Spin Geometry 2010

Tutorial Sheet 7

(Harder problems, if any, are adorned with a 3.)

Problem 7.1. Show that $Spin(5) \cong Sp(2)$.

Problem 7.2. Show that in a spin manifold, the Dirac operator D squares to

$$\mathbf{D}^2 = \nabla^* \nabla + \frac{1}{4} s ,$$

where $\nabla^* \nabla$ is the covariant laplacian and *s* is the Ricci scalar.

Problem 7.3. Show that if a positive-definite riemannian spin manifold (M, g) admits Killing spinor fields, then it is Einstein.

Problem 7.4. Let (M, g) be Einstein. Let $\widetilde{M} = \mathbb{R}^+ \times M$, with metric $\widetilde{g} = dr^2 + \mu^2 r^2 g$. Show that for some value of μ (related to the Ricci scalar of g), \widetilde{g} is Ricci-flat.

Problem 7.5. Let (M, g) be a riemannian manifold and let $(\widetilde{M}, \widetilde{g})$ be its metric cone. Let $\xi = r \frac{\partial}{\partial r}$ be the Euler vector. Show that $\widetilde{\nabla}_X \xi = X$ for all vector fields X. Conversely, suppose that $(\widetilde{M}, \widetilde{g})$ is a riemmanian manifold and that ξ is a vector field such that $\widetilde{\nabla}_X \xi = X$ for every vector field X. Then show that $(\widetilde{M}, \widetilde{g})$ is the metric cone of some (M, g). (Only the converse is difficult.)

Problem 7.6. Let (M, g) be a six-dimensional positive-definite riemannian manifold whose metric cone $(\widetilde{M}, \widetilde{g})$ has $G_2 \subset SO(7)$ holonomy representation. Define J : TM \rightarrow TM by $g(J(X), Y) = \phi(\xi, X, Y)$, where ξ the Euler vector and ϕ the G_2 -invariant 3-form and everything is evaluated at r = 1. Show that J is an orthogonal almost complex structure and show that $(\nabla_X J)(X) = 0$ for all vector fields X. Is it possible for J to be parallel?

Problem 7.7. Let (M, g) be an odd-dimensional positive-definite riemannian manifold whose metric cone (\tilde{M}, \tilde{g}) is Kähler, with Kähler form ω and complex structure J. Let $\chi = J\xi$, $\theta = \iota_{\xi}\omega$ and $g(T(X), Y) = \omega(X, Y)$ define the Sasakian structure (M, g, χ, θ, T) on (M, g), obtained by restricting the relevant objects to r = 1. Show that χ is a unit-norm Killing vector, that $\theta(X) = g(\chi, X)$ and that

 $(\nabla_{\mathbf{X}}\mathbf{T})(\mathbf{Y}) = \theta(\mathbf{Y})\mathbf{X} - g(\mathbf{X},\mathbf{Y})\boldsymbol{\chi}$.

Problem 7.8. Let (M, g) be a 7-dimensional positive-definite riemannian manifold whose metric cone $(\widetilde{M}, \widetilde{g})$ has Spin(7) \subset SO(8) holonomy representation. Let Ω denote the Cayley 4-form on \widetilde{M} and let $\phi = \iota_{\xi}\Omega$ be its contraction with the Euler vector and pulled back to M via the embedding at r = 1. Show that $\nabla \phi = \star \phi$.

Problem 7.9. Let (M, g) be a positive-definite riemannian manifold whose metric cone (\tilde{M}, \tilde{g}) is hyperkähler with Euler vector ξ . Let $X_1 = -\frac{1}{2}I\xi$, $X_2 = -\frac{1}{2}J\xi$ and $X_3 = -\frac{1}{2}K\xi$, where I, J, K are the hyperkähler structure. Show that X_i are perpendicular to ξ and hence they are lifts to the cone of vector fields on M. Show that they are Killing vectors on M and that they define an infinitesimal action of $\mathfrak{so}(3)$.