Spin Geometry 2010

Tutorial Sheet 5

(Harder problems, if any, are adorned with a ir.)
Problem 5.1. Let $P \rightarrow M$ be a principal G-bundle over M and let $E=P \times_{G} F \rightarrow M$ denote the associated vector bundle defined by a representation $\varrho: G \rightarrow G L(F)$ of G on a vector space F. Fill in the details of the proof of the graded $C^{\infty}(M)$-module isomorphism

$$
\Omega_{\mathrm{G}}^{\bullet}(\mathrm{P}, \mathrm{~F}) \cong \Omega^{\bullet}(\mathrm{M}, \mathrm{E})
$$

between basic differential forms on P with values in F and differential forms on M with values in E for all k.

Problem 5.2. Let $\left\{\mathrm{U}_{\alpha}\right\}$ be a trivialising cover for a principal G-bundle $\pi: \mathrm{P} \rightarrow \mathrm{M}$ and let $\left\{s_{\alpha}\right\}$ denote the corresponding local sections. Let ω be a connection 1-form on P and let $\mathrm{A}_{\alpha}=s_{\alpha}^{*} \omega$ denote the corresponding gauge fields. Prove that for all $m \in \mathrm{U}_{\alpha \beta}$,

$$
\begin{equation*}
\mathrm{A}_{\alpha}(m)=g_{\alpha \beta}(m) \mathrm{A}_{\beta}(m) g_{\alpha \beta}(m)^{-1}-d g_{\alpha \beta} g_{\alpha \beta}^{-1}, \tag{1}
\end{equation*}
$$

where $g_{\alpha \beta}: U_{\alpha \beta} \rightarrow G$ are the transition functions of the bundle. Conversely, given gauge fields A_{α} subject to equation (1) on overlaps, define

$$
\begin{equation*}
\omega_{\alpha}=\operatorname{Ad}_{g_{\alpha}^{-1}} \circ \pi^{*} \mathrm{~A}_{\alpha}+g_{\alpha}^{-1} d g_{\alpha} \tag{2}
\end{equation*}
$$

and show that ω_{α} is the restriction to $\pi^{-1} U_{\alpha}$ of a connection 1-form on P .
Problem 5.3. Verify that the local expression for the covariant derivative in terms of gauge fields is indeed covariant.
Problem 5.4. Prove that the curvature tensor of the Levi-Civita connection on a riemannian manifold (M.g) is indeed a tensor. Prove all the identities of the curvature tensor and in addition prove that

$$
g(\mathrm{R}(\mathrm{X}, \mathrm{Y}), \mathrm{Z}, \mathrm{~W})=g(\mathrm{R}(\mathrm{Z}, \mathrm{~W}), \mathrm{X}, \mathrm{Y})
$$

for all $\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{W} \in \mathscr{X}(\mathrm{M})$ and conclude that the Ricci tensor is symmetric. Finally, prove that formula for the decomposition of the Riemann curvature tensor:

$$
\mathrm{R}=\frac{s}{2 n(n-1)} g \odot g+\frac{1}{n-2}\left(r-\frac{s}{n} g\right) \odot g+\mathrm{W}
$$

in terms of the Weyl curvature tensor W , the Ricci tensor r and the curvature scalar s.

Problem 5.5. Prove that the local expression given in the notes

$$
\mathscr{E}^{*} \omega=\frac{1}{2} \sum_{i, j} g\left(\nabla e_{i}, e_{j}\right) e^{i} \curlywedge e^{j}
$$

for the gauge field corresponding to the Levi-Civita connection of a riemannian manifold (M, g) is correct, by interpreting the tangent bundle TM as an associated vector bundle of the orthonormal frame bundle $\mathrm{O}(\mathrm{M})$ and showing that the covariant derivative $d+\mathscr{E}^{*} \omega$ is metric and torsion-free.

Problem 5.6. Show that the curvature 2-form of the Clifford-valued gauge field

$$
\frac{1}{4} \sum_{i, j} g\left(\nabla e_{i}, e_{e} e^{i} e^{j}\right.
$$

is given by

$$
\frac{1}{4} \sum_{i, j} \Omega_{i j} e^{i} e^{j}
$$

where $\Omega_{i j}(\mathrm{X}, \mathrm{Y})=g\left(\mathrm{R}(\mathrm{X}, \mathrm{Y}) e_{i}, e_{j}\right)$ for all $\mathrm{X}, \mathrm{Y} \in \mathscr{X}(\mathrm{M})$. Prove that Clifford-valued covariant derivative is compatible with the Clifford action of $\Lambda \mathrm{TM}$ on any bundle of Clifford-modules:

$$
\nabla_{\mathrm{X}}(\theta \cdot \psi)=\nabla_{\mathrm{X}} \theta \cdot \psi+\theta \cdot \nabla_{\mathrm{X}} \psi,
$$

for all $\theta \in \Lambda \mathrm{TM}, \psi$ a pinor field and $\mathrm{X} \in \mathscr{X}(\mathrm{M})$.
Problem 5.7.tr Describe the Dirac monopole (including the "Dirac string") in the language of principal fibre bundles.

