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A map published in France in 1756, 22 years before James
Cook's first voyage of exploration in HMS Endeavour. Note
how the longitudes, measured East from Paris, are all too
large, the errors are about 14° for Tasmania, 18° for Cape
Leeuwin in the South West, and 27° for the North Queensland
coast near Townsville.



-31285-

ISSN 0158-0221

JAMES COOK MATHEMATICAL NOTES
Issue No. 30, Vol. 3

December, 1982.




-3126-

CONTENTS OF JCMN 30

Triangles from Centres Out - A.P. Guinand
Geometry by Numbers

Useless Information - A.P. Guinand
Matrix Problems - H.M. Finucan
Matrix Problem

Mathematical Blindness - Carl Moppert
Complex Geometry - H. Kestelman

Bear Story - C.F. Moppert

Stalrcase Locks - J.B. Parker
Binomial Identity 15 - C.J. Smyth
Special Functions - H. Kestelman

Geometrical Exercise — H. Kestelman

Monotonic Triads in a Sequence - B.C. Rennie

Wreck of H.M.S. Endeavour

Harbour Master's Dilemma

Matrix Inversion - R.B. Potts

An Equation - C.J. Smyth

Plane Sailing - C.F. Moppert
Binomial Identity 14 - C.S. Davis

Doubly Defined Integer Sequence - C.S. Davis

Division in old Germany - P.H. Diananda

Definitions

3127
3133
3133
3134
3135
3136
3140
3140
3141
3141
3142
3142
3143
3147
3148
3149
3149
3150
3152
3153
3155
3157

|
%
!
%
|

-3127-

TRIANGLES FROM CENTRES OUT
A.P. Guinand

Introduction. In a recent note W, Wernick {4] tabulates 139
re-construction problems for triangles ABC, given three related points.
Among the 41 problems still unsolved is that where the in-centre I is
glven, together with any two from the circum-centre 0, the centroid G,

and the orthocentre H.

Since OGH forms the Euler axis and G divides OH in the ratio
1:2, any two of the last three points determine the third. Also, by
considering angles subtended at a vertex it is easily seen that if any
two of 0, G, H, I coincide then they all coincide, and any equilateral

triangle with that centre is a solution. So let us exclude that case,

and assume that these four points are all distinct.

Next, it seems intuitively obvious that the in-centre I cannot
be too far separated from all of the other centres; it certainly
cannot lie outside the circum-circle. On investigation it turns out
that I must lie inside the circle on GH as diameter, and consequently
the angle GIH cannot be acute. I have not been able to find this
result in the literature. On the contrary, there is a problem in
Hobson's "Plane Trigonometry" [ 3] about triangles ABC for which GIH is
equilateral. This is impossible unless ABC is itself equilateral, and
GIH a mere point, but this slip has apparently remained unnoticed in

all seven editions and one re~printing from 1891 to 1939.

As for the re-construction problem, a cubic equation can be
found whose roots are the cosines of the angles of the triangle,
whence it can be shown that a general 'ruler-and-compass' solution

cannot exist.

Nevertheless this cubic leads to a curioys family of quartic
loci for 1 when 0, H, and one angle of ABC are given, and then these

curves can be used to map solutions of the problem.
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The critical circle. 1f R denotes the circum-radius, and r the -3129-

in-radius of the triangle ABC, then known results are: [3]

cos A+ cos B+cosC = 1+ 4 sin %A sin B sin %C, (1) . Writing a = OH2/0I%, and B = IH%/OI? )

it follows successively that
cos?A + cos?B + cos?C = 1 - 2 cos A cos B cos C, (2) y

1,
R = 01%{2.012 CIH? - on2)E
r = 4R sin %A sin %B sin %C = R(cos A+ cos B+ cos C - 1) (3) o1°{2.01% + 2.1u oH*} %, (8)

2r = {0H? - 01% - 2.1H?}{2.01% + 2.IH? - onz}';’,

01% = R(R - 2r), (4) ! ' 1 Ly -
2 (5) cos A cos B cos € = gll - =} = 2{1 - =4(2.01* + 2.10® - OH?)}
o2 = R%(1 - 8 cos A cos B cos (), X or
' 1
IH? = 2r? - 4R? cos A cos B cos C. (6) = E(uz - 208 - 2a + 1), 9
- 1
The first three formulae are simple trigonometric exercises, the last . cos A+ cos B4 cos C = 14+ % - 14 fon - or? - Z'Iﬂz}/(z_OIz)
three follow by applying the cosine rule in the triangles AOI, AOH, y %o o
= J(a - 28 + 1).

AIH, respectively. Since OG:GH = 1:2 it follows from Stewart's
theorem [2] that Then by (2) cos B cos C+ cos C cos A + cos A cos B

2.01° + I8’ = 3.16° + 2.06° + K’ = 3.167 + (3/2). CH’. = ’(cos A + cos B + cos C)? - %(cos?A + cos?B + cos?C)

1
Hence by (4), (5), and (6) = gl@-28+ 1% -4+ (@ - 208 - 20 + 1)}

GH? - (162 + TH?) = (2/3)(oH® - o1° - 2.18%) = k(e® - 3B + 287 - 28 - 1). am)
= (2/3)R*(1 - 8 cos A cos B cos C) - (2/3)R(R - 2r) i From (9), (10), and (11) we have:
, :
~ (4/3)(2r® - 8R? cos A cos B cos C) Theorem 2. If a, B are defined by (7) then the cosines of the angles
- W/Dr® - 20) = %% x 012 > 0, i of the triangle are the roots of the cubic in A
. 3 2 2 2 1.2

with equality if and only if O and I coincide (equilateral ABC) or AT - i(a - 2B + 1A + Y(a® - 308 + 28% - 28 - D)) - (@ - 208 - 20 + 1)
r = 0 (degenerate ABC with one angle zero). Hence for all other ABC - 0. (12)

we have GH? > IG? + IN? , whence:
It 1s known that the classical problems of cube duplication,

For all non-degenerate, non-equilateral triangles the

Theorem 1., angle trisection, and construction of a regular heptagon cannot be

cubic equations with rational coefficients but no rational roots. (1]

in-centre I lies inside the circle on diameter GH. , solved by rulor-and-compass methods alone because o o
We shall refer to this circle as the 'critical circle'.

The same considerations apply here. For example, if OI = v3, OH = /6,

! =
The cubic for angle cosines and its consequences. From (4), (5), (6) j and IH 1 then I is within the critical circle and (12) can be

arranged as a cubic in 6)

2 2 o - 21)
2 2 _og? = (R - 2r)?, and OH? - OI 2.1H 2r (R r).
2.01° + 2.IH ( s (6M)F = 7(6M)2 + S(6)) + 9 = 0. 1%

This has no integral root in 6A. Suppose that it has a rational root

6\ = p/q, with co-prime integers p, q and q > 2. Then
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p* - q(7p* - Spq - 99°) = 0.
Hence qlp’, contradicting the hypothesis that p, q are co—prime.

That is, (13) has no rational root. |

Theorem 3. It is not, in general, possible to re-construct a
triangle from its in-centre, circum-centre, and orthocentre (or "

centroid) by ruler-and-compass methods alone.

However, if the angles are calculated with sufficient
accuracy from the cubic (12), then we can construct a triangle with
these angles, together with its various centres, and then adjust its \

scale, location, and orientation to fit the given centres.

Alternatively, the circum-radius R can be calculated from (8),

and then the ray from O to A located by the formula

sin 2B - sin 2C
tan AOH 1+ cos 2B + cos 2C °*

and similarly for the other vertices. Proof is left to the reader.

Graphical methods. If 0 is taken as origin of cartesian coordinates,
Has (1, 0), and I as (x, y), then OH = 1, 0T = x* + y?, and
2 = (x-1)2 + y2. Substituting these in Theorem 2 and putting
A = cos 6 then gives the locus of in-centres I for triangles with one

angle equal to 6. Clearing the resulting equation of fractions, we

get:

Theorem 4, For triangles with circum-centre (0, 0) and orthocentre
(1, 0) and one angle equal to 6 the locus of in-centres consists of

that part of the bicircular quarti-, f
]
(2 cos 8 - 1)(2 cos 8 + 1)2(x? + y¥)? :

+ 4 cos 9(2 cos 6 + 1)(x? + y?) (1 - 2x)

~ 2(2 cos B - 1) (cos 6 + 2)(x2 + yZ) + 4 cos B8(1 - 2x)?

- 2(3cos B - 1)(1 -~ 2x) + (2cos B -1) = 0 (14)

which lies inside the critical circle.




-3132-

For given 0 and x the equation (14), formidable though 1t

looks, is only a quadratic in yz. So it is easy to programme a

pocket computer to help draw the curves concerned. The figure

shows the curves for 6 = 0°, 15°, 30°, ...., 165°, 180°., The critical
circle (repeated) corresponds to degenerate triangles and to 8 = 0°,
For 6 = 60° the locus is the line x =} together with a point circle
at (%, 0), the nine-point centre. For 6 = 120° there is part of a
hyperbola, and for 6 = 180° there is only the point (1/3, 0) on the

critical circle at G.

In general, for points inside the critical circle there are
three curves through the point, corresponding to three values of 6
whose sum is 180°, so a sufficiently fine grid on the pattern of the
figure could be used to read off the angles of the triangle from the

position of I.

Ex-centres. Similar methods show that all centres of escribed
circles lie outside the critical circle, and that their loci

correspond to the remaining parts of the family of curves (14).

REFERENCES
[1] R. Courant & H. Robbins, What is Mathematics?, (Oxford, 1941),
pp. 134-9.

[2] H.S.M. Coxeter & S.L. Greitzer, Geometry re-visited, (New York,
1967), pp. 6, 18.

[3] E.W. Hobson, A Treatise on Plane Trigonometry, (Cambridge, 1939),
Chapter XII and p. 201 (9).

[4) W. Yernick, Triangle Constructions with Three Located Points,
Mathematics Magazine, 55, (1982), 227-30.
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GEOMETRY BY NUMBERS

A question in a recent Hungarian Mathematical Olympiad
reminds us how useful complex numbers are in plane geometry. To
discover the Euler line and nine~point circle of a triangle, take the
origin at the circumcentre and let the complex numbers a«, B8, and v,
all of modulus one, represent the vertices A, B and C. Then
(@ + B +Y)/3 is the centroid, and (& + B + Y)/2 is the centre of the
nine-point circle because it is at distance % from the mid-points
(@ + B)/2, etc. of the sides. Up to now the argument could have
used vectors instead of complex numbers. The multfplication of
complex numbers shows that (a-8)/(a+83) has zero real part, and so
the line AB is perpendicular to the line from C to the point H
represented by a+8+Yy. Therefore H is the orthocentre. Then it is
easy to observe that the nine-point circle also passes through the
point represented by Yy + (a+8)/2, the mid-point of CH, and the two
similar points. Now consider the point R
represented by -aB/y = -aBy. The ratio
(Y + aBY)/(a+B) is real, and so R is on
CH., Also AR = |a + aBY| = |B+y]| = an
and so the foot of the perpendicular
from C to AB is the mid-point of HR
and represented by (a+8+7Y)/2 - aBy/2,

clearly also on the nine-point circle.

TR

Problem - find the quartic equation whose roots are the centres of the

incircle and the three escribed circles.

USELESS INFORMATION
A.P. Guinand '
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MATRIX PROBLEMS JCMN 28/3072 AND 29/3121

H.M. Finucan

It is a pleasure to report that this Kestleman pure problem
with the Brown applied solution has a statistical aspect too. Their
matrix C, in the form %C actually, occurs in the theory of time

series; the eigenvectors and eigenvalues of %C are used.

The n X n matrix C has elements € ~ 1if r =s*l and
Crs * 0 otherwise. Using only traditional school trigonometry it is
easy to half-discover the scalar A and corresponding (column) vector
v which make Cv = Av. The “trick” is to guess v' = (sin6, sin20,
v.., 8in nB) and A = 2cosB, then the third element of Cv is
sin26 + sin4B while the third element of Av is 2cosBsin36 and these
are obviously equal; similar considerations take care of all inter-
mediate rows of C and the first row is even easier. So far 0 has been
arbitrary, but equality of the last elements of CY and Ag requires that
sin(n+1)0 = 0, So the n distinct values of cosf, for 8 = m/(n+l) and
its multiples, are the n eigenvalues of %C and the eigenvectors are

v's as above.

n-1"n
and this is the first serial covariance yx(l) of the moving average

The quadratic form b'%Cb is clearly b,b, +b,b, + ... b ;b

series {Xt}

Xt = bth + bZZt_1 + ...+ bnzt—n+l N

where the Z's are uncorrelated "innovations” with zero means and unit
variances. The result being discussed concerns the first serial
correlation px(l) = Yx(l)/E'E' This is a Rayleigh quotient and its
maximum and minimum as E varies are the extreme eigenvalues of %C,

the matrix of the numerator; these are cos{m/(n+1)} and -cos{n/(n+1)}.

The extreme values of the higher serial correlations
P,, 0,, etc. may be studied by using the above bookwork for 0, with

no fresh appeal to matrix theory or trigonometry. As an example

a_—
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take p, in the case n=3 and denote [b,, bz’ ba’ b“, bs] by

_ bd + ce + df
" bbtcct+ddteetff

[b, ¢, d, e, f] for ease. Then o, and the

s reader must not worry, bb etc. are just space-saving versions of

b? etc. So
0, is a weighted average of

bd+df . ce
bb+dd+ff 2% cctee

with weights bb+dd+ ff and cc+ee, which are positive. Now the first
fraction here is the p(1l) of a moving average with coefficients,

b, d, f and can attain a maximum of cos(m/4) by choice of b:d:f -
while the second can ONLY attain cos(m/3). So we give all the weight
to the first, that is take ¢ = e = 0, then maximise p, by taking

b:d:f = sin(n/4) : sin(W/2) : sin(37/4). For the minimum, change the
sign of d only.

MATRIX PROBLEM (JCMN 28, p. 3072)

After seeing the comments on question 3 from the points of
view of applied mathematics (A. Brown, JCMN 29, p. 3121) and of stat-
istics (H. Finucan, above) an analyst is tempted to observe that to
solve the eigenvalue problem no trick or guess work is needed. By

i introducing fictitious elements x, and Xn41° both zero, the eigenvalue
R equations may be written

X + x = er for r=1, 2, ..., n.

4 The recursion has a solution x.= pr if p is a root of the
quadratic p? -~ Ap + 1 = 0. The roots are p = A/2 t (A%/4 - l)!5 and
so it is appropriate to note (as on page 3121) that each eigenvalue A
is between * 2 and may be expressed as A =2 cos ¢ where 0 < ¢ < T,
Then p = cos$ * i sin ¢ and the general solution of the recursion is
x = acos r$ + bsinr¢. The conditions Xp = X = 0 lead to

¢ = kn/(n+l) (k =1, 2, ..., n).
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MATHEMATICAL BLINDNESS
Carl Moppert,
Monash University.

I am writing this paper after reading Morris Kline's book:
Mathematics, The Loss of Certainty (Oxford University Press 1980).
What I want to say here is an enhancement of the statements in the
book, a shifting of the weights of some of the arguments, putting
forward some simpler and more basic criticism of mathematics and -
last but not least - making the whole thing shorter and thus (I hope)

more readable.

In calling the paper "blindness in mathematics" I claim to
be less blind than others. This is, of course, a presumption; I am
not aware of my own blind spots. However, it is obvious that a
dialogue of those people who are dissatisfied is very necessary
indeed. Where one man is blind, another might see and together they

might be able to move forward.

Let us then start with geometry. One of the most startling
facts about the history of geometry has been pointed out by Sophus
Lie some hundred years ago: every thinking mathematician should have
seen that the parallel postulate does not hold for great circles on
the sphere. The question whether this postulate was dependent on
the others should then never have been put. To put it differently:
unless other axioms (betweenness etc.) which Euclid had omitted

were considered, the question was obviously pointless.

I claim that the average mathematician of today is still not
aware of the implications of Boliay and Lobatchewski's work. If I
ask a mathematical colleague: "How accurate is Pythagoras?" I meet
with an uncomprehending stare. Neither the average educated man nor
the average professional philosopher is aware that one of the
essential pillars of Kant's philosophy has been knocked over. At a

dinner party with distinguished mathematicians in Germany I mentioned
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that hyperbolic lines are "more than straight". The discussion

caused the dinner to get cold.

Some more about this, my pet topic. Nobody seems to bother
about the fact that Einstein assumes that the geometry in a Galilefan
environment is euclidean. More important: nobody worries about the
existence of a cartesian coordinate system. We still live in a
Cartesian paradise: numbers have been made visible. Few people are
aware that Hilbert has reversed the process: the only way in which lines

"exist" is as linear equations.

We are products of history, indoctrinated far beyond our
awareness. In the last century, projective geometry was taken to be
the key to the universe. I blame Klein with his enormous influence
for a lot of the damage. It was again Hilbert who saw further: he

recognised what a degenerate object the projective plane in fact is.

Morris Kline ranks Hamilton's discovery of the quaternions to
be as important as the discovery of non-euclidean Geometry. I
disagree. Operations that are not commutative are found all over the
place, only mathematicians could have been so blind as not to see this.
Every cook knows that the order in which he "adds" the ingredients to
a soup is essential. I remember how deeply I was impressed as a
student forty years ago when Heinz Hopf demonstrated bodily that the
two operations: taking a step forward and making a quarter turn - are

not commutative,

Instead, I rank the discovery of the p-adic numbers on a par
with non-euclidean geometry. Hensel himself probably did so too:
he expected to do with them gquite unreasonable :'ings. The theory of
p-adic numbers shares the fate of non-euclidean geometry: who bothers?

Do they belong to the knowledge of the average mathematician?

Let us look a bit more at analysis. In talking with a
mathematical logician I mentioned that Dedekind in his paper:
"What are numbers and what are thev good for" proves that root two

times root three equals root six. He says that none of his colleagues
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knew why this is so. Who of us is even aware that there is a problem?
My logician friend was most surprised, Are we aware of the fact that
if we say that the solution of the equation x* = 2 is root two we say

exactly nothing?

There is no point in being alarmist; a mathematician can live
happily ever after without bothering about geometry or number systems.
What about analysis? Surely there everything is alright, Karl
Weierstrass did not live in vain. The vague percepts of Newton and
Leibniz have been put on a sure footing. A student who understands
epsilon and delta knows what he is talking about. No wonder that
mathematics can be used in such a magnificent way in engineering.

Euler and other workers who found results by their smell were, after

all, right.

I maintain that this is nothing but an illusion, and that
we are as far from a proper foundation as ever, and my reason for
this opinion is the following. Every application of analysis to a
problem in physics starts with a differential equation. I think it
is safe to say that every discovery of a physical law was in fact the
discovery of a differential equation. Newton's laws are differential
equations, Maxwell's equations are differential equations. The art
ig then to find differential equations. Once they are there it is
the analyst's job to find solutions, or at least to establish their
existence, and he does this with all of Weierstrass's paraphernalia.
But - where do the differential equations come from? Can we justify
a differential equation with epsilon and delta? I think that, red in
the face, we have to admit that we can never arrive at a differential
equation without thinking of small changes, i.e. of Leibniz's
differentials. )

I am afraid I was unable to respond to about a third of Morris
Kline's book: to the section dealing with sets and Goedel's work. I
must justify this rash statement. In my long career I have taught
many subjects. There i{s one subject I refuse to teach, set theory.

I am unable to understand the distinction between a set consisting of
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one element and this element itself. Now in mathematics, if you
don't understand A then you can't understand B. The whole of set
theory including Goedel is therefore a closed book for me. I dare
exposing my ignorance as I am sure that I am far from being alone.
I mentioned my problem once to Paul Erdés. He said he could live
happily without bothering about such questions. (If Prof. Erdds

ever happens to read this he might sue me).

I used to tell my students that in my life I have applied
mathematics twice. The first time was 1n my schooldays when 1 helped
my mother making a conical lampshade. The second time was many years

later when I made some steps in my house.

During the last ten years or so I have tried to apply my wide
mathematical knowledge to problems in engineering. The result was
dismal: almost always I found that trying to overcome a related
mathematical problem I had overlooked a physical problem which was
straight in front of my nose. Together with a friend I built a
Foucault pendulum and I think I am justified in saying that it is the
best one in existence (see Quarterly Journal of the Royal Astronomical
Society 1980). However, it does not behave as it should. Moreover
I found out that nobody is able to give a full analysis of the
spherical Foucault pendulum. Now, if such a simple problem is not

solved -~ 7

There is the famous record where you can hear Hilbert speaking.
His last sentence is "wir mussen wissen, wir werden wissen." (we must
know, we shall know). After that, you hear a weird cackling. I think
Hilbert was much too intelligent to make such a stupid statement. He
feared the cry of the .oeotians. In my opinion, any thinking man is

not ashamed to say: ignoramus, ignorabimus.
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COMPLEX GEOMETRY
H. Kestelman

If A is a complex nXn matrix write 8(A) for the set of all
the complex numbers (Rayleigh quotients) x*Ax/x*x (for all complex
column vectors x # 0). It is known to be a convex set. For each
n> 2 find A such that S(A) is the unit disc {z; |2} < 1}, and show
that no such A is diagonalizable (in the sense TA = DT with T non-
singular and D diagonal).

BEAR STORY
C.F. Moppert

After reading about Cook's constant (JCMN 29, p. 3116) I am

encouraged to point out to you Bear's constant.

Mummy Bear, Daddy Bear and Little Bear went for a walk. Little

Bear said "Here we are, all five of us.". Why? Here are three solutions.

(i) Little Bear couldn't count.
(ii1) He was thinking of his forbears.

(i1i) Little Bear had been going to a course on set theory.
The adder who sat next to him had explained that the lecturer was
making cardinal numbers unnecessarily difficult, and that to count
animals it was best to count the front feet, add on the number of
noses and subtract the number of ears. Little Bear had done this

and found the answer 6 + 3 - 4 = 5,
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STAIRCASE LOCKS (JCMN 28, pp. 3073-3075)
J.B. Parker

S J—
I I

What can be said about the levels in the three lock chambers

with ordinary usage?

If the levels are initially (a, b, c) then when a boat goes
up they will be changed to (b/2, b/4 + c¢/2, 24), and after a long
sequence of boats going up the limiting values will be (8, 16, 24).
Similarly after a long sequence of boats going down the limiting
levels are (0, 8, 16). It is easy to check that these limits are in
fact bounds, in the sense that if the initial levels are between
these bounds, and a boat goes either up or down then the final levels

will also be between the bounds.

The important question is of course the level when there is
a boat in the chamber. The level in chamber B has bounds 4 and 20,
the lower bound approached when a boat goes up after a long sequence

of boats going down, and vice versa.

BINOMIAL IDENTITY 15
C.d. Smyth

Prove that for 0 <k <n

w2y GH) [ et - e
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SPECIAL FUNCTIONS (JCMN 29, p. 3103)
H. Kestelman

X

Let ¢(x) = j exp(-t2/2)dt. The problem was to show that
o0

x + ¢'/¢ is positive and increasing.

Clearly ¢ and ¢' are positive, and ¢" = -x¢'. Put
g(x) = x¢(x) + ¢'(x), then g*' = ¢ + x¢' + ¢" = ¢ > 0. Since
g(-®) = 0 it follows that 0 < g/¢ = x + ¢'/$. It remains to show
that the derivative 1 + ¢"/¢ ~ (¢'/¢)? is also positive. Put
£= 07 + 0" - (") = ¢% - x¢¢' ~ (¢')%. Since f(~=) = 0 it will

suffice to show that f' is positive, that is:

0<f' = 200" - ¢¢" - x(9'Y - x¢¢" - 2¢'¢"
= (¢ + x%¢ + x9")¢'

which is equivalent to showing that ¢ + x¢'/(l+x?) is positive.
Since this expression tends to zero at minus infinity it will be

sufficient to show that its derivative is positive, that is
0 <" + (9" + x")/ (1 + x?) - 2x%0° /(1 + x?)?
-2
= ((1+xD)2+ (1 +xHA - x?) - 2x3)(1 + x*)7 %

= 2(1 + xz)-2 ¢', which is clearly positive,

GEOMETRICAL EXERCISE
H. Kestelman

If b 1is a given positive number, describe the set of points

in the argand plane that correspond to complex numbers
cos ¢ + b sin ¢ exp(if)

for all real 8 and 4.
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MONOTONIC TRIADS IN A SEQUENCE
B.C. Rennie

A sequence of n unequal real numbers must contain at least

N(n) monotonic subsequences of length 3, where
N(2m) = wED@22/3 = L (PA-3/01)
1
4

and N(2m+ 1) = m(m-Y%) (m1)/3 = (‘;)(1-3/n)

We prove this and determine the cases where the bounds are
attained. Some of the results are not new, they were given by
H. Burkill and L. Mirsky, see Reference [1]. An earlier investigation
of this problem is to be found in [2].

The case of even n = 2m

Take {-m+%, -m + 3/2, ..., -k, &, veoy m =~ Y%} both as

index set and as set of values for the sequence s{r).
For any such sequence s and any r let

= a(r) = the number of t for which t > r and s(t) > s(r)
= B(r) = the number of t for which t < r and s(t) > s(r)
= Y(r) = the number of t for which t < r and s(t) < s(r)
= 8(r) = the number of t for which t > r and s(t) < s(r) .

o < W R

In other words, a, B, y and § are the numbers of points of the graph
of s(t) as a function of t that are in the four quadrants meeting
at the point (r, s(r)). The number of

monotonic triads that have (r, s(r)) as
middle member is ay+ B8, and this number

may be expressed in terms of any one of

the four numbers a, B, y and & because
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a+B8 = m~-s{(r) -%

Y+6 = m+s(r) -%

a+6 = m-r-% e (D
B+y = m+r-%

Partition the 2m points of the graph into the four quadrants
of the plane, that is, Ql where r and s(r) are both positive, Q2
where r 1is negative and s(r) positive, and Q2 Ql

SO on.

Q3 Q4

For points in Ql the number ay + 85 may (using (1)) be
expressed as )
aa+s+r)+m-s-~a-%m-r-a-%

=4%R2c ~-m+r +s + 152+ @2 - r? -s? -m)/2 4+ 1/8

where s(r) has been abbreviated to s.

Similarly for points in Q2 we write the number as
(2B -m - r + s+ Y2+ @2 -2 -s”-m/2+1/8

and there are similar expressions for points in Q3 and Q4 expressed
in terms of y and § respectively. Because ir? = 1s? =

m(2m - 1)(2m + 1)/6, the total number of monotonic triads, which is

the sum of all ay + BS, is

(4n® - 12m% + Sm)/12 + B (2)

where B = J] (Qa-m+r1+s+ 12+ Z (2B-m-c+s+1k)?
Q1 Q2

+ Z 2y - m~ ¢ - s + %)z z (26 ~-m+1r -~ s + 15)?
Q3 Qb

Since each of a, B, Y, 8, m and rts is an integer, each of

the 2m terms in B is at least 1/4, and B > m/2.

3
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The number of monotonic triads is therefore at least
(4m® - 120% + 5m)/12 + w/4
= m(m-1)(m-2)/3 4)
For this bound (4) to be attained it is necessary and sufficient
that each term of (3) be 1/4. Define 6(r) to be a, B, Y, or &,
according to whether the point (r, s(r)) is in the quadrant Ql, Q2,
Q3 or Q4. In fact 6(r) is the number of points (t, s(t)) of the graph
that are in the same quadrant as (r, s(r)) and that have |t| > |r]
and |s(t)} > |s(r)}. Each term of B in (3) may be expressed as
(26 ~ m + |r| + || + %)?, and for this to equal 1/4 it is necessary
that

frf + sl =m-20-3%+% < m.
Since |r| + |s| has mean = m this relation implies 6 = 0 and
[rl +|s] = m (5)

Finally (5) implies that the points of the graph are in a
diamond-shaped pattern and all 6(r) = 0, and the bound (4) is attained.
The 2™ sequences satisfying (5) are given by

s(r) = ~s(-r) = *(m-r) for r=1%, 3/2, ..., m-X%.

The case of odd n = 2m + 1

The notation and reasoning are very much like those in the
case of even n, but there are differences of detail. Take
{-m, -=+1, ... -1, 0, 1, ... m} as both index set and set of
values or a sequence s with members s(r). The numbers a, B, Y

and § are defined as before, but (1) is replaced by

o+ B = m-s a+8 = m-r

Y+8 = m+ s B+y = m+r
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The four quadrants Ql, .. Q4 are as before but the
specification does not define the quadrant to which we assign the
points for which r = 0 or s(r) = 0, however this ambiguity does not
matter, as long as each of the 2m + ! points is assigned to ome
quadrant. For the total number fay + 848 of monotonic triads, we

have, instead of formulae (2) and (3),

(2m® - 3m® - 2m)/6 + YA &)
wvhere A = } (0 +r+s - m?2 + ] (2B-r+s- m)?
Q1 Q2
+ Z (2y - r - s - m)? + 2 (26 + v -8 - m)? (8)
Q3 . Q4

Introducing 6(r) as before,

A = J (28 + |r} + Is| - m)? 9
Consider the contribution to A from the terms for which [r] + |s| > m.
Since 6 > 0 the total is at least the sum of (el + Is] - m)? for all
such r, and (since an integer is not greater than its square) the
contribution is at least the sum of |r| + }s|] - m (for all such r),

and therefore > z (x| + |s] - m) = m.
r

This has shown that A > m, and the number of monotonic triads
is at least

(2m® - 3m® - 2m)/6 + m/2

= m(2m-1) (m-1)/6 (10)

It is clear that the bound is attained, for instance by the

sequence (-1, -2, ... -m, w, m-1, ... 1, 0). If the bound is attained
then lr| + |s| - m takes the value 1 at m points and zero at the
other m+l points. Conversely if |r| + |s| - m takes only the values

0 and 1 then all 8(r) = O and the bound is attained. It can be proved
2
by induction that the number of such sequences is 2°™. For m=1 the

four possible such sequences are (0, 1, -1), its reversal, and their
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negatives. We set up a I-4 correspondence between sequences of length
2m + 1 with the property and those of length 2m + 3, as follows. Take
any sequence s of this kind of length 2m + 1, add 1 to each positive
value and subtract 1 from each negative value. Denote these new values
by S(r). For the r for which s(r) = 0, put S(r) = * 1. One of the
two values + 1 is still not allocated, assign it to one of the two
end-points r = #(m+l), and give the value zero to the other end-point.
This constructs, in four different ways, a sequence S(r) with

|r| + lS(r)' = g+l. Conversely, given such a sequence S(r) of length
2m + 3, the corresponding s(r) is constructed by omitting the two end
members, reducing each positive value by 1 and increasing each negative
value by 1, for it may be noted that of the two end members omitted,

one must have value 0 and the other % 1.

The author's thanks are due to H. Burkill for his help.
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WRECK OF H.M.S, ENDEAVOUR

There i{s some doubt about the story of Captain Cook's ship
after she was sold out of the Royal Navy in 1775. The author Clive
Cussler when in Townsville in November gave a newspaper interview
in which he sald that the American National Underwater and Marine
Agency was hoping to locate and identify the wreck of the former
H.M.S. Endeavour on the mud flats off Rhode Island.
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HARBOUR MASTER'S DILEMMA

For how long does a harbour master have to observe the water

level in the harbour before being able to predict tides?

The corresponding pure mathematical problem is as follows.
Suppose that we are given a countable set {Xn; n=1,2, ...} of
positive numbers, we call it the spectrum. Consider all uniformly

almost periodic real functions
£ = - A A
() = Ya + zn=l(an cos A t + b sin o8

with the given spectrum. Find the least upper bound K of all k such
that there is a function'f of the set, not identically zero, but
vanishing in the interval from 0 to k. Alternatively K is the
greatest lower bound of the set of b such that knowledge of the values
of f in an interval of length b is sufficient to determine all the
Fourier coefficients and so to determine f(t) for all real t. For
example, if the spectrum is the set of positive integers then clearly
K = 27. The problem seems difficult, and solvers should feel free to
impose on the spectrum any condition that appears helpful, such as

that the sequence {An} should increase.

In the practical problem of tide prediction there are
complications. One is that the level of the sea is affected by weather,
which is notoriously unpredictable, and consequently the calculation
is statistical. Another difficulty is that there is no generally
agreed spectrum. The spectrum used in the numerical work must be
finite. The frequencies are obtained from three or six fundamental
astronomical data, but which of these, their multiples, and their
sums and differences, are worth including, is a difficult question,
often decided by study of the data itself. Lord Kelvin used 5 or 10

frequencies, but modern workers use as many as 400.

Let
Let
Let
Let
Let

Find

a

k
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MATRIX INVERSION
R.B. Potts

be any positive integer.

be the integer part of (p-1)/2.

be 0 if p is even and 1 if p is odd.
= 7/p.

= 2 cos Q.

the inverse of the n X n matrix:-

k -1 0 o] iee 4] 0
-1 k -1 0 cas 0 0
0 -1 k -1 e 0 0
0 0 0 0 k -1
0 0 0 0 -1 k+§

AN EQUATION
C.J. Smyth

Equations of the form

where the n,m

Tal-n=0¢3-1

i

]

3

are positive integers (not necessarily distinact),

have arisen recently in connection with some identities relating to

the dilogarithm function.

Show that 2 and 3 are roots of (different) equations of this

type. 1Is 4?7 57




-3150~

PLANE SAILING (JCMN 25, p. 3016)
C.F. Moppert
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The plane L moves over the fixed plane E, taking three
positions L,, L, and L,. Every point P of L has three positions

P

1

y» P, and Py on E. Which points P in L have P,, P, and P,

collinear?
The answer is that the locus in L 1is a circle.

The transition from Lx to L, is a rotation about some point
A of L. Of the three positions A;, A, and A, of A in E we know that
A, = A,. Similarly there is B with B, = B, corresponding to the move
from L, to L,. Let a be the line in E from A (=A,) to A, and let
b be the line from Bl to B2(=Ba). The transi;ions L, =+ L, > L3
may be made continuous by constraining the plane L to move so that A
remains on the line a and B on b. As L moves to every possible
position with this constraint, any point P of L traces out on E an
ellipse with centre at the intersection M of a and b (see figure).
This ellipse degenerates into a straight line segment if and only if
P is on the circle shown (which in the position Ll is the circle

through A, B, and M).

The locus in the moving plane L is the circumcircle of
the triangle ABC. In the fixed plane E the three positions
Ai Bi C1 (1 = 1, 2, 3) of the triangle ABC are the three reflections
in its own sides of the triangle whose vertices are Al =A, B, = B,

and C, = C,.
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BINOMIAL IDENTITY 14 (JCMN 29, p. 3111)
C.S. Davis

Zj‘:m [3'] [?j(] = le-m 2klf-m (Zk;m] for k >0 and O<m<k

The result may be generalized to half-integer k. Write n
for the 2k of the original formula. Observe that the sum may be
taken over all j, and indeed all sums below may, for convenience,
be taken over all integers, except that sums over m are for

0 £ m< n/f2,

Let 2z = r exp(i8) and compare the expansions in powers of
t of 2 log (1-z) and of log|l-z{2 = log (1-2r cos 8 + r2)

2(cos n0)n = Coefficient of r® in Z (2rcose-r2)n_m/(n—m)
m

For brevity write ¢ for cos® and s for siné

n—m] n 2n-2m—l cn—»Zm

cosng = g‘(-l)m {m —

On the other hand by considering

cos nd +1isinnd = (c+is)? = ) [:] T (18)F

cosng = J [;3] 2 (cz—l)j
i

11 [;3) [ﬂ -D 2n

Equating the two expressions for the coefficient of

cn—2m in cos n6,

) [J] (Z“jj . -l n [n—m] for 0 s 2msn#0.
i .

m n-m m
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A DOUBLY DEFINED INTEGER SEQUENCE
(JaN 29, p. 3101)

C.S. Davis

For a sequence Sl =1,58, =5, Sy = 40, etc. we want a

proof that the recursive definition

k-1
k-m~1 | 2k k-1 [2k
S, =2 ] D [k_m] s, + D [k]/2 (k1)
m=1
is equivalent to
k-1
-5 & [l -
sk mzl k+m [k-m] sm +1. (k=z1)

We extend the first definition to all integer k by putting

S, = 1/2 and S, =8

The first recurrence can then be written

k-1
v-1 | [2k 2% k-1 (2K
S = \)Zl D [ [v] Sv-k [Zk-\)] Se-v ] + 51 [k]
k=1 2k-1
- -1 f2 k-1 [2k
= 1 p¥! [2“] S+ 1 DY [ ] S+ (-1) [ ] s
vzl VI vk A ke

2k-1 v-1 {2k
z\):l -1 [\)] S\)—k

2k v-1 (2K
= I D ( ]-sv_k+s +5

v=0 v k k °
2k v (2
Therefore 8 = ngo (-1) (v Svok

Using what is sometimes called "umbral calculus" the equation

may be written symbolically as

§ s"‘(l-s)2k e (D
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where the sign = indicates that in the expansion of any polynomial in
S and S—l, Sv is to be replaced by S\) .

Defining ¢k for k =1, 2, ... as the function

k -k
b = 9 (8) = s +5" -2,
the relation (1) becomes
- k _
s, = Tla-9n = (s+s- 2
. k
Sk = 9, (2)
Now use the polynomial identity
k m
¢k b zm=1 2bkm ¢l ’ (3)
_ k_ |kim .
where bkm * [k-m] Writing this as
k k-1 m
& -0 = Zm=l . 6
and using (2), observing that ¢k = S+ Sk -25, = ZSk -1,

we obtain the second recurrence.

No doubt the identity (3), like all identities, is trivial
and can be established in a variety of ways; it is practically (3) on
p. 3110. It seems most natural to appeal to the expansion of cos n@
in the note above (p. 3152) with n = 2k.

k mn_k_ {2k-n 2k-2m
cos 2k 6 = 7m=0 (-1) oo ( o ] (2 cos 8)

Putting 6 = 7/2-¢ and m = k-n we obtain

k n k [k+n 2n k 2n
= - i = b, .
cos 2k¢ ):n=0( 1) e [k—n (2 sin ¢) ):n=0 k“(21 sin ¢)
Putting exp(2i ¢) = z, so that (2i sin ¢))2 =z + z_1 -2, this is
_ k -
KoK o247 26 +zl-"
n=1 kn

which is essentially (3).
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DIVISION IN OLD GERMANY (JCMN 29, p. 3102)
P.H. Diananda

The first example, 1152450/325 is done as follows. The first

digit of the answer must be 3, and so we write

Step 1 2
1152450 3
3

The two above the line comes from 11~3x3 = 2. The figures
can be taken as indicating that 1152450 - 3000 X 300 = 252450, Next
we put 2 after the 3 in the lower line because 32 is the start of 325.

Step 2 1
29
1152450 (3
32

The 1 and 9 are obtained from 25-3x2 = 19, The progress
so far is that 1152250 - 3000 x 320 = 192450. Next we put 5 (the third
digit of 325) after 32 in the lower line

Step 3 17
297
1152450 ¢!
325

The 1, 7 and 7 come from 192~-3x5 = 177, So far then, we
have found that 1152250 - 3000 X 325 = 177450. This concludes the
work on the first digit, 3, of the answer. Now we have to divide
177450 by 325, the first digit will be 5 and so we put this 5 after
the 3 on the right, and proceed as before

Step 4 2
17
297
1152450 (35
325

3
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The 2 comes from 17-5 x 3 and we have 177450 - 500 x 300 = 27450,

Step 5 1
2
17 .
297
1152450 (35
325
32

The 1 is written because 27-5x2 = 17, and we have
1152450 -~ 3000 x 325 - 500 x 32 = 177450 -~ 500 x 32 = 17450,

The complete division does not seem to have appeared {in the

manuscript, it should have some zeros added as follows,

000
111
229
17410
29793
11524 (3546
3255 (remainder zero)
322
33

The second example was dividing 1817437 by 276 and (with some

zeros added) would be

0
1
72
02355
16637
691853 (6584
1817437
(Remainder 253)
276666
27717
22
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DEFINITIONS

P.A.M. Dirac said at the first lecture of his Quantum
Mechanics course long ago that the difference between pure and applied

mathematics was that a pure mathematician would start the lecture

course by writing on the blackboard that a+b = b+a. But quantum

mechanics, he said, was the exception. And he wrote up on the

blackboard a+b = b+a.

Alternatively one can classify mathematicians by their

attitudes to infinity. An applied mathematician is fond of infinity,

using it as a good approximation for any inconveniently large number,

such as the number of molecules in a bottle of water. A numerical

analyst, on the other hand, avoids infinity like the plague, always

using a large number as a good approximation to it. Different from

both of these creatures is the logician, who cannot see the slightest
resemblance between infinity and a hundred thousand million. Classical

analysis is the art of being able to treat both infinity and a very

large number with the same easy familiarity.

We should be sorry for pocket calculators, usually paralysed
by meeting infinity, and for the superstitious undergraduates who

regard infinity as a demon sent to punish those who divide by zero.
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BOUND VOLUMES

Reprints of earlier issues are available for sale, bound as
paper-back volumes. Volume 1 (Issues 1-17) for $10 and Volume 2
(issues 18-24) for $5. These prices are in Australian currency and

include sea-mail postage.

EDITORIAL

We would like to hear from you anything entertaining or
puzzling or significant, connected with either mathematics or

Capt. James Cook.

Prof. B.C. Rennie,
Mathematice Department,

James Cook University of

North Queensland,
Post Of fice James Cook,
Townsville, N.Q., 4811
Australia.



