JAMES COOK MATHEMATICAL NOTES

Issue No. 19, Vol., 2
August, 1979.

Our cover picture "Collier brig unloading at Brighton
beach, c. 320" shows the sort of ship used in the coal
trade in which James Cook learnt the arts of seamanship.
The painting is by Peter Leath of Newport, Isle of
Wight, and is reproduced by courtesy of the Shipwrecked
Fishermen and Mariners Royal Benevolent Society of 1,

north Palliant, Chichester, Sussex, U.K.



-27-

GEOMETRY IS ALGEBRA IS GEOMETRY IS . . . .

I am neither an algebraist nor a geometer, only an unrepentant class-
ical analyst. So when I stumbled on a result about the product of three
3 X 3 zero-diagonal matrices as an algebraic equivalent of Pappus' theorem
I did not think it could be new, and I did not rush to publish it. 1In
fact I long failed to find any non-clumsy algebraic proof. I told others
about it, asking if they recognized it; others such as Schwerdtfeger (as
a matrix expert), Coxeter (as an expert geometer), and Potts (as an old
friend, and because I was on sabbatical in Adelaide). Then Potts (as
editor of JCMN while Rennie took avsabbatical) posed the result purely as
a matrix problem in JCMN 3. In JCMN 4 he gave a solution and saddled the
defenceless result with the tag "Guinand's theorem". Parker, in JCMN S
and 6, detected the conception of the result in Pappus' theorem, and
Broyden discussed it in more detail, algebraically, (2). In the mean-
while I had found a less clumsy algebraic proof, and further allied
geometric results., I submitted a paper to the Journal of Geometry; it

took over a year to get published, after everybody else!

Broyden conjectured that there may be analogous results for matrices
of higher orders, and, in a private communication, so did Sahib Ram
Mandan. Now there is some weak anoclogy between MObius pairs of mutually
circumscribing tetrahedra in 3-space and Pappus’ theorem, when the latter
is regarded as a cyclic (or Graves) triad of circumscribing triangles in
the plane. This does lead to a rather trivial result about pairs of 4 x 4
zero-diagonal matrices (5), but I doubt that there can be analogous

results for still higher orders.

Nevertheless, this led me to enquire about analogues of Pappus’
theorem in more dimensions - with total lack of success. But the other
fundamental theorem of projective geometry is Desargues', so what of it?
Desargues' theorem says that if the three lines through homologous pairs
of vertices of two triangles meet in a point, then the points of inter-
section of pairs of homologous sides are collinear. So I conjectured

the following 3-space analogue:

(I) 1If the planes through homologous triads of vertices of three tetra-
hedra all intersect in a point, then the four points of intersection of
triads of homologous faces are coplanar. Another way of expression (I)

is (1"),

(I') Let A, B and ¢ be three tetrahedra, with A having vertices
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Ar(r =1, 2, 3, 4) and faces a, opposite Ar’ etc. If the tetrahedra

are planewise perspective from a point P (that is if for each T the

- Cc, and P are coplanar) then the tetrahedra are
pointwise perspective from some plane £ (that is for each r the planes

four points Ar’ B
a , b_and c_ meet in a point of ).
r r b

Now let us look at some equivalent algebra. Using the Baker and
Mobius notation (1) for points, choose the symbols Ar’ Br’ Cr (q,r = 1,
2,3,4) so that Ar + Br + Cr = P. Then there must exist coefficients aqr,
b , ¢ such that L_ = Z a A = b B = E ¢ _C , the sums being taken

qr r qr q qr g qr q
over q # r. The conclusion of (I) is then that the Lr are linearly dep-

endent. Expressing this in matrix form we get the following proposition:

(11) If (1) I is the row-vector {P,P,P,P} , A the row-vector
{Al, A, A, A“} , and similarly for B, C and L;

and (ii) a, b, and ¢ are 4 X 4 zero-diagonal matrices;
and (iii) A+ B+ C=1 and Aa = Bb = Cc = L ;

then det a = det b = det ¢ = 0, in general%.

(* "in general” means "possibly subject to conditions ruling out

degenerate cases').

So now, will somebody please give a simple algebraic proof of (II),

and let me get back to analysis?
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NATURAL PHENOMENON

Near Blanefield in January 1979 on a cold morning with bright sun and
dead calm, one strand of a somewhat broken-down old barbed wire fence
was vibrating in a vertical plane with period about two seconds and
amplitude about an inch above and below the mean position. The wire and
the trees round about all had snow and frost on them. I noticed this

on my way to the village, and again an hour later on my way back. What

was the explanation?

ANALYTIC INEQUALITY

The real function f(x, y) is differentiable on the unit square and
£(0, 0) =0, f£(0, 1) = (1, 0) =2 and £(l, 1) = 5. Find the

largest possible M for an inequality of the form:

"Somewhere in the square (3f/3x)2 + (3f/8y)% 2 M"

ANOTHER BINOMIAL IDENTITY

Show that for any integer k > 0, and any real number 0<p<1,

lim ¢ [N/k] N\ ik N-ik
Moo Li-0 ki) PP = Uk
C.J. Smyth
ALMOST LOWER TRIANGULAR MATRICES
Describe the n X n matrix A as almost lower triangular if a =0
r

whenever r + 1 <
s. Denote each element ar of the superdiagonal

-1,r

by br (r=2,3, ..., n), and let E be the set of r for which b_= 0,
r
A = a;, b, 0 0 .
2 322 ba 0 .

Proposition If A is almost lower triangular and k is the number of

elements in E, then the nullity of A cannot exceed k + 1.
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Proof Suppose that A annihilates a (k + 2) - dimensional subspace

V. The space W of all x = (xl, . x“)T for which x, = 0 and X, = 0

for all r in E, has dimension n - k - 1. Therefore W includes a
non-zero vector ¥ in V. Let the first non-zero component of v be
Voo then s 2 2 (because v is in W) and s is not in E (because Ve #
0 and v is in W), therefore bS # 0. Now consider component number

s — 1 of the vector Av = 0, we see that bs v = 0, which is a contra-

diction.

Corollaries

(i) No eigemspace of A has dimension more than k + 1, for if X

is an eigenvalue then A - A1 is almost lower triangular

(ii) If the eigenvectors of A span ¢" then A has at least n/(k+1)

distinct eigenvalues, and therefore exactly n 1f k = 0. Thus any
tridiagonal Hermitean n X n matrix whose superdiagonal elements

are all non-zero has n distinct eigenvalues.

H. Kestelman

RECORDS TUMBLE

244&97 - 1 IS PRIME

In quick succession the largest known prime has grown larger. Last
year came the surprising announcement (L.A. Times November 16, 1978)
(JCMN 18) that two freshmen students of USC Hayward, Laura Nickel and
Curt Noll, had completed a high school computing project by showing that

221701 - 1 (a number of 6553 digits) is prime. Curt Noll continued this

work, and next in February, 1979 found that 223209 - 1 (6987 digits)

is prime. His good fortune is illustrated by the more recent announce-
ment (L.A. Times May 31, 1979) that the next prime in the sequence

2™ -1 is 2[‘[‘1‘97 - 1 (a number of 13,395 digits); this finding is due

to Harry Nelson and David Slowinski who apparently had access to consid-
erably faster computing facilities than did Noll; the latter is reported
to have remarked that it would have taken him 16 years to duplicate

this finding. So now we know of 27 Mersemmne primes (primes of the

shape 2" - 1) and by the same token, of 27 perfect numbers: a number

is said to be perfect if it is equal to the sum of its divisors other
than itself, and it has long been known (Euclid) that 2P 2P 1) s
perfect if 2P -1 4s prime. The complete list of known Mersenne primes

is 2™ - 1 with

111
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m =2 3 5 7 13 17 19 31 61 89 107 127
521 607 1279 2203 2281 3217 4253 4423 9689
9941 11213 19937 21701 23209 44497
4., van Zer Poorten

SOME MATRIX POLYNOMIAL QUESTIONS (JCMN 18)

The following is compounded from contributions by 7,0. Jarisza and

G. Szekeres.

th
(a) The k power of the given matrix J has r, s element equal to 1

when r + k = s and zero otherwise. If A comrutes with J then

equating components of JA and AJ giv =
gives a  o=a . {unless
r =nor s =1) so that A is of the form a 8 Y
0 a 2
which means A = ol +B8J +YyJ2 + ... .

(b) Because A is normal it is of the form A = U#*DU where U is unit-
ary and D a diagonal matrix of the eigenvalues of A . Then
A* = U*D*U = U%D U and it follows that A* is a polynomial in A
if and only if D is a polynomial in D, that is if there is a
polynomial p such that A = p(A) for each eigenvalue XA of A.
This is so by polynomial interpolation.
(c) 1Is every matrix commuting with A a polynomial in A? Xo, because
every matrix commutes with the identity I but does not have to be
a polynomial in I . However in the 2 X 2 case if AB = BA there is
a linear relation between A and B,.in fact (a b b“ )T+

11222 7 3y,
(b, = b,,)A + (a,, - a, )B = 0.

This means that if A is 2 X 2 ard has its diagonal elements
unequal then every B commuting with A is a (linear) polvnomial
in A. But what if A has diagonal elements equal? It can be
checked that

(ayy by —a b, )L+ by A-a,, B

and a -
(81, byy 3, b )T + b A~ a,B

it

0
0

n

so that either A is a multiple of I or again B is a (linear)
polynomial in A. This establishes for the 2 x 2 case that if B

commutes with a non-degenerate matrix A then B is a polynomial
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in A. Can this be extended to the n X n case?

(d) (From H.O. Davies)
A problem related to these arose when I was tutoring a postgraduate
course at Macquarie University in the '60s. Here is a proof that
if A is a normal n * n matrix with distinct eigenvalues then any

matrix B that commutes with A is also normal.

It is knewn that A = U*DU for some unitary U and some diagonal
D, also AB = BA, so that U*DUB = BU*DU. Now put UBU* =C.
Then it follows that DC = CD, and by equating r, s components

d. Forr#s, if dr # dS then ¢ _ = 0,

on both sides, d_ ¢ = s

r “rs ~ Srs s
that is C is diagonal and therefore B = U*CU is normal.

BASIC CALCULUS

One way of proving that sin x/x » 1 as x + 0 is to divide an arc of

a circle into n equal bits, then by the theory of rectifiable curves
2n sin (x/20) » x. But how obvious is it that if £ is a function such
that (for each x) n f(x/n) * x as (integer) n > « , then f(x)/x+ 1

as x » 07

C.F. Moppert

GEOMETRICAL INEQUALITY

A corridor of unit width has a right-angled corner in it. What is the
largest area of a table that can be carried along the corridor and

round the corner, while always being kept horizontal?

M.J.C. Baker and B.J.W. Baker

COOK NEWS

The editor of the book "Captain Cook, Navigator and Scientist"
(Australian National University Press, 1970) was knighted by Her Majesty
the Queen in June. Congratulations to Sir Geoffrey Badger.

IEEERERE R R
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PROJECTION MATRICES

T

2
Let P‘, ey P be n x n real or complex matrices such that Pr =P
for all t and PrPs = 0 for all r # s. Show that any linear combinat-
jon of these matrices is a matrix whose eigenvectors span the whole

n n
space R or c .

H. Kestelman.

FRIENDSHIP AND LOVE (JCMN 18)
For hypothesis H, the following facts can be proved.

(i) The number of vertices must be of the form
a =uwr-1)28
where u and v are positive integers such that u < v, and u

and v cannot both be even.

(ii) 1f J 1is the matrix whose elements are all 1, then
MI=IM=uvl]
M2 = WPT H T
Thus each vertex is attached to exactly u? + 1 double bonds,

and uv - (u® + 1) single bonds enter and leave each vertex.

(iii) To within isomorphism, the solution in your figure 3 is the
unique solution for n = 8. I don't know whether solutions

exist for any of the possible values n = 15, 24,

(iv) The eigenvalues of M are uv (with multiplicity 1) and %u
(with suitable multiplicities to make the trace of M equal
to zero). Also M is diagonalizable, and has a basis of

eigenvectors.

J.M. Hammersley

A LOVE-HATE THEOREM

The example that I gave (JCMN 18 page 21) for a 7 point solution of
the asymmetric version of the friendship problem is really due to
Paul Erd3s and was described in a joint article by Esther and myself

in the Math. Gazette (the English one, not the AMS version) in 1965.
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We never thought of an interpretation in terms of leve, and for a good

reason too: if the arrow indicates love, the opposite direction must

surely be interpreted as hate, or at least indifference which is not
much better, and it would have been quite inappropriate for us to con-—
sider an example in which "4 loves b implies that b doesn't care
much for a. (Hammersley's solution of problem H in JCMN18 does mnot
suffer from this embarassing assumption). In the Gazette article we

contemplated a problem known among enthusiasts of Erddsian graph theory
as Schitte's problem. Assuming that a always loves or dislikes b,

and indeed he loves b if and only if b cannot stand him, the problem
askes for a love-hate relation among a suitable number of people in

which to every set of k people there is at least one other person who
hates the whole lot of them. Was the problem perhaps inspired by

politicians?

In mathematical terms problem G of JCMN18 is to find a general com-
struction of directed graphs in which every pair of vertices a, b
is linked to exactly one ¢ 8O that both ac and bc are directed

towards ¢ . Several years ago I gave an account of this and similar

other problems in Mat. Lapok, a journal that only publishes in Hungar-
jan, being the officlal house journal of the Bolyai Society. Since

barbarian readers of JCMN canrnot be assumed to possess even the most
rudimentary knowledge of the language, I shall give here a few relev-

ant details in a more familiar tongue.

My 7-point example was indeed derived from the cimplest instance of
a finite projective plane of v = q2 + g + 1 points (q prime power),
with a little extra structure added. Readers of Marshall Hall's
Combinatorial Theory are of course aware of Singer's ingenious con-
struction, but for the sake of the uninitiated let me sketch the
method by the example of q = 3, v=13. Itis really quite marvellous
the way in which mysteries of Galois fields can help to sort out

problems in human relations.

Tae first step is to find an jrreducible cubic equation over GF(q)
(or, if you like, modulo q if q is prime), whose roots generate the
multiplicative group of CF(q®). The existence of such an equation
is one of these miraculous things that happen in Calois fields. If
q = 3 then x3 + 2X + 1 = 0 is such an equation. Denote by B a root

of the equation; technically it is an element of GF(qa). Now prepare

3

a table for the first %—:—T

ing them as

Wwe now declare as

listed g2 + g + 1 powers of

exactly once.

of the listed expressions.

consisting of all ¥ =
= 0 (mod 3)

shows that each of the

a b
2 2
q +
q+ 1=

common.

Lk is self-explanatory; the

line).

one of them, say (1, 2, %4,

BREEEEEEHHHHH

The reader can easily ve

skimming through the last column o
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= > +q+l

quadratic polynomials of £ modu

g represent

To define the lines of the geometry, let $ =

Associate wit

q+ 1=

4 points, and two distinct L¢, L¢,
rify this in the case of q = 3 by

= 13 powers of B, express—

powers of B8 under the projective equivalence

iff there is a non-zero b such that ai =b a,

1o 3 with the help of

first two columns of the

' =g+ 2. The expressions are shown in the
table.
1 8 2, 8, 12, 13)
! 2 g? (1, 3,9, 13
‘ 3 B+ 2 2, 6,7, 9
4 g2 + 28 6, 10, 11, 13)
5 2B +B+2 (5, 9, 10, 12}
6 g2 + 8+1 (3, 4, 6, 12)
. 7 g2 + 28+2 (3, 7, 8, 1O)
8 282 +2 a, 7, 11, 12)
9 g+ 1 2, 3, 5, 1D .
10 g2+ B (4, 5, 7, 13)
11 g2 +B+2 4, 8,9, 11)
12 g2 +2 1, 5, 6, 8
13 2 (1, 2, 4, 10)

"points" of the geometry the equivalence classes of

- [ v Q2
(a, +aB+ a,B?) - (al + alg + a}B8%)

i=0,1, 2. The

these equivalence classes

hob

b + b 8 + b_B® which sati
o 1 2
(or generally =0 in GF(Q)).

13 "1lines"

f our table.

a +ab+ 3282 be any
o 1
the set of points L®

sfy ab_ +ab +
- oo 171

A simple counting

by

contains exactly

have exactly one point in

(The numbering of the

four numbers in each bracket are the

serial numbers from the first colum of the

Notice that these lines can also be obtained by taking any

points which make up the

10), and forming the sets Sa = (1 + a,

2+ a, & +a, 10 + a) modulo 13, a = 1,

2,

13, Each S_ is a
a
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so-called difference set in the sense that every non-zero residue mod
13 can uniquely be obtained as a difference of two members of the set.
This is indeed a general feature of Singer's construction; it supplies

a difference set modulo any number of the form q2 +q + 1.

The reader may well be puzzled why I picked (1, 2, 4, 10) as my "basis"
for the difference set and not say, (1, 7, 1L 12). The answer is that

with the given choice we have the condition

aegsS =>b ¢ S
b a

fulfilled for all a, b. I leave it to the reader as an exercise to show
that a difference set always has a basis fulfilling this condition.
For example in the next case past 3, namely ¢ = 4, v = 21, the construct-

ion vields (4, 5, 8, 18, 20) for such a basis mod 21.

Now what good is there in my condition? Construct a graph whose vertices
are the points of the geometry and the relation a A b (read: a loves b)
holds iff a ¢ Sb' Then by construction, to given bx' b2 there is exact-
ly one a for which a A b, aA b,; for it requires a € Sbl n sz and

there is exactly one such a for any pair b‘, b2. Because of my condition
"a loves b" necessarily implies that b doesn't care much for a, a
should not be a member of Sa’ (shouldn't love himself) we obtain other
equally acceptable solutions which however contain double edges O .
The figure shows such a solution

for v = 7.

Perhaps we should call the more restricted

problem in which double edges are not

allowed the Love-Hate problem. Thus

there is a Love-Hate theorem for v = qz +q+ 1

people whenever q ic a prime power. Anyone who

produces a solution for v = k? + k + 1 when k is not a prime power

deserves a mathematical Nobel prize.
G. Szekeres

HERMITEAN MATRICES

Let A and B be complex square matrices, m X m and n X n respectively.
A is hermitean (A* = A) and B is skew-hermitean (B* = -B). There is
4 non-zero m X n matrix X such that AX = XB. Prove that A and B are

both singular.

H. Kestelmmm
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ANOTHER LIMIT (JCMN 18)

The problem was to show that /(1+./(1+2/(1+3./(1+...+(m- nva +m).,.)))>
+ 2.

Let Rn(x) = /(1 + nx) for positive x. 1If we leave out brackets that
are not necessary, the question was about the limit of f(m) = RIR2
Rm-—l Rm(l). First note that RIRZ...Rm(nﬂ-Z) =2 because Rn(n+2) =n+1,
and R;(3) = 2. Secondly if 0 < k < x/y < 1 then vk < R (x)/R (y) <1
because k < (1+ax)/(1+ny). Putting k = 1/(m+1) and x = 1 and y =

m+ 1 we have

R (1) R (1)
//m+1) < WEEEY = < 1
R R (1) R R (1)
Therefore (m+1)_l/“ < R:__ll(:;+1) - m—:mm <

Repeating the reasoning gives

-1/8 m-z  m-1
M-z m—y m 7 <
(m+1) < — 1
e R R, . R (1)
Eventually (m+1) < ——Z—m—— < 1

Since the term or the left hand side tends to 1 it follows that f(m)
tends to 2. J.0.Z. Konhauger writes that the problem was in the 27th
Annual Putnam Competition of November 19th 1966, in the form "Justify
the statement that 3 = Y1+2/1+3/1+4/1+5/ ...".
writes that the problem was given with solution in the American Mathem-
atical Monthly, volume 63 (1956) pp. 194~195, where it was traced back
to S. Ramanujan, Collected Papers (Cambridge 1927) p. 323,

Vieniazn Lachakogol

ANOTHER IDENTITY FOR BINCMIAL COEFFICIENTS

(JCMN 17 and 18)
In JCMN 18,pp.10-12 solutions were given to the problem posed in JCMN 17:
Prove the identity

(—1)“ (Zn:- 1] _ 22n+1(2n+1) (nli 1}
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Here is yet amother short proof using a simple counting argument.

1
Proof By expanding the expression [nﬂ ] and simplifying slightly, we

+1
obtain

2
(n“]n! = 2".1.3.5 ... (;n-1)
Each of the two sides represents the wmumber of possible outcomes of the
first round of a tournament between 2n participants where each partic-
ipant plays in exactly one game against one opponent and each game must

end with one side winning (i.e. no draws are possible).

Consider first the right hand side of the identity. There are (2n-1)
(Zn-3) ... 3.1 ways in which the first round can be organised: pick-
ing any one of the 2n players, there are (2n- 1) ways of choosing his
opponent. Picking any one of the remaining (2n-2) players the opponent
can be found in (2n - 3) ways, and so on. For each pair the game may end
in 2 different ways, hence for the n pairs there are 2" outcomes, i.e.
Zn(Zn -1){2n-3) ... 3.1 outcomes of the tournament (if the arrangements

are not predetermined).

The left hand side of the identity is obtained by noting that the list

of the n winners can arise in

2n wa
n ys,
and there are n! ways in which the remaining n participants could be

"allocated" as the losing opponents.

One can carry these counting arguments one step further to extract some

other identities.

Considering the possible outcomes of the tournament 1f we allow draws
as well as winning or losing, we obtain by similar counting procedures
the identity

n—1 n-k
2 2k
(Y G 1 o@i-n+ (Mat = 3L3s. @a-D)

otk -1

- This can be written in terms of binomial coefficients of type (?] as

n s ) '
g oAt 1 g3 % ) = ! ey ( 2 ) .

j=o 2N (o-j) i+l (2n)! i

Any alternative proofs of the above identity?
Marta Sved.

IR RN RRENEE
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MATRIX NUMBER THEORY

When setting homework questions on quadratic forms for my Mathematical
e

Methods class, I want to find a real symetric matrix whose components
0o ’

between 0 and 9, with eigenvalues rational

preferably
rational orthogonal

are integers,

and therefore integers. The obvious way is to use 2

transformation on 2 diagonal matrix of integers.

it 1 ave
To construct a rational orthogonal n X1 matrix it is necessary to h

] e
a squarte expressible as a sum of n or fewer squares, because 1f th

then m? = a2 + b2+ ... . The first

_ 92 2 2 - g2432 422
few non-trivial cases with n = 3 are 32 =22 4+ 22+ 1, 7 6

2 2 2 2 2 4 42
and92= 82 4+ 4°+1 7 + 4 4 : :
and so to integer symmetric matrices

top row is a/m, b/m, c/m, ...

and these lead without difficulty

to rational orthogonal matrices,

with integer eigenvalues. For instance

2 2 1 P 0 0 2 2 1
2 -1 =2 0 q 0 2 -1 -2
1 -2 2 0 0 r 1 -2 2
4p + 4o + T 4p - 2q - 2r 2p - 4q + 21
= 4p - 2q - 2r 4p £ q + br 2p + 2q - AT
2p - 4gq + 2r 2p + 2q - 4r p + 4q + 4r

must have eigecrvalues 9p, 9q and 9T .

This leads to a matrix with biggish components, but there is & possible
simplification. Choosing p, q and r S0 that their sum is divisible by

3 the matrix components will all divide by 3. Then taking advantage

of the fact that we may add any integer multiple of the unit matrix,

i 2w
we come to the conclusion that u + v 2v + 2w
PAVEE VAN u+w v
2w 2v u-v-w

i es our
has eigenvalues u + 3V + 3w, u - 3v and u - 3w. This solv

original problem of finding symmetric 3 * 3 matrices with integer com=

ponents chosen from 0, ... 9 and integer eigenvalues.

westions in matrix nunmber

: 2 2 2
e can find m? = a* +b" +c

Now have we uncovered any interesting q

theory? A natural speculation is that if w

(all integers) then there is an integer matrix M with top Tow (a, b, ©)

such that MMT = n? I, but this turns out to be wrong. In fact

172 = 122 + 122 + 1% does not lead to such a matrix. TIs there a
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rational unit vector orthogonal to (12, 12, 1)?
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25E%n, (2)

i{f necessary, interchange a and b. Thus xy # 1, and we

SOME CHARACTERISTIC POLYNOMIAL QUESTIONS
since we can,

can solve (1) for 2 and b in terms of x and y, obtaining

(i) M is an n X n matrix whose characteristic polynomial det(tl - M)
2

n 2 n-1 vl x X -y
has the form t (c0+c1t+c2t +oaote ot ) where the a+tx = Ty o bty = FT71 (3)

¢ are all 2 0, their sum is 1, and there is at least one con-
secutive pair ¢, ,¢ both of which are positive. Show that the
j, &k (a+b+ 1)+ (x+y+1) = (x+y+Dx+y-2)/(xy-1), (4)

sequence {7} converges to a matrix of rank 1.

(a - b) + (x~y) e —(x-y)(x+y+2)/{xy-1) (5)

i
H
i

(ii) A is a matrix with characteristic polynomial

Thus we have

B Lt D, kT 4 +

w * ° x+y#-l, (6)

if k > 1 and {A)} converges then its limit is 0.
= 0 and gives Family 1. Also

for otherwise (4) implies a +b + 1=
2 - x # 0; for otherwise a + x = 0, and thence b = 0 by (1), so that

H. Kestelman )
Family 2 occurs. Similarly x* — v # 0. Hence from (3)

xy - 1 divides both y? - x and x? - y. (@))]

INTEGRAL ROOTS (JCMN 17 and 18)
Hence £n - 1 £ lxy - ll < IXZ -yl < g% + n; and thence - s

£241=(E- DE+1D +2. ThereforenSE+1+E:2_1~. Since £

Here is a proof that J.8. Parker's contribution did not omit any of the

solutions.
and n are integers we conclude that R
1f both roots of both equations either 2 S ESnSE+1 (8)
or Z, ) = (2, 4) or (2, 5) or (3, 5. (9)

2 +ax+b =0, y*+by+a =20 (@9

are integers, then a and b are integers. There are two families of )
Since y # x?, there are 10 cases to consider under (9), namely

ITR RN RN

solutions:-

(x, y) = (£ 2, -4), (22, +5), (£3, 15).
Family 1 Both equations have 1 as a root if and only if a + b + 1 =0, 5

only 2 of these 10 cases satisfy (7), namely (x, y) = (-2, ~-5) and
the other roots being x = b, y = a.

(-3, -5); and, from (3), the corresponding values of a and b are
Family 2 At least one equation has 0 as a root if and only if ab = 0, (a, b) = (5, 6) and (6, 5). 1]
and then (a,b) = (0, -x2) or (-y%, 0) where x and y are integers.

This leaves (8), which in view of (6) can be written as
We look for solutions which do not belong to either family. If one equat- either x+y =10, 1, ab
ion, say the first, has both its roots -1, the other equation, y2+ y+2 = ’ + (12)

or x - =1 .

0, does not have integer roots. Hence we may assume that each equation 5 7 '
has at least one root not equal to 0 or *1. We write x and y for or x -y =0. as)
these two roots, and write § = |x| , N = Iyl We may therefore assume

1f (11) holds, the right hand side of (4) is -2/(xy - 1) and is an
integer; so En § 3, contradicting (8). If (12) holds, the right hand

side of (5) is the integer *{x + y + 1)/(xy - 1) with a non-zero
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numerator. So En - 1 £ xy - 1] = [x +y+ 1] £ £+ n+ 1. Hence
n-E+n+2328+3; N < 2 + 3/&; whence n £ 3. So (x, y) =
(2, 3) or (-2, -3), neither of which satisfies (7). So (13) is the
only possibility. By (5) it gives a = b; and from (1) we sea that
(a-2)% -4 = a2 - 4a = (2x + a)?. The only two squares that differ
by 4 are 0 and &4, so that a =0 or 4, and a = 0 is excluded by
Family 2. Therefore

(a, ) = (4, &) (14)

and (10) and (14) are the only solutionms not belonging to Families 1

and 2.

J.M. Hammersley

QUOTATION CORNER (1)

He who can, does. He who camnot, teaches.

- G.B. Shaw, Maxims for Revolutionists,
an appendix to the play Man and Superman

(1903).

If Shaw were alive to-day he might have commented on the next development
in our educational revolution; those unable either to do or to teach

anything give advice om how to teach.

BOUND VOLUME

Issues 1 to 17 inclusive of the James Cook Mathematical Notes are now
being reprinted in a single volume. This will be available at a price
of $5.00 (including postage). Customers in Australia are asked to send
cheques payable to James Cook University. Those overseas are invited

to send any kind of currency of roughly equivalent value (for example
$5.75 (U.S.A.) or £2.50 (United Kingdom) etc.) However readers in Papua

New Guinea are asked not to send pigs, for they are stopped by quarantine!

Your editor would like to hear from you anything connected with mathematics

or with James Cook.
Prof. B.C. Remnie,
Mathematice Department,
James Cook University of Nortn Queensland,
Toumsville, 4811, Australia.



