Spin Geometry 2010

Tutorial Sheet 2

(Harder problems, if any, are adorned with a iz.)
Problem 2.1. Prove this Lemma from the lectures. Let \mathbb{K} stand for any of \mathbb{R}, \mathbb{C} and \mathbb{H} and let $\mathbb{K}(n)$ denote the real algebra of $n \times n$ matrices with entries in \mathbb{K}. Then we have the following isomorphisms of real associative algebras:

$$
\mathbb{K}(m) \otimes_{\mathbb{R}} \mathbb{R}(n) \cong \mathbb{K}(m n) .
$$

Problem 2.2. Prove the following periodicities of real Clifford algebras:

1. $\mathrm{C} \ell(n, 0) \otimes \mathrm{C} \ell(0,2) \cong \mathrm{C} \ell(0, n+2)$,
2. $\mathrm{C} \ell(s, t) \otimes \mathrm{C} \ell(1,1) \cong \mathrm{C} \ell(s+1, t+1)$,
3. $\mathrm{C} \ell(n+8,0) \cong \mathrm{C} \ell(n, 0) \otimes_{\mathbb{R}} \mathbb{R}(16)$,
4. $\mathrm{C} \ell(0, n+8) \cong \mathrm{C} \ell(0, n) \otimes_{\mathbb{R}} \mathbb{R}(16)$, and
5. $\mathrm{C} \ell(s+4, t+4) \cong \mathrm{C} \ell(s, t) \otimes_{\mathbb{R}} \mathbb{R}(16)$,
where $n, s, t \geq 0$.
Problem 2.3. Use the periodicities in the lectures to prove that $\mathrm{C} \ell(6,0) \cong \mathbb{R}(8)$ and $\mathrm{C} \ell(7,0) \cong \mathbb{R}(8) \oplus \mathbb{R}(8)$. Similarly prove that $\mathrm{C} \ell(1,9) \cong \mathbb{R}(32), \mathrm{C} \ell(1,10) \cong \mathbb{R}(32) \oplus \mathbb{R}(32)$ and $C \ell(2,10) \cong \mathbb{R}(64)$.
Problem 2.4. Prove the classification theorem; that is, prove the isomorphisms in the table:

$s-t \bmod 8$	$\mathrm{C} \ell(s, t)$
0,6	$\mathbb{R}\left(2^{d / 2}\right)$
7	$\mathbb{R}\left(2^{(d-1) / 2}\right) \oplus \mathbb{R}\left(2^{(d-1) / 2}\right)$
1,5	$\mathbb{C}\left(2^{(d-1) / 2}\right)$
2,4	$\mathbb{H}\left(2^{(d-2) / 2}\right)$
3	$\mathbb{H}\left(2^{(d-3) / 2}\right) \oplus \mathbb{H}\left(2^{(d-3) / 2}\right)$

Problem 2.5. Fill in the details of the proof in the lectures of the following isomorphism

$$
\mathbb{C} \ell(n+2) \cong \mathbb{C} \ell(n) \otimes_{\mathbb{C}} \mathbb{C}(2) .
$$

Problem 2.6. Let $e_{1}, \ldots, e_{s}, \varepsilon_{1}, \ldots, \varepsilon_{t}$ be an orthonormal basis for $\mathbb{R}^{s, t}$ and let the same symbols denote the corresponding elements of $\mathrm{C} \ell(s, t)$. Let $\omega:=e_{1} \cdots e_{s} \varepsilon_{1} \cdots \varepsilon_{t}$ denote the volume element.

1. Show that $\omega^{2}=(-1)^{(s+t)(s+t-1) / 2+s} \mathbf{1}$.
2. Show that if $s+t$ is odd, then ω is central; that is, it commutes with all the elements of $\mathrm{C} \ell(s, t)$.
3. Show that if $s+t$ is odd and $\omega^{2}=\mathbf{1}$ then the Clifford algebra splits as a direct sum of two subalgebras, whereas if $\omega^{2}=-\mathbf{1}$ then it is the complexification which splits. Determine for which (s, t) either of the two cases happen and compare with the classification results.
