Lecture 6: The spin connection

On the tangent bundle of a riemannian manifold (M, g) there is a privileged connection called the LeviCivita connection. Thinking of the tangent bundle as an associated vector bundle to the bundle $\mathrm{O}(\mathrm{M})$ of orthonormal frames, we will see that this connection is induced from a connection on $O(M)$, which restricts to a connection on $\mathrm{SO}(\mathrm{M})$ when (M, g) is orientable and lifts to a connection on any spin bundle $\operatorname{Spin}(\mathrm{M})$ if (M, g) is spin. That being the case, it defines a connection on the spinor bundles which is usually called the spin connection.

6.1 The Levi-Civita connection

Let (M, g) be a riemannian manifold. We summarise here the basic definitions and results of the riemannian geometry of (M, g).

Theorem 6.1 (The fundamental theorem of riemannian geometry). There is a unique connection on the tangent bundle TM which is

1. metric-compatible:

$$
\nabla_{\mathrm{X}} g=0 \quad \text { equivalently } \quad \mathrm{X} g(\mathrm{Y}, \mathrm{Z})=g\left(\nabla_{\mathrm{X}} \mathrm{Y}, \mathrm{Z}\right)+g\left(\mathrm{Y}, \nabla_{\mathrm{X}} \mathrm{Z}\right),
$$

2. and torsion-free:

$$
\nabla_{\mathrm{X}} \mathrm{Y}-\nabla_{\mathrm{Y}} \mathrm{X}=[\mathrm{X}, \mathrm{Y}],
$$

where $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ are vector fields on M and $[\mathrm{X}, \mathrm{Y}]$ denotes the Lie bracket of vector fields.
Proof. The proof consists in finding an explicit formula for the connection in terms of the metric. Let $\mathrm{X}, \mathrm{Y}, \mathrm{Z} \in \mathscr{X}(\mathrm{M})$. The metric compatibility condition says that

$$
\begin{aligned}
& \mathrm{X} g(\mathrm{Y}, \mathrm{Z})=g\left(\nabla_{\mathrm{X}} \mathrm{Y}, \mathrm{Z}\right)+g\left(\mathrm{Y}, \nabla_{\mathrm{X}} \mathrm{Z}\right) \\
& \mathrm{Y} g(\mathrm{Z}, \mathrm{X})=g\left(\nabla_{\mathrm{Y}} \mathrm{Z}, \mathrm{X}\right)+g\left(\mathrm{Z}, \nabla_{\mathrm{Y}} \mathrm{X}\right) \\
& \mathrm{Zg}(\mathrm{X}, \mathrm{Y})=g\left(\nabla_{\mathrm{Z}} \mathrm{X}, \mathrm{Y}\right)+g\left(\mathrm{X}, \nabla_{\mathrm{Z}} \mathrm{Y}\right),
\end{aligned}
$$

whereas the vanishing of the torsion allows to rewrite the middle equation as

$$
\mathrm{Y} g(\mathrm{Z}, \mathrm{X})=g\left(\nabla_{\mathrm{Y}} \mathrm{Z}, \mathrm{X}\right)+g\left(\mathrm{Z}, \nabla_{\mathrm{X}} \mathrm{Y}\right)+g(\mathrm{Z},[\mathrm{X}, \mathrm{Y}]) .
$$

We now compute

$$
\mathrm{X} g(\mathrm{Y}, \mathrm{Z})+\mathrm{Y} g(\mathrm{Z}, \mathrm{X})-\mathrm{Zg}(\mathrm{X}, \mathrm{Y})=2 g\left(\nabla_{\mathrm{X}} \mathrm{Y}, \mathrm{Z}\right)+g\left(\mathrm{Y}, \nabla_{\mathrm{X}} \mathrm{Z}-\nabla_{\mathrm{Z}} \mathrm{X}\right)+g\left(\nabla_{\mathrm{Y}} \mathrm{Z}-\nabla_{\mathrm{Z}} \mathrm{Y}, \mathrm{X}\right)+g(\mathrm{Z},[\mathrm{X}, \mathrm{Y}])
$$

and use the torsionless condition once again to arrive at the Koszul formula

$$
\begin{equation*}
2 g\left(\nabla_{\mathrm{X}} \mathrm{Y}, \mathrm{Z}\right)=\mathrm{X} g(\mathrm{Y}, \mathrm{Z})+\mathrm{Y} g(\mathrm{Z}, \mathrm{X})-\mathrm{Zg}(\mathrm{X}, \mathrm{Y})-g(\mathrm{Y},[\mathrm{X}, \mathrm{Z}])-g([\mathrm{Y}, \mathrm{Z}], \mathrm{X})-g(\mathrm{Z},[\mathrm{X}, \mathrm{Y}]) \tag{79}
\end{equation*}
$$

which determines $\nabla_{\mathrm{X}} \mathrm{Y}$ uniquely.
The connection so defined is called the Levi-Civita connection. Its curvature, defined by

$$
\begin{equation*}
\mathrm{R}(\mathrm{X}, \mathrm{Y}) \mathrm{Z}=\nabla_{[\mathrm{X}, \mathrm{Y}]} \mathrm{Z}-\nabla_{\mathrm{X}} \nabla_{\mathrm{Y}} \mathrm{Z}-\nabla_{\mathrm{Y}} \nabla_{\mathrm{X}} \mathrm{Z}, \tag{80}
\end{equation*}
$$

gives rise to the Riemann curvature tensor

$$
\mathrm{R}(\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{~W}):=g(\mathrm{R}(\mathrm{X}, \mathrm{Y}) \mathrm{Z}, \mathrm{~W}) .
$$

Proposition 6.2. The curvature satisfies the following identities

1. symmetry conditions:

$$
\mathrm{R}(\mathrm{X}, \mathrm{Y}) \mathrm{Z}=-\mathrm{R}(\mathrm{Y}, \mathrm{X}) \mathrm{Z} \quad \text { and } \quad \mathrm{R}(\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{~W})=-\mathrm{R}(\mathrm{X}, \mathrm{Y}, \mathrm{~W}, \mathrm{Z}),
$$

2. algebraic Bianchi identity:

$$
\mathrm{R}(\mathrm{X}, \mathrm{Y}) \mathrm{Z}+\mathrm{R}(\mathrm{Y}, \mathrm{Z}) \mathrm{X}+\mathrm{R}(\mathrm{Z}, \mathrm{X}) \mathrm{Y}=0,
$$

3. differential Bianchi identity:

$$
\nabla_{\mathrm{X}} \mathrm{R}(\mathrm{Y}, \mathrm{Z})+\nabla_{\mathrm{Y}} \mathrm{R}(\mathrm{Z}, \mathrm{X})+\nabla_{\mathrm{Z}} \mathrm{R}(\mathrm{X}, \mathrm{Y})=0 .
$$

A tensor satisfying the symmetry conditions and the algebraic Bianchi identity is called an algebraic curvature tensor.

If we fix $\mathrm{X}, \mathrm{Y} \in \mathscr{X}(\mathrm{M})$, the curvature defines a linear map $\mathrm{Z} \mapsto \mathrm{R}(\mathrm{X}, \mathrm{Z}) \mathrm{Y}$, whose trace is the Ricci (curvature) tensor $r(\mathrm{X}, \mathrm{Y})$.

Proposition 6.3. The Ricci tensor is symmetric: $r(\mathrm{X}, \mathrm{Y})=r(\mathrm{Y}, \mathrm{X})$.
The trace (relative to the metric g) of the Ricci tensor is called the scalar curvature of (M, g) and denoted s.

Definition 6.4. A riemannian manifold (M, g) is said to be Einstein if $r(\mathrm{X}, \mathrm{Y})=\lambda g(\mathrm{X}, \mathrm{Y})$ for some $\lambda \in \mathbb{R}$. Clearly $\lambda=s / n$ where n is the dimension of M . It is said to be Ricci-flat if $r=0$ and flat if $\mathrm{R}=0$.

If $h, k \in \mathrm{C}^{\infty}\left(\mathrm{M}, \mathrm{S}^{2} \mathrm{~T}^{*} \mathrm{M}\right)$ are two symmetric tensors, their Kulkarni-Nomizu product $h \odot k$ is the algebraic curvature tensor defined by

$$
\begin{equation*}
(h \odot k)(\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{~W})=h(\mathrm{X}, \mathrm{Z}) k(\mathrm{Y}, \mathrm{~W})+h(\mathrm{Y}, \mathrm{~W}) k(\mathrm{X}, \mathrm{Z})-h(\mathrm{X}, \mathrm{~W}) k(\mathrm{Y}, \mathrm{Z})-h(\mathrm{Y}, \mathrm{Z}) k(\mathrm{X}, \mathrm{~W}), \tag{81}
\end{equation*}
$$

for all $\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{W} \in \mathscr{X}(\mathrm{M})$.
Proposition 6.5. The Riemann curvature tensor can be decomposed as

$$
\mathrm{R}=\frac{s}{2 n(n-1)} g \odot g+\frac{1}{n-2}\left(r-\frac{s}{n} g\right) \odot g+\mathrm{W}
$$

where W is the Weyl (curvature) tensor.
The Weyl tensor is the "traceless" part of the Riemann tensor. It is conformally invariant and if it vanishes, (M, g) is said to be conformally flat. If $(\mathrm{M}, g$) is Einstein, then the middle term in R is absent. If only the first term is present then (M, g) is said to have constant sectional curvature.

6.2 The connection one-forms on $O(M), S O(M)$ and $\operatorname{Spin}(M)$

The Levi-Civita connection of a riemannian manifold induces a connection one-form ω on the orthonormal frame bundle and, if orientable, also on the oriented orthonormal frame bundle. Indeed, let us assume that M is orientable and let $\mathscr{E}: \mathrm{U} \subset \mathrm{M} \rightarrow \mathrm{SO}(\mathrm{M})$ be local orthonormal frame, i.e., a local section of $\mathrm{SO}(\mathrm{M})$. Then we may pull ω back to a gauge field $\mathscr{E}^{*} \omega$ on U with values in $\mathfrak{s o}(s, t)$, for (M, g) of signature (s, t). We can describe the gauge field explicitly as follows. Let $\left(e_{i}\right)$ denote the elements in the frame \mathscr{E}. Being orthonormal, their inner products are given by $g\left(e_{i}, e_{j}\right)=\varepsilon_{i} \delta_{i j}$, where $\varepsilon_{i}= \pm 1$. Then we have

$$
\mathscr{E}^{*} \omega=\frac{1}{2} \sum_{i, j} \omega_{i j} \varepsilon_{i} \varepsilon_{j} e_{i} \curlywedge e_{j},
$$

where $\omega_{i j} \in \Omega^{1}(U)$ is defined by

$$
\begin{equation*}
\omega_{i j}(\mathrm{X})=g\left(\nabla_{\mathrm{X}} e_{i}, e_{j}\right) \tag{82}
\end{equation*}
$$

for all $\mathrm{X} \in \mathscr{X}(\mathrm{M})$ and $e_{i} \curlywedge e_{j} \in \mathfrak{s o}(s, t)$ are the skewsymmetric endomorphisms defined by (53). It is convenient in calculations to introduce the dual frame $e^{i}=\varepsilon_{i} e_{i}$, where now $g\left(e_{i}, e^{j}\right)=\delta_{i j}$, and in terms of which

$$
\mathscr{E}^{*} \omega=\frac{1}{2} \sum_{i, j} \omega_{i j} e^{i} \curlywedge e^{j}
$$

If \mathscr{E}^{\prime} is another local frame $\mathscr{E}^{\prime \prime}: \mathrm{U}^{\prime} \rightarrow \mathrm{SO}(\mathrm{M})$, so that on $\mathrm{U} \cap \mathrm{U}^{\prime}, \mathscr{E}^{\prime}=\mathscr{E} h$ for some $h: \mathrm{U} \cap \mathrm{U}^{\prime} \rightarrow \mathrm{SO}(s, t)$, then on $U \cap U^{\prime}$,

$$
\mathscr{E}^{*} \omega=h \mathscr{E}^{*} \omega h^{-1}-d h h^{-1}
$$

whence it does indeed give rise to a gauge field.
Now let

denote a spin bundle. The connection 1-form ω on $\operatorname{SO}(\mathrm{M})$ pulls back to a connection 1-form $\varphi^{*} \omega$ on Spin(M), called the spin connection. Now given a local section \mathscr{E} of $\mathrm{SO}(\mathrm{M})$, let $\widetilde{\mathscr{E}}$ denote a local section of Spin(M) such that $\varphi \circ \widetilde{\mathscr{E}}=\mathscr{E}$. Then the gauge field associated to $\varphi^{*} \omega$ via $\widetilde{\mathscr{E}}$ coincides with the one associated to ω via \mathscr{E} :

$$
\begin{equation*}
\widetilde{\mathscr{E}}^{*} \varphi^{*} \omega=(\varphi \circ \widetilde{\mathscr{E}})^{*} \omega=\mathscr{E}^{*} \omega . \tag{83}
\end{equation*}
$$

If $\varrho: \operatorname{Spin}(s, t) \rightarrow \mathrm{GL}(\mathrm{F})$ is any representation, then on sections of the associated vector bundle $\operatorname{Spin}(\mathrm{M}) \times \operatorname{Spin}(s, t) \mathrm{F}$ we have a covariant derivative

$$
\begin{equation*}
d^{\nabla}=d+\frac{1}{2} \sum_{i, j} \omega_{i j} \varrho\left(e^{i} \curlywedge e^{j}\right), \tag{84}
\end{equation*}
$$

where we also denote by $\varrho: \mathfrak{s o}(s, t) \rightarrow \mathfrak{g l}(\mathrm{F})$ the representation of the Lie algebra.
We shall be interested primarily in the spinor representations of $\operatorname{Spin}(s, t)$, which are induced by restriction from pinor representations of $\mathrm{C} \ell(s, t)$. This means that the associated bundle $\operatorname{Spin}(\mathrm{M}) \times{ }_{\operatorname{Spin}(s, t)}$ F is (perhaps a subbundle of) a bundle $\mathrm{C} \ell(\mathrm{TM}) \times_{\mathrm{C} \ell(s, t)} \mathrm{P}$ of Clifford modules. In this case, it is convenient to think of the gauge field as taking values in the Clifford algebra. If we let $\rho: \mathfrak{s o}(s, t) \rightarrow \mathrm{C} \ell(s, t)$ denote the embedding defined in (55), then

$$
\begin{equation*}
\rho\left(\mathscr{E}^{*} \omega\right)=\frac{1}{4} \sum_{i, j} \omega_{i j} e^{i} e^{j} \tag{85}
\end{equation*}
$$

where $e^{i} e^{j} \in \mathrm{C} \ell(s, t)$. The curvature two-form of this connection is given by

$$
\begin{equation*}
\rho\left(\mathscr{E}^{*} \Omega\right)=\frac{1}{4} \sum_{i, j} \Omega_{i j} e^{i} e^{j} \tag{86}
\end{equation*}
$$

where $\Omega_{i j}(\mathrm{X}, \mathrm{Y})=g\left(\mathrm{R}(\mathrm{X}, \mathrm{Y}) e_{i}, e_{j}\right)$ for all $\mathrm{X}, \mathrm{Y} \in \mathscr{X}(\mathrm{M})$, with $\mathrm{R}(\mathrm{X}, \mathrm{Y})$ defined by (80).
The Clifford algebra-valued covariant derivative is compatible with Clifford action in the following sense. Suppose that $\theta \in \mathrm{C} \ell(\mathrm{TM})$ and ψ is a section of a bundle of Clifford modules associated to $\mathrm{C} \ell(\mathrm{TM})$. Then for all vector fields $\mathrm{X} \in \mathscr{X}(\mathrm{M})$, we have that

$$
\begin{equation*}
\nabla_{\mathrm{X}}(\theta \cdot \psi)=\nabla_{\mathrm{X}} \theta \cdot \psi+\theta \cdot \nabla_{\mathrm{X}} \psi, \tag{8}
\end{equation*}
$$

where $\nabla_{\mathrm{X}} \theta$ agrees with the action of the Levi-Civita connection on θ viewed as a section of $\Lambda \mathrm{TM}$.

6.3 Parallel spinor fields

We can now define the notion of a parallel spinor field as a (nonzero) section of a spinor bundle which is covariantly constant. On a trivialising neighbourhood U of M, where $\operatorname{Spin}(M)$ is trivialised by a local section $\widetilde{\mathscr{E}}$ lifing a local orthonormal frame \mathscr{E}, a spinor field is given by a function $\psi: \mathrm{U} \rightarrow \mathrm{S}(s, t)$ taking values in the spinor representation, which we think of as the restriction to $\operatorname{Spin}(s, t)$ of an irreducible $\mathrm{C} \ell(s, t)$-module. Depending on (s, t), it may very well be the case that the $\mathrm{S}(s, t)$ so defined is not irreducible, in which case $\mathrm{S}(s, t)=\mathrm{S}(s, t)_{+} \oplus \mathrm{S}(s, t)_{-}$decomposes into two half-spinor irreducible representations of $\operatorname{Spin}(s, t)$. The covariant derivative of ψ is given by

$$
\begin{equation*}
d^{\nabla} \psi=d \psi+\frac{1}{4} \sum_{i, j} \omega_{i j} e^{i} e^{j} \psi \tag{88}
\end{equation*}
$$

and we say that ψ is covariantly constant (or parallel) if $d^{\nabla} \psi=0$. The fact (78) that d^{∇} is covariant means that this equation is well-defined on global section of the spinor bundle.

Differentiating $d^{\nabla} \psi$ again we obtain an integrability condition for the existence of parallel spinor fields, namely

$$
\begin{equation*}
d^{\nabla} d^{\nabla} \psi=\frac{1}{4} \sum_{i, j} \Omega_{i j} e^{i} e^{j} \psi=0 . \tag{89}
\end{equation*}
$$

This equation is equivalent to

$$
\begin{equation*}
\mathrm{R}(\mathrm{X}, \mathrm{Y}) \Psi=0 \tag{90}
\end{equation*}
$$

where $\mathrm{R}(\mathrm{X}, \mathrm{Y}) \in \mathrm{C} \ell(\mathrm{TM})$ acts on ψ via Clifford multiplication. Relative to the local orthonormal frame $\mathscr{E}=\left(e_{i}\right)$, we have

$$
\begin{equation*}
\mathrm{R}\left(e_{i}, e_{j}\right) \cdot \psi=0 \Longrightarrow \sum_{k, \ell} \mathrm{R}_{i j k \ell} e^{k} e^{\ell} \psi=0 \tag{91}
\end{equation*}
$$

If we multiply the above equation with e^{j} and sum over j, we obtain the following:

$$
\begin{aligned}
0 & =\sum_{j, k, \ell} \mathrm{R}_{i j k \ell} e^{j} e^{k} e^{\ell} \psi \\
& =\sum_{j, k, \ell} \mathrm{R}_{i j k \ell}\left(e^{j k \ell}-g^{j k} e^{\ell}+g^{j \ell} e^{k}\right) \psi \\
& =\sum_{j, k, \ell} \mathrm{R}_{i j k \ell}\left(e^{j k \ell}+2 g^{j \ell} e^{k}\right) \psi
\end{aligned}
$$

The first term vanishes by the algebraic Bianchi identity and the second term yields the Ricci tensor, whence the integrability condition becomes

$$
\begin{equation*}
\sum_{j} \mathrm{R}_{i j} e^{j} \psi=0 \tag{92}
\end{equation*}
$$

More invariantly, this says the following. The Ricci tensor defines an endomorphism R of the tangent bundle called the Ricci operator, by $g(\mathrm{R}(\mathrm{X}), \mathrm{Y})=r(\mathrm{X}, \mathrm{Y})$. Then the above integrability condition says that $\mathrm{R}(\mathrm{X}) \psi=0$ for all $\mathrm{X} \in \mathscr{X}(\mathrm{M})$. Hitting this equation again with $\mathrm{R}(\mathrm{X})$, we see that $g(\mathrm{R}(\mathrm{X}), \mathrm{R}(\mathrm{X}))=0$ for all X. If g is positive-definite, then $R(X)=0$ and (M, g) is Ricci-flat. In indefinite signature, the image of the Ricci operator consists of null vectors, whence we could call such manifolds Ricci-null.

In the next lecture we will reformulate the question of which spin manifolds admit parallel spinor fields in terms of holonomy.

