Introduction

• Our goal is to study a class of mathematical optimization problems of the following type:

\[
\begin{align*}
\text{minimize} & \quad f_0(x) \\
\text{subject to} & \quad f_i(x) \leq 0, \quad i = 1, 2, \ldots, m \\
\text{and} & \quad h_i(x) = 0, \quad i = 1, 2, \ldots, p.
\end{align*}
\]

Here, \(x\) represents a vector of decision variables, \(f_0(x)\) is cost function to be minimized and \(f_i(x), h_i(x)\) represent the constraints which the decision variables must observe.

• The goal of optimization is to find an optimal vector \(\hat{x}\) which satisfies \(f_i(\hat{x}) \leq 0, h_i(\hat{x}) = 0\) and minimizes \(f_0\). The class of optimization problems which we are interested in are called convex optimization problems.

Outline

• Introduction to convex optimization
• Convex sets
• Convex functions
• Conditions for convexity
• Quasiconvex functions

Convex optimization problems

These problems are of special interest with OR/ applied mathematics for several reasons:

• The minimum solution in guaranteed to be unique, i.e. there is only one vector \(\hat{x}\) which solves the problem.
• A large number of problems in operations research, signal processing, process control etc can be formulated as convex optimization problems.
• Efficient numerical algorithms exist to solve several special types of convex optimization problems which are of practical importance.
• One can use convex relaxation to find good approximate solutions to many non-convex optimization problems relatively quickly.
Convex optimization: our road-map

We will now look at

- sets over which these problems are defined (convex sets), and
- the classes of functions for which these problems are defined (convex functions).

In subsequent lectures, we will move on to

- Different types of convex optimization problems
- Generic methods for solving some classes of these problems.

Affine sets and convex sets

- A set $C \subseteq \mathbb{R}^n$ is affine if, for any $x_1, x_2 \in C$ and $\theta \in \mathbb{R}$, we have $\theta x_1 + (1 - \theta) x_2 \in C$. In other words, the line joining any two points in an affine set C lies entirely in C.
- Every affine set may be expressed as the solution set of a system of linear equations, $C = \{x | Ax = b\}$.
- A set C is convex if the line segment between two points x_1, x_2 lies entirely in C, i.e., if for any $x_1, x_2 \in C$ and for any $\theta \in [0, 1]$, we have $\theta x_1 + (1 - \theta) x_2 \in C$.
- One can move from any point in a convex set C to any other point via an unobstructed path within the set.
- Every affine set is convex, but the converse is not true.

Examples of convex sets I: hyperplanes

- A hyperplane is a set of the form
 $$\{x | a^\top x = b\},$$
 where $a \subseteq \mathbb{R}^n$, $a \neq 0$ and $b \in \mathbb{R}$. Alternatively, the hyperplane may be expressed as
 $$\{x | a^\top (x - x_0) = 0\},$$
 where x_0 is any vector such that $a^\top x_0 = b$.
- A hyperplane divides \mathbb{R}^n into two convex half spaces
 $$\{x | \hat{a}^\top x \leq b\},$$
 with $\hat{a} = a$ for one half space and $\hat{a} = -a$ for another half space.
Hyperplanes (continued)

There are two important results in convexity theory related to hyperplanes:

- Suppose that \(C \) and \(D \) are two convex sets which do not intersect, i.e. \(C \cap D = \{\emptyset\} \). Then the **Separating hyperplane theorem** states that there exist \(a \neq 0 \) and \(b \) such that \(a^\top x \leq b \) for all \(x \in C \) and \(a^\top x \geq b \) for all \(x \in D \). In other words, the hyperplane \(\{x | a^\top x = b\} \) separates the two convex sets \(C \) and \(D \).

- Suppose that \(C \in \mathbb{R}^n \) and \(x_0 \) is on the boundary \(\text{bd} C \). If \(a \neq 0 \) satisfies \(a^\top x \leq a^\top x_0 \) for all \(x \in C \), the hyperplane \(\{x | a^\top x = a^\top x_0\} \) is called a supporting hyperplane to \(C \) at \(x_0 \). The **supporting hyperplane theorem** states that for any nonempty convex set \(C \) and any \(x_0 \in \text{bd} C \), there exists a supporting hyperplane for \(C \) at \(x_0 \).

Examples of convex sets II

- An **ellipsoid** is defined by
 \[
 \mathcal{E}(x_c, P) = \{x \mid (x - x_c)^\top P^{-1} (x - x_c) \leq 1\},
 \]
 where \(P \) is a symmetric positive definite matrix, i.e. it is symmetric and has all positive eigenvalues. We will represent this fact by \(P > 0 \). In \(n \)-dimensional space, ellipsoid has semi-axes with length equal to \(\sqrt{\lambda_i} \), where \(\lambda_i \) are the eigenvalues of \(P \).

- A **Euclidean ball** is an ellipsoid with \(P = r^2 I \), where \(I \) is the identity matrix. It represents a sphere in \(n \)-dimensional space with radius \(r \) and center at a point with coordinate vector \(x_c \).

- A **polyhedron** is a solution set (or a feasible set) for a finite number of linear inequalities and equalities:
 \[
 \mathcal{P} = \{x \mid a_j^\top x \leq b_j, j = 1, 2, \ldots, m, c_j^\top x = d_j, j = 1, 2, \ldots, p\}.
 \]

Examples of convex sets III

- A convex set \(C \) is called a **cone** if for any \(x_1, x_2 \in C \) and \(\theta_1, \theta_2 \geq 0 \), we have \(\theta_1 x_1 + \theta_2 x_2 \in C \).

 In \(n \)-dimensional space, a cone has a shape of a pie-slice, with apex at the origin \((\theta_1 = \theta_2 = 0) \) and passing through points \(x_1 (\theta_2 = 0) \), \(x_2 (\theta_1 = 0) \).

- A **positive semidefinite cone**, which is the set of symmetric positive semidefinite \(n \times n \) matrices:
 \[
 \mathcal{S}_{n^+} = \{X \in \mathbb{R}^{n \times n} | X \geq 0\}.
 \]

 Recall: a symmetric matrix \(A \) is said to be positive semidefinite if \(x^\top Ax \geq 0 \) for all \(x \in \mathbb{R}^n \), which in turn is equivalent to the fact that all the eigenvalues of \(A \) are real and nonnegative.
Examples of convex sets IV

• A hyperbolic set defined by
 \[\{ x \in \mathbb{R}^2 \mid x_1 x_2 \geq 1 \} \]
 is convex. If \(x, y \) are such that \(\min(x_1 x_2, y_1 y_2) \geq 1 \), one can show that
 \(z_1 z_2 \geq 1 \), where \(z = \theta x + (1 - \theta) y, \theta \in (0,1) \). Proving this if
 \((x_1 - y_1)(x_2 - y_2) < 0 \) depends on re-arranging \(z_1 z_2 \) as
 \[(\theta x_1 + (1 - \theta) y_1)(\theta x_2 + (1 - \theta) y_2) = \frac{\theta x_1 x_2 + (1 - \theta) y_1 y_2}{\theta (1 - \theta)(x_1 - y_1)(x_2 - y_2)} - \theta (1 - \theta)(x_1 - y_1)(x_2 - y_2). \]

Operations on convex sets

• An intersection of a finite number of convex sets is always convex (as in
 the case of definition of polyhedron).
• A sum of a finite number of convex sets is convex. Sum of two sets is
 defined by
 \[S_1 + S_2 = \{ x + y \mid x \in S_1, y \in S_2 \}. \]

Examples of convex functions I

• \(e^{ax} \) is convex on \(\mathbb{R} \), for any \(a \in \mathbb{R} \).
• \(x^a \) is convex on \(\mathbb{R}_+ \) (positive real line), if \(a \in (-\infty, 0] \cup [1, \infty) \).
• \(|x|^p, p \geq 1 \) is convex on \(\mathbb{R} \).
• \(-\log x \) is convex on \(\mathbb{R}_+ \).
• Every norm on \(\mathbb{R}^n \) is convex (by virtue of triangle inequality and
 homogeneity).
• A function defined by \(f(x) = \max \{ x_1, x_2, \ldots, x_n \} \) is convex on \(\mathbb{R}^n \).

Convex functions

• A function \(f : \mathbb{R}^n \to \mathbb{R} \) is convex if its domain is a convex set and if for
 all \(x, y \in \text{dom } f \) and \(\theta \in [0,1] \), we have
 \[f(\theta x + (1 - \theta) y) \leq \theta f(x) + (1 - \theta) f(y). \] (1)
• We say that a function is strictly convex if a strict inequality holds in (1).
 A function \(f \) is concave (respectively, strictly concave) if \(-f \) is convex
 (respectively, strictly convex).
• An affine function (i.e. a function of the form \(f(x) = Ax + b \)) is both
 convex and concave, since the inequality in (1) is replaced by an equality.
Examples of convex functions II

- A function defined by
 \[f(x) = \log(e^{x_1} + e^{x_2} + \cdots + e^{x_n}) \]
 is convex over \(\mathbb{R}^n \). This function is an analytic approximation to the maximum eigenvalue of a symmetric matrix, e.g. \(\max \{ x_1, x_2, \ldots, x_n \} \in dom(f) \implies f(x) \leq \log(n) \) holds.

- A quadratic function given by
 \[f(x) = \frac{1}{2} x^\top A x + b^\top x + c, \]
 with \(A \) being a symmetric matrix, \(b \in \mathbb{R}^n \) and \(c \in \mathbb{R} \) is convex if and only if \(A \geq 0 \).

Operations which preserve convexity II

- Nonnegative weighted sum of convex functions is convex, i.e. if \(f_i \), \(i = 1, 2, \ldots, n \) are convex, then \(\sum_i w_i f_i \) is also convex if \(w_i \geq 0 \), \(i = 1, 2, \ldots, n \).

- If \(g(x) \) is convex on \(\mathbb{R}^n \), so is \(\exp(g(x)) \). If \(g(x) \) is convex and nonnegative, \((g(x))^p \) is convex for \(p \geq 1 \).

- If \(f : \mathbb{R}^n \to \mathbb{R} \) is convex, so is \(g : \mathbb{R}^k \to \mathbb{R} \) defined by \(g(x) = f(Ax + b) \), where \(A \in \mathbb{R}^{n \times m} \), \(b \in \mathbb{R}^n \) and
 \[\text{dom}(g) = \{ x | Ax + b \in \text{dom}(f) \} . \]

Operations which preserve convexity III

- If \(f_1, f_2, \ldots, f_n \) are convex, then so is \(f(x) = \max \{ f_1(x), f_2(x), \ldots, f_n(x) \} \), where \(\text{dom}(f) = \text{dom}(f_1) \cap \cdots \cap \text{dom}(f_n) \).

- Pointwise supremum of a family of convex functions is always convex, e.g. the maximum eigenvalue of a symmetric matrix,
 \[f : \mathbb{R}^{n \times n} \to \mathbb{R}; f(X) = \sup \{ y^\top X y | \|y\|_2 = 1 \} \]
 is convex in \(X \). Conversely, a pointwise infimum of concave functions is concave; a fact which will prove useful when we study duality.

- If \(g : \mathbb{R} \to \mathbb{R} \) is convex and non-negative, so is \(h = (\sum_{i=1}^n g(x_i))^p \) for any \(p \geq 1 \).

Examples of convex functions II

- A function defined by
 \[f(x) = \log(e^{x_1} + e^{x_2} + \cdots + e^{x_n}) \]
 is convex over \(\mathbb{R}^n \). This function is an analytic approximation to the max function, since
 \[\max \{ x_1, x_2, \ldots, x_n \} \leq f(x) \leq \max \{ x_1, x_2, \ldots, x_n \} + \log n \] holds.

- A quadratic function given by
 \[f(x) = \frac{1}{2} x^\top A x + b^\top x + c, \]
 with \(A \) being a symmetric matrix, \(b \in \mathbb{R}^n \) and \(c \in \mathbb{R} \) is convex if and only if \(A \geq 0 \).

Operations which preserve convexity II

- Nonnegative weighted sum of convex functions is convex, i.e. if \(f_i \), \(i = 1, 2, \ldots, n \) are convex, then \(\sum_i w_i f_i \) is also convex if \(w_i \geq 0 \), \(i = 1, 2, \ldots, n \).

- If \(g(x) \) is convex on \(\mathbb{R}^n \), so is \(\exp(g(x)) \). If \(g(x) \) is convex and nonnegative, \((g(x))^p \) is convex for \(p \geq 1 \).

- If \(f : \mathbb{R}^n \to \mathbb{R} \) is convex, so is \(g : \mathbb{R}^m \to \mathbb{R} \) defined by \(g(x) = f(Ax + b) \), where \(A \in \mathbb{R}^{n \times m} \), \(b \in \mathbb{R}^n \) and
 \[\text{dom}(g) = \{ x | Ax + b \in \text{dom}(f) \} . \]
Conditions for convexity I

- Suppose that f is differentiable over its (open) domain, $\text{dom}(f)$. Then $f(x)$ is convex if and only if $\text{dom}(f)$ is convex and

 $$f(y) \geq f(x) + \nabla f(x)^T(y - x)$$

 holds for all $x, y \in \text{dom}(f)$. Note that the right hand side of the inequality is the first order Taylor approximation of f in the neighbourhood of x.

- For a convex function, the above inequality states that a first order Taylor approximation always underestimates $f(y)$ irrespective of how near or far y is from x (in terms of appropriate metric).

Conditions for convexity II

- As a special case,

 $$\text{if } \nabla f(x^*) = 0 \text{ for some } x^* \in \text{dom}(f) \iff f(x^*) = \min_{x \in \text{dom}(f)} f(x).$$

 Minimising a convex differentiable function on its domain is equivalent to finding a point where its gradient is zero.

- Suppose that f is twice differentiable, i.e. the Hessian matrix $\nabla^2 f(x) = \left[\frac{\partial^2 f}{\partial x_i \partial x_j} \right]$ exists at each point in $\text{dom}(f)$. Then f is convex if and only if $\text{dom}(f)$ is convex and its Hessian is positive semidefinite for all $x \in \text{dom}(f)$, i.e. $\nabla^2 f(x) \succeq 0$.

- For twice differentiable $f : \mathbb{R} \rightarrow \mathbb{R}$, this means that the slope of tangent to f is always increasing as x increases.

Conditions for convexity III

- How do we know if a function is convex?

 - Use definition, or prove from first principles.

 - If it is differentiable, check if $f(y) \geq f(x) + \nabla f(x)^T(y - x)$ holds for all $x, y \in \text{dom}(f)$ (1^{st} order characterization).

 - If it is twice differentiable, check if $\nabla^2 f(x) \succeq 0$ holds (2^{nd} order characterization).

 - Check if you can construct it from more elementary convex functions (e.g., pointwise maximum, affine translation, non-negative weighted sum etc).

 - ··· or, try 0^{th} order characterization.
0^{th} order characterization for convexity

- A function $f(x)$ is convex if and only if $g(t) = f(x + tv)$ is convex in t, where $\text{dom}(g) = \{t | x + tv \in \text{dom}(f), x \in \text{dom}(f), v \in \mathbb{R}^n\}$.
- This allows checking convexity for $f(x)$ by checking convexity of a scalar function $g(t)$.
- Example: $f(X) = -\log \det(X)$, $\text{dom}(f) = \{X \in \mathbb{R}^{n \times n}, X > 0\}$. Then $g(t) = -\log \det(X + tV) = -\log \det(X) - \log \det(I + tX^{-0.5}VX^{-0.5}) = -\log \det(X) - \sum t \lambda_i$, where λ_i are eigenvalues of $X^{-0.5}VX^{-0.5}$. $g(t)$ is convex as $g''(t) > 0$; hence so is $f(X)$.

Quasiconvex functions II: some examples

- Given a cash-flow $x_0 < 0$, $x_0 + x_1 + \cdots + x_n > 0$, internal rate of return $\text{IRR}(x)$ is defined by

$$\text{IRR}(x) = \inf \left\{ r \left| \sum_{i=0}^{n} \frac{x_i}{(1+r)^i} = 0 \right. \right\}.$$

$\text{IRR}(x)$ is quasiconcave; the superlevel sets $\text{IRR}(x) \geq \alpha$ are convex for each α $\text{IRR} \geq \alpha$ means $\sum_{i=0}^{n} x_i (1+r)^{-i} \geq 0$ for $r \in [0, \alpha]$.
- A function $f(x) = p(x)/q(x)$ is quasiconvex over $\{x | x \in \text{dom}(q) \cap \text{dom}(p), q(x) > 0\}$ whenever p is convex, q is affine. Note that $f(x) \leq \alpha \Leftrightarrow p(x) - \alpha q(x) \leq 0$, so that all sublevel sets of $f(x)$ are convex.

Quasiconvex functions I: definitions

- A function f is quasiconvex if its domain and its sublevel sets,

$$S_\alpha := \{x \in \text{dom}(f) \mid f(x) \leq \alpha\}$$

are convex for $\alpha \in \mathbb{R}$.
- All convex functions are quasiconvex, but converse is not true. On \mathbb{R}, all monotonic functions (increasing or decreasing) are also quasiconvex; this includes many concave (e.g. $\log x$ over \mathbb{R}_+) functions.
- If f is quasiconvex, $-f$ is quasiconcave. Superlevel sets of quasiconcave functions are convex.
- A function is quasiconvex if and only if

$$f(\theta x + (1-\theta)y) \leq \max(\theta f(x), (1-\theta)f(y)). \quad (2)$$

Quasiconvex functions III: one more example

- Given $a, b \in \mathbb{R}^n$, distance ratio function

$$f(x) = \frac{||x - a||_2}{||x - b||_2}$$

is quasiconvex over domain $\{x | ||x - a||_2 \leq ||x - b||_2\}$.
Next steps

• Now that we know what convex sets and convex/quasiconvex functions are,
• we are now ready to look at different types of convex and quasiconvex optimization problems.
• Main reference (for this lecture and the next two lectures): *Convex Optimization*, by Stephen Boyd and Lieven Vandenberghe, Cambridge University Press, 2009 (available as a free download online).

A couple of exercises

• State whether the following function is convex or concave (or neither):

\[f(x) = \frac{1}{x_1 x_2}, \quad x \in \mathbb{R}_+^2 \]

• Suppose that \(f : \mathbb{R} \mapsto \mathbb{R} \) is differentiable and convex with \(\mathbb{R}_+ \subseteq \text{dom } f \).
Show that the *running average* function defined by

\[F(x) = \frac{1}{x} \int_0^x f(t)dt, \quad \text{dom } F = \mathbb{R}_+ \]

is convex. Hint: use the first order condition for convexity of \(f(x) \), to verify the second order condition of convexity for \(F(x) \); note that

\[F'(x) = -\frac{1}{x^2} \int_0^x f(t)dt + \frac{f(x)}{x} \]