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Introduction Convex optimization problems

These problems are of special interest with OR/ applied mathematics for several

® Our goal is to study a class of mathematical optimization problems of the reasons:

following type:
® The minimum solution in guaranteed to be unique, i.e. there is only one

minimize fy(x) vector X which solves the problem.
subject to fi(x) < 0, i=1,2,....m ® A large number of problems in operations research, signal processing,
and hi(x) =0, i=1,2,...,p. process control etc can be formulated as convex optimization problems.

Here, x represents a vector of decision variables, f,(x) is cost function to ® Efficient numerical algorithms exist to solve several special types of

be minimized and f;(x), h;(x) represent the constraints which the decision convex optimization problems which are of practical importance.

variables must observe. ® One can use convex relaxation to find good approximate solutions to

® The goal of optimization is to find an optimal vector & which satisfies many non-convex optimization problems relatively quickly.

(%) < 0, hi(X) = 0 and minimizes fy. The class of optimization
problems which we are interested in are called convex optimization
problems.
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Convex optimization: our road-map

We will now look at
® sets over which these problems are defined (convex sets), and

® the classes of functions for which these problems are defined (convex
functions).

In subsequent lectures, we will move on to
® Different types of convex optimization problems

® Generic methods for solving some classes of these problems.

Dr Paresh Date (Brunel University, UK) Foundations of convexity June 2016

5 /30

Affine sets and convex sets

® Aset C € R"is affine if, for any x1,xo € C and 6 € R, we have
Ox1 4+ (1 — 6)xa € C. In other words, the line joining any two points in
an affine set C lies entirely in C.

® FEvery affine set may be expressed as the solution set of a system of linear

equations, C = {x|Ax = b}.

® A set C is convex if the line segment between two points x1, x» lies
entirely in C, i.e., if for any x1,x, € C and for any 6 € [0, 1], we have
Ox1 + (1 — G)Xz eC.

® One can move from any point in a convex set C to any other point via an

unobstructed path within the set.

® FEvery affine set is convex, but the converse is not true.
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Convex hull

e A point of the form Y- 6;x;, Y% 6, =1, 6; > 0 is called a convex
combination of points x;, i = 1,2,..., k. For a (not necessarily convex)

set C, the set of convex combinations of all its points is called the convex
hull of C, denoted by conv(C :

K K
conv(C := {ZH;X,-|X,- eC,0; > O,ZH; = 1}.
i=1 i=1
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Examples of convex sets |: hyperplanes

® A hyperplane is a set of the form
{x]a'x= b},

where a € R”, a # 0 and b € R. Alternatively, the hyperplane may be
expressed as

{x|a”(x — x0) = 0},
where xp is any vector such that a'xo=b.

® A hyperplane divides R” into two convex half spaces:
{x| alx < b},
with & = a for one half space and & = —a for another half space.
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Hyperplanes (continued)

There are two important results in convexity theory related to hyperplanes:

® Suppose that C and D are two convex sets which do not intersect, i.e.
CD = {0}. Then Separating hyperplane theorem states that there
exist a # 0 and b such that a’x < b for all x € C and a’'x > b for all
x € D. In other words, the hyperplane {x|a’x = b} separates the two
convex sets C and D.

® Suppose that C € R" and xg is on the boundary bdC. If a # 0 satisfies
a'x < a'xp for all x € C, the hyperplane {x laTx = aTxo} is called a
supporting hyperplane to C at xo. The Supporting hyperplane theorem
states that for any nonempty convex set C and any xo € bd(, there
exists a supporting hyperplane for C at xo.
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Examples of convex sets |l

® An ellipsoid is defined by
E(xe, P) = {x|(x— xc) P (x —xc) <1},

where P is a symmetric positive definite matrix, i.e. it is symmetric and
has all positive eigenvalues. We will represent this fact by P > 0. In
n-dimensional space, ellipsoid has semi-axes with length equal to v/\;,
where \; are the eigenvalues of P.

® A Euclidian ball is an ellipsoid with P = r21, where / is the identity
matrix. It represents a sphere in n-dimensional space with radius r and
center at a point with coordinate vector x..

® A polyhedron is a solution set (or a feasible set) for a finite number of
linear inequalities and equalities:

P:{x|aij§bj,j:1,2,...,m,cfx:dj,j:1,2,...,p}.
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Examples of convex sets Il (continued)
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Figure : The inside of a circle in R? is convex, outside isn't
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Examples of convex sets ll|

® A convex set C is called a cone if for any x1,xo € C and 61,0, > 0, we
have
01x1 + Oox> € C.

In n-dimensional space, a cone has a shape of a pie-slice, with apex at the
origin (61 = 6> = 0) and passing through points x; (62 = 0), x2 (61 = 0).

® A positive semidefinite cone, which is the set of symmetric positive
semidefinite n x n matrices:

Sns = {X € R™"| X >0}.

Recall: a symmetric matrix A is said to be positive semidefinite if
xT Ax > 0 for all x € R”, which in turn is equivalent to the fact that all
the eigenvalues of A are real and nonnegative.
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Examples of convex sets IV

® A hyperbolic set defined by
{x e Rl | xx, 21}
is convex. If x,y are such that min (x;x,,¥;¥,) > 1, one can show that
71z, > 1, wherez=0x+ (1 —0)y, 0 € (0,1).
® Proving this if (x1 — y1)(x2 — y2) < 0 depends on re-arranging z;z, as
(0% + (1 = 0)n)(0x, + (1 = O)y,) =

{0x10 + (L= 0)y1yo} — 0(1 = 0)(xy — y1)(x2 — y2)-
>1 <0

Operations on convex sets

® An intersection of a finite number of convex sets is always convex (as i
the case of definition of polyhedron).

® A sum of a finite number of convex sets is convex. Sum of two sets is
defined by
S1+S={x+y|xeS,yeS}.
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Convex functions Examples of convex functions |
® A function f : R” — R is convex if its domain is a convex set and if for ® ¥ s convex on R, for any a € R.
all x domf and 0 0, 1], we have : . : :
¥ € domfand 0 € [0, 1], we hav ® x?is convex on Ry (positive real line), if a2 € (—o0, 0] [1, o0).
f(Ox+ (1—0)y) < 0f(x)+ (1 —0)f(y). (1) ® [x|P, p > 1is convex on R.
L . . o . . o _ i
® \We say that a function is strictly convex is a strict inequality holds in (1). log x is convex on R..
A function f is concave (respectively, strictly concave) if —f is convex ® Every norm on R” is convex (by virtue of triangle inequality and
(respectively, strictly convex). homogeneity).
® An affine function (i.e. a function of the form f(x) = Ax + b) is both ® A function defined by f(x) = max {xi, x2,...,X,} is convex on R".
convex and concave, since the inequality in (1) is replaced by an equality.
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Examples of convex functions ||

® A function defined by
f(x) =log(e™ + e 4 --- + &™)

is convex over R". This function is an analytic approximation to the max
function, since

max {xi,x2, ..., xp} < f(x) < max{xy,x2,...,xn} + log n holds.
® A quadratic function given by
1 T T
f(x) = 5% Ax+b'x+c,

with A being a symmetric matrix, b € R” and ¢ € R is convex if and only
if A>0.

Operations which preserve convexity |

® Nonnegative weighted sum of convex functions is convex, i.e. if f;,
i=1,2,...,n are convex, then ). w;f; is also convex if w; > 0,
i=1,2,...,n.

® |f g(x) is convex on R, so is exp (g(x)). If g(x) is convex and
nonnegative, (g(x))” is convex for p > 1.

® [f f:R" — R is convex, so is g : R™ — R defined by g(x) = f(Ax + b),
where A € R™™ b € R" and

dom(g) = {x|Ax +b € dom(f)}.
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Operations which preserve convexity || Operations which preserve convexity ll|
® If fi,f,...,f, are convex, then so is f(x) = max{fi(x), (x),..., f(x)}, o f(x) = go(g1(x),&(x), gk(x)), with g; : R" = R, go : R = R, is convex
where dom () = dom (f;) () dom (%) -- - dom (f). if
® Pointwise supremum of a family of convex functions is always convex, e gy convex and nondecreasing in each argument; gj, i =1,2,---k
e.g. the maximum eigenvalue of a symmetric matrix, convex OR
. ® gy convex and nonincreasing in each argument; g;j,i = 1,2,--- k
FrR™" = R, £(X) =sup{y Xy|[lyll2 =1} concave
is convex in X. Conversely, a pointwise infimum of concave functions is ® Examples:
concave; a fact which will prove useful when we study duality. o f(x) = max;{gi(x)} is convex if each g; is convex;
1 . . . o
® If g: R~ R is convex and non-negative, so is h = (37 ; {g(x;)}’)? for e f(x) =1/(g(x)) is convex if g(x) is positive and concave;
any p > 1. e f(x) = (g(x))P is convex for p > 1 if g(x) is non-negative and
convex.
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Operations which preserve convexity 1V

® |f h: R+ R is concave and nondecreasing, g : R” — R is concave,
f(x) = h(g(x)) is concave.

® Similarly, if h: R — R is convex and nondecreasing, g : R" — R is
convex, f(x) = h(g(x)) is convex.

® |n both the cases, if /'(x) # 0, extremum of f and the corresponding
extremum of g are attained by the same x.
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Conditions for convexity |

® Suppose that f is differentiable over its (open) domain, dom (f). Then
f(x) is convex if and only if dom(f) is convex and

fFly) > f(x)+ VF(x) " (y—x)

holds for all x, y € dom (f). Note that the right hand side of the
inequality is the first order Taylor approximation of f in the
neighbourhood of x.

® For a convex function, the above inequality states that a first order Taylor
approximation always underestimates f(y) irrespective of how near or far
y is from x (in terms of appropriate metric).
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Conditions for convexity Il

Plot of y=x2 overR,, with a linear approximation at (7,49)
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Figure : lllustration of convexity condition over R
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Conditions for convexity IlI

® As a special case,

if Vf(x*) =0 for some x* € dom(f) < f(x*)= min f(x).
xedom (f)
Minimising a convex differentiable function on its domain is equivalent to
finding a point where its gradient is zero.

® Suppose that f is twice differentiable, i.e. the Hessian matrix
V2f(x) = [%] exists at each point in dom (). Then f is convex if and

only if dom (f) is convex and its Hessian is positive semidefinite for all
x € dom (f), i.e. V2f(x) > 0.

® For twice differentiable f : R — R, this means that the slope of tangent
to f is always increasing as x increases.
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How do we know if a function is convex?

® Use definition, or prove from first principles.

e |[f it is differentiable, check if f(y) > f(x)+ Vf(x)'(y — x) holds for all
x,y € dom(f) (15t order characterization).

® If it is twice differentiable, check if V2f(x) > 0 holds (2nCI order
characterization).

® Check if you can construct it from more elementary convex functions
(e.g., pointwise maximum, affine translation, non-negative weighted sum
etc).

® ... or try 0th order characterization.
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0th order characterization for convexity

® A function f(x) is convex if and only if g(t) = f(x + tv) is convex in t,
where dom(g) = {t|x + tv € dom(f)}, x € dom(f),v € R".

® This allows checking convexity for f(x) by checking convexity of a scalar
function g(t).

® Example: f(X) = —logdet(X), dom(f) = {X € R"*", X > 0}. Then
g(t) = —logdet(X + tV) = —log det(X) — log det(/ + tX %5 Vvx~05)
= — log det(X) — Z log(1 + tA;),

where ); are eigenvalues of X705VX =05 g(t) is convex as g”(t) > 0;
hence so is f(X).
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Quasiconvex functions |: definitions

® A function f is quasiconvex if its domain and its sublevel sets,
So = {x edom(f) | f(x) < a}

are convex for v € R.

® All convex functions are quasiconvex, but converse is not true. On R, all
monotonic functions (increasing or decreasing) are also quasiconvex; this
includes many concave (e.g. log x over R ) functions.

® |f f is quasiconvex, —f is quasiconcave. Superlevel sets of quasiconcave

functions are convex.

® A function is quasiconvex if and only if

f(Ox + (1 —0)y) < max(6f(x), (1 —0)f(y)). (2)
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Quasiconvex functions |l: some examples

® Given a cash-flow xg < 0, xg + x1 + - -+ x, > 0, internal rate of return
IRR(x) is defined by

IRR(x)_inf{r|§(1+'r)i _o}.

IRR(x) is quasiconcave; the superlevel sets IRR(x) > « are convex for
each o (IRR >« means > x;(1 4 r)~" >0 for r € [0, q]).

® A function f(x) = p(x)/q(x) is quasiconvex over
{x|x € dom(q) () dom(p), q(x) > 0} whenever p is convex, q is affine.
Note that f(x) < a < p(x) — ag(x) <0, so that all sublevel sets of f(x)

are convex.
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Quasiconvex functions |ll: one more Next steps

exam p|e ® Now that we know what convex sets and convex/quasiconvex functions
are,

o Ci n . . . '
Given a,b € R, distance ratio function ® we are now ready to look at different types of convex and quasiconvex

f(x) = [x —all2 optimization problems.
Ix = bllz ® Main reference (for this lecture and the next two lectures): Convex

Optimization, by Stephen Boyd and Lieven Vandenberghe, Cambridge

is quasiconvex over domain {x| ||x —a|l> < ||x — b]|2}.
University Press, 2009 (available as a free download online).
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