Spin Geometry 2010

Tutorial Sheet 2

(Harder problems, if any, are adorned with a 3.)

Problem 2.1. Prove this Lemma from the lectures. Let \mathbb{K} stand for any of \mathbb{R} , \mathbb{C} and \mathbb{H} and let $\mathbb{K}(n)$ denote the *real* algebra of $n \times n$ matrices with entries in \mathbb{K} . Then we have the following isomorphisms of real associative algebras:

$$\mathbb{K}(m) \otimes_{\mathbb{R}} \mathbb{R}(n) \cong \mathbb{K}(mn) .$$

Problem 2.2. Prove the following periodicities of real Clifford algebras:

- 1. $C\ell(n,0) \otimes C\ell(0,2) \cong C\ell(0, n+2)$,
- 2. $C\ell(s, t) \otimes C\ell(1, 1) \cong C\ell(s+1, t+1)$,
- 3. $C\ell(n+8,0) \cong C\ell(n,0) \otimes_{\mathbb{R}} \mathbb{R}(16)$,
- 4. $C\ell(0, n+8) \cong C\ell(0, n) \otimes_{\mathbb{R}} \mathbb{R}(16)$, and
- 5. $C\ell(s+4, t+4) \cong C\ell(s, t) \otimes_{\mathbb{R}} \mathbb{R}(16)$,

where $n, s, t \ge 0$.

Problem 2.3. Use the periodicities in the lectures to prove that $C\ell(6,0) \cong \mathbb{R}(8)$ and $C\ell(7,0) \cong \mathbb{R}(8) \oplus \mathbb{R}(8)$. Similarly prove that $C\ell(1,9) \cong \mathbb{R}(32)$, $C\ell(1,10) \cong \mathbb{R}(32) \oplus \mathbb{R}(32)$ and $C\ell(2,10) \cong \mathbb{R}(64)$.

Problem 2.4. Prove the classification theorem; that is, prove the isomorphisms in the table:

$s-t \mod 8$	$C\ell(s,t)$
0,6	$\mathbb{R}(2^{d/2})$
7	$\mathbb{R}(2^{(d-1)/2}) \oplus \mathbb{R}(2^{(d-1)/2})$
1,5	$\mathbb{C}(2^{(d-1)/2})$
2,4	$\mathbb{H}(2^{(d-2)/2})$
3	$\mathbb{H}\left(2^{(d-3)/2}\right) \oplus \mathbb{H}\left(2^{(d-3)/2}\right)$

Problem 2.5. Fill in the details of the proof in the lectures of the following isomorphism

$$\mathbb{C}\ell(n+2) \cong \mathbb{C}\ell(n) \otimes_{\mathbb{C}} \mathbb{C}(2) .$$

Problem 2.6. Let $e_1, \ldots, e_s, \varepsilon_1, \ldots, \varepsilon_t$ be an orthonormal basis for $\mathbb{R}^{s,t}$ and let the same symbols denote the corresponding elements of $C\ell(s, t)$. Let $\omega := e_1 \cdots e_s \varepsilon_1 \cdots \varepsilon_t$ denote the **volume element**.

- 1. Show that $\omega^2 = (-1)^{(s+t)(s+t-1)/2+s} \mathbf{1}$.
- 2. Show that if s + t is odd, then ω is central; that is, it commutes with all the elements of $C\ell(s, t)$.
- 3. Show that if s + t is odd and $\omega^2 = 1$ then the Clifford algebra splits as a direct sum of two subalgebras, whereas if $\omega^2 = -1$ then it is the complexification which splits. Determine for which (*s*, *t*) either of the two cases happen and compare with the classification results.