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Lecture 1: Clifford algebras: basic notions

Consider now a system of n units ι1, ι2, . . . , ιn such that the
multiplication of any two of them is polar; that is, ιr ιs =
−ιs ιr .

— William Kingdon Clifford, 1878

In this lecture we define the Clifford algebra of a quadratic vector space and view it from three dif-
ferent points of view: the contemporary categorical formulation, Clifford’s original formulation and as
a quantisation of the exterior algebra.

1.1 Quadratic vector spaces

Throughout K = R or C. Let V be a finite-dimensional vector space over K, let B : V ×V →K be a (pos-
sibly degenerate) symmetric bilinear form and let Q : V →K denote the corresponding quadratic form,
defined by Q(x) = B(x, x). One can recover B from Q by polarisation, namely

(1) B(x, y) = 1
2

�
Q(x + y)−Q(x)−Q(y)

�
.

The pair (V,Q) is called a quadratic vector space (overK). They are the objects of a category QVec with
morphisms (V,QV) → (W,QW) given by linear maps f : V → W such that f ∗QW = QV, or explicitly that
QW( f (x)) = QV(x) for all x ∈ V. The zero vector space with the zero quadratic form is an initial object
in QVec. The absence of terminal objects and (co)products is due to the fact that projections do not
generally preserve norms.

We will see that the Clifford algebra C�(V,Q) of a quadratic vector space (V,Q) is an associative,
unitalK-algebra, with a natural filtration and a Z2-grading, and moreover that the assignment (V,Q) �→
C�(V,Q) is functorial.

There are several ways to understand C�(V,Q): from the very abstract to the very concrete. The
latter is good for computations, whereas the former is good to prove theorems which may free us from
computations. Therefore we will look at C�(V,Q) in several ways, starting with the categorical definition.

j All our associative algebras are unital, unless otherwise stated!

1.2 The Clifford algebra, categorically

Let (V,Q) be a quadratic vector space and let A be an associativeK-algebra. We say that aK-linear map
φ : V → A is Clifford if for all x ∈ V,

(2) φ(x)2 =−Q(x)1A ,

where 1A is the unit of A. Clifford maps from a fixed quadratic vector space (V,Q) are the objects of a
category Cliff(V,Q), where a morphism from V → A to V → A� is given by a commuting triangle

(3) V

����
��

��
�

���
��

��
��

A
f �� A�

with f : A → A� a homomorphism of associative algebras.
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1.2.1 Definition

Definition 1.1. The Clifford algebra — if it exists — is an initial object in Cliff(V,Q). In other words,
it is given by an associative algebra C�(V,Q) together with a Clifford map i : V → C�(V,Q) such that for
every Clifford map φ : V → A there is a unique algebra morphism Φ : C�(V,Q) → A making the following
triangle commute:

(4) V
i

����
��

��
��

�
φ

���
��

��
��

C�(V,Q)
Φ �� A

Remark 1.2. There are several paraphrases of the defining property of the Clifford algebra. One can say
that every Clifford map factors uniquely via the Clifford algebra, or that the Clifford algebra is universal
for Clifford maps, or that every Clifford maps extends uniquely to a morphism of associative algebras
from the Clifford algebra.

Remark 1.3. The mathematical literature is replete with such universal definitions. For example, if g is
a Lie algebra and A is an associative algebra (over the same ground field) then one can consider linear
maps φ : g→ A such that, for all X,Y ∈ g,

(5) φ(X)φ(Y)−φ(Y)φ(X) =φ([X,Y])

Although it is not standard terminology, let us call such maps Lie within the confines of this remark.
Then the universal enveloping algebra Ug of g is universal for Lie maps; in other words, Ug is an associ-
ative algebra with a Lie map i : g→ Ug extending any Lie map φ : g→ A uniquely; i.e., there is a unique
associative algebra morphism Φ : Ug→ A such that the following triangle commutes:

(6) g

i

����
��

��
�� φ

���
��

��
��

Ug Φ �� A

In other words, Ug is what allows us to “multiply” elements of g as if they were matrices. One constructs
the universal enveloping algebra as a quotient of the tensor algebra Tg of g by the 2-sided ideal gener-
ated by X⊗Y−Y⊗X− [X,Y] for all X,Y ∈ g. The construction of the Clifford algebra will proceed along
similar lines.

Initial objects in a category are unique up to unique isomorphism, hence the following should not
be too surprising.

Proposition 1.4. The Clifford algebra C�(V,Q), if it exists, is unique up to a unique isomorphism.

Proof. Let i : V → C and i � : V → C� be two Clifford algebras. Then since C is a Clifford algebra, there is a
unique morphism Φ : C → C� making the following triangle commute

(7) V
i

����
��

��
�

i �

���
��

��
��

C
Φ �� C�

whereas since C� is a Clifford algebra, there is a unique morphism Φ� : C� → C making the following
triangle commute

(8) V
i �

����
��

��
�

i

���
��

��
��

C� Φ�
�� C
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Now the composition Φ� ◦Φ : C → C makes the following triangle commute

(9) V
i

����
��

��
�

i

���
��

��
��

C
Φ�◦Φ �� C

and so does the identity 1C : C → C, whence Φ� ◦Φ = 1C. A similar argument shows that Φ ◦Φ� = 1C� ,
whence Φ : C → C� is an isomorphism.

Assuming for a moment that Clifford algebras exist, we have the following

Proposition 1.5. The Clifford algebra defines a functor C� from QVec to the category of associative al-
gebras.

Proof. Indeed, let (V,QV) and (W,QW) be quadratic vector spaces and iV : V → C�(V,QV) and iW : W →
C�(W,QW) the corresponding Clifford algebras. Now let f : V → W with f ∗QW = QV be a morphism in
QVec and consider iW ◦ f : V → C�(W,QW). We observe that it is a Clifford map:

(10) (iW ◦ f )(x)2 = f (x)2 =−QW( f (x))1W =−QV(x)1W ,

where 1W is the identity in C�(W,QW). Therefore by universality, there is a unique morphism C�( f ) :
C�(V,QV) → C�(W,QW). It is clear that if 1V : V → V is the identity transformation, then uniqueness
forces C�(1V) = 1C�(V,Q) : C�(V,Q) → C�(V,Q) to be the identity morphism (not to be confused with the
unit 1 in the Clifford algebra). Similarly, if (X,QX) is a third quadratic vector space and g : W → X with
g∗QX = QW, then universality gives a morphism C�(g ) : C�(W,QW) → C�(X,QX) and the composition
C�(g ) ◦C�( f ) has to agree (again by uniqueness) with C�(g ◦ f ) where g ◦ f : V → X is the composition
Clifford map.

Remark 1.6. The universal enveloping algebra also defines a functor from the category of Lie algebras
to the category of associative algebras which is left adjoint to the functor which sends an associative
algebra to the Lie algebra it becomes under the commutator. The functor defined by the Clifford algebra
does not seem to be an adjoint functor in any interesting way.

1.2.2 Construction

Let T•V = �
p≥0 V⊗p denote the tensor algebra of V, where V⊗0 = K, V⊗1 = V and V⊗p is spanned by

monomials x1 ⊗ x2 ⊗ · · ·⊗ xp with xi ∈ V. The multiplication V⊗p ×V⊗q → V⊗(p+q), given by extending
bilinearly the concatenation of monomials

(11) (x1 ⊗ · · ·⊗xp )(y1 ⊗ · · ·⊗ yq ) = x1 ⊗ · · ·⊗xp ⊗ y1 ⊗ · · ·⊗ yq ,

makes T•V a graded algebra. The identity is given by 1 ∈ V⊗0. The tensor algebra is universal for linear
mapsφ : V → A, where A is an associative algebra. Indeed, any such map extends uniquely to an algebra
morphism Φ : TV → A defined by Φ(λ) = λ1A for λ ∈K, Φ(x) =φ(x) for x ∈ V, and more generally

(12) Φ(x1 ⊗ · · ·⊗xp ) =φ(x1) · · ·φ(xp ).

In fact, the tensor algebra is the free associative algebra generated by V. The tensor algebra defines a
functor T from the category of vector spaces to the category of associative algebras, which is left adjoint
to the forgetful functor going in the opposite direction.

By definition, the Clifford algebra C�(V,Q) is universal for Clifford maps to associative algebras.
Since the tensor algebra is universal for linear maps to associative algebras, we expect C�(V,Q) to be
a quotient of TV by an ideal which imposes the condition that a linear map is Clifford. To this end, let us
consider the 2-sided ideal IQ of TV generated by elements of the form x⊗x+Q(x) ∈ V⊗2⊕V⊗0. Explicitly,
IQ is spanned (overK) by elements of the form

(13) x1 ⊗ · · ·⊗xp ⊗ (z ⊗ z +Q(z))⊗ y1 ⊗ · · ·⊗ yq
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for some p, q and xi , y j , z ∈ V.
If φ : V → A is a Clifford map and �Φ : TV → A the unique extension of φ to the tensor algebra, then it

is easy to see that �Φ annihilates IQ precisely because φ is Clifford:

(14) �Φ(Θ⊗ (z ⊗ z +Q(z))⊗Ξ) = �Φ(Θ)
�
φ(z)2 +Q(z)1A

� �Φ(Ξ) = 0,

for any Θ,Ξ ∈ TV. Hence �Φ factors through a unique map Φ : TV/IQ → A from the quotient. We define
C�(V,Q) = TV/IQ to be the quotient algebra, and the map i : V → C�(V,Q) is defined by the commutativ-
ity of the triangle

(15) V ��

i ����
��

��
��

� TV

��
C�(V,Q)

We remark that i is injective because the ideal only “kicks in” at V⊗≥2, whence in many cases we will not
write i explicitly and think of V as sitting inside C�(V,Q).

Since the ideal IQ is not homogeneous, C�(V,Q) does not inherit a grading from TV, but since the
ideal has even parity, C�(V,Q) does inherit a Z2-grading. We will see this later from a different point of
view, where we also show that it inherits a filtration from the canonical filtration of TV.

1.3 The Clifford algebra as Clifford would have written it

We now discuss C�(V,Q) in a way more suitable to computations. This is the way that Clifford introduced
the algebras and the way they are still taught in Physics courses, following Dirac.

1.3.1 Clifford algebra in terms of generators and relations

We start by choosing aK-basis (ei ) for V, where i = 1, . . . ,n = dimV, relative to which B(ei ,e j ) = Bi j = B j i .
Let Γi denote the image of ei under i : V → C�(V,Q). Then the Γi satisfy the relation

(16) ΓiΓ j +Γ jΓi =−2Bi j 1,

where 1 is the unit in the Clifford algebra. The Clifford algebra is thus the associative algebra generated
by the Γi subject to the above relation. This is enough to write down the product of any two generators:

(17) ΓiΓ j = 1
2 (ΓiΓ j −Γ jΓi )+ 1

2 (ΓiΓ j +Γ jΓi ) = Γi j −Bi j 1 ,

where we have introduced the notation Γi j = 1
2 (ΓiΓ j −Γ jΓi ). It seems to be a new object, since it cannot

be reduced further using the relations. With a little bit more energy, one can compute the product

(18) ΓiΓ j k = Γi j k −Bi jΓk +Bi kΓ j ,

where we have defined the alternating product of three generators

(19) Γi j k = 1
6

�
ΓiΓ jΓk −ΓiΓkΓ j +Γ jΓkΓi −Γ jΓiΓk +ΓkΓiΓ j −ΓkΓ jΓi

�
.

More generally define

(20) Γi1···ip = 1
p !

�

σ∈Sp

(−1)σΓiσ(1) · · ·Γiσ(p) ,

where (−1)σ is the sign of the permutation σ of {1,2, . . . , p}. Continuing in this way, and since C�(V,Q) is
generated by V and the identity, we see that C�(V,Q) is the linear span of 1, Γi , Γi j ,... In total there are
1+n +

�n
2

�
+ ·· · +

�n
n

�
= 2n such monomials, whence dimC�(V,Q) = 2dimV. This is the same dimension

of the exterior algebra ΛV and in fact we can establish a vector space isomorphism ΛV ∼= C�(V,Q) by
sending 1 �→ 1, ei �→ Γi and ei1 ∧ · · ·∧eip �→ Γi1···ip .

In the next section we will see this isomorphism from a different perspective. Namely we will show
that C�(V,Q) is a filtered algebra whose associated graded algebra is the exterior algebra. Of course, un-
less Q = 0, C�(V,Q) andΛV are not isomorphic as algebras; instead we will be able to interpret C�(V,Q) as
a quantisation of ΛV, much in the same way that the universal enveloping algebra Ug is a quantisation
of the symmetric algebra Symg. But before doing that let us consider some low-dimensional examples.
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1.3.2 Low-dimensional Clifford algebras

We now specialise to K= R. In a quadratic real vector space it is always possible to choose a basis (ei ),
for i = 1, . . . ,n for which the matrix of the bilinear form B has the form

(21) [Bi j ] =




0r

+1s
−1t





where n = r + s + t and 1k is the k ×k identity matrix and 0k is the k ×k zero matrix. Let us specialise to
the case r = 0, whence B is nondegenerate. Then it defines an inner product of signature (s, t ) and we
call the corresponding Clifford algebra C�(s, t ). We will now look at the first few cases.

The first “trivial” case (which is nondegenerate despite appearances!) is C�(0,0). This is an associat-
ive algebra without generators, so it is isomorphic to R, the isomorphism being given by x1 ←→ x.

C�(1,0) is generated by Γ obeying Γ2 = −1, whence it is isomorphic to C (as a real associative al-
gebra), with isomorphism x1+ yΓ←→ x + i y .

C�(2,0) is generated by Γ1,Γ2 obeying Γ2
1 = −1 = Γ2

2 and Γ1Γ2 = −Γ2Γ1. Hence C�(2,0) ∼= H, with
explicit isomorphism

(22) x01+x1Γ1 +x2Γ2 +x3Γ1Γ2 ←→ x0 +x1i +x2 j +x3k .

You might be forgiven for thinking that C�(3,0) is related to the octonions, but only if you immedi-
ately discard this after realising that the octonions are not associative. In fact, we will see in the next
lecture that C�(3,0) ∼=H⊕H.

C�(0,1) is generated by Γ with Γ2 = 1. We define complementary idempotents p± = 1
2 (1+Γ), which

obey p+ +p− = 1, p+p− = 0 and p2
± = p±. This decomposes the Clifford algebra and indeed C�(0,1) ∼=

R⊕R, with explicit isomorphism xp++ y p− ←→ (x, y).
C�(1,1) is generated by Γ1,Γ2 satisfying Γ2

1 =−1 and Γ2
2 = 1 with Γ1Γ2 =−Γ2Γ1. The resulting algebra

is isomorphic to the algebra of 2×2 real matrices, with the explicit isomorphism being given by

(23) x1+ yΓ1 + zΓ2 +wΓ1Γ2 ←→
�

x + z y +w
−y +w x − z

�
.

Finally, C�(0,2) is generated by Γ1,Γ2 satisfying Γ2
1 = 1 = Γ2

2 with Γ1Γ2 =−Γ2Γ1. The resulting algebra
is again isomorphic to the algebra of 2×2 real matrices, but with a different isomorphism:

(24) x1+ yΓ1 + zΓ2 +wΓ1Γ2 ←→
�

x + y z +w
z −w x − y

�
.

These results fill in a little corner of the tableau of Clifford algebras C�(s, t ):

R(2)

R⊕R R(2)

R C H

Clifford’s purpose in introducing the eponymous algebras in 1878 [Cli78] was the extension of the first
row of the above tableau beyond the quaternions. In the next lecture, we will fill in the rest of the tableau!

1.4 The Clifford algebra and the exterior algebra

1.4.1 Filtered and associated graded algebras

Every graded algebra has a canonical filtration, which in the case of TV is given by Fp TV =�
�≤p V⊗�, so

that F0TV =K, F1TV =K⊕V, F2TV =K⊕V ⊕V⊗2,... It is convenient to introduce F−1TV = 0 and in this
way arrive at a semi-infinite filtration

(25) 0 = F−1TV ⊂ F0TV ⊂ F1TV ⊂ F2TV ⊂ · · ·
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The multiplication respects the filtration in that Fp TV ×Fq TV → Fp+q TV, making it into a filtered al-
gebra.

Every filtered algebra has an associated graded algebra. For the tensor algebra with the canonical
filtration, the associated graded algebra Gr• FTV =�

p≥0 Grp FTV is defined by

(26) Grp FTV = Fp TV/Fp−1TV.

It follows that Gr• FTV is indeed a graded algebra in that the product defines a bilinear map

(27) Grp FTV ×Grq FTV → Grp+q FTV.

Of course, in this case Grp FTV = V⊗p and Gr• FTV ∼= T•V as graded algebras. This only recapitulates the
fact that TV is a graded algebra and FTV is the canonical filtration associated to that grading. In general,
filtered algebras need not be graded and hence will not be isomorphic (as algebras) to their associated
graded algebra; although they will be isomorphic as vector spaces.

For example, the universal enveloping algebra Ug inherits a filtration from the tensor algebra Tg,
whose associated graded algebra is the symmetric algebra Sym•g. Filtered algebras whose associated
graded algebras are commutative (or supercommutative) can be interpreted as quantisations of their
associated graded algebra, which inherits a Poisson bracket from the (super)commutator in the filtered
algebra. This is precisely what happens for the Clifford algebra as we will now see.

1.4.2 TheZ2-grading revisited

The orthogonal group of a quadratic vector space acts on the Clifford algebra via automorphisms. In-
deed, if f : V → V is an orthogonal transformation of V, so that f ∗Q = Q, functoriality gives C�( f ) :
C�(V,Q) → C�(V,Q), which is an automorphism. In particular we can consider the simple orthogonal
transformation f (x) =−x for all x ∈ V. Since f ◦ f = 1V, it follows that C�( f )◦C�( f ) = 1C�(V,Q), and thus
we can decompose C�(V,Q) = C0 ⊕C1 into eigenspaces of C�( f ):

(28) C0 =
�
α ∈ C�(V,Q)

��C�( f )α= α
�

and C1 =
�
α ∈ C�(V,Q)

��C�( f )α=−α
�

.

Since C�( f ) is an automorphism, this makes C�(V,Q) into aZ2-graded algebra, so that under the Clifford
algebra multiplication

(29) Ci ×C j → Ci+ j ,

where we add the subscripts modulo 2. The same is true for the tensor algebra TV and we have TV =
TV0 ⊕TV1 where

(30) TV0 =
�

k≥0
V⊗2k and TV1 =

�

k≥0
V⊗(2k+1).

In this case, the Z2-grading is the reduction mod 2 of the Z-grading. Since the ideal IQ is homogeneous,
the projection TV → C�(V,Q) restricts to projections TVi → Ci for i = 0,1. (Of course, for i = 1 this is
only a projection of vector spaces, since neither TV1 nor C1 are algebras.)

1.4.3 The filtration of the Clifford algebra

The canonical filtration of TV defines a filtration on C�(V,Q) as follows. First of all notice that we can
filter TV0 and TV1 separately. We let

(31) F2k TV0 =
�

�≤k
V⊗2� and F2k+1TV1 =

�

�≤k
V⊗(2�+1),

so that

(32)
0 = F−2TV0 ⊂ F0TV0 ⊂ F2TV0 ⊂ · · ·
0 = F−1TV1 ⊂ F1TV1 ⊂ F3TV1 ⊂ · · ·
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are filtrations of TV0 and TV1 respectively. We now define F2k C0 to be the image of F2k TV0 under the
projection TV0 → C0 and similarly F2k+1C1 to be the image of F2k+1TV1 under the projection TV1 → C1.
It follows that

(33)
0 = F−2C0 ⊂ F0C0 ⊂ F2C0 ⊂ · · ·
0 = F−1C1 ⊂ F1C1 ⊂ F3C1 ⊂ · · ·

are filtrations of the Clifford algebra. We will use the shorthand

(34) Fp C =
�

Fp C0 if p is even, and

Fp C1 if p is odd.

Since TV → C�(V,Q) is an algebra homomorphism, it follows that Clifford multiplication respects the
filtration: Fp C ×Fq C → Fp+q C. Notice now that Fp C/Fp+2C ∼= Λp V, since the corrections involved in
replacing, for x, y ∈ V, x y by −y x in the Clifford algebra involves terms of degree 2 less. Of course, if
Q = 0 then there are no corrections and C�(V,0) ∼=ΛV as graded associative algebras.

Since ΛV is supercommutative, the supercommutator of two elements α ∈ Fp C and β ∈ Fq C belongs
to Fp+q−2C. If we let α ∈Λp V and β ∈Λq V be such that α= α mod Fp−2C and β= β mod Fq−2C, then
we define a bracket [−,−] :Λp V ×Λq V →Λp+q−2V by

(35) [α,β] := αβ− (−1)|α||β|βα mod Fp+q−4C.

It is an exercise to show that this is a Poisson bracket makingΛV into a Poisson superalgebra. It is in this
sense that C�(V,Q) is a quantisation ofΛV. We can think ofΛV as the functions on the “phase space” for
a finite number of fermionic degrees of freedom and C�(V,Q) as the corresponding quantum operator
algebra. The Hilbert space of the quantum theory is then an irreducible representation of C�(V,Q). We
will see later than for V finite-dimensional and Q nondegenerate there are (up to equivalence) either
one or two irreducible representations of C�(V,Q). For V infinite-dimensional the situation is drastically
different. A reasonable account of this can be found in [KS87].

1.4.4 The action of C�(V,Q) on ΛV

We can understand the relation between the Clifford and the exterior algebras in a different way which
does not involve filtrations. The bilinear form B defines a linear map � : V → V∗ where V∗ is the dual
vector space by x �→ x�, where x�(y) = B(x, y). If (and only if) B is nondegenerate, is � an isomorphism. In
that case its inverse is denoted � : V∗ → V and they are referred to together as the musical isomorphisms
induced from the inner product B. We define a linear map φ : V → EndΛV by

(36) φ(x)α= x ∧α− ıx�α ,

where ıx� is the unique odd derivation defined by ıx�1 = 0 and ıx� y = B(x, y) for y ∈ V. In other words,
on a monomial it acts like

(37) ıx� (y1 ∧ y2 ∧ · · ·∧ yp ) =
p�

i=1
(−1)i−1B(x, yi )y1 ∧ · · ·∧ �yi ∧ · · · yp ,

where the hat denotes omission, and we extend linearly to all of ΛV.

Lemma 1.7. The map φ : V → EndΛV defined in (36) is Clifford.

Proof. For every x ∈ V and α ∈ΛV, we have

φ(x)2α=φ(x)
�
x ∧α− ıx�α

�

= x ∧ (x ∧α− ıx�α)− ıx� (x ∧α− ıx�α)

= x ∧w ∧α−x ∧ ıx�α−Q(x)α+x ∧ ıx� + ıx� ıx�α

=−Q(x)α ,

where we have used that x ∧x = 0, ıx� ıx� = 0 and that ıx� (x ∧α) = Q(x)α−x ∧ ıx�α.
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By universality of the Clifford algebra this extends to a unique algebra homomorphism

Φ : C�(V,Q) → EndΛV ,

which composing with evaluation at 1 ∈ ΛV gives a linear map Φ1 : C�(V,Q) → ΛV. This maps obeys
Φ1(1) = 1, and if x ∈ V, then Φ1(i (x)) = x, where i : V → C�(V,Q). Notice that this shows that Φ1 ◦ i is
injective, whence it follows that i is injective without appealing to the construction of C�(V,Q) from the
tensor algebra. We can similarly calculate

(38) Φ1(x y) =Φ(x y)1 =Φ(x)Φ(y)1 =φ(x)φ(y)1 =φ(x)y = x ∧ y −B(x, y)

and

(39) Φ1(x y z) = x ∧ y ∧ z −B(x, y)z +B(x, z)y −B(y, z)x ,

et cetera. It is clear that Φ1 surjects onto ΛV and counting dimensions we see that it is a vector space
isomorphism, with inverse the map ΛV → C�(V,Q) defined by the complete skew-symmetrisation:

(40) y1 ∧ · · ·∧ yp �→ 1
p !

�

σ∈Sp

(−1)σyiσ(1) · · · yiσ(p) .

This map is an explicit quantisation of the exterior algebra.

1.4.5 The Clifford inner product

The exterior algebra ΛV inherits an inner product from V. Explicitly it is defined as follows: if Ξ :=
x1 ∧ · · ·∧xp ,Υ := y1 ∧ · · ·∧ yp ∈Λp V, then

(41) 〈Ξ,Υ〉= detB(xi , y j ) ,

and we extend it bilinearly to all of Λp V, while declaring Λp V and Λq V perpendicular for p �= q . The
Clifford inner product is the unique inner product on C�(V,Q) making the isomorphism C�(V,Q) →ΛV
into an isometry.

Proposition 1.8. Let α,β ∈ C�(V,Q). Then their Clifford inner product is given in terms of Clifford multi-
plication by

〈α,β〉= 〈1, α̂β〉

where α̂ is the image of α under the involutive antiautomorphism induced by multiplication by −1 on V.
In other words, if α= x1 · · ·xp , with xi ∈ V, then α̂= (−xp ) · · · (−x1) = (−1)p xp · · ·x1.

Proof. Let (ei ) be an orthonormal basis for V; that is, Q(ei ) = ±1 and B(ei ,e j ) = 0 for i �= j . If I =
(i1, . . . , ip ) is an increasing sequence, then let eI = ei1 ∧ · · ·∧eip ∈Λp V. It is clear that if I and J are distinct
increasing sequences, then 〈eI,eJ〉= 0, and otherwise

〈eI,eI〉= Q(ei1 ) · · ·Q(eip ) .

On the other hand, the element in C�(V,Q) corresponding to eI ∈Λp V is ei1 · · ·eip and

〈ei1 · · ·eip ,ei1 · · ·eip 〉= 〈1, (−eip ) · · · (−ei1 )ei1 · · ·eip 〉= Q(ei1 ) · · ·Q(eip )〈1,1〉= Q(ei1 ) · · ·Q(eip ) ,

where we have used that −ei ei = Q(ei ). Finally, if I �= J are increasing sequences,

〈ei1 · · ·eip ,e j1 · · ·e jp 〉= 〈1, (−1)p eip · · ·ei1 e j1 · · ·e jp 〉= 0 ,

since eip · · ·ei1 e j1 · · ·e jp will not be proportional to 1.


