Introduction to convex optimization I

Dr Paresh Date

Brunel University, UK

June 2016

Dr Paresh Date (Brunel University, UK) Introduction to convex optimization I

June 2016

Outline

- Introduction to convex problems
- Special classes of convex problems
 - 1 Linear programming
 - 2 Convex quadratic programming

Dr Paresh Date (Brunel University, UK)

Introduction to convex optimization I

June 2016

The convex optimization problem I

• The problems of interest are of the form

minimize
$$f_0(\mathbf{x})$$
,
subject to $f_i(\mathbf{x}) \leq 0, i = 1, 2, ..., m$,
and $h_i(\mathbf{x}) = 0, i = 1, 2, ..., p$, (1)

where the functions f_i : dom $(f_i) \supseteq \mathbb{R}^n \mapsto \mathbb{R}, i = 0, 1, 2, \dots, m$ are convex; $h_i(\mathbf{x}) = \mathbf{a}_i^{\top} \mathbf{x} - \mathbf{b}_i$, i = 1, 2, ..., p are affine.

Maximization of a concave function subject to convex constraints is also a convex optimization problem.

The convex optimization problem II

The set

$$\mathcal{D} = \bigcap \mathsf{dom}(f_i) \bigcap \mathsf{dom}(h_i)$$

is the *domain* of the optimization problem (1). \mathcal{D} is obviously convex.

- A point $x \in \mathcal{D}$ is said to be a *feasible* point for (1) if it satisfies $f_i(\mathbf{x}) < 0, i = 1, 2, ..., m, h_i(\mathbf{x}) = 0, i = 1, 2, ..., p.$ The set of all feasible points \mathcal{F} is called the feasible set or the constraint set.
- The optimal value p* is defined as

$$p^* = \inf \{ f_0(\mathbf{x}), \mathbf{x} \in \mathcal{F} \},$$

where p^* is $-\infty$ if the problem is unbounded from below.

• A point x^* is said to be an optimal point if it is feasible and $f_0(\mathbf{x}^*) = p^*$.

Dr Paresh Date (Brunel University, UK) Introduction to convex optimization I

June 2016

Dr Paresh Date (Brunel University, UK) Introduction to convex optimization I

June 2016

The convex optimization problem III

- We say that (1) is solvable and the optimum is attained if \mathbf{x}^* exists; the problem is unsolvable if \mathcal{F} is empty or if $p^* = -\infty$.
- A point x is ϵ -suboptimal if it is feasible and $f_0(x) \leq p^* + \epsilon$, where $\epsilon > 0$.
- A feasible point \mathbf{x}_{i}^{\star} is said to be *locally optimal* if there exists r > 0 such

$$f_0(\mathbf{x}_I^{\star}) = \inf \left\{ f_0(\mathbf{x}), \mathbf{x} \in \mathcal{F}, \|\mathbf{x} - \mathbf{x}_I^{\star}\|_2 \leq r \right\},$$

and is said to be *globally optimal* if it is optimal over all $x \in \mathcal{F}$.

- For convex optimization problems, any local optimum is also a global optimum, and the set of points which achieves this optimum is convex.
- This means: if we are searching for an optimum, we can stop once we find a local one. There is no better optimum out there in the domain.

Dr Paresh Date (Brunel University, UK) Introduction to convex optimization I

A simple equivalent formulation

• Note that problem (1) is also equivalent to

minimize
$$t$$
,
subject to $f_0(\mathbf{x}) \leq t$, $f_i(\mathbf{x}) \leq 0$, $i = 1, 2, ..., m$,
and $h_i(\mathbf{x}) = 0$, $i = 1, 2, ..., p$, (2)

- No further constraint on new decision variable t means that we can simply set $t^* = f_0(\mathbf{x}^*)$. This is also called *epigraph* formulation.
- This added variable t comes handy in many cases when $f_0(\mathbf{x})$ itself is less convenient to deal with, as we shall see.

Dr Paresh Date (Brunel University, UK) Introduction to convex optimization I

June 2016

Applications of convex optimization

- Within OR, convex optimization problems occur in supply chain planning, capacity location, financial portfolio optimization, asset and liability management, · · ·
- Elsewhere, they also occur in data analysis (curve fitting), signal processing, control system design, structural optimization, antenna array design, · · ·
- Special types of (extremely useful) convex optimization problems: linear programming (LP), quadratic programming (QP) and semi-definite programming (SDP).
- Very significant body of theoretical research as well as software implementation exists for each of these.

The linear programming problem

• In LP, both the objective function and the constraint functions are linear:

minimize
$$\mathbf{c}^{\top} \mathbf{x}$$

subject to $A\mathbf{x} = \mathbf{b}$,
 $\mathbf{x} \ge 0$, (3)

- The vectors c, b and the matrix A are the problem parameters specifying the objective function and the constraint functions.
- Applied convex programming starts with LP; simplex method of Dantzig \sim 1947-48 made mathematical optimization tractable.
- Still a work-horse within financial optimization. You will learn about solving large scale LPs in this course.

Example of LP: the diet problem

- Suppose that there are *m* basic nutrients;
- A healthy diet needs b_i units of ith nutrient per day.
- There are n different food items available, with one unit of item icontaining a_{ii} units of nutrient j.
- Price of food item *i* is *c_i* per unit.
- How do we minimize the cost of food per day, while keeping the diet healthy?

Dr Paresh Date (Brunel University, UK) Introduction to convex optimization I

June 2016

The diet problem (continued)

This leads, precisely, to

minimize
$$\mathbf{c}^{\top} \mathbf{x}$$

subject to $A\mathbf{x} = \mathbf{b}$,
 $\mathbf{x} \ge 0$, (4)

where x_i is the number of units of food item i to be purchased.

- There might be other linear constraints on x, e.g. on the number of units of any one food item purchased.
- Note: Increasing the number of food items from, say, 20 to 200 makes very little difference in computational complexity, but ...
- Saying 'use any 10 out of 20 food items' makes obtaining an exact solution 'far more difficult' / practically impossible.

Dr Paresh Date (Brunel University, UK) Introduction to convex optimization I

June 2016

The Quadratic programming problem

• In QP, the objective function is convex guadratic and the constraint functions are linear, i.e. the problem is of the form

minimize
$$\frac{1}{2}\mathbf{x}^{\top}P\mathbf{x} + \mathbf{q}^{\top}\mathbf{x} + r$$

subject to $G\mathbf{x} \leq \mathbf{h}$, (5)
 $A\mathbf{x} = \mathbf{b}$.

- The matrices P, G, A, vectors \mathbf{q} , \mathbf{h} and the scalar r are the problem parameters.
- The vector inequality (5) indicates that Gx h has all non-negative elements
- The matrix P is required to be positive semi-definite for this problem to be convex $(\mathbf{x}^{\top}P\mathbf{x} > 0 \ \forall \ \mathbf{x})$.

Examples of QP: least squares data-fitting

• In data fitting problems,

$$\mathbf{b} = A\mathbf{x} + \mathbf{v}$$

where b is a vector of measurements, the perturbation \mathbf{v} is assumed to be small and we are trying to find a vector x which minimizes the Euclidian norm of this perturbation. This leads to QP

$$minimize ||A\mathbf{x} - \mathbf{b}||_2^2$$
 (6)

- This has a closed-form solution if there are no constraints on x; needs to be solved numerically if there are constraints, e.g. $x \ge 0$.
- In interpolation problems, the matrix A has entries of the form $(A)_{ii} = \theta_i^{j-1}$ for given $\theta_i, i = 1, 2, \dots m$ and the problem is to find the coefficient vector \mathbf{x} of a polynomial $p(\theta)$ of a prescribed degree n, which best matches the set of points (θ_i, b_i) .

Data fitting in I_1 norm as LP

- Recall least squares data fitting; in general, minimizing any vector norm of $A\mathbf{x} - \mathbf{b}$ is a convex problem.
- In particular, since $\|\mathbf{z}\|_1 = \sum_i |z_i|$, we can re-formulate minimizing $||A\mathbf{x} - \mathbf{b}||_1$ over \mathbf{x} as a linear program:

minimize
$$\sum_{i} t_{i}$$
 subject to $(A\mathbf{x} - \mathbf{b})_{i} \leq t_{i}$ $(A\mathbf{x} - \mathbf{b})_{i} \geq -t_{i}$.

with $t_1, \dots t_n$ as auxiliary decision variables.

Dr Paresh Date (Brunel University, UK) Introduction to convex optimization I

June 2016 13 / 21

Data fitting in I_{∞} norm as LP

- Infinity norm for a vector is defined by $\|\mathbf{z}\|_{\infty} = \max_{i} |z_{i}|$.
- We can re-formulate minimizing $||A\mathbf{x} \mathbf{b}||_{\infty}$ as a linear program:

minimize t subject to

$$(A\mathbf{x} - \mathbf{b})_i \leq t$$

$$(A\mathbf{x}-\mathbf{b})_i \geq -t,$$

with t as a single auxiliary decision variable.

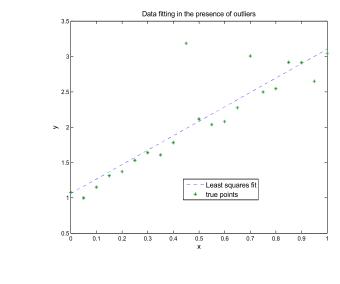
Dr Paresh Date (Brunel University, UK)

June 2016

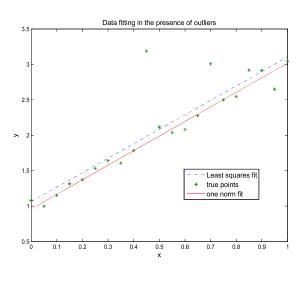
Data fitting: what should you use?

- Least squares is usually the quickest.
- If you want a solution robust to outliers: use l_1 -norm.
- If you want to get the 'best worst case' fit: use I_{∞} -norm.
- For the same set of points (y = 2x + 1 + random noise) with two outliers, we can compare the fits obtained by minimising different norms.

Data fitting with outliers: least squares fit



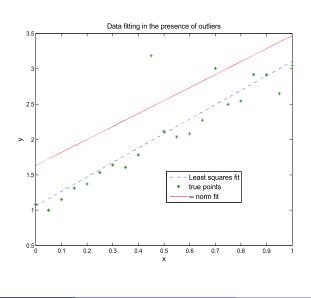
Least squares vs 1—norm fit



Dr Paresh Date (Brunel University, UK)

June 2016 17 / 21

Least squares vs ∞-norm fit



Dr Paresh Date (Brunel University, UK)

June 2016

Recognizing convex problems

- See if you can re-formulate the problem as LP/QP or SDP (next lecture);
- See if you can re-formulate it as a quasiconvex problem (next lecture);
- Can you arrive at your objective function and constraints via composition of simpler convex functions?
- Check convexity of functions via gradient/Hessian/ testing it on a line.

Recognizing convex problems - example

• Given a decision vector x specifying variables such as retail price and advertising spend, let the probability of consumer buying your product be defined by

$$f(x) = \frac{\exp(\mathbf{a}^{\top}\mathbf{x} + \mathbf{b})}{1 + \exp(\mathbf{a}^{\top}\mathbf{x} + \mathbf{b})}.$$

How would you maximize $f(\mathbf{x})$ over \mathbf{x} ? Assume that there are suitable constraints over \mathbf{x} , and $\mathbf{a}^{\top}\mathbf{x} + \mathbf{b} \geq 0$.

- $h(x) = e^x/1 + e^x$ is concave and non-decreasing and $g(x) = a^T \mathbf{x} + \mathbf{b}$. Hence f(x) = h(g(x)) is concave. Further, $\nabla(f) = 0 \Leftrightarrow \nabla(g) = 0$.
- This is a simple linear programming problem if the constraints on x are affine.

19 / 21

Next steps

- Having looked at a few different types of convex optimization problems,
- we will next look at one more special- and important- class of problems (semidefinite programs).
- Then we will look at some theoretical analysis of optimization and (finally!) how to actually solve these problems.
- This will also include a de-tour on modelling and solving quasiconvex optimization problems.

0 0 0

Dr Paresh Date (Brunel University, UK) Introduction to convex optimization I

June 2016

21 / 21

