Aim

- What should a 1-hour PhD lecture on LP achieve?
- Audience members have
 - Different backgrounds in LP
 - Different reasons to know about LP
- Answer
 - "Mature" review of LP theory—don’t worry if you don’t follow!
 - Identify an alternative to the tableau simplex method
 - Establish a result which
 - Is nice in itself
 - Leads into "Structure and matrix sparsity": Wednesday 13:30–15:30

Overview

- What is LP?
- General LP problems
 - The feasible region
 - Basic solutions
 - Fundamental results
- The simplex method
 - Algorithm
 - Implementation
 - Linear algebra

What is linear programming (LP)?

- The most important model used in optimal decision-making
- Grew out of US Army Air Force logistics problems in WW2
- First practical LP problem was formulated by George Dantzig in 1946
- Dantzig invented the principal solution technique—the simplex algorithm—in 1947
 - In the “Top 10 algorithms of the 20th century”
 - “The algorithm that runs the world”
- LP and the simplex method have revolutionised organised human decision-making
General LP problems

General LP problems: Introduction

- General LP problem is
 \[
 \text{maximize } f = c^T x \text{ subject to } Ax \leq b, \quad x \geq 0
 \]

 Problem has \(n \) variables and \(m \) constraints

- Feasible region is a **convex polyhedron** in \(\mathbb{R}^n \)

- Vertices are at intersection of \(n \) constraint/bound planes

 Aid vertex characterization and algebraic analysis by introducing **slack variables**

 - For each inequality introduce a slack variable \(x_{n+i} \)
 - Transforms the inequality into an equation and bound on \(x_{n+i} \)
 - Inherent LP problem is unchanged, but is in **standard form**

 \[
 \text{maximize } f = \varepsilon^T x \text{ subject to } \overline{A}x = b, \quad x \geq 0
 \]

 where \(\varepsilon = \begin{bmatrix} c \\ 0 \end{bmatrix} \) and \(\overline{A} = [A \ \ I] \) has rank \(m \)

General LP problems: The feasible region, vertices and solutions

For an LP in standard form, \(\overline{A}x = b \) where \(\overline{A} = [A \ \ I] \in \mathbb{R}^{m \times (n+m)} \)

- **Characterization of the feasible region**
 - The feasible region \(K \) is the intersection of
 - The hyperplane of solutions of \(\overline{A}x = b \)
 - The orthant \(x \geq 0 \)
 - \(K \) is a **convex set**

- **Definition of a feasible vertex**
 - A feasible vertex is a point \(x \in K \) which does not lie strictly within any line segment joining two points in \(K \)

Result: If an LP has an optimal solution then there is an optimal solution at a vertex

General LP problems: Basic solutions

- The point \(x \in \mathbb{R}^{n+m} \) is a **basic solution** of an LP problem in standard form if there is a **partition** of \(\{1,2,\ldots,n+m\} \) into
 - A set \(N \) of \(n \) indices of **nonbasic variables** with value zero at \(x \)
 - A set \(B \) of \(m \) indices of **basic variables** whose values are then uniquely defined by the \(m \) equations

- Corresponding to \(N \) and \(B \) the following are defined
 - Corresponding to the \(n \) indices in \(N \)
 - The matrix \(N \in \mathbb{R}^{m \times n} \) is the \(n \) columns of \(\overline{A} \)
 - The vector \(x_N \) of **nonbasic variables** is the \(n \) components of \(x \)
 - The vector \(c_N \) of **nonbasic costs** is the \(n \) components of \(c \)
 - Corresponding to the \(m \) indices in \(B \)
 - The **basis matrix** \(B \in \mathbb{R}^{m \times m} \) is the \(m \) columns of \(\overline{A} \) and is nonsingular
 - The vector \(x_B \) of **basic variables** is the \(m \) components of \(x \)
 - The vector \(c_B \) of **basic costs** is the \(m \) components of \(c \)
The partitioned LP in standard form is

\[
\text{maximize } f = c_X^T x_B + c_N^T x_N \\
\text{subject to } B x_B + N x_N = b \\
x_B \geq 0, x_N \geq 0
\]

- Same LP as in standard form
- Corresponds to reordering the components of \(x \) according to sets \(B \) and \(N \)
- Equations are \(B x_B + N x_N = b \) so \(x_B = B^{-1} b - B^{-1} N x_N \)
- Substituting for \(x_B \) in the objective function gives \(f = \tilde{f} + \tilde{c}_N^T x_N \), where
 \[
 \tilde{f} = c_X \hat{b} \text{ is the objective value when } x_N = 0 \\
 \tilde{c}_N = c_N - N^T B^{-T} c_B \text{ is the vector of reduced costs}
 \]
- If \(\hat{b} \geq 0 \) then \(x \geq 0 \) is referred to as a basic feasible solution

Result: \(x \) is a vertex of \(K \) iff \(x \) is a basic feasible solution

Consequence: Solution methods need only consider basic feasible solutions

Result: A point \(x \in K \) is an optimal solution of an LP problem if it is a basic feasible solution with non-positive reduced costs \(\tilde{c}_N \leq 0 \)

Consequence:
- Condition \(\tilde{c}_N \leq 0 \) allows the optimality of a basic feasible solution to be checked
- If \(\tilde{c}_N \leq 0 \) the simplex algorithm identifies a basic feasible solution with better objective value
This is the key to solving LP problems

Simplex method: Choosing an improving direction

- Observe: If \(\tilde{c}_N \leq 0 \) there exists \(q \) such that \(\tilde{c}_q > 0 \)
- Let \(x_q' \) be the \(q \)th nonbasic variable
- If \(x \) is partitioned as \([x_B \ x_N] \) then consider \(x + \alpha d \) for \(d \) partitioned as \([d_B \ d_N] \)
- Only nonbasic variable \(x_q' \) is increased from zero if \(d_N = e_q \) \([e_q \text{ is column } q \text{ of } I]\)
- For feasibility \(\overline{A} d = 0 \) iff
 \[
 B d_B + N e_q = 0 \iff d_B = -B^{-1} N e_q = -\tilde{a}_q
 \]
 where \(B \tilde{a}_q = a_q \) and \(a_q \) is column \(q \) of \(N \)
- If \(x + \alpha d \) is feasible for \(\alpha > 0 \) then the objective increases strictly by \(\alpha \tilde{c}_q \)
Simplex method: Identifying the step length in the improving direction

- On $x + \alpha d$ for $\alpha \geq 0$, components of x_N remain feasible since $d_N = e_q$
- Any limit on the feasibility of $x + \alpha d$ is given by the values of the basic variables
 $$x_B = \hat{b} - \alpha \hat{a}_q$$
- If \hat{a}_q has positive components
 - For α sufficiently large, at least one component of x_B will be zeroed
 - The smallest of these values of α is the greatest step α which can be made in the direction d whilst maintaining feasibility
- If $\hat{a}_q \leq 0$ no basic variable is zeroed so the LP is **unbounded**

Simplex method: Identifying the new basic feasible solution

- At $x + \pi d$ let $x_{p'}$ be the zeroed basic variable
- Interchanging p' and q' between B and N yields a partition at $x + \pi d$ with
 - $x_p \geq 0$
 - $x_n = 0$
- $x + \pi d$ is a new basic feasible solution since its basis matrix is nonsingular
 - If $\pi > 0$ then
 - $x + \pi d$ is a distinct, “new” vertex
 - Objective at $x + \pi d$ is strictly greater (by $\pi \hat{c}_q$) than the objective at x
 - If $\pi > 0$ always holds then termination is provable
 - If $\pi = 0$ then x is **degenerate** and the simplex algorithm can **cycle/stall**

Simplex method: Algorithm description

<table>
<thead>
<tr>
<th>Description of the simplex algorithm</th>
<th>Description of the simplex algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Given a basic feasible solution x</td>
<td>Given a basic feasible solution x</td>
</tr>
</tbody>
</table>
| - If the reduced costs are non-positive then **stop**
 The solution is optimal | - If the reduced costs are non-positive then **stop**
 The solution is optimal |
| - Determine the nonbasic variable $x_{q'}$ with most positive reduced cost
 Determine the feasible direction d when $x_{q'}$ is increased from zero
 If no basic variable is zeroed on $x + \alpha d$ then **stop**
 The LP is unbounded | - Determine the nonbasic variable $x_{q'}$ with most positive reduced cost
 Determine the feasible direction d when $x_{q'}$ is increased from zero
 If no basic variable is zeroed on $x + \alpha d$ then **stop**
 The LP is unbounded |
| - Determine the first basic variable $x_{p'}$ to be zeroed on $x + \alpha d$
 Make $x_{p'}$ nonbasic and $x_{q'}$ basic
 Go to 1 | - Determine the first basic variable $x_{p'}$ to be zeroed on $x + \alpha d$
 Make $x_{p'}$ nonbasic and $x_{q'}$ basic
 Go to 1 |

Unbounded step if $q' = 3$
Bounded step if $q' = 1$
Simplex method: Algorithm definition

Definition of the simplex algorithm

Given a basic feasible solution x with B and N

1. If $\hat{c}_N \leq 0$ then **stop: the solution is optimal**
2. Determine the index $q' \in N$ of the variable $x_{q'}$ with most positive reduced cost \hat{c}_q
3. Let $\hat{a}_q = B^{-1}a_q$, where a_q is column q of N
4. If $\hat{a}_q \leq 0$ then **stop: the LP is unbounded**
5. Determine the index $p' \in B$ of the variable $x_{p'}$ corresponding to $p = \arg\min_{i=1, \ldots, m} \hat{b}_i \hat{a}_{iq} > 0$
6. Exchange indices p' and q' between B and N to yield a new basic feasible solution
7. Go to 1

Simplex method: Basis matrix update

Updating B

- Each simplex iteration exchanges the pth entry of B with the qth entry of N
 - Column p of B is replaced by the vector a_q [column q of N]
 - The updated basis matrix B' is given by
 \[
 B' = B + a_q e_p^T - a_p e_q^T = B [I + (\hat{a}_q - e_p)e_p^T]
 \]
 \[
 = BE \quad \text{where} \quad E = I + (\hat{a}_q - e_p)e_p^T
 \]

This result has fundamental theoretical and practical consequences

Simplex method: B' is nonsingular

- B' is nonsingular iff E is nonsingular
 [Since $B' = BE$, where $E = I + (\hat{a}_q - e_p)e_p^T$ and B is nonsingular]

- Nonsingularity of E may be established as follows
 - For a matrix $A = I + uv^T$ the (Sherman-Morrison) formula for A^{-1} is
 \[
 A^{-1} = I - \frac{1}{1 + v^Tu}uv^T \quad \text{when} \quad v^Tu \neq -1
 \]
 - Hence, using $u = \hat{a}_q - e_p$ and $v = e_p$
 \[
 E^{-1} = I - \frac{1}{\hat{a}_{pq}} (\hat{a}_q - e_p)e_p^T
 \]
 - Since the pivot value in the simplex iteration is $\hat{a}_{pq} \neq 0$, it follows that E is nonsingular

The simplex method: Implementation
Simplex method: Implementation

The data for a simplex iteration are

- **The reduced costs** \(\tilde{c}_N = c_N - N^T B^{-T} c_B \)
- **The pivotal column** \(\tilde{a}_q = B^{-1} a_q \)
- **The reduced RHS** \(\tilde{b} = B^{-1} b \)

How to obtain these vectors determines the efficiency of the simplex implementation

- **Standard simplex method (SSM)**: maintains \(B^{-1} N, \tilde{b} \) and \(\tilde{c}_N \) in a rectangular tableau
 - Requires \(O(mn) \) storage and \(O(mn) \) computation per iteration
 - Inefficient and prohibitively expensive for large problems
- **Revised simplex method (RSM)**: computes \(\tilde{a}_q = B^{-1} a_q \) as required, forms \(\tilde{c}_N \) and updates \(\tilde{b} = B^{-1} b \)
 - Requires up to \(O(m^2) \) storage and \(O(m^2) \) computation per iteration but vastly less for sparse LP problems
 - Efficient for large (sparse) problems

For the reduced costs \(\tilde{c}_N = c_N - N^T B^{-T} c_B \) observe that

\[
\tilde{c}_N = c_N - N^T \pi
\]

where \(\pi = B^{-T} c_B \)

so \(\tilde{c}_N \) may be formed as

- Solve \(B^T \pi = c_B \)
- Form \(z = N^T \pi \)
- Then \(\tilde{c}_N = c_N - z \)

For the pivotal column \(\tilde{a}_q = B^{-1} a_q \)

- Solve \(B \tilde{a}_q = a_q \)

For the reduced RHS \(\tilde{b} = B^{-1} b \)

- Exploit \(x_B = \tilde{b} - \pi \tilde{a}_q \) to update \(\tilde{b} \)

Simplex method: Implementation (RSM)

LU decomposition

- GE applied to \(B \) yields the decomposition \(B = LU \) at cost \(O(m^3) \)
 - \(L \) is the lower triangular matrix of elimination multipliers
 - Diagonal entries are all one
 - \(U \) is the upper triangular matrix after GE
- Linear systems with lower (upper) triangular coefficient matrix can be solved by forward (backward) substitution
- Given \(B = LU \), solve \(B \tilde{a}_q = a_q \) as
 \[
 L y = a_q \quad \text{then} \quad U \tilde{a}_q = y
 \]
- Since \(B^T = U^T L^T \), solve \(B^T \pi = c_B \) as
 \[
 U^T y = c_B \quad \text{then} \quad L^T \pi = y
 \]
- Cost of each forward and backward substitution is \(O(m^2) \)
Updating the invertible representation of B

- Recall

 \[B' = BE \]

 where

 \[E = \left[I + (\hat{a}_q - e_p)e_p^T \right] \]

 and

 \[E^{-1} = I - \frac{1}{\hat{a}_{pq}}(\hat{a}_q - e_p)e_p^T \]

- $B'x = b$ may be solved as

 \[BEx = b \iff By = b; \quad x = E^{-1}y \]

- Similarly $B^T x = b$ may be solved as

 \[E^T B^T x = b \iff y = E^{-T}b; \quad B^T x = y \]

- Since E has only one non-trivial column, it may be stored using a single vector and the index p and operations with E^{-1} cost $O(m)$

- This product form (PF) update technique can be extended to perform multiple updates

 - Eventually the cost of working with all the matrices of the form E will dominate

 - Then preferable to recompute the LU decomposition at cost $O(m^3)$

- \[\text{Solving all systems at cost } O(m^2) \text{ each} \]

- Start with $B = \{n+1, n+2, \ldots, n+m\} \text{ so } B = I$ has trivial LU decomposition $L = U = I$

- Use the Fletcher-Matthews technique to update the LU decomposition itself

 - Allows the LU decomposition of B' to be obtained by updating the LU decomposition of B at a cost $O(m^2)$

 - Numerically stable (unlike PF update)

 - No recalculation of LU decomposition of B is required

The simplex method: Why use it?

- Interior point methods (IPM) are the “modern” alternative to the simplex method

- For single LP problems IPM are frequently faster

- For some classes of single LP problems the simplex method is faster

- When solving sequences of related LP problems the simplex method is preferable

 - Branch-and-bound for discrete optimization

 - Sequential linear programming for nonlinear optimization

- Why?

 - Simplex method yields a basic feasible solution

 - Simplex method can be re-started easily from an optimal solution of one LP to solve a related LP quickly

- 67 years old and going strong!
Linear Programming 1: Summary

- Identified that solution methods need only consider basic feasible solutions of LPs
- Described the simplex algorithm
- Identified that efficient implementation depends on techniques for solving related systems of equations
- Remains to consider how to exploit LP problem **structure and matrix sparsity**.

Wednesday 13:30–15:30