Spin Geometry 2010

Tutorial Sheet 4

(Harder problems, if any, are adorned with a \mathfrak{P} .)

Problem 4.1. Let T denote a two-dimensional torus thought of as the quotient of the complex plane by a lattice \mathbb{C}/Λ . Describe the action of the modular group on the four inequivalent spin structures on T.

Problem 4.2. Describe how the mapping class group of a compact Riemann surface of genus $g \ge 2$ acts on the 2^{2g} inequivalent spin structures.

Problem 4.3. Let $\Gamma \subset SO(n + 1)$ be a finite group acting freely on the unit sphere $S^n \subset \mathbb{R}^{n+1}$. Show that the quotient S^n/Γ admits a spin structure if and only if there is a subgroup $\widehat{\Gamma} \subset Spin(n+1)$ such that the covering homomorphism $\widetilde{Ad} : Spin(n+1) \rightarrow SO(n+1)$ restricts to an isomorphism $\widehat{\Gamma} \cong \Gamma$ (i.e., $-1 \notin \widehat{\Gamma}$).

Problem 4.4. Let $m, a, b \in \mathbb{N}$ be natural numbers satisfying $1 \le a, b < m$ with (a, m) = (b, m) = 1 and let $\Gamma \subset SO(6)$ be the cyclic subgroup of order *m* generated by the following matrix

$$A = \begin{pmatrix} R\left(\frac{1}{m}\right) & \\ & R\left(\frac{a}{m}\right) & \\ & & R\left(\frac{b}{m}\right) \end{pmatrix} \quad \text{with} \quad R(\theta) = \begin{pmatrix} \cos 2\pi\theta & -\sin 2\pi\theta \\ \sin 2\pi\theta & \cos 2\pi\theta \end{pmatrix}.$$

Show that Γ acts freely on the unit sphere $S^5 \subset \mathbb{R}^6$. For which *m*, *a*, *b* satisfying the above conditions does the quotient S^5/Γ admit a spin structure? And in those cases, how many inequivalent spin structures does it admit?

Problem 4.5. Do the same for the subgroup $\Gamma \subset SO(6)$ generated by

. . .

$$\mathbf{A} = \begin{pmatrix} \mathbf{R}\left(\frac{1}{m}\right) & \\ & \mathbf{R}\left(\frac{r}{m}\right) \\ & & \mathbf{R}\left(\frac{r^2}{m}\right) \end{pmatrix} \quad \text{and} \quad \mathbf{B} = \begin{pmatrix} \mathbf{0} & \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{1} \\ \mathbf{R}\left(\frac{3\ell}{n}\right) & \mathbf{0} & \mathbf{0} \end{pmatrix},$$

where $m, n, r, \ell \in \mathbb{N}$ and $n \equiv 0 \pmod{3}$, $(n, m) = (\ell, n) = 1$ and $r^3 \equiv 1 \pmod{m}$. (Notice that this means that *m* has to be odd.)

Problem 4.6. Classify all the finite subgroups $\Gamma \subset SO(4)$ which act freely on the unit sphere $S^3 \subset \mathbb{R}^4$ and for which the quotient S^3/Γ admits a spin structure. Classify the number of spin structures in the quotient.

Problem 4.7. Show that \mathbb{RP}^n is orientable if and only if *n* is odd and show that it is spin if and only if $n = 3 \mod 4$.