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A re-cap and an outline

® We have been looking at a class of convex optimization problems (convex
objective, convex inequality constraints, affine equality constraints).

® \We looked at some special types of practically relevant problems (LP,

QP).

® Now, we will first look at one more special type of problem (semidefinite
program, or SDP).

® Then we will move on to look at conditions for a point to achieve the
optimum, followed by methods to solve generic convex problems (both
unconstrained problems and constrained problems).
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Semidefinite programming problems

® SDP has the form
minimize c¢'x (1)
subject to x1F1 +xFa+ -+ x,Fp+ G <0, (2)
where F;, G are symmetric matrices, x; are decision variables.

® The inequality here is called an affine matrix inequality (AMI, also
referred to as an LMI) and indicates that the eigenvalues of the matrix on
the left hand side are non-positive.

® Recall: the maximum eigenvalue of a symmetric matrix M is a convex
function of M; hence (2) is convex in x.

® |f the matrices F; and G are diagonal, this problem reduces to an LP.

® SDP can also be expressed in terms of symmetric, matrix valued decision
variables.
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SDP and Schur complement

® The following standard result from linear algebra is useful for converting
certain non-standard convex problems into SDP:

M, M
M:_l - 3]20,M2>O<:>M1—M3M2‘1M3TZO-
M M,

® M;(x), Ma(x) and M5(x) are affine (symmetric matrix-valued) functions
of x. Note that M3M2_1M3T can be a very complicated expression in x.

® The block matrix M; — MsM, *M; is called the Schur complement of
My in M.

® This result can also be used to show that QP is a special case of SDP.
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QP as a special case of SDP

® Using Schur complement,

t—(q'x+r) x'
x 2p-1

is equivalent to
1
ExTPx +q'x+r<t.

® Now minimising the auxiliary variable t subject to the above constraint
and any affine constraints on x is a QP.

® Specialised software for solving SDPs (e.g. SeDuMi in matlab) can solve
QP or LP, although this will rarely be adviseable!

SDP appears at unexpected places - - -

® In complex analysis: consider a set of points {x;} (respectively, {y;}),
i=1,2,---,nin open (resp., closed) unit disk centred at origin in the

complex plane.
® A rational function f : C — C which is analytic in unit disk interpolates

these points (f(x;) = y;) iff

P[] =0

1—x,xj

® P can be expressed as an affine function of y;, via Schur complement.

® This result is useful in control theory, where analyticity of f relates to
stability of the underlying linear system.
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® |n probability theory: consider a set of real numbers m;, i =1,2,--- , n. ® For a convex f(x), we know that V(x*) = 0 defines the point x* which
There exists a random variable z with m; as moments iff achieves the minimum.
H, = [miﬂ,_% >0, i,j € [0,n], with mo = 1. ® To seek the conditions for optimality in a constrained problem, the idea
of duality introduced.
® For example:
1 my mp
H3 = |my my m3
my M3 My
® This is useful in statistical experiment design.
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Duality |

® Recall, we are solving

minimize fy(x)
subject to fi(x) < 0, i=1,2,...,m
and hi(x) =0, i=1,2,...,p. (3)

® Associated with (3), there is a dual convex maximization problem
(concave objective, convex constraints).

® \We define Lagrangian L : R" x R™ x RP — R as
m P
L(X7>\a U) = fo(X)‘FZA,’f;’(X)"‘ZV;h;(X), (4)
i=1 i=1

where dom (L) = D x R™ x RP.
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Duality Il

® We refer to \; (respectively, v;) as the Lagrange multiplier associated
with the i* inequality constraint f;(x) < 0 (respectively, i equality
constraint hj(x) = 0).

® The Lagrange dual function (or simply dual function) g : R™ x RP — R
is defined as the minimum value of Lagrangian over x:

g\ v) = xlgm; L(x, A\, v)

= xlng <fb(x) + Z )\,f,(x) + Z l/,h,(X)) . (5)

If the Lagrangian is unbounded from below in x, we set g(A,v) = —oc.

® The infimum in defining g is taken over D, not over F. If x € F and
A >0, note that f(x) > L(x, A, ).
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Duality I

® Whenever A >0, g(A,v) < p*. A natural question to ask is whether
the largest possible value of g(A,v) is a good approximation to our
optimal value p*.

® Assume that fi(-) are convex and h;(-) are affine functions of x, fy(-) is
convex and assume that there exists x € D such that f;(x) < 0, i.e. the
problem is strictly feasible. Then we have

A\v):=d" = p.
smax g(Av) p
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Duality IV

® g is a pointwise infimum of affine functions of A and v and is hence
concave. Hence maximizing g(\,v) subject to A > 0 is a convex
problem and is usually referred to as the Lagrange dual problem to (3).
The multipliers (A*, v*) which achieve the optimal value of g are called
the optimal Lagrange multipliers.

® The difference d* — p* is called the duality gap. It can be zero in
conditions more general than those given above; the above conditions are
sufficient but not necessary.
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Duality V: LP example

® Primal LP problem is

minimize ¢ | x

KKT conditions for optimality |

® For differentiable convex fy, f; and affine h;, let X, X and ¥ be the points
which satisfy the following (Karush-Kuhn-Tucker or KKT) conditions:

subject to Ax = b, fi(x) <0,i=1,2,...,m, (6)
x > 0. hi(X) =0,i=1,2,...,p, @)
N >0,i=1,2,...,m, (8)
° i .
Lagrange dual is SER) =0, i=1,2,....m, 9)
Av)=-b'v, ifc+ATv =X, . P
g\ v) VHE) + Y NVAR) + Y 5 Vhi(R) = 0, (10)
= —o0 otherwise. ) )
e Dual problem is then % and (X, ) are primal and dual optimal, with zero duality gap.
maximize —b' v
subject to ATv +¢ > 0.
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KKT conditions for optimality Il Unconstrained minimization |
® Solving the optimization problem is equivalent to solving the KKT ® \We now look at solving unconstrained problems of the form
system.
minimize  f(x), (11)
® Note:(6)-(7) indicate that the point X is feasible for the primal problem,
while the complementary slackness condition (9) guarantees that with a convex and differentiable f.
fo(%) = L% A 7). ® dom(f) is either R” or is an open D such that
® The last equation (10) generalises the first order convexity condition for
: lim  f(x) = oc.
the constrained case. «bd(D) (x)
® We will return to Lagrangian and KKT later in this lecture.
® A first order necessary and sufficient condition for a point x* to be
optimal is
Vi(x*) =0. (12)
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® Sometimes we have a closed-form solution (e.g. unconstrained linear least
squares problem). If not, we use iterative methods to solve the problem.
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Unconstrained minimization |l

® Given an initial point x©) set k = 0.
Do

e Choose a search direction vector d(¥), a stepsize a, > 0, and set
xUHD) = x4 0, d®);
o Set k=k+1;

until a stopping criterion is satisfied.

® We need d¥) to be such that f(x(k*1)) < f(x()), with a) chosen to
achieve sufficient decrease along each line.

® These are called descent methods.

Choice of d(¥)

® Since f is convex, VF(x )T (y —xW) >0 = f(y) > f(x(X). Hence
we need V£ (x(9)Tdk) < 0.

e Different descent methods differ in the choice of d(¥).
® Gradient descent method: d%) = —Vf(x(¥)).

® Stepsize chosen by line search to minimize f(x(k) + akd(k)) over qy - or
by backtracking line search.

® Stopping criterion: [[Vf(x)|2 < 7.
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Backtracking line-search | Backtracking line search Il
® Given, a descent direction d¥), g € (0,0.5), v € (0,1), &uj=1,j =1 ® Since
Do F(x) 4 Gy jd) = F(x0) + 4y VF(xH) T
O set Gy jr1 = v, as f is convex, 8 must be less than 1.
® j=j+1, ® For a sufficiently small dj,
until (x4 & ;dR)) < £(xK)) + Béy ; VF(xK))TdK).
Fx) + i d) = F(x9) ~ a VAR < 5, V) A,
® |dea: start with a unit step size; reduce it by factor v until the stopping
criterion is satisfied. so that this method eventually converges (recall that V£ (x(K))Td(*) is
® This corresponds to choosing @y such that f(x(¥) + & ;d(*)) decreases negative).
sufficiently, starting from f(x(k)), although we may not actually minimize ® Usually, 5 is between 0.01 and 0.3 while « is between 0.1 and 0.8.
it.
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Properties of gradient descent

® The gradient descent method has approximately linear convergence. If
there exist constants m, M such that m/ < V?f(x) < MI, then the
error f(x(K)) — p* at iteration k can be bounded by

F(xW) — p* < H(F(xD) - pY),

where ¢ =1 — min (2mg3,28ym/M) and p* is the optimum.

® The choice of constants v, 5 has a fairly limited impact. The use of exact
line search in place of backtracking search improves the convergence, but
not significantly.

® The condition number M/m of the Hessian has a significant impact on
the rate of convergence. For problems where Hessian is poorly
conditioned (say, > 1000), gradient descent method is not used as c is
very close to one.
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Newton's method

® In Newton's method, d%) = —V2f(x(K))=1Vf(x(K)), where V2f(x(¥)) is
Hessian matrix of function f. As before, backtracking line search or exact
line search is used to choose the stepsize .

® The choice of v = d*) minimizes the right hand side of the (convex)

quadratic approximation

1
f(x9 4 v) ~ F(xP) + VFxF) Ty + EVTVQf(x(k))v.
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Newton's method: properties

® Assume that there exists constant m such that m/ < V?f(x) and that
the Hessian is Lipschitz continuous with a constant L, i.e.:

IV2F(x) — V2£(y)ll2 < Lllx—y]2
holds over domain of f. Then there are numbers 1 > 0, v > 0 such that

@ If |[VF(x)R]|2 > 5, then F(xT1) < F(x(K)) — .

® If |[VF(x)X|2 < n, then, for | > k,

2/—k+1

® The method converges rapidly once we are close to the solution.
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Newton's method: common heuristics |

® Apart from the numerical difficulties associated with inverting poorly
conditioned matrices, the convergence of Newton's method does not
depend on the conditioning of the Hessian.

® The main numerical difficulty is solving the system of linear equations
V2 (xUN)d®) = —v£(x).

This problem is usually solved using Cholesky factorization.

® |f f is approximately quadratic, the Hessian matrix is factorized only once
in every few iterations (say, 10,); dk) = H_IVf(x(k)), where H is the
last Hessian evaluated.

O°f
Oxix;j !

® |f the cross terms i # j are small, the Hessian is replaced by its

diagonal.
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Newton's method: common heuristics ||

® |f the Hessian is sparse (i.e. has only a few non-zero entries) and
structured (i.e. some of the cross derivatives are identically 0), the system
of linear equations can be solved efficiently using sparse matrix
techniques.

® For solving

S 1 2
minimize E;ﬁ(x),

where f;(x) are twice differentiable convex functions, Gauss Newton
method is often employed:

VA (x) =D (VEEVAX) " + (x)V£(x)) |
i=1
~ Y (VEX)VEX)T) .
i=1
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Some analysis of Gauss Newton method

® Let g(x) =337, fi(x)? let A be a matrix with Vf(x) as its i*" column
T
and let f = [fl(x) f(x) fm(x)]
® Then Vg(x) = Af and

dw = {Z (Vﬁ(xwmxf)} Ve (x)

i=1

= —(AAT)71Af,
so that (Vg(x))" d®) < 0, as required, i.e. we still have a descent
method.

® This does away entirely with computing the Hessian of individual
functions V2£;(x).
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Constrained optimization

® Our discussion of general optimization scheme so far has avoided any

constraints.

® \We will next look at what happens when we put in constraints, starting
with affine equality constraints.
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® Consider a problem of the form

minimize fo(x)

subject to Ax = b.

® The simplest way (although not always the most efficient way) to deal
with an affine equality constraint is to eliminate one or more variables. As

an example, consider

f(x1) + f(x2) + f(x3)

subject to  x; + 2x0 = x3,

minimize

where f(x) is a scalar and convex.
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Equality constrained minimization ||

® FEquivalent unconstrained minimization problem in two variables is:
minimize f(x1) + f(x2) + (1 + 2x2).

® |f X1, X» solve this modified problem, X1, X and X3 := X; + 2% solve the
original optimization problem and both yield the same optimal cost.

Inequality constrained minimization |

® Consider again a problem of the form

minimize f(x)

subject to fi(x) < 0,/ =1,2,...,m.

where fy, f; are convex, differentiable.

® An equivalent unconstrained problem using an indicator function is:

minimize fy(x) + Z I_(fi(x)), (13)

where the function /_ : R — R is defined by

I_(u) =0ifu <0,

= oo ifu>0.
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® A typical approximation to /_(u) is a logarithmic barrier function, defined
Approximation of log-barrier
by , : :
A 1
I (u) =~ log(~u)
151
. —L
where t > 0 is chosen by the user. R
- - 1=0.5
® This is a convex function on non-positive reals and replacing /_ in (13) ool
A . L . S
by /_ yields an unconstrained convex minimization problem with a E .
1
- . - . ~ !
differentiable objective. Rl i
= 1
7
® One can solve a sequence of unconstrained minimization problems, S
increasing t at each minimization step and starting each minimization | | 4 T
with the optimal x obtained at the minimization at the previous step. I
% = ) ) E 0 i
u
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KKT conditions under log barrier

® For simplicity of notation, we consider x > 0 as the only inequality
constraint.

® The modified problem is

minimize fo(x) — 1 Z log(x;),
i—1

subject to Ax = b,
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KKT conditions for optimality re-visited |

® | P with log barrier:

n
minimize ¢ x — E log(x;),
i=1

subject to Ax = b.

® | agrangian with log barrier is

c'x—pu Z log(x;) + v " (Ax —b)

i=1
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KKT conditions for optimality re-visited |l

® KKT conditions give

1
c+ (ATv) — pvec (;) =0,
Ax —b =0,
x > 0,

where, for g :R+— R and z € RN,

.

vec (g(2)) = [g(21) &) - glz)] -

® In LP with log barrier, an interior point method finds a sequence of
feasible points x(¥) with 1 decreasing at eack k; each feasible point found
via a Newton step.
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KKT conditions for optimality re-visited |l|
® (Simplified) QP with log barrier:

R - -
minimize = -x Px+c x—,u;Iog(x;)

Ax = b. (14)
® KKT conditions give

1
c+ (ATv) — pvec (;) + Px=0,

Ax —b =0,
x > 0.
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De-tour: Quasiconvex optimization

problem
minf(x),x € F

where f is quasiconvex (has convex sublevel sets), feasible set F is
convex.

® F can be defined by linear/convex quadratic inequalities and /or linear
equalities, for example.

® Quasiconvex problems can be solved using a sequence of convex
feasibility problems via bisection method.
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Convex feasibility problems

® Equivalent to a convex optimization problem with fy(x) = constant; find
any feasible x, if it exists.

® |t is often non-trivial to find a feasible point!

® Typically feasibility problem is solved iteratively, using sequential
projection type methods.

® Basic idea of iteration: given a point x(¥) in a set ﬂ;zl Fj, find the next

point x(**1) in a set ﬂj’:i F; by using a projection of x(¥) onto Fj, 1.
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Solving quasiconvex optimization problems

® To solve
min t such that f(x) < t, x € F,

we can use the following method:

® Given upper, lower limits u, / and a tolerance ¢,
O t=(u+1/2
@® Solve the feasibility problem to find X € F, f(X) < t;
© next u:= ty if the feasible set is non-empty (f(x) < tx for some x
in F); next | := t, otherwise.
O lterate till u — 1 <e.

® FEventually: f(x) < ty is feasible but f(x) < tx_1 is not, with
|tk — tk—1| < €, which is what we are looking for.
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An example of a quasiconvex problem

minimize X {B~(x)A(x)}
subject to B(x) > 0,x € X,
where A, B are affine in x, X' is a convex set.

® This reduces to an equivalent quasiconvex problem

minimize t subject to
A(x) < tB(x),
B(x) > 0,x € X,

® |f A B are scalar functions, this is a linear fractional program.
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What happens next?

A small theoretical case study;

® A lot more on interior point methods;

Some hands-on programming;

Enjoy the rest of the course!
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