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A theodolite of about 1765. This was the principal
instrument used in marine surveying. It headed the
1list of navigational instruments required by Cook
and supplied by the Admiralty on his three voyages.
The original is housed in the National Maritime
Museum, Greenwich.
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COMBINATORIAL NUMBER THEORY

C.J. Smyth

Let p, q be relatively prime integers. How large a subset of
the first n integers can be chosen so that no element in the subset is
p or q times another? We answer the question in the theorem below,

which Marta Sved asked for p = 2, q = 3 (JCMN 22, Vol. 2, p. 86).

Arrange all integeré of the form piqj, 1, ] integers, in
ascending order, 1 < p < q ..., and denote them by Al < Az < ven W
If Ak = piqj, we define the parity of Ak to be the parity of 1 + j.
Define g(x) as follows:
. g(x) = max(# of Ak < x of even parity, # of AkAf.x of odd parit
Theorem Let (p, q) = 1. The largest subset of the first n positive

integers that can be chosen so that no element in the subset is p or g

times another has cardinality ,

- n - n n n
M Z (g(xk) Apy)? [[—Ak] l~——-pxk] [——qu] + [———quk]]»
g(h) ~ g( )

A A1 + angzn)

which is asymptotically
0
a(l -—)(1 ——) )
k=1

as n + », (Here 8(A0) = 0).

Example For 6 = 2, ¢ = 3 we have

Ak 1<2<3<4<6<8<9<12<16<18<24<27<32<36<48<54<64<72<81<96<

parity 01100101 01 0 1 1 01 001 0 0

s(lk) 11223344 5 56 6 7 7 8 8 9 91011

M=o -Pa-pE+i+dsli Lol L

so that TtEtstigt wttiet vee)

2060 n o
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Proof of the theorem Every integer can be written uniquely in the

n
. times another is f(;).

t
13 and m p1 q is

form mpiqj, where p} m, g ] m. Further, one of mpq

p or q times the other 1ff m = m' and e~ a' + 133" =1,

Now define f(x) to be the maximum number of elements of

piqj < x} ‘that can be chosean so that for any two

{(irj):iyjioi
distinct elements (11, jl), (12, i ) of the set, Iil—izl + |jl—j2| # 1.
Then for fixed m (< n) with » I m, I m the maximum pumber of elements
of the form mp q (< n) that car be chosen so that none is p or q

Now f is a step function, increasing by 0 or 1

i3

at every Ak, as a new lattice point is added to the set {1, :p ¢ < xk
Hence the rnquired number M is
oo * o ok .
= 2 :(m) = I, QY =k§l(f(xk) - £ N Ly
“‘1 MmN = =X,

where z* signifies that the sum 1is over those m with p I ]

- I 6oy - 10 ”[HMH["T]]

Then, the final expression for M is obtained on remarking that fwg:

and ¢ | m

this follows from the result in "Black and White Cubes" (JCMN 23, Vel. 2,

page 125) applied to the set

(.e. h, = 1 + [log(xp 1) /10g a1

i
{(1» j)» 11 JZO» quSX}° i
To calculate the asymptotic valué, note that g(kk) - g(kk_l) =0 orl,

80

‘M— Z(g(k)—g(kkl)[‘)z‘“n”‘ oy p;KkH )

k=1

1

54K+u(1—%)(1-—) 1N

1 k=K1

. . .
M- a-3A- kzl

A
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where K is the least index for which )‘k > n. It is easily checked

of -i-l- is 0(1‘2%3-), which gives the result.

2
that K is 0(log™m) and
k=K+1 'k

CONVERGENCE OF SERIES

R.L. Agacy
Many text-books explain how rearranging a series may change the

but very few point out how rearranging may change the region of

sum,
(-z - zz)n converges for complex z ingide

«©
convergence. The series ): 0

an oval on the complex plane, and when rearranged as a power series it

+ .. In eac
becomes Z: an - 23“ 1 which converges inside the unit circle .
case the sum is 1/(1 +z + zz) inside the region of convergence.

v
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THE SUNDIAL AT MONASH UNIVERSITY

C.F. Moppert
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The shadow 1s cast by a flat brass annulus, mcinted parallel
to the wall. The shadow is thus slways an annulus and this makes it
easy to read. The loops are made of copper strips about 20 mm wide.
The month liines are square brass rods of about 5 mm width. The

background of the loops is painted red and yellow, the background of

the months lines 1is painted blue.

This sundial 1s accurate to the minute throughout the year.
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The legend is mounted on a painted metal panel. It reads as ANALYTIC INEQUALITY (JOM¥ 19,p.29;20,p.54,Vol 2)
LR o » LD o4 i ]

follows: J. Surma (University of Sokoto)

The exact time is given vhen the The proposition was a non-linear version of the Hahn-Banach
circular shadow is on the corresponding
theorem, that any real Lipschitz function (that is £ such that

pink line yellow line
JE(x) - £ < k||x - y|l|) on a subset of a metric space could be
from 22 Dec. through from 22 June through .
the months of the months of extended to the whole space, satisfying the same Lipschitz conditicn.
Jan July .
It appears that this, like the Hahn-Banach theorem, can be proved from
Feb Aug /
Mar Sept the Boolean Prime Ideal Theorem, a statement known to be essentially
Apr Oct weaker than the Axiom of Choice in its full gererality. This implies
May Nov the independence of the Axiom of Choice from the Hahn-Banach theorem.

to 22 June to 22 Dec.

The shadow touches the cross-overs on 13 April and 31 August. The

blue lines give the path of the circular shadow during the day. They MOVING ROUND CIRCLES

are exact for the following dates: G. and E. Szekeres

Top line: 22 June (shortest day) Question 3 in the 1979 International Mathematical Olympiad was
Second line: 21 May and 24 July as follows.
Third line: 21 April and 23 August

Two circles in a plane intersect, let A be one of the points of
Fourth line: 20 March and 23 September
Fifth line: 19 February and 24 October intersection. Starting simultaneously from A two points move with constant
Sixth line: 21 January and 22 November speeds, each point travelling along its own circle in the same sense. The
Bottom line: 22 December (lomgest day).

/ two points return to A simultaneously after one revolution. Prove that
During summer time, add one hour.
there is a fixed point P in the plame such that, at any time, the distances

As the JCMN is printed only in black and white it must be

from P to the moving points are equal.
explained that the pink and yellow linea are those forming the figures : g P 1

of eight, one for each hour. Is the clause "in the same sense" in the second sentence

pink +\} + yellow
The blue lines are the more necessary?

or less horizontal curves

UOTATION CORNER (7
that indicate the time of yellow+{ \+ pink Q (7)

year (more precisely they While of course no notice of attendance is required, I would be grateful

indicate the signs of the Zodiac). if I could be told who we might except. —— From a letter announcing a

meeting.

e s S SN ESRRERER
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GEOMETRIC INEQUALITY

(JCMN 19, p. 32, 21, p. 79 and 22, p. 98, all in Vol. 2)

From R.K. Guy comes the following information. Tﬁis problem,
about the largest area of a table that can be carried round a corner in
a corridor of unit width, has been about for geveral years, often under
the name "the sofa problem". The value 2/7 + m/2 = 2+207416 has been
_improved, and the best value so far seems to be 2°215649 obtained by
C.E.H. Francis and R.K. Guy. See the American Mathematical Monthly, 84,
(1977) p. 811. 1In the same journal, 83, (1976) p. 188 at the end of the
article by N.R. Wagner i1s the comment ''Concerning convex solutions to
the sofa problem, the author can only remark that the maximum area is

surely larger than the value of 7/2 given by the semicircle".

WELL KNOWN FUNCTION
A. van der Poorten
F. Hirzebruch in "Prospects in Mathematics" page 7, Annals
of Mathematics Studies, No. 70, Princeton, 1971, writes "... of course
the function f(x) with the property that the coefficient of x in

(f(x))n+1 is 1 i{s well known ..." What is the function?

DRY THE DISHES
C.J. Smyth
"Wash the dishes, dry the dishes, turn the dishes over" goes
the children's rhyme. However, if someldishes are "turned over" (i.e.
suitably oriented), they may "drain", and not uneed drying. .
The problem is: give necessary and sufficient conditions for
a set in 3-space to be one which will "drain". Clearly convexity is

sufficient, but not necessary.

~137-
ANNIHILATING POLYNOMIALS

H. Kegtelman

Let A be a fixed complex n*n matrix. For any complex nx1
vector v define the minimal polynomial of v with respect to A to
be the monic polynomial u(v, t) in the variable t, of least degree,
satisfying u(v, A)v = 0. Let f be any polynomial and let w be the
vector w = f(A)v ¥ 0.

Show that u(w, t) = u(y, t)/¢(t) where thglnonic polynomial

¢(t) is the greatest common divisor of f£(t) and u(v, t).

S.U.M.S. COMPETITION 1980 (JCMN 23,Vol.2,p.124)
R.N. Buttsworth

Introduction
We solve a generalization of problem 3 of the S.U.M.S.

competition 1980.

Let .A be any set, A* the set of strings of elements of A (of
finite length). Strings are called primitive if.they are of the form
0 0 for some 0 in A*. We say T is derived from 0 and oT. A good
string is one tﬁat can be obtained from primitive strings by applying
derivation a finite number of times., Describe all good strings.

The answer is that the good consist of precisely those strings
with an even number of occurrence of elements of A.

To show this we need several easy lemmas and some notation.

Notation
A denotas an arbitrary set which remains fixed throughout
our discussion.
A denotes the empty string.
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A* denotes the set of all finite length strings (including
formed from elements of A.
Na(x) for a in A and x in A* is the number of océutrences of
in string x.
P is the set of primitive strings
P = {oo|o in A%}
so we have taken A in P.
G is the aet of all good strings. For clarity we assume

Pc G,

Basic Results

Lemma 1 Let x and y be in A%,

Proof:

Lemma 2

Proof:

Lemma 3

Proof:

Lemma 4

Proof:

If y is in G then xyx is in G.

If either x or y is A the result is trivial, since xx is in

Otherwise we have yxyx is in P, 80 1f y 18 in G, xyx is in G by
derivation.

For x and y in A*, xy is8 in G => yx is in G.

We have yy s in P

so xyyx is in G by Lemma 1,
and so 1if xy is in G

we deduce yx is in G by derivation.

1f Xps Xyy eeey X aTE all in A*, and y is in G,

then x,x

1%y v B XL e.- XXy is in G,

This/ follows immediately by induction on n from Lemma i.

If Xy Xy, eeey X are all in A* and x.x

1%y eee X i8 in G then

Xy oeee XXy is in G.

Using y = A in Lemma 3, we have x.x

1Xg cre XK eee XX is in G.

271

Thus if x %y

X oees XXy {8 in G

cee X is in G

by derivation.

-
-
;
‘
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We now show that good strings remain good if any two substrings are

iaterchanged.

Theorem 1f x, ¥, 2, t and w are in A* and xyztw is in G then
xtzyw 1s in G.

Proof: xyztw is in G => wtzyx is in G by Lemma 3 with n = 5,
and then

w(tzy)x is in G => xtzyw is in G by Lemma 3 with n = 3.

If x is in G and x' is a permutation of the elements of A in

Corollary
x, then x' 1is in G.
Proof: Since x is of finite lenmgth x' can be obtained from x by
a finite number of transpositioms, each of which leaves the
string a member of G by the preceding theorem.
Corollary If x is in A% and for every a in A, Na(x) is even, then
x is in G.
Proof: if Na(x) i{s even for each a in A, x 15 a permutation of some

string of the form yy.
It remains only to show that every good string x has the property.

Theorem If x is a good striag, Na(x) is even for each a in A.

Proof: The number of occurrences of an element a in a primitive

string is even, the process of derivation (deriving T from
¢ and 6T) can therefore mever lead to a good string with an

odd number of occurrences of the element a.
We note for completeness that when A = {a, b} we may say ab is not a

good string.

QUOTATION CORNER (8)

PUSH ON PUSH OFF

—— Labels on the overhead projector in a lecture room.
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CAN WE BELIEVE ANYTHING?

Ffrom L.M. Marsh comes the following paragraph, a footnote
culled from J.R. Ravetz, Sclence as Craftsman's Work, Scientific

Knowledge and its Social Problems, Clarendon Press, Oxford, 1971,

In fields where the data are found, the problem of coping with
"outlying'" data is particularly severe, for one can only rarely repeat
the process under observation. One might try to use statistical tests
to estimate the significance of such data, deciding whether they are
indications of a regular cause, oOr merely freaks; but all such tests
depend on hypotheses about the universe from which the data are drawm,
and so are less likely to be genuinely applicable in this extreme case.
The extent to which such outlying data occur in experimental and
observational work is likely to be underestimated by those unfamiliar
with such work, since it is frequently suppressed. A most striking
eiample of such suppression (in the teaching literature) is the classic
study on deaths by horse-kicks in German army co¥ps, which is the
paradigm case for the Poisson distribution, describing randomly
occurring events. The original study of horse-kick deaths by von Bortke
witsch extended over fourteen army COIPS, but the data from four of
these was rejected as being anomalously high, and the data from the
remaining ten was shown to fit very well the theoretical numbers. A
note of this suppression remains in some of the literature; see J.S.
Coleman, Introduction to Mathematical Sociology (Collier-MacMillan:

The Free Press, Glencoe and London, 1964), p. 291. But this is the
exception; there i{s no hint that the horse-kick deaths data is other
than 'raw' in R.A. Fisher, Statistical Methods for Research Workers,

13th ed. (Oliver & Boyd, Edinburgh and London, 1955), p. 55.

s EE RN N R RNEE]
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A CIRCLE AND A TRIANGLE
C.S. Davie

B
Vc
A circle touches the sides AB and AC of a triangle ABC in
points P and Q, and also touches the circumcircle internally. Show

that the mid-point of PQ is the in—centre of the triangle.

QUOTATION CORNER (9)

But in Applied Mathematics all was different. One did not say:
"Let us assume that the turning moment is the product of the force times
the perpendicular distance”, one said: "It 1s so". This seemed to me
dogmatic. I used to rework the examples out with the force times the
square of the distance, and then the cube of the distance, and would
compare the results and maﬁe up little dream worlds in which these
conditions applied. —— From "The Hot-House Plant" an autobiography
by Y. Stevenson, recounting how the author gave up mathematics and

became a Marxist and a psychologist.
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BINOMIAL IDENTITY NUMBER ELEVEN (JCMN 23,Vol.2,p.
With a small change of notation the identity was:
L n 2s 2n ~ 2s .
Z =0 [ s n-s

From J.B. Parker: Firstly, using beta and gamma functions,

I
1

2 2n-2
f sin“" secoszsede = 28(n—s+—§-,s+7)
0
1 1
= 2T(n - 8 + E) T'(s + —2-)/I'(n + 1)
which by using the duplication formula

-2n (2n - 2g8)! (28)! T

=2 n!'{(n - 8)! sl 2 °
Thérefore ki
1= _72? f 2 (c0326 + s:ane)u dae
(4]
L
2 -
=107 {2 ] J 2 a8 cos?% a0

0

-3 Z—Zn[ n ] (20 - 23)! (2s)!
[ (n - g)! n! s!

-n ¢n 2n - 2g 2s
4 zs=0 { n-s J [s] *
1

From C.S. Davis: Firstly Za::o [2:] xF = (1 -4x)"2 . (This

identity is equivalent to (2:] = (-4)r [_11_/2] and there was a

proof in JCMN 18, Volume 2, page 11). It follows that

n [2n - 2g 2s) -
20 [ ] [SJ is the coefficient of %= in (1 - 4x) 1, and this -

n-s
coefficient is A

ERRBREBRER]
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COMMUTING MATRICES

H. Kegtélman

Suppose that E is a set of square matrices all commuting with

one another.

(a) Do the matrices of E have a common eigenvector?
(b) If in addition each matrix M in E is diagonalizable, that is,
for some X, x'lnx is diagonal, does it follow that the matrices

of E are simultaneously diagonalizable, that is, for some X, all

X_lMX are diagonal?

SIMILAR MATRICES

H. Kestelman

let A be a complex n X n matrix, not a multiple of the unit
matrix, and let u be a column (n x 1) vector, not a multiple of

@, 0, 0, ...)T. Show that M exists such that M 1AM has first

column u.

ORTHOGONAL MATRICES (JOMN 23,Vol.2, p.126)

Both H. Kegtelman and R.N. Buttsworth have pointed out that
the answer is no to this question whether when a real square matrix
has sum of squares in each row and column equal to one it is possible
by changes of sign to make the matrix orthogonal. For instance take

all elements 1/¥3 in a 3 X 3 matrix.
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WHITHER SYSTEMS?

The "call for papers" of a forthcoming congress of cybernetice
and systems has the.rule that papers should

(a) start with a clear formulation of the problem

(b) include convincing empirical evidence for the author’s

propositions

(c) have a firm theoretical anchorage in current developments

(d) make use of recent developments in explaining the relevar
phenomena.

va the world of theoretical physics had followed these rules
sixty years ago they would have excluded Einstein's general relativity
and the quantum theories of Bohr, Schrodinger and Heisenberg, because
none of these great advances made use of any recent theory, in fact

they were all based on mathematics that had been known for fifty yeare

NAMES

For many years Mr. Justice Hanger has administered the laws
of Queensland, and in the James Cook University Dr. Monypenny
lectures in the Commerce Department. Are there such happy coincidence
in the world of mathematics? Did Klein ever write on infinitesimals?
or Poisson on the motion of a body through a fluid? My only example
is that W.L. Edge wrote a book, "Ruled Surfaces™ published by

Cambridge University Press about 1930.

1 B BB EEEREERERER
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ALMOST LOWER TRIANGULAR MATRICES (JCMN 19,Vol.2,

) p-29)
H. Kestelman
Describing A = aj Pz 0 0 . e . 0
a5 a5, b3 o ... ©
a1 252 2h3 3m

as "almost lower triangular" the theorem was that the nullity of A
cannot exceed k + 1 where k is the number of zeros in {bz, bay .o bn}.

A simpler proof is to consider the (n + 1) X (n'+ 1) matrix B,

{ 1

B = 1 0 o ... O . 1}
a; b2 o ... O 0
31,1 ceen bn 0
251 au2 cees 2 0 J

This matrix B is lower triangular and has n - k non-zero
elements on its diagonal, so that its rank is at least n - k. The
row-rank of B is either the same as that of A or one more, and so
A has rank at least n - k - 1, and therefore nullity at most k + 1,
attaining that value only if (1, 0, 0, ...) is linearly independent

of the rows of A.
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MATRIX EQUATIONS

_H. Kestelman

The n X n matrix M has n distinct eigenvalues and £ is a Your editor would like to hear f; you anything conneated with

polynomial of degree k. Show that in the complex field the mathematics or with James Cook.

equation £(X) = M has at least one and at most k™ solutions,

Prof. B.C. Remnie,
Mathematics Department,

James Cook University of
North Queensland,

. Towngville, 4811

Australia.

JCMN 24

ERREREESSEEEES
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INDEX
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Abramovicz-Stegun, 94

Advanced education, 124

Agacy, R.L., 132

Algorithms wanted, 8, 55

Almost lower triangular matrices, 29, 145
American Mathematical Monthly, 37
Analytic inequality, 29, 54, 135

An expansion problem, 13, 15

Annihilating polynomials, 137

Another binomial identity, 29, 47, 63
Another expansion problem, 16, 48, 49, 63
Another identity for binomial coefficients, 10, 37
Another 1limit, 10, 37

Apéry, R., 16

Askin, M., 97

Associated Legendre polynomials, 7
Australian Broadcasting Commission, 120

Axiom of choice, 55, 135.

Badger, Sir Geoffrey, 32

Baker, M.J.C., 102, 128

Baker, M.J.C. and B.J.W., 32, 79, 98
Barbed wire, 29, 58

Barnes, E.S., 56, 80

Barter, 85

Basic calculus, 32, 60

Beer cans, 60

Bessel functions, 121

Bicentenary, 1

Billiard table, 87
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Binomial coefficients, 10, 13, 17, 29, 37, 47

Binomial identity number six, 77, 95
number seven, 78
number eight, 78, 91
number nine, 88, 121, 127
number ten, 90, 121
number eleven, 128, 142

Corridors, 79, 98

Crux Mathematicorum, 79
Cubes, 125

Cybernetics, l44.

Black and white cubes, 125, 131
Blanefield, 29, 58

Bode, G., 77, 96

Bode, L., 99

Bolyai Society, 34

Davies, H.0., 31, 32, 74, 123

Davis, C.S., 49, 82, 121, 126, 141, 142
Degenerate, 59

Boolean prime ideal theorem, 135 Desargues' theorem, 27
Bound volume, 24, 42 Descartes, R., 70
Bricks, 89, 123
Brighton beach, 25
Broyden, C.G., 27

Buttsworth, R.N., 137, 143.

Determinant, 89

* Diagonalizable matrices, 143
Directed graphs, 21, 33
Double integral, 61

C Dreaded zeta three, 47, 126
Dry the dishes, 136

Campbell, P.J., 51 Duff, G.F.D., 86, 109

Canada, 86
Can we believe anything? 140

Duplication formula, 11, 17.

Cartwright, D.I., 124
Editorial note, 84

Education, 124

Centenary, 1
Characteristic polynomial, 40
Ccircle, 66, 67, 87, 90

Circle and a triangle, 141

Eigenspaces, 74
Eigenvalues, 39, 67
Eigenvectors, common, 143

Einstein, A., 68

Circular billiard table, 87

Coal trade, 25

Combinatorial Identities (book), 64 Eisenstein, 16

Electrical circuits, 3, 13, 61

Elizabeth II, Queen, 32

Combinatorial number theory, 86, 130
Commuting matrices, 22, 31, 59, 60, 74, 143
Elliptic geometry, 69
Endeavour, H.M.S., 85
Ends, 69

Contour mapping,8, 29, 55
Convergence of series, 132
Cook, Capt. James, 1, 8, 25, 32, 45, 65, 86, 101, 129

Cook news, 32 Equation of motion, 124

Equations, algebraic, 87, 94

- B N R



-152-

Erdos, P., 33, 58, 86

Euclid, 30, 68

Euclidean comstruction, 87

Euwe, Max, 51

Evans, A., 58

Expansion problem, 13, 15, 16, 48, 49
Expectation, 127

Exponential programming, 22.

Farewell to Secretary, 97
Finding an integral, 7

Finite projective geometries, 35
Fixpoints, 71

Folding paper, 78

Fred, 48

Friendship and love, 21, 33
Frucht, 10.

Galois fields, 34

Galois group, 88

Gamma function, 10, 17

Gauss, C.F., 68

Geometrical inequalitv, 32, 79, 136
Geometries, finite, 35

Geometry, 68

Geometry is algebra ..., 27, 55
George III, King, 45

Gould, H.W., 63

Graph theory, 10, 21, 33, 48
Graphs for groups, 10, 48

Graves triad, 27

Greenwich, 129

Guinand, A.P., 27, 55, 63, 78, 91
Guy, R.K., 136

Gyroscopes, 125.
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Hahn-Banach theorem, 55, 135
Hall, Marshall, 80

Hammersley, J.M., 3, 10, 21, 33, 40, 98
Hansen, H.C., 114

Harary, F., 48

Henderson, G.P., 79

Hermitean matrices, 36, 83
Hilbert, D., 69

Hirzebruch, F., 136

Hoek, J. van der, 60

Horse kicks, 140

Howarth, L., 99

Hyde Park, Sydney, 1

Hyperbolic geometry, 69
Hypergeometric function, 49, 82.

Inequality, 29, 32

Integer vectors and matrices, 39, 56
Integral calculus, 13, 61

Integral, 7

Integral roots, 6, 40

International Mathematical Olympiad, 135
Interpolation, 55, 135.

"Jewish problem, 122.

Kant, 68
Keane sequence, 78
Kelvin's reciprocal theorem, 4

Kendal, L., 65

Kestelman, H., 10, 12, 22, 29, 33, 36, 40, 60, 67, 74, 84, 137, 143,

145, 146
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Klee, V., 51, 98
Klein, F., 69
Konhauser, J.D.E, 37.

Lamb, Horace, 98, 99
Laohakosol, V., 37, 63

Laser beams, 69

Lattice points, 96

Lazure, Michael, 78

Leath, Peter, 25, 101
Lebesgue, H., 109

Legendre polynomials, 7, 16, 19, 49, 63, 82
Limit, 10, 18

Lipschitz conditiom, 55, 135
Lobster, 85

Logarithm, 9

Logicians, 55, 135

London Times, 23

Love (and friendship), 21
Love-hate theorem, 33

Love, E.R., 17.

Mandan, S.R., 27, 102, 128

Maori, 85

Marsh, L.M., 140

Marshall Hall, 80

Matriculation, 122

Matrix characteristic polynomial, 40
Matrix equations, 146

Matrix number theory, 39, 56, 80
Matrix polynomial questiomns, 22, 31, 59, 74
Mersenne primes, 30

Minimal polynomial, 77, 84

Mobius pairs, 27
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Monash University, 133
Moppert, C.F., 32, 68, 88, 102, 128, 133
Moran, P.A.P., 3, 12

More identities for binomial coefficients, 17

Morse and Hedlund, 53

Moscow Univ., 122
Multiplicative axiom, 55, 135
Murphy's formula, 49, B2.

Names, 144

National Maritime Museum, 129
Natural phenomenon, 29, 58
Nelson, H., 30

Networks, 3, 13

New book, 98

Newman, B.B., 47, 83

Nickel, L., 30
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