Spin Geometry 2010

Tutorial Sheet 7

(Harder problems, if any, are adorned with a iz.)
Problem 7.1. Show that $\operatorname{Spin}(5) \cong \operatorname{Sp}(2)$.
Problem 7.2. Show that in a spin manifold, the Dirac operator D squares to

$$
\mathrm{D}^{2}=\nabla^{*} \nabla+\frac{1}{4} s
$$

where $\nabla^{*} \nabla$ is the covariant laplacian and s is the Ricci scalar.
Problem 7.3. Show that if a positive-definite riemannian spin manifold (M, g) admits Killing spinor fields, then it is Einstein.
Problem 7.4. Let (M, g) be Einstein. Let $\widetilde{\mathrm{M}}=\mathbb{R}^{+} \times \mathrm{M}$, with metric $\widetilde{g}=d r^{2}+\mu^{2} r^{2} g$. Show that for some value of μ (related to the Ricci scalar of g), \widetilde{g} is Ricci-flat.
Problem 7.5. $亡 \boldsymbol{z}$ Let (M, g) be a riemannian manifold and let ($\widetilde{\mathrm{M}}, \widetilde{g})$ be its metric cone. Let $\xi=r \frac{\partial}{\partial r}$ be the Euler vector. Show that $\widetilde{\nabla}_{\mathrm{X}} \xi=\mathrm{X}$ for all vector fields X . Conversely, suppose that $(\widetilde{\mathrm{M}}, \widetilde{g})$ is a riemmanian manifold and that ξ is a vector field such that $\widetilde{\nabla}_{\mathrm{X}} \xi=\mathrm{X}$ for every vector field X. Then show that $(\widetilde{\mathrm{M}}, \widetilde{g})$ is the metric cone of some (M, g). (Only the converse is difficult.)
Problem 7.6. Let $(\mathrm{M}, g$) be a six-dimensional positive-definite riemannian manifold whose metric cone $(\widetilde{M}, \widetilde{g})$ has $\mathrm{G}_{2} \subset \mathrm{SO}(7)$ holonomy representation. Define J : TM \rightarrow TM by $g(\mathrm{~J}(\mathrm{X}), \mathrm{Y})=\phi(\xi, \mathrm{X}, \mathrm{Y})$, where ξ the Euler vector and ϕ the G_{2}-invariant 3-form and everything is evaluated at $r=1$. Show that J is an orthogonal almost complex structure and show that $\left(\nabla_{\mathrm{X}} \mathrm{J}\right)(\mathrm{X})=0$ for all vector fields X . Is it possible for J to be parallel?
Problem 7.7. Let (M, g) be an odd-dimensional positive-definite riemannian manifold whose metric cone ($\widetilde{M}, \widetilde{g}$) is Kähler, with Kähler form ω and complex structure J. Let $\chi=\mathrm{J} \xi, \theta=\iota_{\xi} \omega$ and $g(\mathrm{~T}(\mathrm{X}), \mathrm{Y})=\omega(\mathrm{X}, \mathrm{Y})$ define the Sasakian structure $(\mathrm{M}, g, \chi, \theta, \mathrm{~T})$ on (M, g), obtained by restricting the relevant objects to $r=1$. Show that χ is a unitnorm Killing vector, that $\theta(\mathrm{X})=g(\chi, \mathrm{X})$ and that

$$
\left(\nabla_{\mathrm{X}} \mathrm{~T}\right)(\mathrm{Y})=\theta(\mathrm{Y}) \mathrm{X}-g(\mathrm{X}, \mathrm{Y}) \chi
$$

Problem 7.8. Let (M, g) be a 7-dimensional positive-definite riemannian manifold whose metric cone $(\widetilde{\mathrm{M}}, \widetilde{g})$ has $\operatorname{Spin}(7) \subset \mathrm{SO}(8)$ holonomy representation. Let Ω denote the Cayley 4 -form on \widetilde{M} and let $\phi=\iota_{\xi} \Omega$ be its contraction with the Euler vector and pulled back to M via the embedding at $r=1$. Show that $\nabla \phi=\star \phi$.

Problem 7.9. Let (M, g) be a positive-definite riemannian manifold whose metric cone ($\widetilde{\mathrm{M}}, \widetilde{g}$) is hyperkähler with Euler vector ξ. Let $\mathrm{X}_{1}=-\frac{1}{2} \mathrm{I} \xi, \mathrm{X}_{2}=-\frac{1}{2} \mathrm{~J} \xi$ and $\mathrm{X}_{3}=$ $-\frac{1}{2} \mathrm{~K}$, where I,J,K are the hyperkähler structure. Show that X_{i} are perpendicular to ξ and hence they are lifts to the cone of vector fields on M. Show that they are Killing vectors on M and that they define an infinitesimal action of $\mathfrak{s o}(3)$.

