Theoretical case study: entropy minimization

Dr Paresh Date

Brunel University, UK

June 2016

Dr Paresh Date (Brunel University, UK) Theoretical case study: entropy minimization

June 2016

Dr Paresh Date (Brunel University, UK) Theoretical case study: entropy minimization

June 2016

Case study II

• A measure of closeness typically used is *relative entropy*:

$$K_{\pi}(\tilde{\pi}) = \sum_{i=1}^{n} \tilde{\pi}_{i} \log \left(\frac{\tilde{\pi}_{i}}{\pi_{i}} \right).$$
 (2)

- Note that $K''_{\pi}(\tilde{\pi}) > 0$, so that relative entropy is convex in $\tilde{\pi}$.
- Minimizing $K_{\pi}(\tilde{\pi})$ with respect to constraints (1) is thus a convex problem.

Case study I

- Consider a discrete probability distribution, $\{\pi_i, x_i\}$, with $\sum_i \pi_i = 1$, $\pi_i > 0$. x_i are support points.
- This is our *trial* distribution. Suppose that some new information about the distribution becomes available, e.g. its mean needs to be \bar{x} .
- We need to find a new measure $\{\tilde{\pi}_i, x_i\}$, such that

$$\sum_{i} \tilde{\pi}_{i} = 1, \tilde{\pi}_{i} > 0, \sum_{i} \tilde{\pi}_{i} x_{i} = \bar{x}$$
 (1)

and $\tilde{\pi}_i$ is 'as close as possible' to π_i .

Case study III

$$\begin{split} L &= \sum_{i=1}^n \tilde{\pi}_i \log \frac{\tilde{\pi}_i}{\pi_i} - \sum_{i=1}^n \lambda_i \tilde{\pi}_i + \nu_1 (\sum_{i=1}^n \tilde{\pi}_i - 1) + \nu_2 (\sum_{i=1}^n \tilde{\pi}_i x_i - \bar{x}), \\ \text{so that } (\nabla_L)_i &= 1 + \log \frac{\tilde{\pi}_i}{\pi_i} - \lambda_i + \nu_1 + \nu_2 x_i. \end{split}$$

• KKT for optimal $(\tilde{\pi}_i^{\star}, \lambda_i^{\star}, \nu_1^{\star}, \nu_2^{\star})$ gives $\lambda_i^{\star} = 0$ and

$$1 + \log \frac{\tilde{\pi}_{i}^{\star}}{\pi_{i}} + \nu_{1}^{\star} + \nu_{2}^{\star} x_{i} = 0, i.e.$$

$$\tilde{\pi}_{i}^{\star} = \pi_{i} \exp(-\nu_{2}^{\star} x_{i}) \exp(-1 - \nu_{1}^{\star}) = \frac{\pi_{i} \exp(-\nu_{2}^{\star} x_{i})}{\sum_{i=1}^{n} \pi_{i} \exp(-\nu_{2}^{\star} x_{i})}$$

• where the last equation uses the fact that $\tilde{\pi}_i$ add up to 1. Thus minimizing K_{π} wrt $\tilde{\pi}$ is equivalent to a scalar, unconstrained minimization in ν_2 : $f(\nu_2) = (\sum_i \tilde{\pi}_i x_i - \bar{x}) = 0$.