Foundations of convexity

Dr Paresh Date

Brunel University, UK

June 2016

Dr Paresh Date (Brunel University, UK)

Foundations of convexity

June 2016

Outline

- Introduction to convex optimization
- Convex sets
- Convex functions
- Conditions for convexity
- Quasiconvex functions

Dr Paresh Date (Brunel University, UK)

Foundations of convexity

June 2016

Introduction

• Our goal is to study a class of mathematical optimization problems of the following type:

> minimize $f_0(\mathbf{x})$ subject to $f_i(\mathbf{x}) < 0, i = 1, 2, \dots, m$ and $h_i(\mathbf{x}) = 0, i = 1, 2, ..., p$.

Here, x represents a vector of decision variables, $f_0(x)$ is cost function to be minimized and $f_i(\mathbf{x})$, $h_i(\mathbf{x})$ represent the constraints which the decision variables must observe.

• The goal of optimization is to find an *optimal* vector $\hat{\mathbf{x}}$ which satisfies $f_i(\hat{\mathbf{x}}) < 0$, $h_i(\hat{\mathbf{x}}) = 0$ and minimizes f_0 . The class of optimization problems which we are interested in are called convex optimization problems.

Convex optimization problems

These problems are of special interest with OR/ applied mathematics for several reasons:

- The minimum solution in guaranteed to be unique, i.e. there is only one vector $\hat{\mathbf{x}}$ which solves the problem.
- A large number of problems in operations research, signal processing, process control etc can be formulated as convex optimization problems.
- Efficient numerical algorithms exist to solve several special types of convex optimization problems which are of practical importance.
- One can use convex *relaxation* to find good approximate solutions to many non-convex optimization problems relatively quickly.

June 2016 Dr Paresh Date (Brunel University, UK)

Dr Paresh Date (Brunel University, UK)

June 2016

Convex optimization: our road-map

We will now look at

- sets over which these problems are defined (convex sets), and
- the classes of functions for which these problems are defined (convex functions).

In subsequent lectures, we will move on to

- Different types of convex optimization problems
- Generic methods for solving some classes of these problems.

Dr Paresh Date (Brunel University, UK)

June 2016

June 2016

Convex hull

• A point of the form $\sum_{i=1}^k \theta_i \mathbf{x}_i$, $\sum_{i=1}^k \theta_i = 1$, $\theta_i \geq 0$ is called a *convex* combination of points \mathbf{x}_i , i = 1, 2, ..., k. For a (not necessarily convex) set C, the set of convex combinations of all its points is called the *convex hull* of \mathcal{C} , denoted by conv \mathcal{C} :

$$\mathsf{conv}\,\mathcal{C} := \left\{ \sum_{i=1}^k heta_i \mathbf{x}_i \, | \, \mathbf{x}_i \, \in \, \mathcal{C}, \, heta_i \geq 0, \sum_{i=1}^k heta_i = 1
ight\}.$$

Affine sets and convex sets

- A set $\mathcal{C} \in \mathbb{R}^n$ is affine if, for any $\mathbf{x}_1, \mathbf{x}_2 \in \mathcal{C}$ and $\theta \in \mathbb{R}$, we have $\theta \mathbf{x}_1 + (1 - \theta) \mathbf{x}_2 \in \mathcal{C}$. In other words, the line joining any two points in an affine set C lies entirely in C.
- Every affine set may be expressed as the solution set of a system of linear equations, $C = \{ \mathbf{x} | A\mathbf{x} = \mathbf{b} \}$.
- A set C is *convex* if the line segment between two points x_1, x_2 lies entirely in \mathcal{C} , i.e., if for any $\mathbf{x}_1, \mathbf{x}_2 \in \mathcal{C}$ and for any $\theta \in [0,1]$, we have $\theta \mathbf{x}_1 + (1 - \theta) \mathbf{x}_2 \in \mathcal{C}$.
- One can move from any point in a convex set \mathcal{C} to any other point via an unobstructed path within the set.
- Every affine set is convex, but the converse is not true.

Dr Paresh Date (Brunel University, UK)

Foundations of convexity

Examples of convex sets I: hyperplanes

A hyperplane is a set of the form

$$\{\mathbf{x} \,|\, \mathbf{a}^{\mathsf{T}} \mathbf{x} = b\}\,$$

where $\mathbf{a} \in \mathbb{R}^n$, $\mathbf{a} \neq 0$ and $b \in \mathbb{R}$. Alternatively, the hyperplane may be expressed as

$$\left\{\mathbf{x}|\mathbf{a}^{\top}(\mathbf{x}-\mathbf{x}_0)=0\right\},\,$$

where \mathbf{x}_0 is any vector such that $\mathbf{a}^{\top}\mathbf{x}_0 = b$.

• A hyperplane divides \mathbb{R}^n into two convex half spaces:

$$\left\{\mathbf{x} \mid \hat{\mathbf{a}}^{\top} \mathbf{x} \leq b\right\},$$

with $\hat{\mathbf{a}} = \mathbf{a}$ for one half space and $\hat{\mathbf{a}} = -\mathbf{a}$ for another half space.

Hyperplanes (continued)

There are two important results in convexity theory related to hyperplanes:

- Suppose that \mathcal{C} and \mathcal{D} are two convex sets which do not intersect, i.e. $\mathcal{C} \cap \mathcal{D} = \{\emptyset\}$. Then Separating hyperplane theorem states that there exist $\mathbf{a} \neq 0$ and \mathbf{b} such that $\mathbf{a}^{\top} \mathbf{x} \leq \mathbf{b}$ for all $\mathbf{x} \in \mathcal{C}$ and $\mathbf{a}^{\top} \mathbf{x} \geq \mathbf{b}$ for all $\mathbf{x} \in \mathcal{D}$. In other words, the hyperplane $\{\mathbf{x} | \mathbf{a}^{\top} \mathbf{x} = \mathbf{b}\}$ separates the two convex sets \mathcal{C} and \mathcal{D} .
- Suppose that $C \in \mathbb{R}^n$ and \mathbf{x}_0 is on the boundary $\mathrm{bd}\,C$. If $\mathbf{a} \neq 0$ satisfies $\mathbf{a}^{\top}\mathbf{x} \leq \mathbf{a}^{\top}\mathbf{x}_0$ for all $\mathbf{x} \in \mathcal{C}$, the hyperplane $\{\mathbf{x} \mid \mathbf{a}^{\top}\mathbf{x} = \mathbf{a}^{\top}\mathbf{x}_0\}$ is called a supporting hyperplane to C at \mathbf{x}_0 . The Supporting hyperplane theorem states that for any nonempty convex set \mathcal{C} and any $\mathbf{x}_0 \in \mathrm{bd}\,\mathcal{C}$, there exists a supporting hyperplane for C at \mathbf{x}_0 .

Dr Paresh Date (Brunel University, UK)

June 2016

Examples of convex sets II

An ellipsoid is defined by

$$\mathcal{E}(\mathbf{x}_c, P) = \left\{ \mathbf{x} \mid (\mathbf{x} - \mathbf{x}_c)^{\top} P^{-1}(\mathbf{x} - \mathbf{x}_c) \leq 1 \right\},\,$$

where P is a symmetric positive definite matrix, i.e. it is symmetric and has all positive eigenvalues. We will represent this fact by P > 0. In n-dimensional space, ellipsoid has semi-axes with length equal to $\sqrt{\lambda_i}$, where λ_i are the eigenvalues of P.

- A Euclidian ball is an ellipsoid with $P = r^2 I$, where I is the identity matrix. It represents a sphere in n-dimensional space with radius r and center at a point with coordinate vector \mathbf{x}_c .
- A polyhedron is a solution set (or a feasible set) for a finite number of linear inequalities and equalities:

$$\mathcal{P} = \left\{ \mathbf{x} \,|\, \mathbf{a}_j^\top \mathbf{x} \leq \mathbf{b}_j, j = 1, 2, \dots, m, \, \mathbf{c}_j^\top \mathbf{x} = \mathbf{d}_j, \, j = 1, 2, \dots, p \right\}.$$

Dr Paresh Date (Brunel University, UK)

Foundations of convexity

Examples of convex sets II (continued)

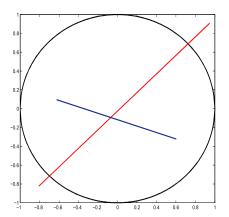


Figure : The *inside* of a circle in \mathbb{R}^2 is convex, *outside* isn't

Examples of convex sets III

• A convex set C is called a *cone* if for any $\mathbf{x}_1, \mathbf{x}_2 \in C$ and $\theta_1, \theta_2 \geq 0$, we

$$\theta_1 \mathbf{x}_1 + \theta_2 \mathbf{x}_2 \in \mathcal{C}.$$

In n-dimensional space, a cone has a shape of a pie-slice, with apex at the origin ($\theta_1 = \theta_2 = 0$) and passing through points \mathbf{x}_1 ($\theta_2 = 0$), \mathbf{x}_2 ($\theta_1 = 0$).

• A positive semidefinite cone, which is the set of symmetric positive semidefinite $n \times n$ matrices:

$$\mathcal{S}_{n+} = \left\{ X \in \mathbb{R}^{n \times n} \, | \, X \geq 0 \right\}.$$

Recall: a symmetric matrix A is said to be positive semidefinite if $\mathbf{x}^{\top} A \mathbf{x} > 0$ for all $\mathbf{x} \in \mathbb{R}^n$, which in turn is equivalent to the fact that all the eigenvalues of A are real and nonnegative.

Dr Paresh Date (Brunel University, UK)

June 2016

11 / 30

Dr Paresh Date (Brunel University, UK)

Examples of convex sets IV

• A hyperbolic set defined by

$$\left\{\mathbf{x} \in \mathbb{R}^2_+ \mid x_1 x_2 \geq 1\right\}$$

is convex. If \mathbf{x}, \mathbf{y} are such that $\min(x_1 x_2, y_1 y_2) \ge 1$, one can show that $z_1 z_2 \ge 1$, where **z** = θ **x** + $(1 - \theta)$ **y**, $\theta \in (0, 1)$.

• Proving this if $(x_1 - y_1)(x_2 - y_2) < 0$ depends on re-arranging $z_1 z_2$ as

$$(\theta x_1 + (1 - \theta)y_1)(\theta x_2 + (1 - \theta)y_2) = \underbrace{\{\theta x_1 x_2 + (1 - \theta)y_1 y_2\}}_{\geq 1} - \underbrace{\theta(1 - \theta)(x_1 - y_1)(x_2 - y_2)}_{\leq 0}.$$

Dr Paresh Date (Brunel University, UK)

Foundations of convexity

June 2016

13 / 30

Operations on convex sets

- An intersection of a finite number of convex sets is always convex (as in the case of definition of polyhedron).
- A sum of a finite number of convex sets is convex. Sum of two sets is defined by

$$S_1 + S_2 = \{ \mathbf{x} + \mathbf{y} \mid \mathbf{x} \in S_1, \, \mathbf{y} \in S_2 \}$$
.

Dr Paresh Date (Brunel University, UK)

Foundations of convexity

June 2016

Convex functions

• A function $f: \mathbb{R}^n \to \mathbb{R}$ is *convex* if its domain is a convex set and if for all $\mathbf{x}, \mathbf{y} \in \text{dom } f$ and $\theta \in [0, 1]$, we have

$$f(\theta \mathbf{x} + (1 - \theta)\mathbf{y}) \le \theta f(\mathbf{x}) + (1 - \theta)f(\mathbf{y}). \tag{1}$$

- We say that a function is *strictly convex* is a strict inequality holds in (1). A function f is concave (respectively, strictly concave) if -f is convex (respectively, strictly convex).
- An affine function (i.e. a function of the form $f(\mathbf{x}) = A\mathbf{x} + \mathbf{b}$) is both convex and concave, since the inequality in (1) is replaced by an equality.

Examples of convex functions I

- e^{ax} is convex on \mathbb{R} , for any $a \in \mathbb{R}$,
- x^a is convex on \mathbb{R}_+ (positive real line), if $a \in (-\infty, 0] \cup [1, \infty)$.
- $|x|^p$, $p \ge 1$ is convex on \mathbb{R} .
- $-\log x$ is convex on \mathbb{R}_+ .
- Every norm on \mathbb{R}^n is convex (by virtue of triangle inequality and homogeneity).
- A function defined by $f(\mathbf{x}) = \max\{x_1, x_2, \dots, x_n\}$ is convex on \mathbb{R}^n .

Dr Paresh Date (Brunel University, UK)

June 2016

Dr Paresh Date (Brunel University, UK)

June 2016

Examples of convex functions II

A function defined by

$$f(\mathbf{x}) = \log(e^{x_1} + e^{x_2} + \cdots + e^{x_n})$$

is convex over \mathbb{R}^n . This function is an analytic approximation to the max function, since

$$\max\{x_1, x_2, \dots, x_n\} \le f(\mathbf{x}) \le \max\{x_1, x_2, \dots, x_n\} + \log n \text{ holds.}$$

A quadratic function given by

$$f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^{\top}A\mathbf{x} + \mathbf{b}^{\top}\mathbf{x} + c,$$

with A being a symmetric matrix, $\mathbf{b} \in \mathbb{R}^n$ and $c \in \mathbb{R}$ is convex if and only if A > 0.

Dr Paresh Date (Brunel University, UK)

Foundations of convexity

June 2016 17 / 30

Dr Paresh Date (Brunel University, UK)

Foundations of convexity

June 2016

Operations which preserve convexity II

- If f_1, f_2, \ldots, f_n are convex, then so is $f(\mathbf{x}) = \max\{f_1(\mathbf{x}), f_2(\mathbf{x}), \ldots, f_n(\mathbf{x})\}$, where dom $(f) = \text{dom}(f_1) \cap \text{dom}(f_2) \cdots \cap \text{dom}(f_n)$.
- Pointwise supremum of a family of convex functions is always convex, e.g. the maximum eigenvalue of a symmetric matrix,

$$f: \mathbb{R}^{n \times n} \mapsto \mathbb{R}, \ f(X) = \sup \left\{ \mathbf{y}^{\top} X \mathbf{y} \mid \|\mathbf{y}\|_{2} = 1 \right\}$$

is convex in X. Conversely, a pointwise infimum of concave functions is concave; a fact which will prove useful when we study duality.

• If $g: \mathbb{R} \to \mathbb{R}$ is convex and non-negative, so is $h = \left(\sum_{i=1}^n \left\{g(x_i)\right\}^p\right)^{\frac{1}{p}}$ for any p > 1.

Operations which preserve convexity I

- Nonnegative weighted sum of convex functions is convex, i.e. if f_i , $i=1,2,\ldots,n$ are convex, then $\sum_i w_i f_i$ is also convex if $w_i \geq 0$, $i = 1, 2, \ldots, n$.
- If g(x) is convex on \mathbb{R} , so is exp(g(x)). If g(x) is convex and nonnegative, $(g(x))^p$ is convex for p > 1.
- If $f: \mathbb{R}^n \to \mathbb{R}$ is convex, so is $g: \mathbb{R}^m \to \mathbb{R}$ defined by $g(\mathbf{x}) = f(A\mathbf{x} + \mathbf{b})$, where $A \in \mathbb{R}^{n \times m}$. $\mathbf{b} \in \mathbb{R}^n$ and

$$dom(g) = \{\mathbf{x} | A\mathbf{x} + \mathbf{b} \in dom(f)\}.$$

Operations which preserve convexity III

- $f(\mathbf{x}) = g_0(g_1(\mathbf{x}), g_2(\mathbf{x}), g_k(\mathbf{x}))$, with $g_i : \mathbb{R}^n \mapsto \mathbb{R}$, $g_0 : \mathbb{R}^k \mapsto \mathbb{R}$, is convex
 - g_0 convex and nondecreasing in each argument; g_i , $i = 1, 2, \dots k$
 - g_0 convex and nonincreasing in each argument; g_i , $i = 1, 2, \dots k$ concave.
- Examples:
 - $f(\mathbf{x}) = \max_{i} \{g_i(\mathbf{x})\}\$ is convex if each g_i is convex;
 - $f(\mathbf{x}) = 1/(g(\mathbf{x}))$ is convex if $g(\mathbf{x})$ is positive and concave;
 - $f(\mathbf{x}) = (g(\mathbf{x}))^p$ is convex for p > 1 if $g(\mathbf{x})$ is non-negative and convex.

Operations which preserve convexity IV

- If $h : \mathbb{R} \to \mathbb{R}$ is concave and nondecreasing, $g : \mathbb{R}^n \to \mathbb{R}$ is concave, $f(\mathbf{x}) = h(g(\mathbf{x}))$ is concave.
- Similarly, if $h : \mathbb{R} \to \mathbb{R}$ is convex and nondecreasing, $g : \mathbb{R}^n \to \mathbb{R}$ is convex, $f(\mathbf{x}) = h(g(\mathbf{x}))$ is convex.
- In both the cases, if $h'(x) \neq 0$, extremum of f and the corresponding extremum of g are attained by the same x.

Dr Paresh Date (Brunel University, UK)

Foundations of convexity

June 2016

21 / 30

Conditions for convexity I

• Suppose that f is differentiable over its (open) domain, dom (f). Then $f(\mathbf{x})$ is convex if and only if dom(f) is convex and

$$f(\mathbf{y}) \, \geq \, f(\mathbf{x}) +
abla f(\mathbf{x})^{ op} (\mathbf{y} - \mathbf{x})$$

holds for all $\mathbf{x}, \mathbf{y} \in \text{dom}(f)$. Note that the right hand side of the inequality is the first order Taylor approximation of f in the neighbourhood of \mathbf{x} .

• For a convex function, the above inequality states that a first order Taylor approximation always *underestimates* f(y) irrespective of how near or far y is from x (in terms of appropriate metric).

Dr Paresh Date (Brunel University, UK)

Foundations of convexi

June 2016

22 / 20

Conditions for convexity II

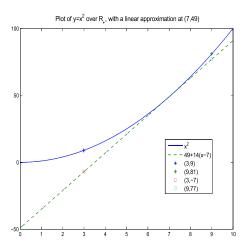


Figure : Illustration of convexity condition over $\mathbb R$

Conditions for convexity III

As a special case,

$$\text{if } \nabla f(\mathbf{x}^\star) = 0 \text{ for some } \mathbf{x}^\star \in \mathsf{dom}(f) \quad \Leftrightarrow \quad f(\mathbf{x}^\star) = \min_{\mathbf{x} \in \mathsf{dom}\,(f)} f(\mathbf{x}).$$

Minimising a convex differentiable function on its domain is equivalent to finding a point where its gradient is zero.

- Suppose that f is twice differentiable, *i.e.* the Hessian matrix $\nabla^2 f(\mathbf{x}) = \left[\frac{\partial^2 f}{\partial x_i x_j}\right]$ exists at each point in $\mathrm{dom}(f)$. Then f is convex if and only if $\mathrm{dom}(f)$ is convex and its Hessian is positive semidefinite for all $\mathbf{x} \in \mathrm{dom}(f)$, *i.e.* $\nabla^2 f(\mathbf{x}) \geq 0$.
- For twice differentiable $f : \mathbb{R} \mapsto \mathbb{R}$, this means that the slope of tangent to f is always increasing as x increases.

Dr Paresh Date (Brunel University, UK) Foundations of convexity June 2016 2:

Dr Paresh Date (Brunel University, UK)

oundations of convexity

June 2016

24 / 30

How do we know if a function is convex?

- Use definition, or prove from first principles.
- If it is differentiable, check if $f(\mathbf{y}) \geq f(\mathbf{x}) + \nabla f(\mathbf{x})^{\top} (\mathbf{y} \mathbf{x})$ holds for all $\mathbf{x}, \mathbf{y} \in \text{dom}(f)$ (1st order characterization).
- If it is twice differentiable, check if $\nabla^2 f(\mathbf{x}) \geq 0$ holds (2nd order characterization).
- Check if you can construct it from more elementary convex functions (e.g., pointwise maximum, affine translation, non-negative weighted sum etc).
- · · · or, try 0th order characterization.

Dr Paresh Date (Brunel University, UK)

Foundations of convexity

June 2016

25 / 30

0th order characterization for convexity

- A function $f(\mathbf{x})$ is convex if and only if $g(t) = f(\mathbf{x} + t\mathbf{v})$ is convex in t, where $dom(g) = \{t | \mathbf{x} + t\mathbf{v} \in dom(f)\}$, $\mathbf{x} \in dom(f)$, $\mathbf{v} \in \mathbb{R}^n$.
- This allows checking convexity for $f(\mathbf{x})$ by checking convexity of a scalar function g(t).
- Example: $f(X) = -\log det(X)$, $dom(f) = \{X \in \mathbb{R}^{n \times n}, X > 0\}$. Then

$$g(t) = -\log \det(X + tV) = -\log \det(X) - \log \det(I + tX^{-0.5}VX^{-0.5})$$

= $-\log \det(X) - \sum_{i} \log(1 + t\lambda_{i}),$

where λ_i are eigenvalues of $X^{-0.5}VX^{-0.5}$. g(t) is convex as g''(t) > 0; hence so is f(X).

У

30

Dr Paresh Date (Brunel University, UK)

Foundations of convexity

June 2016

26 / 30

Quasiconvex functions I: definitions

• A function f is quasiconvex if its domain and its sublevel sets,

$$S_{\alpha} := \{ \mathbf{x} \in \text{dom}(f) \mid f(\mathbf{x}) \le \alpha \}$$

are convex for $\alpha \in \mathbb{R}$.

- All convex functions are quasiconvex, but converse is not true. On \mathbb{R} , all monotonic functions (increasing or decreasing) are also quasiconvex; this includes many concave (e.g. $\log x$ over \mathbb{R}_+) functions.
- If f is quasiconvex, -f is quasiconcave. Superlevel sets of quasiconcave functions are convex.
- A function is quasiconvex if and only if

$$f(\theta \mathbf{x} + (1 - \theta)\mathbf{y}) \le \max(\theta f(\mathbf{x}), (1 - \theta)f(\mathbf{y})).$$
 (2)

Quasiconvex functions II: some examples

• Given a cash-flow $x_0 < 0$, $x_0 + x_1 + \cdots + x_n > 0$, internal rate of return $IRR(\mathbf{x})$ is defined by

$$IRR(\mathbf{x}) = \inf \left\{ r \mid \sum_{i=0}^{n} \frac{x_i}{(1+r)^i} = 0 \right\}.$$

 $IRR(\mathbf{x})$ is quasiconcave; the superlevel sets $IRR(\mathbf{x}) \geq \alpha$ are convex for each α (IRR $\geq \alpha$ means $\sum_{i=0}^{n} x_i (1+r)^{-i} \geq 0$ for $r \in [0, \alpha]$).

• A function $f(\mathbf{x}) = p(\mathbf{x})/q(\mathbf{x})$ is quasiconvex over $\{\mathbf{x} \mid \mathbf{x} \in \text{dom}(q) \cap \text{dom}(p), q(\mathbf{x}) > 0\}$ whenever p is convex, q is affine. Note that $f(\mathbf{x}) \leq \alpha \Leftrightarrow p(\mathbf{x}) - \alpha q(\mathbf{x}) \leq 0$, so that all sublevel sets of $f(\mathbf{x})$ are convex.

Quasiconvex functions III: one more example

• Given $\mathbf{a}, \mathbf{b} \in \mathbb{R}^n$, distance ratio function

$$f(\mathbf{x}) = \frac{\|\mathbf{x} - \mathbf{a}\|_2}{\|\mathbf{x} - \mathbf{b}\|_2}$$

is quasiconvex over domain $\{\mathbf{x}\,|\,\|\mathbf{x}-\mathbf{a}\|_2\,\leq\,\|\mathbf{x}-\mathbf{b}\|_2\}.$

Next steps

- Now that we know what convex sets and convex/quasiconvex functions are,
- we are now ready to look at different types of convex and quasiconvex optimization problems.
- Main reference (for this lecture and the next two lectures): *Convex Optimization*, by Stephen Boyd and Lieven Vandenberghe, Cambridge University Press, 2009 (available as a free download online).

0 0 0

Dr Paresh Date (Brunel University, UK)

Foundations of convexity

June 2016 29 / 30

Dr Paresh Date (Brunel University, UK)

Foundations of convexity

June 2016 3

30 / 30