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CAN YOU SOLVE A QUADRATIC EQUATION? (JCMN 12)

For what real positive a and b does z2 + az + b + ia = 0 have the real parts

of both roots negative?

R.B. Potte does this geometrically. Putting z = x + iy, the roots are where

x2 - y2 + ax + b =0 cuts 2xy + ay + a = 0. Both hyperbolas have centre

(-%a, 0). For both roots to be in the left half plane the first hyperbola must
cut the negative y-axis below where the second does, that is -vb < - 1 or
b>1,

Algebraic proofs came from H.0O. Davies and H. Kestelman:

1) The roots are given by 2z = -a * ¢ exp(16/2) where ¢ = ((a2-4b)2+16a2)1/4
and c2 cosf = a2-4b and c2 sind® = -4a and 2 c032 0/2 = l+cosf =
(c2+a2-4b)/c2. The conditions for both real parts to be negative is
a>tc cosd/2 or 2a% > 262 c0326/2 =c?+a?- 4b
or a2 + 4b > c2
or a*+8a2b+168 > ¢*'= 2*-8aZb+16b2+16a>
which leads to b > 1.

(ii) Since the sum of the roots is the real number -a, the roots have the form

iy - CsHw)a and -1y-(s~p)a where y > O and y is real. (A)

Since theirproduct is b+ia,

b=y2 + a2/4 - azuz and 2yu =1 (B)

Since y is positive, 1 must be positive and satisfy
wh = 1+ 2% (-ad) (1)

and the problem is to find conditions in which the solutions u of (1) are between
0 and %. If this is so and (1) holds then b > 1. Conversely, suppose that

b > 1; we have to show that if the numbers given by (A) satisfy (B) then

0 < u<lk, Set f(t) = 4t2a2 + t(Ab—az) - 1, If u satisfies (1) then

f(uz) = 0, but £(0) = -1 and £(1/4) =b - 1 > 0, and so the only positive root of

f(t) = 0 lies in (0, 1/4), thus O < u2 < i/Z and so 0 < p < 1/2,

(i11) 1Increasing both roots by 1 gives a new quadratic 22 + (a~2i)z+b-1 = 0.
The product of the roots is real, equal to b~l and so the real axis bisects
the angle between the roots. If b > 1 the real parts have the same sign,
and because their sum is negative, both are negative. If b < 1 the real

parts have opposite sign and therefore one of them is positive.

(JCMN 13)




(iv)  The schoolboy method would be to say that the critical cases are when one
root is pure imaginary and clearly has to be -i so that b=l. The answer
must be either b > 1 or b < 1. To decide between these two alternatives
just take a simple case 1ike a =100 and b=2500 giving z = -50 * 10v1, -
which has both real parts negative, so that b > 1 is ‘the answer.

Pt

QUADRATIC EQUATIONS AGAIN

For what complex b and fr‘ddés the quadratic 22 + bz + c = 0 have roots of
equal modulus? 1If this is s0 and 1f p and ¢ are the roots, in what

circumstances does pk = qk for some positive integer' k?

H. Kestelman

MATRIX OF ZEROS AND ONES
The n X n matrix A (n 2 3) has all its elements zero except that a. = 1 when -

Ir-sl =1, If M, and mj are the greatest and least elements in AJ, show that

3

mj = 0 and Mj +®© ag j+o,

-

H. Kestelman

NEW THEOREM: ALMOST EVERY CONVEX POLYHEDRON
IS A TETRAHEDRON (JCMN 4 and 7)

Apolpgies to all the cubes that were fqrped to doubt their own reality, the new

theorem was a hoax.

Consider all the possible probability distributions of any set of things. They

may be divided into equivalence classes by the condition of being uniformly
continuous with respect to one another. Any assertion beginning "Almost every ...."
refers to some class of probability distributions, not just to one distribution.

For instance let the set be R , there are many classes of distributions but among
them one is particularly simple and natural, the class of distributions for

which a set has positive probability if and only if it hés positive Lebesgue
measure. Consequently there is no difficulty about interpreting "almost every
point of the plane" or "almost every triangle". However when it comes to convex
polyhedra in three dimensions there are two classes of probability distribution
with an equal claim to being the natural canonical class: one is derived from

the idea of constructing the polyhedron as the convex hull of fiﬁitely many

points, and the other by'regérding the polyhedron as an intersection of half-spaces.
Confusion of these two classes leads to the wrong conclusion that almost every

convex polyhedron is a tetrahedron.



L . . . NUMBER THEORY (JCMN 12) R . , A .
Problem, . Given integers a, b for what positive integers n does pqZa mod n
imply p+qZb mod n.

- i

If a, b n satisfy these conditions, any a » b in the residue classes of a, b mod n
will also satisfy these conditions. We ‘may assume OSa, b<n. Since l.a..a=(-l)(-a)

then l+a=-1~aZb - so 2(14+a)=0 mod n.
Case 1 n=l+a. Then a 1s in the multiplicative group of all integers coprime
to n, modulo n. Let B be any element in this group, say B £ 1 mod n.
a8 x g~z a
S.oaB + Bk-l = 0 modn
o Bk°2 £ 1 modn (since a = -1)

This contradicts the order of B being k, unless k £ 2. ‘Hence every non-trivial
element of the group has order 2. The only n . for which, this happens is

n=2 3,4, 6,8, 12, 24,

This follows from the following result.

If n = P; " Py “ ... P, is the prime decomposition of n, then the multiplicative

group of all integers coprime to n mod n, is an abelian group with a direct product

decomposition into factots_Zi corresponding to the primes Py where

S N
' . Q-

. o o
if Py + 2, 'zi is cyelic of order ¢(pi i) = pii(l_ pl)
i

- -ftrivial group if:ai ='1 i°.

cyclic of order 2 if oy =2

if P, = 2 , then Z
' , . : kfirect product Cy X C, 1f o .= 3

i

0y-2 . .
direct product C2 x Cz;*' ‘of‘ai~>,3

i

Possible solutions corresponding to case 1 are

a b n

1 -0 2

2 .0 3

3 0 4

5 0 6 :

7 0 8

11 0 12 i .
23 0 24

crg

For, the listed a, b, n we want to prove that pq=a implﬁes Pfqu?,,

1f pq=-T  then ptl =

(JCMN 13)



-5-
The residue class p. has an inverse (=q) theréfore p is in ‘the multiplicative

group and so p2 Z 1 but p(-q) =1 and so p £ ~-q. .

Case 2 n = 2(l+a). If a is even, lea = a = 2 x 2 and so l+a =2+ % which
—— : 2

implies a = 2, and n = 6. This does not give a solution,

Suppose a is odd. Then (n,a) = 1 so again a lies in the multiplicative group
of all integers coprime to n mod n. Let B be any element of this group,

say Bk =1,
aB x sk'l Z a
so 2aB +28k.1 =0
So2a+ 2852 = 0
o 2882 £2 modn o
G2 = 262 ‘since gX =1
R | = 82 mod a+l

This implies‘%-is one of the n found in case 1. Corresponding solutions for

case 2 are .

(- T - N I 8

12
12 24

= N W = 0

1

By inspecting it will be seen there are no solutions for:the possible values
n =16, 48, ’

B.B. Newman

TWO QUESTIONS ON BINOMIAL COEFFICIENTS (JCMN 12)

Solutions have come in from H.0. Davies, B.B. Newman and C.J. Smyth, no two of
them alike.

(a)  Find u(k) ='Zg(;1)“(3)vk for k = 0, 1, ... n+l.

Bill Newman points out that 0° has to be given the value 1, because the
binomial expansion of (140)° is the one term(gloo .

Method (1)  Ju(k)x/k! = Zj:O(-l).j ) Lo 3%

= (1-e9" = D (14x/2 +...)"
Equating coefficients of powers of x:
u(k) = 0 for k =0, 1, ... n-1

u(n) = (-1)" n! ‘

u(n+l) = %(-1)"n(n+1)!
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Method (i) D=0 = (11712 = -0V ) (-0 7
Ny VMY frq,: v(v+l) -2
= Lo DY) {1bvx + = x" + ...}
Equate coefficients :as before.
Method (111)  (1-x)" = 2(-1)“(3)#“

Oﬁerate k times with x d/dx and put x=1 to get u(k) . For k<n it is clear
without doing the calculation that it will give the result zero. >For k=n or
ntl one is inclined to put x = exp ¥ so that xd/dx = d/dy, comingﬂﬁack

to method (1). '

(b)  Prove: Eg(-l)s[:)(s;k]s (-l)k(;f;) for k and r non-negative integers.

Method (1) Because(-j) = (-1)r+j -1 (-r-l

s rky s~k k r+k-1 Ky (~1-
A= ZS,O< -0 = LS T L)
~ which is the coefficient of xkfl in the expansion of
r yck s (ky.s ® Fr-r-14y 3
DF {507 (97} 11,70 CE))

= (1T (10X o (c1)F-x) T

rk-1 ~r-14+ky k
gep )= 1

where we must take r2k for the last expression to have

(*)

Hence A = (~1) :t) using (*) again

meaning.
'tMéfhod'(ii)JV Introduce the notation a(a-h)...(a-nh+h) = anlﬁf

There 1s a Factorial Binomial Theorem
nlh n n n-rl r‘h
(a+p)" 1P = TO(T) SPTINy

S - and 1t may be noted_;hat‘(:) = nrlllr!

- k) r+k-s—1(k—r- ) = (~pTHs=l o gyke =s=111 s 1oy e
s (ky(s-ky_ (-1 THeL L pyke -s-1|1 ks|1
. (f;) (s)( r ) . (k=s~1)! s!
RN 1)r+k -1 (k 1)( k~s-1|1 slll(k 1),

' Now apply‘thé factorial bfnomial theorem
r+k-1 k-1|1/(k_1)!

= (-1) (r+1-k)(r+2—k)...r/(k—l)! = D)

Sum = (-1)" (~r~1+k)

Method (140 ¢ )K(14 3K o (14ay ™ (1-(142))

Lo ZE(—I)S (z}(1+z)s-k

Expand both sides in powers of z and equate coefficients of z¥.
(Jom 13)
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'SOME HARD ANALYSIS (JCMN 12)

Let I = f:cot(x/Z) sin (|n|x) exp(ny)dx

and I = f:cot(xIZ) (exp n(ixt+y) = 1)dx
- for an‘;l?izi e

where sin(x/2) = sinh(y/2) .... (1) .

We _cannot work with C 4 o , . /
o fcot(x/Z)exp n(ix-l-y)dx .

|
I
I
|
because it has infinite real part. ) f ' : o T

Then Im Jn'= sgn(n) L9} for n = £1,%2, ..,
. PR I ~1Ax ey
Now (1) gives easily e -1 = w+ w e  ‘where w = 1 exp k(ixty).
Hence exp(ix) = (l4w)/(l-1/w) and so -1
_cot x/2 dx = d(2 log sin x/2) = d<log(l—99-s——’-‘-)> = d(1 og(Z-—-—— S D

-1 14w
/
- d/lo (” “) )=1 R L.
w(w -1) P w +1 w +1

1-w
Put z = w2. Then eix-!-y" = -z and

cot x/2 dx 35641 - ; - o1 )dz.

As x pgoes from 0 to m, /2 goes from 1 'to (1+V2), - ‘goes from i to -(1+/2) and

so z goes from -1 to '(1+ﬁ)2;5“6h a contour C which passes under the unit circle
: PR [ PR R RS :

Hence J = (f: F (2)dz, where F (2) = 55[( z)"- ][—ﬁ- - % - Z—E-i- .

Now take the integral over the closed curve CuUC formed by C and its reflection in
the real axis, anticlockwise. Then since

Fn(?) = Fn(z), we have é Fn = - CiFn, and so




P
21Im3J_= [ F (2) dz
" oot ™

and hence for n = #1,%2, ..,

sgn(n) In = ﬂ[sum of residues of‘Fn at 0 and 1] (2)

n
(N.B. Fn has no pole at -1,) At z = 1, residue Of‘Fn = residue of l-i:i) ,
which is easily seen to be 1-(-1)". At 2=0, residue of F is clearly % when

n=1, 2, ... For -n=-1, -2, ..., we have at 2z=0

F_(2) = %[S-z)'“ -1] I;(l-z+z+...+(-l)n_lzﬂ—1+...)—z-1+2(1+z+;..+zn_1+...}]
so that the residue is %[k-l)“4(-1)“‘1+1 +2 (-1)?] = <24 (-1)",
Hence for n=1, 2, ..., Iﬁ = (1-(-1)n+%)ﬂ = [§-- (-l)n]w and

for -n = -1, =2, ... I = -(1-C-D" - 24 %+ DY = I

C.J. Smyth

-

"STATISTICS IN ACTION" by Peter Sprent.
Published by Pelican as a paperback.
Retail Price $2.95. ISBN 0 14 02,1955 2

" This 1ntfoduc;ion to statistics is written for readers with no previous
mathematical training béydnd"simple arithmetic. Because of this, the author
concentrates more on statistical concepts and ideas than on computation. He
covers a range of topics including hypothesis testing, analysis of variance,
regression, the use of CUSUM charts, queueing theory and Bayesian statistics.
Also included are sections on more unusual ideas, such as the differences in
‘sentence constructibn of two authors. One chapter is devoted to a discussion
on the advantages and disadvantages of computer usage, with special reference

to statistical packages.

A mathematics student may find this book rather light~hearted compared with
conventional texts. But for the non-mathematician, the author's informal approach
and wide range of examples would turn the task of understanding and applying some

statistical techniques into a rather interesting experience.

M. Kahn

(JCMN 13)
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ANYONE FOR A SPOT OF RIGOUR?
The partial differential equation
" 3/3x(r%0y/0%) = r29%y/3t2 where r = r(x) > 0
arises naturaliy from considering sound in a voice-pipe with circular cross-
section of variable radius r(x), or (after some manipulation) from a vibrating
string of variable density and tension, or from long waves in a non-uniform canal.
It is well known that if r is constant there is a solution y=y(x~t) which cah
be interpreted as a signal moving only in the positive direction, but a step in
the function r(x) (that is r=a for x<b and r=c for x>b) causes partial
reflection of any signal reaching the point x=b. Partial reflections are of

widespread technical importance and so one wants to clarify how they arise in this
partial differential equation. What:is wrong with the following discussion?

.. The parameters ' u=r(yt + yx) and v = r(yt - Yx)
- - '
satisfy u, - u =r v/r
and vyt v, =rlu/r

and the energy conservation equation
8/3x (v -u ) + a/at (v +u ) =0

The mean velocity of energy flow is (v -uz)/(v2+u2) ffom left to right, and this
is always between plus and minus one. Generally we may suppose that locally the
disturbance may be separated into one part which is a progressive wave in the
positive direction (that is from left to right) and another part representing a
progressive wave the other way. With each of these two parts there will be
associated an energy flow equal to the appropriate energy density nultiplied by
the group velocity. The energy conmervation equation above forces us to conclude
that v is the parameter measuring the progressive wave in the positive direction.
The equation vx+vt = r'u/r tells us that v is propagated unchanged at unit
velocity in the positive direction except that where r'*O the quantity v is
added to by a term that can be interpreted as a partial reflection of the wave
that is travelling in the negative direction.

A few years ago a cable railway was being built in the Atherton Tablelands and
~when the suspension cable was being set up they wanted to check its tension by
hitting it with an iron bar and timing the return of the pulse. The tension was
appreciably differept at the two ends and the simple wave equation did not apply.

By reééOﬁingxiiké that above I came to the conclusion that when the partial
differential equation was put in the form considered here (replacing length s along
the cable by x = f(p/T(s)]%ds) the partial reflection phenomenon would not

seriously impair the transmission of the signal. Consequently I told the engineer

involved in the construction that he would get the correct relation between the



"lO‘ o R
tension and the time of return of the pulse by numerical integration using the
elementary value for the local wave speed.

The cable railway is now in service successfully, but would it be right to say
“that in our original partial differential equation we may associate partial
‘reflections with-nonfconstancy_of the function r(x)?

' mnm TIME LUCKY
m
If I press the l-key twice on my calculator, 1 do not necessarily obtain -by-
original number. However, if I press it three times I get exactly the same result

as pressing it once. Can you prove that this is alwaie s0?

Since this is a discrete problem, it is perhaps best formulated precigely in terms
of the integers. As the exponent of 10, of the original number plays no essential

part in the problem we can ignore it, and suppose that we have an integer n in

the range 109 £n< IOIO.Define
f(n) = nearest'infeger'td 109 R
n
(*s odd integers rounded upwards) . Then 109 < f(n) 1010, " The problem is to show

that for n 1n this range, f(f(f(n))] = f(n) We can also ask what values
f(f(n))-n can take and what is the smallest n with f(f(n))+n

C.J. Smyth

A NEST OF TRIANGLES

C

There are three triangles, ABC, UVW and XYZ, as above, the eecénd'is inscribed in
the first and the third in the second. S |

Prove that if two of the three pairs of triangles are in perspective then so is
the third pair.

A.P. Guinand

(JeMN 13)
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ALGORITHM WANTED

Given n points in k-dimensional Cartesian space how do you calculate the volume
of their convex hull?

J.B. Parker

SEARCH PATTERNS

Consider how best to find a stationary object at sea, given an inaccurate
estimate for its position. The common method is the "square search". If
your aircraft or ship is capable of

searching a strip of width w, that

go to the estimated position, then : l
steer a distance w North, then w ' 7% I
East, 2w South, 2w West, 3w North / J
and so on (adding w to the length /..__..__.__
of the leg at alternate turns). Is <
there a more efficient way? Two : 7‘:

possible disadvantages.of the square

search are that there is a bit missed on the outside of .each corner, and that scme

~ -bits of sea are searched twice on account of the Journey in from base to the centre

where the square search starts,

J.B. Parker

INEQUALITY WANTED (JCMN 10 and 12)
Let 0 < a <b and let m be a probability measure on [a, b]. Put u= ftdm,

02 = f(t—u)zdm and G = expflog t dm. The inequality 02/(2b) fu-6¢£sg 02/(23)

(for the case where m consists of finitely many points of equal weight) was
suggested by K.S. Williams in Eureka (Volume 3, 1977) and proved by G. Szekeres in
JCMN 12. This special case can be shown equivalent to the general case by a
theorem in functional analysis. The following is a summary of a paper accepted for
Proc. Amer. Math.Soc. entitled "A Refinement of the Arithmetic Mean~-Geometric Mean
Inequality" by D.I. Cartwright and M.J. Field.

Lemma If0<q<1andt20 then

1 +qt + %q(1 - l)t2 SA+0)is1+ qt + %q(q - l)tzl(l + t)

This lemma leads to a. proof of the theorem when m is a two-point distribution.
Now we try to establish the theorem when m is any n-point distribution, points X,

with weights P, (r=1, 2, ...n). We use induction on n. Let the X, be fixed, we

may assume them distinct. Consider
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£() = £(py, .. By = W = G - [p, (x -2/ (2b)

as a function of p in the set S where all Py 20, Noté that in this function
we do not assume Zpk = 1 and also that u and G depend on p as before, that is
(TR Zpkxk and G = exp Zpk log Xy . There is a point p® when f is minimized
subject to Zpk = 1. 1If p® is an interior point of S then there is a Lagrange
multiplier A such that 9¢/3p, = A(/3p) (-1 + Ip) = A

Xy - G log xj‘- (#j - u)2/(2b) = )
for each j at the point po."Thus each xj is a solution of the equation

E~Glog £ ~ (E-u)zl(Zb) = ). Between any two roots there is by Rolle's theorem

a root of '
1 -G/E~ (B-n)/b=0 or&- (bH)E+DbGC =0

which has at most one solution between a and b. It follows that there cannot be
more than two distinct values of xj and so n S 2. 1In this case the theorem is
proved: If on the other hand po is not an interior point of the set S then one
pj = 0 and the theorem follows by induction. The other inequality is proved

similarly,

I
D./J{ Cartwright and M.d. Field

RANK ONE MATRICES

A square matrix has rank one. Show that it is similar to a diagonal matrix if and

only if its square is non-zero.
H. Kestelman

NON-NEGATIVE MATRICES

P i1s a real nXn matrix whose elements are all 2 0. For every choice of 1,j,
1<i,j%n, there 1s a k such that the (i,j)th element of Pk is positive. If P
has a positive element on its diagonal, prove that all elements of PY are

positive if q is large enough.

H. Kestelman

Your editor would like to hear from you anything commected with mathematics or
with James Cook.

Prof. B.C. Rennie, Mathematics Department,
James Cook University of North Queensland,
Post Office James Cook University, Q.4811,
Townsville, Australia.




