Interior Point Methods
for Convex Quadratic Programming

Jacek Gondzio
Email: J.Gondzio@ed.ac.uk
URL: http://www.maths.ed.ac.uk/~gondzio

Outline

- **Part 1:** IPM for QP
 - quadratic forms
 - duality in QP
 - first order optimality conditions
 - primal-dual framework
- **Part 2:** Linear Algebra in IPM
 - LP case
 - QP case
 - Cholesky factorization
 - exploiting sparsity
- **Part 3:** Huge Problems: Block-Sparsity
- Final Comments

Convex Quadratic Programs

The quadratic function
\[f(x) = x^T Q x \]

is convex if and only if the matrix \(Q \) is positive definite.
In such case the quadratic programming problem
\[
\begin{align*}
\min & \quad c^T x + \frac{1}{2} x^T Q x \\
\text{s.t.} & \quad Ax = b, \\
& \quad x \geq 0,
\end{align*}
\]

is well defined.
If there exists a feasible solution to it,
then there exists an optimal solution.
QP Background:

Def. A matrix $Q \in \mathbb{R}^{n \times n}$ is positive semidefinite if $x^T Q x \geq 0$ for any $x \neq 0$. We write $Q \succeq 0$.

Def. A matrix $Q \in \mathbb{R}^{n \times n}$ is positive definite if $x^T Q x > 0$ for any $x \neq 0$. We write $Q \succ 0$.

Example:

Consider quadratic functions $f(x) = x^T Q x$ with the following matrices:

$$Q_1 = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}, \quad Q_2 = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \quad Q_3 = \begin{bmatrix} 5 & 4 \\ 4 & 3 \end{bmatrix}, \quad Q_4 = \begin{bmatrix} 5 & -2 \\ -2 & 3 \end{bmatrix}.$$

Q_1 and Q_4 are positive definite (hence f_1, f_4 are convex). Q_2 and Q_3 are indefinite (f_2, f_3 are not convex).

Dual Quadratic Program

Consider a quadratic program

$$\min \quad c^T x + \frac{1}{2} x^T Q x$$

$$\text{s.t.} \quad Ax = b,$$

$$x \geq 0,$$

where $c, x \in \mathbb{R}^n, b \in \mathbb{R}^m, A \in \mathbb{R}^{m \times n}, Q \in \mathbb{R}^{n \times n}$.

We associate Lagrange multipliers $y \in \mathbb{R}^m$ and $s \in \mathbb{R}^n (s \geq 0)$ with the constraints $Ax = b$ and $x \geq 0$, and write the **Lagrangian**

$$L(x, y, s) = c^T x + \frac{1}{2} x^T Q x - y^T (Ax - b) - s^T x.$$

Dual QP (cont’d)

To determine the **Lagrangian dual**

$$L_D(y, s) = \min_{x \in X} L(x, y, s)$$

we need stationarity with respect to x:

$$\nabla_x L(x, y, s) = c + Q x - A^T y - s = 0.$$

Hence

$$L_D(y, s) = c^T x + \frac{1}{2} x^T Q x - y^T (Ax - b) - s^T x$$

$$= b^T y + x^T (c + Q x - A^T y - s) - \frac{1}{2} x^T Q x$$

$$= b^T y - \frac{1}{2} x^T Q x,$$

and the **dual** problem has the form:

$$\max \quad b^T y - \frac{1}{2} x^T Q x$$

$$\text{s.t.} \quad A^T y + s - Q x = c,$$

$$x, s \geq 0,$$

where $y \in \mathbb{R}^m$ and $x, s \in \mathbb{R}^n$.

NATCOR, Edinburgh, June 2014
QP with IPMs

Consider the *convex* quadratic programming problem. The **primal**

\[
\min \ c^T x + \frac{1}{2} x^T Q x \\
\text{s.t.} \quad Ax = b, \quad x \geq 0,
\]

and the **dual**

\[
\max \ b^T y - \frac{1}{2} x^T Q x \\
\text{s.t.} \quad A^T y + s - Qx = c, \quad y \text{ free}, \quad s \geq 0,
\]

Apply the *usual* procedure:
- replace inequalities with log barriers;
- form the Lagrangian;
- write the first order optimality conditions;
- apply Newton method to them.

First Order Optimality Conditions

Consider the **primal barrier quadratic program**

\[
\min \ c^T x + \frac{1}{2} x^T Q x - \mu \sum_{j=1}^{n} \ln x_j \\
\text{s.t.} \quad Ax = b,
\]

where \(\mu \geq 0 \) is a barrier parameter.

Write out the **Lagrangian**

\[
L(x, y, \mu) = c^T x + \frac{1}{2} x^T Q x - y^T (Ax - b) - \mu \sum_{j=1}^{n} \ln x_j,
\]
First Order Optimality Conditions (cont’d)

The conditions for a stationary point of the Lagrangian:

\[L(x, y, \mu) = c^T x + \frac{1}{2} x^T Q x - y^T (Ax - b) - \mu \sum_{j=1}^n \ln x_j, \]

are

\[\nabla_x L(x, y, \mu) = c - ATy - \mu X^{-1} e + Q x = 0 \]
\[\nabla_y L(x, y, \mu) = Ax - b = 0, \]

where \(X^{-1} = \text{diag}\{x_1^{-1}, x_2^{-1}, \ldots, x_n^{-1}\}. \)

Let us denote \(s = \mu X^{-1} e, \) i.e. \(XSe = \mu e. \)

The **First Order Optimality Conditions** are:

\[Ax = b, \]
\[ATy + s - Qx = c, \]
\[XSe = \mu e. \]

Apply Newton Method to the FOC

The first order optimality conditions for the barrier problem form a large system of nonlinear equations

\[F(x, y, s) = 0, \]

where \(F: \mathbb{R}^{2n+m} \mapsto \mathbb{R}^{2n+m} \) is an application defined as follows:

\[F(x, y, s) = \begin{bmatrix} Ax - b \\ ATy + s - Qx - c \\ XSe - \mu e \end{bmatrix}. \]

Actually, the first two terms of it are **linear**; only the last one, corresponding to the complementarity condition, is **nonlinear**.

Note that

\[\nabla F(x, y, s) = \begin{bmatrix} A & 0 & 0 \\ -Q & AT & I \\ S & 0 & X \end{bmatrix}. \]
From LP to QP

QP problem

\[
\begin{align*}
\min \ & c^T x + \frac{1}{2} x^T Q x \\
\text{s.t.} \ & Ax = b, \\
\ & x \geq 0.
\end{align*}
\]

First order conditions (for barrier problem)

\[
\begin{align*}
Ax &= b, \\
A^T y + s - Qx &= c, \\
XS e &= \mu e.
\end{align*}
\]

Linear Algebra of IPM: LP Case

FOC

\[
\begin{align*}
Ax &= b, \\
A^T y + s &= c, \\
XS e &= \mu e.
\end{align*}
\]

Newton direction

\[
\begin{bmatrix}
A & 0 & 0 \\
0 & A^T I & S \\
S & 0 & X
\end{bmatrix}
\begin{bmatrix}
\Delta x \\
\Delta y \\
\Delta s
\end{bmatrix}
= \begin{bmatrix}
\xi_p \\
\xi_d \\
\xi_\mu
\end{bmatrix},
\]

where

\[
\begin{bmatrix}
\xi_p \\
\xi_d \\
\xi_\mu
\end{bmatrix}
= \begin{bmatrix}
b - Ax \\
c - A^T y - s \\
\mu e - XS e
\end{bmatrix}.
\]

Linear Algebra, LP Case (cont’d)

In Newton direction

\[
\begin{bmatrix}
A & 0 & 0 \\
0 & A^T I & S \\
S & 0 & X
\end{bmatrix}
\begin{bmatrix}
\Delta x \\
\Delta y \\
\Delta s
\end{bmatrix}
= \begin{bmatrix}
\xi_p \\
\xi_d \\
\xi_\mu
\end{bmatrix},
\]

use the third equation to eliminate

\[
\Delta s = X^{-1}(\xi_\mu - S\Delta x) = -X^{-1}S\Delta x + X^{-1}\xi_\mu,
\]

from the second equation and get

\[
\begin{bmatrix}
-\Theta^{-1} A^T \\
A & 0
\end{bmatrix}
\begin{bmatrix}
\Delta x \\
\Delta y
\end{bmatrix}
= \begin{bmatrix}
\xi_d - X^{-1}\xi_\mu \\
\xi_p
\end{bmatrix},
\]

where \(\Theta = XS^{-1}\) is a diagonal scaling matrix.
Linear Algebra of IPM: QP Case

FOC

\[Ax = b, \]
\[A^T y + s - Qx = c, \]
\[XS = \mu e. \]

Newton direction

\[
\begin{bmatrix}
A & 0 & 0 \\
-Q & A^T & I \\
S & 0 & X
\end{bmatrix}
\begin{bmatrix}
\Delta x \\
\Delta y \\
\Delta s
\end{bmatrix}
= \begin{bmatrix}
\xi_p \\
\xi_d \\
\xi_\mu
\end{bmatrix},
\]

where

\[\xi_p = b - Ax, \]
\[\xi_d = c - A^T y - s + Qx, \]
\[\xi_\mu = \mu e - XSe. \]

Summary: From LP to QP

Newton direction

\[
\begin{bmatrix}
A & 0 & 0 \\
-Q & A^T & I \\
S & 0 & X
\end{bmatrix}
\begin{bmatrix}
\Delta x \\
\Delta y \\
\Delta s
\end{bmatrix}
= \begin{bmatrix}
\xi_p \\
\xi_d \\
\xi_\mu
\end{bmatrix},
\]

where

\[\xi_p = b - Ax, \]
\[\xi_d = c - A^T y - s + Qx, \]
\[\xi_\mu = \mu e - XSe. \]

Augmented system

\[
\begin{bmatrix}
-Q - \Theta^{-1} A^T \\
A & 0
\end{bmatrix}
\begin{bmatrix}
\Delta x \\
\Delta y
\end{bmatrix}
= \begin{bmatrix}
\xi_d - X^{-1} \xi_\mu \\
\xi_p
\end{bmatrix}.
\]

Conclusion:

QP is a natural extension of LP.

Linear Algebra, QP Case (cont’d)

In *Newton direction*

\[
\begin{bmatrix}
A & 0 & 0 \\
-Q & A^T & I \\
S & 0 & X
\end{bmatrix}
\begin{bmatrix}
\Delta x \\
\Delta y \\
\Delta s
\end{bmatrix}
= \begin{bmatrix}
\xi_p \\
\xi_d \\
\xi_\mu
\end{bmatrix},
\]

use the third equation to eliminate

\[\Delta s = X^{-1}(\xi_\mu - S\Delta x) = -X^{-1}S\Delta x + X^{-1}\xi_\mu, \]

from the second equation and get

\[
\begin{bmatrix}
-Q - \Theta^{-1} A^T \\
A & 0
\end{bmatrix}
\begin{bmatrix}
\Delta x \\
\Delta y
\end{bmatrix}
= \begin{bmatrix}
\xi_d - X^{-1} \xi_\mu \\
\xi_p
\end{bmatrix}.
\]

where \(\Theta = XS^{-1} \) is a diagonal scaling matrix.

IPMs: LP vs QP

Augmented system in *LP*

\[
\begin{bmatrix}
-Q - \Theta^{-1} A^T \\
A & 0
\end{bmatrix}
\begin{bmatrix}
\Delta x \\
\Delta y
\end{bmatrix}
= \begin{bmatrix}
\xi_d - X^{-1} \xi_\mu \\
\xi_p
\end{bmatrix}.
\]

Eliminate \(\Delta x \) from the first equation and get normal equations

\[(A\Theta A^T)\Delta y = g. \]
IPMs: LP vs QP

Augmented system in QP

\[
\begin{bmatrix}
-Q - \Theta^{-1} A^T & A \\
A & 0
\end{bmatrix}
\begin{bmatrix}
\Delta x \\
\Delta y
\end{bmatrix} =
\begin{bmatrix}
\xi_d - X^{-1} \xi_p
\xi_p
\end{bmatrix}.
\]

Eliminate \(\Delta x \) from the first equation and get normal equations

\[(A(Q + \Theta^{-1})^{-1} A^T) \Delta y = g.\]

One can use normal equations in LP, but not in QP. Normal equations in QP may become almost completely dense even for sparse matrices \(A \) and \(Q \). Thus, in QP, usually the indefinite augmented system form is used.

Normal Equations

\[(A\Theta A^T) \Delta y = g.\]

Matrix \(A\Theta A^T \) has always the same sparsity structure (only \(\Theta \) changes in subsequent iterations).

Two step solution method:
- factorization to \(LDL^T \) form,
- backsolve to compute direction \(\Delta y \).

Use of Cholesky factorization

Replace the difficult equation

\[(A\Theta A^T) \cdot \Delta y = g,\]

with a sequence of easy equations:

\[L \cdot u = g,\]
\[D \cdot v = u,\]
\[L^T \cdot \Delta y = v.\]

Note that

\[g = Lu = L(Dv) = LD(L^T \Delta y) = (LDL^T) \Delta y = (A\Theta A^T) \Delta y.\]
Existence of \(LDL^T\) factorization

Lemma 2: The decomposition \(H = LDL^T\) with \(d_{ii} > 0, \forall i\) exists if \(H\) is positive definite (PD).

Proof:

Part 1 (⇒)

Let \(H = LDL^T\) with \(d_{ii} > 0\). Take any \(x \neq 0\) and let \(u = L^T x\). Since \(L\) is a unit lower triangular matrix it is nonsingular so \(u \neq 0\) and

\[
x^T H x = x^T L D L^T x = u^T D u = \sum_{i=1}^{m} d_{ii} u_i^2 > 0.
\]

Proof (cont’d):

Part 2 (⇐)

Proof by induction on dimension of \(H\).

For \(m = 1\), \(H = h_{11} = d_{11} > 0\) iff \(H\) is PD.

Assume the result is true for \(m = k - 1 \geq 1\).

Let \(H = \begin{bmatrix} W & a \\ a^T & q \end{bmatrix} \in \mathcal{R}^{k \times k}\) be given \(k \times k\) positive definite matrix with \(W \in \mathcal{R}^{(k-1) \times (k-1)}\), \(a \in \mathcal{R}^{k-1}\) and \(q \in \mathcal{R}\). Note first that since \(H\) is PD, \(W\) is also PD. Indeed for any \((x, 0) \in \mathcal{R}^k\) we have

\[
[x, 0] \begin{bmatrix} W & a \\ a^T & q \end{bmatrix} \begin{bmatrix} x \\ 0 \end{bmatrix} = x^T W x > 0 \ \forall x \in \mathcal{R}^{k-1}, x \neq 0.
\]

From inductive hypothesis we know that \(W = LDL^T\) with \(d_{ii} > 0\). Let \(\begin{bmatrix} W & a \\ a^T & q \end{bmatrix} = \begin{bmatrix} L & 0 \\ 0 & D \end{bmatrix} \begin{bmatrix} L^T & I \\ I^T & 0 \end{bmatrix}
\]

Symmetric Gaussian Elimination

Let \(H \in \mathcal{R}^{m \times m}\) be a symmetric positive definite matrix

\[
H = \begin{bmatrix} h_{11} & h_{12} & \cdots & h_{1m} \\ h_{21} & h_{22} & \cdots & h_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ h_{m1} & h_{m2} & \cdots & h_{mm} \end{bmatrix}.
\]

By applying Gaussian Elimination to it, we can represent it in the following form:

\[
\begin{bmatrix} 1 & 0 & \cdots & 0 \\ l_{21} & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ l_{m1} & l_{m2} & \cdots & 1 \end{bmatrix} \begin{bmatrix} d_{11} & 0 & \cdots & 0 \\ 0 & d_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & d_{mm} \end{bmatrix} = \begin{bmatrix} 1 & l_{21} & \cdots & l_{m1} \\ 0 & 1 & \cdots & l_{m2} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}.
\]

Example 1:

\[
\begin{bmatrix} 1 & -1 & 2 \\ -1 & 3 & 0 \\ 2 & 0 & 9 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 2 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix} \begin{bmatrix} 1 & -1 & 2 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}.
\]

Example 2:

\[
\begin{bmatrix} 1 & 1 & -1 \\ 1 & 5 & 7 \\ -1 & 7 & 22 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ -1 & 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 5 \end{bmatrix} \begin{bmatrix} 1 & 1 & -1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}.
\]
where \(l \) is the solution of equation \((LD)l = a\) (it is well defined since \(L \) and \(D \) are nonsingular) and \(d \) is given by \(d = q - l^T D l \).

Hence matrix \(H = \begin{bmatrix} W & a \\ a^T & q \end{bmatrix} \) has an \(LDL^T \) decomposition.

It remains to prove that \(d > 0 \). Consider the vector

\[
x = \begin{bmatrix} -L^{-T}l \\ 1 \end{bmatrix}.
\]

Since \(H \) is positive definite, we get

\[
0 < x^T H x = [-l^T L^{-1}, 1] \begin{bmatrix} L & 0 \\ l^T & 1 \end{bmatrix} \begin{bmatrix} D & 0 \\ 0 & D \end{bmatrix} \begin{bmatrix} L^T & l \\ 0 & 1 \end{bmatrix} \begin{bmatrix} -L^{-T}l \\ 1 \end{bmatrix}
= [0, 1] \begin{bmatrix} D & 0 \\ 0 & d \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = d,
\]

which completes the proof.

Large Problems are Sparse

Suppose a medium or large LP is solved: \(m, n \sim 10^3 - 10^6 \).

Can all variables be linked at the same time?

No, usually only a subset of them is linked.

There are usually only several nonzeros per row in an LP.

Large problems are always sparse.

Very large problems are often block-sparse.

Exploiting sparsity in computations leads to huge savings.

Exploiting sparsity means mainly avoiding doing useless computations: the computations for which the result is known, as for example multiplications with zero.
Minimum Degree Ordering

Sparse Matrix

\[
H = \begin{bmatrix}
x & x & x & x \\
\end{bmatrix}
\]

Pivot

\[
\begin{bmatrix}
p & x & x & x \\
x & x & x & x \\
x & x & f & f \\
x & f & x & f \\
\end{bmatrix}
\]

Pivot

\[
\begin{bmatrix}
x & x & x & x \\
\end{bmatrix}
\]

Minimum degree ordering:

choose a diagonal element corresponding to a row with the *minimum* number of nonzeros.

Permute rows and columns of \(H \) accordingly.

Cholesky factorization

\[LDL^T = A\Theta A^T. \]

Involved preparation step:

- minimum degree ordering (reduces \# of nonzeros of \(L \));
- symbolic factorization (predicts the sparsity structure of \(L \)).

Computational complexity of different steps:

- minimum degree ordering \(O(\sum_i n_i^2) \)
- numerical factorization \(O(\sum_i n_i^2) \)
- symbolic factorization \(O(\sum_i n_i) \)
- backsolve \(O(\sum_i n_i) \)

where \(n_i \) is \# of nonzero entries in \(L_{i,i} \)

Linear Algebra: Simplex Method vs IPM

Suppose an LP of dimension \(m \times n \) is solved.

Iterations to reach an optimum:

<table>
<thead>
<tr>
<th>Simplex Method</th>
<th>IPM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory Practice</td>
<td>Theory Practice</td>
</tr>
<tr>
<td>Nonpolynomial (O(m+n))</td>
<td>(O(\sqrt{n}))</td>
</tr>
<tr>
<td>(O(\log_{10} n))</td>
<td></td>
</tr>
</tbody>
</table>

But one iteration of the simplex method is usually significantly less expensive. Simplex method solves equation with the basis matrix:

\[
\begin{bmatrix}
B & N \\
0 & I_{n-m}
\end{bmatrix}
\begin{bmatrix}
x_B \\
x_N
\end{bmatrix} = \begin{bmatrix}
b \\
0
\end{bmatrix},
\]

which reduces to

\[Bx_B = b. \]

IPM solves equation with the matrix \(A\Theta A^T \):

\[(A\Theta A^T)\Delta y = g.\]
Structured Problems

Observation:

Truly large scale problems are not only sparse...
→ such problems are structured

Structure is displayed in:
- Jacobian matrix A
- Hessian matrix Q

Structure can be exploited in:
- IPM Algorithm
- Linear Algebra of IPM (focus of the rest of this lecture)

Part 3:

Huge Problems: Block-Sparsity

... are present everywhere.
Sources of Structure

Dynamics → Staircase structure

\[x_{t+1} = A_t x_t + B_t u_t \]

Uncertainty → Block-angular structure

\[T_i^1 x^1 + W_i y_i = b_i \]

Common resource constraint

\[\sum_{i=1}^k B_i x_i = b \rightarrow \text{Dantzig-Wolfe structure} \]
Sources of Structure

(low) rank-corrector

\[A + VV^T = C \]

and networks, ODE- or PDE-discretizations, etc.

From Sparsity to Block-Sparsity:

Apply minimum degree ordering to (sparse) blocks:

Block-Sparse Matrix \(H \)

\[
H = \begin{bmatrix}
\bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet \\
\end{bmatrix}
\]

Pivot Block \(H_{11} \)

\[
Pivot Block \quad \begin{bmatrix}
\bullet & \bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\
\end{bmatrix}
\]

Choose a diagonal block-pivot corresponding to a block-row with the minimum number of blocks.

Permute block-rows and block-columns of \(H \) accordingly.

Abstract Linear Algebra for IPMs

Execute the operation

“solve (reduced) KKT system”

in IPMs for LP, QP and NLP.

It works like the “backslash” operator in MATLAB.

Assumptions:

Q and A are block-structured
OOPS: Object-oriented linear algebra for IPM

- Every node in the block elimination tree has its own linear algebra implementation (depending on its type).
- Each implementation is a realisation of an abstract linear algebra interface.
- Different implementations are available for different structures.

⇒ Rebuild block elimination tree with matrix interface structures

Example: Financial Planning Problems (ALM)

- A set of assets \(J = \{1, \ldots, J\} \) given (bonds, stock, real estate).
- At every stage \(t = 0, \ldots, T-1 \) we can buy or sell different assets.
- The return of asset \(j \) at stage \(t \) is uncertain.

Investment decisions: what to buy or sell, at which time stage.

Objectives:

- Maximize the final wealth → Mean Variance formulation: \(\max \mathbb{E}(X) - \rho \text{Var}(X) \)
- Minimize the associated risk

⇒ Stochastic Program: ⇒ formulate deterministic equivalent

- Standard QP, but huge
- Extentions: nonlinear risk measures (log utility, skewness)

Sparsity of Linear Algebra

⇒ 63 + 128 \times 63 = 8127 columns for Schur-complement

- Prohibitively expensive

⇒ Need facility to exploit nested structure
- Need to be careful that Schur-complement calculations stay sparse on second level.
J. Gondzio

IPMs for QP

Results (ALM: Mean-Variance QP formulation):

<table>
<thead>
<tr>
<th>Prob</th>
<th>Stgs</th>
<th>Asts</th>
<th>Scen</th>
<th>Rows</th>
<th>Cols</th>
<th>iter</th>
<th>time</th>
<th>procs</th>
<th>machine</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALM8</td>
<td>7</td>
<td>6</td>
<td>13M</td>
<td>64M</td>
<td>154M</td>
<td>42</td>
<td>3923</td>
<td>512</td>
<td>BlueGene</td>
</tr>
<tr>
<td>ALM9</td>
<td>7</td>
<td>14</td>
<td>6M</td>
<td>96M</td>
<td>269M</td>
<td>39</td>
<td>4692</td>
<td>512</td>
<td>BlueGene</td>
</tr>
<tr>
<td>ALM10</td>
<td>7</td>
<td>13</td>
<td>12M</td>
<td>180M</td>
<td>500M</td>
<td>45</td>
<td>6089</td>
<td>1024</td>
<td>BlueGene</td>
</tr>
<tr>
<td>ALM11</td>
<td>7</td>
<td>21</td>
<td>16M</td>
<td>353M</td>
<td>1.011M</td>
<td>53</td>
<td>3020</td>
<td>1280</td>
<td>HPCx</td>
</tr>
</tbody>
</table>

The QP problem with

- **353 million of constraints**
- **1 billion of variables**

was solved in 50 minutes using 1280 procs (May 2005).

Equation systems of dimension **1.363 billion** were solved with the direct (implicit) factorization.

→ One IPM iteration takes less than a minute.

NATCOR, Edinburgh, June 2014

57

J. Gondzio

IPMs for QP

References

Papers available: http://www.maths.ed.ac.uk/~gondzio/

OOps: Object-Oriented Parallel Solver

NATCOR, Edinburgh, June 2014

58

--

Interior Point Methods:

- Unified view of optimization → from LP via QP to NLP
- Predictable behaviour → small number of iterations
- Unequalled efficiency
 - competitive for small problems \((n \leq 10^6)\)
 - beyond competition for large problems \((n \geq 10^6)\)

Use IPMs in your research!

NATCOR, Edinburgh, June 2014