
NATCOR - Modeling with Xpress

The software that will be used in this course will be Xpress, a powerful solver for both
linear and non-linear problems. We will use the Mosel language with IVE, an interface
that is very friendly to use and very easy to learn. Although during the course we will
use the full version of the software, there is a free student version with limited numbers of
constraints and variables.

1. Our first model

Let us consider the following blending problem: A chemical firm can produce two
products, A and B, from combining three elements: iron, lead, and tin. What is the
blending that maximizes the benefit? Assume that all the production is sold.

Units used per
Resources kg of product Available

Product A Product B units
Iron 7 4 56
Lead 3 5 45
Tin 4 3 48

Net benefit (£/kg) 10 8

First, we define the decision variables:

• x1 = “kilograms of product A”.

• x2 = “kilograms of product B”.

Second, we state the objective function: 10x1 + 8x2.
Finally, we write the constraints:

• Constraint on the iron availability: 7x1 + 4x2 ≤ 56.

• Constraint on the lead availability: 3x1 + 5x2 ≤ 45.

• Constraint on the tin availability: 4x1 + 3x2 ≤ 48.

• Variable non-negativity: x1, x2 ≥ 0.

Therefore, the model is: 
Max. 10x1 + 8x2

s.t. 7x1 + 4x2 ≤ 56,
3x1 + 5x2 ≤ 45,
4x1 + 3x2 ≤ 48,
x1, x2 ≥ 0.

Let us see now how to write it and solve it with Xpress.

https://community.fico.com/download.jspa


NATCOR - Modeling with Xpress 2NATCOR - Modeling with Xpress 2NATCOR - Modeling with Xpress 2

2. Writing our first model

When we start using Xpress, the screen will look like in Figure 1.

Figure 1: First screen.

Once we create a new file (File → New), we start to write the model.

1. First, there is a line giving a name to the model:

model blending

We have given it the name blending, but we can use any name we like.

2. Now, we add a line that calls the solver:

uses "mmxprs"

3. Next, we declare the variables of the model:

declarations

x1,x2:mpvar

end-declarations

A decision variable is an object of type mpvar.

4. Now, we write the objective function. We have also added a comment line (begins
with the symbol “!”) which is not read at all, but it helps to have the code better
organized.



NATCOR - Modeling with Xpress 3NATCOR - Modeling with Xpress 3NATCOR - Modeling with Xpress 3

! Objective function

obj:= 10*x1 + 8*x2

5. Then, we define the constraints, one per line.

! Constraints

7*x1 + 4*x2 <= 56

3*x1 + 5*x2 <= 45

4*x1 + 3*x2 <= 48

Note that we write the multiplication symbol “*” between the coefficient and the
variable (unless it is 0 or 1, in which case we can omit the coefficient and the
multiplication symbol). Remember also that the constraints that we will use are
only of the type “≤”, “≥”, and “=”. We will never have inequalities with “<”
or “>”.

An important remark is that we do not need to add explicitly the non-negativity
constraints. Unless stated otherwise, Xpress assumes that all the variables are non-
negative and continuous.

6. Finally, we tell the solver that we are going to maximize the objective function:

maximize(obj)

7. The last line says that the model is completed:

end-model

This model can be compiled (which automatically saves the file) with F7. Or we can
run it with F6 (which saves and compiles before that). Alternatively, you can use the
buttons shown in Figure 2.

Once we have run the model, we can see some relevant information in the output
window. Figure 3 shows one of the several tabs. In this one, you can see the algorithm
used (simplex dual), the number of iterations, the final objective value, the status (the
solution is optimal) and the time used to solve the model. In other tabs you can find even
more information (value of the decision variables, slack of each constraint, dual variables,
etc.).

Actually, we may prefer to print some of these values in the main output window. Add
the following lines before the last line of the model and run the model again:

writeln("x1: ",getsol(x1))

writeln("x2: ",getsol(x2))

writeln("Objective value: ",getobjval)

3. The blending problem with general data

The model we have written has a serious deficiency: if we change the data, we will
have to modify individually each entry, which can be highly time consuming for problems
with many variables and constraints. Therefore, we are going to use arrays and read the
data from files so that we can solve any problem with the same structure.



NATCOR - Modeling with Xpress 4NATCOR - Modeling with Xpress 4NATCOR - Modeling with Xpress 4

Figure 2: Blending model.

Figure 3: Output for the blending model.

3.1 Using sets

A first approach is to define sets of indices. We replace the previous declarations block
with:

declarations

products = 1..2

resources = 1..3

benefit: array(products) of real

limit: array(resources) of real

use:array(resources,products) of real



NATCOR - Modeling with Xpress 5NATCOR - Modeling with Xpress 5NATCOR - Modeling with Xpress 5

make: array(products) of mpvar

end-declarations

We have defined two sets of indices: products, which has two elements, and resources,
which has three. Then, we define several unidimensional arrays. We also define a bidi-
mensional matrix (use). But this only provides information about the dimensions. Next,
we fill them with the data:

benefit:: [10,8]

limit:: [56,45,48]

use:: [7,4,3,5,4,3]

Now, we have to rewrite the model taking into account that all the elements are indexed
with the previous sets. The objective function is:

total_benefit:= sum(p in products) benefit(p)*make(p)

And the constraints are written as follows:

forall(r in resources) do

sum(p in products) use(r,p)*make(p) <= limit(r)

end-do

Finally, the code displaying the solution needs to be modified too:

forall(p in products) do

writeln("Amount produced of product ",p,": ",getsol(make(p))," kgs.")

end-do

writeln

writeln("The net benefit is £",getobjval,".")

Figure 4 shows the full code.

3.2 Initializing from files

Instead of having the data explicitly in the code, there is the option of having external
files and reading this information from them. In order to so, we need first to have a file
blending.dat where all the information is stored. The file will look like this:

benefit: [10 8]

limit: [56 45 48]

use: [7 4 3 5 4 3]

And we need to replace the lines defining the values of the arrays with the following
code:

initializations from "blending.dat"

benefit limit use

end-initializations

Moreover, we can use sets of strings to give names to the indices:



NATCOR - Modeling with Xpress 6NATCOR - Modeling with Xpress 6NATCOR - Modeling with Xpress 6

Figure 4: Blending model using sets.

declarations

products, resources: set of string

benefit: array(products) of real

limit: array(resources) of real

use:array(resources,products) of real

make: array(products) of mpvar

end-declarations

! Initialize values

initializations from "blending2.dat"

products resources benefit limit use

end-initializations

File blending2.dat is file blending.dat with two new lines:

products: ["A" "B"]

resources: ["iron" "lead" "tin"]

You can see the full code in Figure 5.



NATCOR - Modeling with Xpress 7NATCOR - Modeling with Xpress 7NATCOR - Modeling with Xpress 7

Figure 5: Blending model using sets.

4. Multi-period models and inventory

The blending problem that we have studied is single-period. However, production
plans usually have a multi-period horizon (for example, year divided in months) because
the decisions at one period have consequences on later decisions. We are going to see now
how to model this with Xpress.

Let us consider the following problem: Sailco Corporation must decide how many
sailboats and surfboards to produce at each quarter. The demand is:

Quarter Spring Summer Autumn Winter
Sailboats demand 40 60 75 25
Surfboards demands 190 350 130 20

Each sailboat needs 20 hours of work and each surfboard needs 3 hours. Sailco have
1860 hours of work available per quarter. Besides, the company has a warehouse for which
the cost of storing from one quarter to the next is £50 per sailboat and £2 per surfboard.
If the cost of producing one boat is £400 and the cost of producing a surfboard is £35,
what is the production planning that meets the demand of the whole year at minimum
cost? Assume that what is produced in one quarter can be used to meet the demand on
that quarter.



NATCOR - Modeling with Xpress 8NATCOR - Modeling with Xpress 8NATCOR - Modeling with Xpress 8

In order to model the problem, we we will use the index p for the product (1 for
sailboats and 2 for surfboards) and the index t for the period (1 for spring, 2 for summer,
and so on). Next, we define the following variables:

• xpt = “units of product p made on quarter p = 1, 2, t = 1, 2, 3, 4.

• ypt = “units of product p sold on quarter p = 1, 2, t = 1, 2, 3, 4.

• ipt = “units of product p in inventory at the end of quarter p = 1, 2, t = 1, 2, 3, 4.

Now, we write the different parts of the objective function:

• The production cost for sailboats is: 400x11 + 400x12 + 400x13 + 400x14.

• The production cost for surfboards is: 35x21 + 35x22 + 35x23 + 35x24.

• The holding cost for sailboats is: 50i11 + 50i12 + 50i13 + 50i14.

• The holding cost for surfboards is: 2i21 + 2i22 + 2i23 + 2i14.

Next, we start to write the constraints:

• The constraints that limit the hours of work are: 20x1t + 3x2t ≤ 1860, t = 1, 2, 3, 4.

• The demand requirements are: y11 ≥ 40, y12 ≥ 60, y13 ≥ 75, y14 ≥ 25, y21 ≥ 190,
y22 ≥ 350, y23 ≥ 130, y24 ≥ 20.

The inventory balance constraints are:

• Sailboats, quarter 1: i11 = x11 − y11.

• Sailboats, quarter t, t = 2, 3, 4: i1t = i1,t−1 + x1t − y1t.

• Surfboards, quarter 1: i21 = x21 − y21.

• Surfboards, quarter t, t = 2, 3, 4: i2t = i2,t−1 + x2t − y2t.

Therefore, the full model is:

Min.
4∑

t=1

400x1t +
4∑

t=1

35x2t +
4∑

t=1

50i1t +
4∑

t=1

2i2t

s.t. 20x1t + 3x2t ≤ 1860, t = 1, 2, 3, 4,
y11 ≥ 40, y12 ≥ 60,
y13 ≥ 75, y14 ≥ 25,
y21 ≥ 190, y22 ≥ 350,
y23 ≥ 130, y24 ≥ 20,
ip1 = xp1 − yp1, p = 1, 2,
ipt = ip,t−1 + xpt − ypt, p = 1, 2, t = 2, 3, 4,
ipt, xpt, ypt ≥ 0, p = 1, 2, t = 1, 2, 3, 4.

Now we show how to write the model with Xpress. As we have seen before, first we
need to define indices and structures at the declarations block:



NATCOR - Modeling with Xpress 9NATCOR - Modeling with Xpress 9NATCOR - Modeling with Xpress 9

model sailboat_inventory_multiproduct

uses "mmxprs"

declarations

number_of_periods = 4

periods = 1..number_of_periods

period_names: array(periods) of string

number_of_products = 2

products = 1..number_of_products

product_names: array(products) of string

demand: array(products,periods) of real

cost, holding_cost, hours_needed: array(products) of real

production_limit:real

make,sell,inventory: array(products,periods) of mpvar

end-declarations

initialisations from "sailboat_inventory_multiproduct.dat"

period_names product_names demand cost production_limit holding_cost

hours_needed

end-initialisations

periods is the set of indices of size number of periods and the names of these periods are
stored in array period names. The meaning of the rest of the structures is obvious. We
create file sailboat inventory multiproduct.dat with the following information:

period_names: ["Spring" "Summer" "Autumn" "Winter"]

product_names: ["Sailboats" "Surfboards"]

cost: [400 35]

holding_cost: [50 2]

production_limit: 1860

demand: [40 60 75 25 190 350 130 20]

hours_needed: [20 3]

Defining the objective function and the constraints is trivial:

! Objective function

total_cost:= sum(p in products, t in periods) cost(p)*make(p,t) +

sum(p in products, t in periods) holding_cost(p)*inventory(p,t)

! Constraints

! Production limit

forall(t in periods) sum(p in products) hours_needed(p)*make(p,t) <=

production_limit

! Demand satisfaction

forall(p in products, t in periods) sell(p,t) >= demand(p,t)

! Inventory balance

forall(p in products, t in periods) do

if (t>1) then



NATCOR - Modeling with Xpress 10NATCOR - Modeling with Xpress 10NATCOR - Modeling with Xpress 10

inventory(p,t) = inventory(p,t-1) + make(p,t) - sell(p,t)

else

inventory(p,1) = make(p,1) - sell(p,1)

end-if

end-do

Finally, we solve the model and display the solution information:

minimize(total_cost)

forall(t in periods) do

writeln("In ", period_names(t),":")

forall(p in products) do

write(" * ",product_names(p),": make ",getsol(make(p,t))," and sell ",

getsol(sell(p,t)),".")

if(getsol(inventory(p,t))>0) then

writeln(" Inventory level at the end of the quarter: ",getsol(inventory(p,t)))

else

writeln

end-if

end-do

writeln

end-do

end-model

5. Final remarks

Some other good practices are:

• Divide the model clearly in blocks.

• Add comments that give you some information about the blocks.

• Use meaningful names.

• Backup your files.


	Our first model
	Writing our first model
	The blending problem with general data
	Using sets
	Initializing from files

	Multi-period models and inventory
	Final remarks

