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The convex optimization problem | The convex optimization problem ||
® The problems of interest are of the form ® The set
D = (") dom(f;) (") dom(h;)
minimize  fy(x),
: . is the domain of the optimization problem (1). D is obviously convex.
subject to fi(x) < 0,i=1,2,...,m, P P (1) y
and hi(x) = 0, i=1,2,....p, (1) ® A point x € D is said to be a feasible point for (1) if it satisfies
fi(x) <0,i=1,2,....m, hi(x) =0,i=1,2,...,p. The set of all
where the functions f; : dom () D R" — R, i=0,1,2,...,m are feasible points F is called the feasible set or the constraint set.
convex; hi(x) =a; x —b;, i =1,2,...,p are affine. o The optimal value p* is defined as
® Maximization of a concave function subject to convex constraints is also
.
a convex optimization problem. p* =inf{fo(x),x € F},
where p* is —oo if the problem is unbounded from below.
® A point x* is said to be an optimal point if it is feasible and f(x*) = p*.
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The convex optimization problem Il

® We say that (1) is solvable and the optimum is attained if x* exists; the
problem is unsolvable if F is empty or if p* = —oc.

® A point x is e—suboptimal if it is feasible and f(x) < p* + ¢, where
e>0.

® A feasible point x} is said to be locally optimal if there exists r > 0 such
that
fo(xj) = inf {fo(x),x € F,[Ix —xj[l2 < r},

and is said to be globally optimal if it is optimal over all x € F.

® For convex optimization problems, any local optimum is also a
global optimum, and the set of points which achieves this optimum
is convex.

® This means: if we are searching for an optimum, we can stop once we
find a local one. There is no better optimum out there in the domain.

A simple equivalent formulation

® Note that problem (1) is also equivalent to
minimize t,
subject to fy(x) <t, fi(x) < 0,i=1,2,...,m,
and hi(x) = 0,i=1,2,...,p, (2)

® No further constraint on new decision variable t means that we can
simply set t* = fo(x*). This is also called epigraph formulation.

® This added variable t comes handy in many cases when fy(x) itself is less
convenient to deal with, as we shall see.
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Applications of convex optimization The linear programming problem
® Within OR, convex optimization problems occur in supply chain planning, ® |n LP, both the objective function and the constraint functions are linear:
capacity location, financial portfolio optimization, asset and liability .
management, - - - minimize ¢’ x
. . . . subject to Ax =b
® Elsewhere, they also occur in data analysis (curve fitting), signal ) ’
processing, control system design, structural optimization, antenna array x = 0, (3)
design, - -- ) -
® The vectors c,b and the matrix A are the problem parameters specifying
® Special types of (extremely useful) convex optimization problems: linear the objective function and the constraint functions.
programming (LP), quadratic programming (QP) and semi-definite
programming (SDP). Applied convex programmlng starts. W!th !_P, simplex method of Dantzig
~ 1947-48 made mathematical optimization tractable.
® Very significant body of theoretical research as well as software
. : ! o Cii ) A . S .
implementation exists for each of these. Still a work-horse within financial optimization. You will learn about
solving large scale LPs in this course.
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Example of LP: the diet problem

® Suppose that there are m basic nutrients;
® A healthy diet needs b; units of jtM nutrient per day.

® There are n different food items available, with one unit of item /
containing aj; units of nutrient j.

® Price of food item i is ¢; per unit.

® How do we minimize the cost of food per day, while keeping the diet
healthy?

The diet problem (continued)

® This leads, precisely, to

minimize ¢ | x
subject to Ax = b,
x >0, (4)

where x; is the number of units of food item i to be purchased.

® There might be other linear constraints on x, e.g. on the number of units
of any one food item purchased.

® Note: Increasing the number of food items from, say, 20 to 200 makes
very little difference in computational complexity, but - - -

® Saying ‘use any 10 out of 20 food items’ makes obtaining an exact
solution ‘far more difficult’/ practically impossible.
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The Quadratic programming problem Examples of QP: least squares data-fitting
® In QP, the objective function is convex quadratic and the constraint ® |n data fitting problems,
functions are linear, i.e. the problem is of the form b=Ax-+v
T T where b is a vector of measurements, the perturbation v is assumed to be
minimize —=x ' Px+4+q X+ r ) ) . o o
2 small and we are trying to find a vector x which minimizes the Euclidian
subject to Gx < h, (5) norm of this perturbation. This leads to QP
Ax = b.
minimize ||Ax — b||3 (6)
® The matrices P, G, A, vectors q, h and the scalar r are the problem . L .
® This has a closed-form solution if there are no constraints on x; needs to
parameters. . . .
be solved numerically if there are constraints, e.g. x > 0.
® The vector inequality (5) indicates that Gx — h has all non-negative . . . .
clements ® |n interpolation problems, the matrix A has entries of the form
' (A); = Gf_l for given 0;,i = 1,2,...m and the problem is to find the
® The matrix P is required to be pOSitiVG semi-definite for this problem to coefficient vector x of a polynomia| p(@) of a prescribed degree n, which
be convex (x" Px > 0 Vx). best matches the set of points (0;, b;).
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Data fitting in /; norm as LP

® Recall least squares data fitting; in general, minimizing any vector norm
of Ax — b is a convex problem.

® |n particular, since ||z||1 = )", |z]|, we can re-formulate minimizing
|IAx — bl|; over x as a linear program:

minimize Zt,- subject to

1

IN

(AX— b), t;
(AX— b), > —ti,

with ty,-- - t, as auxiliary decision variables.
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Data fitting in /. norm as LP

® Infinity norm for a vector is defined by ||z||oc = max;|z].

® We can re-formulate minimizing ||[Ax — b||~ as a linear program:

minimize t subject to
(AX — b), <t
(AX — b), > —t,

with t as a single auxiliary decision variable.

June 2016
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Data fitting: what should you use?

® | east squares is usually the quickest.
® |f you want a solution robust to outliers: use /;—norm.
® |f you want to get the ‘best worst case’ fit: use /,,—norm.

® For the same set of points (y = 2x 4 14 random noise) with two outliers,
we can compare the fits obtained by minimising different norms.
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Data fitting with outliers: least squares fit

Data fitting in the presence of outliers
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Least squares

35

vs 1—norm fit

Data fitting in the presence of outliers
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Least squares vs oo-norm fit
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Recognizing convex problems Recognizing convex problems - example
® See if you can re-formulate the problem as LP/QP or SDP (next lecture); ® Given a decision vector x specifying variables such as retail price and
. . . advertising spend, let the probability of consumer buying your product be
® See if you can re-formulate it as a quasiconvex problem (next lecture); , &P P y ying yourp
defined by
® Can you arrive at your objective function and constraints via composition Flx) = exp(a’x +b)
of simpler convex functions? 1+exp(@a’™x+b)
® Check convexity of functions via gradient/Hessian/ testing it on a line. How would you maximize f(x) over x? Assume that there are suitable
constraints over x, and a' x +b > 0.
® h(x) = €/1+e* is concave and non-decreasing and g(x) = a'x + b.
Hence f(x) = h(g(x)) is concave. Further, V(f) =0« V(g) = 0.
® This is a simple linear programming problem if the constraints on x are
affine.
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Next steps

® Having looked at a few different types of convex optimization problems,

® we will next look at one more special- and important- class of problems
(semidefinite programs).

® Then we will look at some theoretical analysis of optimization and
(finally!) how to actually solve these problems.

® This will also include a de-tour on modelling and solving quasiconvex

optimization problems.
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