and the values on the diagonals, together determine the
solution uniquely. The proof of this assertion is a double
induction, slightly tedious, and so we shall not go into it.
One conclusion easily seen is that each R(m, n) is of the form
P(m, n) + (2/X) Q{m, n) where P and Q are rational. Since

P and Q each satisfies a simple recurrence relation and

their values are known on the diagonals, they can be calculated
with finitely many additions and subtractions. For example,
the values at points adjacent to the diagonals are (for any
positive m)

R(2m-1, 2m) (4/®)(1+1/5+ ..+1/(4m-3)) -1/2

R(2m, 2m + 1) (4/T)(1/3+1/7+ oo +1/(4m=-1)) +1/2

The condition 0 € R(m, n) £ |m| + |n|, which appeared
to play only a minor part in the calculation, is in fact
essential; without it the solution would not be unique.

In fact, we could take any values of R(1, 1), R(2, 2) etc.,
and find a solution satisfying all the other conditions.
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TRIANGULAR SOLITAIRE

Blanche Descartes

Most solitaire boards are cross-shaped. A few
are triangular, as in Fig.1l, with 15 holes. As in ordinary
golitaire, we start by filling every hole with a marble, then
removing one. If at any time there are three consecutive
holes in a line with the first two filled and the third
empty we may move the marble from the first hole to the third,
jumping over the second marble, which is then removed. Thus,
i1f the holes are labelled as in Fig.2, and holes h and e are
occupied and c is empty, we can move the marble in h into c,
removing the marble in e. We try to finish leaving one
marble only,in the hole that was empty at the start.

0 a A
00 bec B C
000 de f CAB
0000 ghij ABCA
00000 klmno BCABC
Fig.1 Fig.2 Fig.3

Suppose that the holes are divided into 3 classes,
A, B and C, as in Fig.3. Let n, = the number of occupied
holes of class A, and let np and n. be similarly defined.
Then a move does not change the parities of the 3 differences,
n, =ng, ng=-n. and n,-n,, so they have the same parities at
the end of the game as at the beginning. This makes certain
positions at the end of the game impossible. But since,
when every hole is full, n Enpg=ny=1 mod 2, if only one hole
is empty at the start, and only one hole occupied at the
finish, the two holes must be of the same class.

Let the notation '"hc" mean a move of a marble from
hole h to the empty hole ¢, removing the marble that was in
the intermediate hole e. If we start by leaving hole a
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vacant, a solution is:
da, fd, af, jc, gb, le, nl, km, mf, cj, of, fd, da.
If the initial vacant hole were b, a solution would be:
gb, md, om, ch, jc, af, ln, fm, bg, nl, km, md, gb.
If the initial vacant hole were d, a solution would be:
md, om, jh, cj, df, kd, le, bg, jc, ch, md, gb, ad.

But if e is left vacant I suspect that there is no sequence
of moves giving a final position with only one hole occupied,
either at e or anywhere else. Is this true? If so, is
there a neat proof of it?

COMBINATORIAL PROBLEM

Suppose that we have finitely many finite sets,
with A(2) of them having two elements, A(3) having 3, and
so on. The intersection of any two of the sets has no
more than one element. Find, in terms of A(2), A(3), ...,
a lower bound for the number n of elements in the union
of all the sets.

Con jecture: 00
n(n- 1)azzr(r- 1)A(r) = 2A(2) + 6A(3) + 12A(4) +..
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In Cartesian coordinates
SUBSETS OF A FINITE SET A is W3/2, 5/2) B is @/3/2, 3/2)
Jamie Simpson ¢ is (0, 0) D is (0, 1) and

Let A be a finite set and ¥ = {Al, Ay, Ag, ..% E is W3, 0).

be a collection of subsets of A, possibly including the ' AD = BC = BE = CE

V3
empty set §. We say that a subset A, is elementary

in 5| if it is not the union of any subcollection of,ﬁ\\Ai. }

]
[oy

AB = BD = DC

AE = AC V7

If A has cardinality n and A consists entirely
of elementary subsets, what is the maximum cardinality
of 94 ? Call this function M(n).

M(3), for instance, equals 5 since if A is {1,2,3} *

A -{e 1), {2, {29, Bl

For low values of n we have M(0) = 1, M(1) = 2,
M(2) = 3, M(3) = 5, M(4) = 8, and M(5) = 13. This
sequence will be familiar to readers interested in the

we can use

dynamics of rabbit populations. Unfortunately M(6) is
at least 23, not 21 as we might hope.

PROBLEMS
(JCMN 35, p.4068 and 36, p.4096)

C.C. Rousseau

P. Erddés asked for five points in the plane,
no three in a line, no four on a circle, and no one equi- {

distant from three others, such that they determine four

distinct distances, one occurring once, one twice, one ¢ E

three times, and one four times. One example was given

in JCMN 36, using cubic irrationals.

Here is an example constructible by Euclidean
methods.
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SYMMEDIAN POINT
(JCMN 33, p.4032 and 35, p.4075)

Consider any triangle ABC and its pedal triangle PQR.
Since CQHP is cyclic, angle CPQ=angle CHQ= 90°—ang1e ACH = A.
The angles are therefore as shown

A \[/A B

¢
P

The pedal triangle PQR has sides a cos A, b cos B
and ¢ cosC, and has angles 180° - 2o, 180°- 2B and 180° - 2C.
The area of PQR is therefore 2 cos A cos B cos C times the
area of ABC. By adding areas of triangles we find that

cosZA + coszB + coszc + 2 cosA cosB cosC = 1.

Because cosZA + coszB + c052C = 3 (Arithmetic mea;l3
of coszA, etc.) 2 3 (Geometric mean of cosZA, etc.) = 3q2

where q = cos A cos B cos C, the identity above tells us
that 3q2/3 +2q <1
or (qt3 12 2¢3-11g 0
Therefore q € 1/8 and

8 cosA cosBcosC %1,
with equality only in the case of an equilateral triangle.
This inequality was suggested in JCMN 35 on page 4088,

3]
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For an alternative proof note that for obtuse or
right-angled triangles the inequality is trivial, and for
acute-angled triangles the inequality of arithmetic and geo-
metric means and the concavity of the cosine function of

acute angles tells us that

q1/3£ (cosA + cosB + cosC)/3 €£cos(A+B+C)/3 = 1/2.

Now consider the two questions asked in JCMN 33 and 38.
Is the symmedian point on the same side of the Euler axis as
the incentre? And is it (like the incentre) always inside
the "critical circle'" (on GH as diameter)? The answer is YES to

both questions.

Using trilinear coordinates we have the following:
Euler axis: f(x,y,2) = 0 where
f(x,y,2) =x sinA(sin2B-sin 2C) +y sin B(sin 2C ~ sin 24)
+ 2z sinC(sin 2A - sin 2B).

Symmedian point, K, (a, b, c)

Incentre, I, (1, 1, 1)

Centroid, G, (bc, ca, ab)
Orthocentre, H, (sec A, sec B, sec C)
Centre of critical circle (2 cos(B-C) - cos A,

2 cos{C-A) - cos B,
2 cos(A-B) - cos C)
Critical circle, g{x, ¥y, z) = 0 where

g = x2 si!‘12A+y2 sinZB+z2 sin2C-yz sinA- zxsinB - xy sin C.

For any point with homogeneous coordinates (x,¥,2),
provided that ax +by +cz2> 0, the sign of f(x,y,z) tells us
on which side of the Euler axis the point is. For the incentre

f=5sinA(sin2B-sin 2C) + sinB(sin 2C -~ sin 2A) + sin C(sin 2A - sin 2B)

=2sinA sin(B-C) cos(B+C) +2 sin B sin C(cos C - cos B)
- sin 2A(sinB - sinC)
B+C B+C

=2 sin-B-;-g(— 2sinA cos¥ cosA+2sinBsinC sin-z_ -~ sin 2A COST)
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= 2 sinEE—C(—AsinAcosAcosg cosg +2 sinB sinC cos%)
=16 si.nE cosé cosE cosg(cos(B+C) siné+ sin§ sin —C-)
2 2 2 2 2 2 2
= 8 sin—l%g cos% cos-lzE cosg (sin (%+ B+C)-sin(B+C- %)
+ cosg:E - cos-&) !
2
=8 sin& cos® cos® cosg(— cos(ng—A) + cosgg—c)
2 2 2 2 2 \
A B C A- B-A . C-B
= — = = — sin——o et
16 cos2 cos2 cos2 sin 7 sin 3 sin 5

For the symmedian point (sinA, sinB, sinC),

£ = sinZA(sin 2B - sin 2C) + sinZB(sin 2C - sin 2A)
+ sinZC(sin 2A - sin 2B)

2f = —cos 2A(sin 2B - sin 2C) - cos 2B{sin 2C - sin 2A)
- cos 2C(sin 2A - sin 2B)

sin(2A - 2B) + sin(2B - 2C) + sin(2C - 2A)

sin(A-B) cos(A-B) + sin(B-A) cos(B+A-2C)

Hh
]

sin(A-B)(cos{A-B) - cos(B+A-2C))

2 sin(C-B) sin(B-A) sin(A-C).

Comparing this with the expression found previously we see
that the two points are on the same side of the Euler axis,
and for isosceles triangles both points are on the Euler axis.

To verify that the symmedian point is inside the
critical circle, note that the point (sinB, - sinA, 0) is
on the line at infinity and g(sinB, -sinA, 0) =

sinzB sin 2A + sinzA sin2B +sinA sinB sinC

= 3sinA sinB sinC 2 Q

-

and therefore g is positive outside and negative inside the

critical circle,

g(sinA, sinB, sinC) =
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sinA sin 2A + sin®B sin 2B + sin2C sin 2C - 3 sin A sinB sinC.

2g=(1-cos ZA) sin2A + (1 - cos 2B) sin 2B + {1 - cos 2C} sin 2C
- 6sinA sinB sinC

{1-cos2A) sin2A +2 cos(B-C) sin(B +C) ~ cos (2B - 2C)
sin(2B +2C) - 6 sinA sinB sinC

=sinA(-2cos(B+C) +2cos(B~C)-2cos Alcos (2B + 2C)
-cos(2B-2C)) - 6sinB sin ()

sinA(4 sinB sinC+4 cos A sin2B sin2C-6 sinB sinC)

sinA sinB sinC(8 cos A cosB cosC-1)

g

which we saw to be negative at the beginning of this note.

For the incentre (1, 1, 1) the function g is

sin2A +sin2B+s8in2C- sinA-sinB-sinC
=-4 cosé cosE cosg (1 -8 sin—é sing sing)
2 2 2 2 2 2

=-(sinA+sinB+sinC)(1 - 8 sin—‘% sin® sing)
2

which can be seen to be negative by observing that the
inequality

8 cosA cosBcosCg 1
may be applied to a triangle (such as that formed by the
three ex-centres) with angles (W - A)/2, etc. The
symmedian point, like the incentre, is strictly inside the
critical circle except in the case of an equilateral tri-
angle for which the critical circle becomes a single point,
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REDUCTIO AD ABSURDUM

Blanche Descartes

The question is often asked, can French math-

ematicians be conscripted into the armed forces? To

settle this question, let us suppose that they could be

conscripted. Remember also that the French call a
mathematician "téte-a-x".

When his military service was over, such a
mathematician would be an ex-conscript, or written
algebraically,

exconscrit = mathematicien = téte-a-x = Ox.

‘Divide both sides of this equation by ex. We get

conscrit = = téte assurée,

[N o)

which is clearly absurd. Hence French mathematicians
cannot be conscripted.
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FROM CAPTAIN COOK'S JOURNAL

Monday 3rd September 1770

Here we saw Cocoa nutt Trees, Bread Fruit Trees,
and Plantain Trees, but we saw no fruit but on the former,
and these were small and Green; the other Trees, Shrubs,
Plants, etc., were likewise such as is common in the So. Sea

Islands and in New Holland.

Upon my return to the Ship we hoisted in the boat
and made sail to the Westward, with a design to leave the
Coast altogether. This, however, was contrary to the in-
clination and opinion of some of the Officers, who would
have me send a Party of Men ashore to cut down the Cocoa
Nutt Trees for the sake of the Nutts; a thing that I think
no man living could have justified, for as the Natives had
attacked us for meer landing without taking away one thing,
certainly they would have made a Vigerous effort to have
defended their property; in which case many of them must
have been kill'd, and perhaps some of our own people too,
and all this for 2 or 300 Green Cocoa Nutts, which when we
had got them would have done us little service; besides
nothing but the utmost necessity would have obliged me to
have taken this method to come at refreshments.

BESSEL FUNCTIONS
What is the simplest way to calculate

o0
Jo(x)dx ?
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ADVERTISEMENT

Your Editor is now also Editor of '"The
Mathematical Scientist". This journal (TMS for short)
was founded by CSIRO in 1976, and from 1985 onwards is
being taken over by the Australian Mathematical Society.
The theme of TMS is the relevance of mathematics to the
world in which we live, and the use of mathematical models
in all branches of science. It is primarily a research
journal, wanting to publish new work, but it will also
print historical notes or surveys or umsolved problems.
If you have written anything that seems appropriate to
TMS please send it (preferably two copies) to me or any
member of the Editorial Board (see below).

Dr. S.A.R. Disney, U. of N.S.W., Australia

Prof. D. Elliott, U. of Tasmania, Australia

Prof. J. Gani, U. of California at Santa
Barbara, U.S.A.

Prof. C.C. Heyde, U. of Melbourne, Australia

Dr. H. Ockendon, Mathematical Institute,

Oxford, U.K.
Prof. Cheryl Praeger, U. of Western.Australia.
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EDITORIAL

The JCMN for its first eight years, 1975-1983,
was published by the Mathematics Department of the James
Cook University of North Queensland, address:

Post Office James Cook, North Queensland 4811,
Australia. ’
The issues 1-31 from this period have been re-

printed as paperback volumes:

Volume 1 (Issues 1-17)
Volume 2 (Issues 18-24) (out of print)
Volume 3 (Issues 25-31)

We hope to reprint Volume 2 soon. These volumes are
available for $10 (Australian) each, including postage,
from the Head of the Mathematics Department. I should
explain that I am now Head of Department, but will re-
tire at the end of December and leave the University.
Since Issue 32 (October 1983) I have edited JCMN and
arranged the printing and distribution. In 1986 my wife
and I plan to leave Townsville and go to

66 Hallett Road, Burnside,

South Australia, 5066, Australia.
but we expect to produce Issue 39 (February 1986) from
Townsville (address as on page 4138).

Basil Rennie



