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The James Cook Mathematical Notes has been published in
3 issues per year since 1979, but from now on, with the start of
Volume 7, it will be irregular, appearing only when enough
contributions are avalable. The history of JCMN is that the
first issue (a single foolscap sheet) appeared in September 1975,
then others at irregular intervals, to number 17 in November
1978. The issues up to number 31 were produced and sent out
free by the Mathematics Department of the James Cook University
of North Queensland, of which I was then the Professor. In
October 1983 this arrangement was beginning to be unsatisfactory,
and I changed to publishing the JCMN myself. This issue
(Number 65) brings Volume 6 to its end, and includes the Volume

Index.

In October 1992 it had become clear that the paying of
subscriptions by readers is an inefficient operation. Bank
charges for changing currency and for international transfers,
with postage, together absorb most of the initial input of money.
Therefore we have abandoned subscriptions as from the beginning
of 1993, issue number 60. I ask readers only to tell me every
two years if they still want to have JCMN. To those who want
to give something in return for the JCMN, I ask them to make a
gift to an animal welfare society in their own country. The

animals of the world will be grateful and so will I.

Contributors, please tell me if and how you would like your

address printed.
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QUESTIONS TO THINK ABOUT (JCMN 64, p.6328)
Shailesh Shirali
(Rishi Valley School, aAndhra Pradesh, 517352, India)

Question (1) from this note in the previous issue was

about the set S of all positive integers n such that n divides
n
2

characterizing the elements of S. Indeed, theorems 4 and 5

+ 1. I have a few more results on the gquestion of

below allow us, in principle at least, to enumerate the set
completely, so that the question asked in the previous issue
can be considered to have been completely answered.

Theorem 1 If n € S then (1) 3n € S
and (ii) M1 e s,
Both assertions have one-line proofs, as noted in the

previous issue.

Theorem 2 If n € S and k is any divisor of n then kn € S.

k kn-n _ ,kn-2n

Proof Write 2°7+1 as (2™+1)(2 + = 4 ..+ 1)

In this factorization, the first factor, 2n+1, is a multiple

of n. In the second factor, note that 2" = 1 (mod n) and
therefore 2" = -1 (mod k), so that the second factor is =
1 +1+4 ...+ 1=0 (mod k), since there are k terms. Thus

the first factor is a multiple of n and the second is a
multiple of k, and so kn | e

This is a curious result; it means that S is closed with
respect to multiplication of any of its elements by divisors
of those elements. Thus, since 3 and 171 are elements of S

and 171 = 9 x 19, any number of the form 3al9b with a 2 2 is

an element of S, and so is any number of the form 3a163b with
a z 4.
Theorem 3 If n > 1 and n € S, then 3 [ n.
Proof Obviously n is odd. Let p be the least prime
divisor of n. since 20 = -1 (mod p), the congruence
) 2¥ = -1 (mod p)
has solutions in positive integers. Let t be the least such

solution; then n must be an odd multiple of t, and 2t must be
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the least positive integral solution of the congruence
X

2% =1 (mod p)
(This follows because p is prime and so the only square roots
modulo p are 1 and -1). From the congruence

2Pt =1 (mod p)
it follows that p-1 is a multiple of 2t and therefore of t.
Next, note that by the choice of p, n is relatively prime to
p-1. Concatenating all these statements into a single
string, we obtain the following:
t | n and t | (p-1) and ged(p-1l, n) = 1.

From this it follows that t = 1. But this implies that
22 =1 (mod p).

and so p = 3. Thus every n € S with n > 1 has 3 as a

factor.

Theorem 4 Let n € $§ and let m be such that
n<m<2"+1 and n | m and m | 2" + 1.
Then m € S.
(Note that this theorem is a substantial generalization of the

second part of theorem 1)

Proof Let m = kn. Then 2™ + 1 = 2kny 1, which is a

multiple of 2" + 1, which in turn is a multiple of m, by the

choice of m. The result follows.

Theorem 5 Let n € S and n > 1. Then there exists an

integer t such that

1<t<n and t | n andn|2t+l.
Proof We argue as in theorem 3 above. since 2" = -1
(mod n), the congruence 2¥ = -1 (mod n) has positive integral
solutions. Let t be the least such solution. Then n must
be an odd multiple of t and also, by the choice of t,
n | 2t 4+ 1. Next, note (as in theorem 3) that 2t must be
the least positive integral solution of the congruence
2X =1 (mod n),
so 2t | ¢(n), by Euler’s theorem. Also, ¢(n) < n - 1, so it
follows that t £ (n-1)/2 < n. Thus the integer t has the

required property.
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Theorem 5 shows that a recursive application of theorem 4
will generate all the elements of S. The following table
sets out the results of the recursion. We build up the
table row by row, entering new elements in the first column as
and when they are generated in the third column.

New elements of S, i.e.
integers m such that
n 2"+ n<m<2"+1, n| m and
m| 2" +1
1 3 3
3 9 9
9 513 9 x 3 =27, 9 x 19 = 171, 513
27 134217729 27 x 3 = 81, 27 x 19 = 513
27 x 3 x 19 = 1539
27 x 87211 = 2354697
27 x 3 x 87211 = 7064091
27 x 19 x 87211 = 44739243
27 X 3 X 19 x 87211 = 134217729
81 cees e C e essecs e s esses s s s a et s et
171 caesene R
since 280 + 1 = 2417851639229258349412353, which has

the factorization 35 x 19 x 163 X 87211 x 135433 x 272010961,
we see that the following numbers too are elements of S:
81 x 3, 81 x 19, 81 x 163, 81 x 87211, 81 x 135433, ...

Note the presence of the primes
3, 19, 163, 87211, 135433, ...
An obvious question: what primes occur in this list?
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HERMITEAN MATRICES (JCMN 64, p.6342)

Terry Tao
(Mathematics Department, Princeton Univ. NJ 08544, USA)

A and B are invertible Hermitean matrices; if their
arithmetic and harmonic means are both positive definite, does
it follow that A and B are both positive definite?

YES
Proof Since the sum A+B is positive definite there
exists a positive definite Hermitean matrix C with square
equal to A+B.

1 1

ac™}, and vy = ¢ 1

Let X = ¢~ lgct.

1 1

PC °,

pc L.

Note that if P is Hermitean then so are CPC and C
and if P is positive definite then so are CPC and ¢!
(Proof: for any column vector v with Hermitean conjugate v¥,
consider v*CPCv = (Cv)*P(Cv) > 0).

Thus X and Y are both Hermitean, and their sum is

x+v = cYa+met = et = 1. Secondly,

xT eyl ca™t s B 1)c is positive definite.

Note that X 1+ v"1 = (x - x%)7}, and therefore

X - X2 is also positive definite, and all its eigenvalues are
positive. Let ) be any eigenvalue of X (we know that it is
real because X is Hermitean), then i - Az > 0, and therefore

0 < A < 1, which proves that X and Y are positive definite,

for 1 - A is an eigenvalue of Y if and only if A is an

eigenvalue of X.

Finally, A = CXC and B = CYC are positive definite.



-6360-

THE DREADED ZETA THREE AGAIN

C. J. Smyth
(Mathematics Department, University of Edinburgh)

It seems empirically that

-2 0 ® 3
n S 1/m = 2% 1/n” = 2¢(3)

1 n=1 n=1

™8

n
Ccan this equation be proved?

We can prove that

0 n

zn? E 1/m o= 2(4) = 7t /72
n=1 m=1
CONGRATULATIONS

Nigel Tao at the International Mathematical Olympiad in Hong

Kong in July 1994 won a bronze medal.

QUOTATION CORNER 48

For to be possessed of a vigorous mind is not enough; the

prime requisite is rightly to apply it.

—— René Descartes, Discourse on Method (translation by
John Veitch)
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BINOMIAL IDENTITY 38 (JCMN 64, p.6342)

t ™3

ComTE(EE) = - 272

r=1

Each side of the equation is the number, N, of ways of
choosing n + 1 of the mn elements in a rectangular m x n array
of m rows and n columns, so that at least one element in each

column is chosen.

consider the left hand side of the eqguation above.
Write it as Z(—l)n—rcr, it will be seen that c is the number

of ways of choosing n+l elements unconditionally. More
_ (n\/mr . . R
generally, c. = (r)(n+1) is the number of ways in which

we can firstly choose n-r columns to be excluded, and then
choose n+l elements from anywhere in the remaining r columns.
The inclusion-exclusion principle tells us that the number of
ways in which the choice can be made with at least one chosen
element in each column is

N = ¢ = C .t ST ceners .

Now we shall calculate the total number N in a different
way. A choice of the kind required gives two elements in one
column, and one in each of the other columns. Suppose that of
the two elements in one column we label one as "first" and the
other as "second"; there are 2N ways of choosing such an
arrangement. But to make such a choice we need to choose
one element in each column (which we can do in ! ways) and
then choose (in n ways) one of the columns to have a "second"
element, and then choose (in m-1 ways) where to have the
"second" element in the chosen column. Therefore

2N = mnn(m-l),
so that N = the right hand side of the equation above.
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SECOND TRIANGLE PROBLEM (JCMN 64 p.6338)

Shailesh Shirali and Sahib Ram Mandan

The problem in JCMN 64 (contributed by Shailesh Shirali, but
also suggested by Sahib Ram Mandan) was to show that the mid-
point of PQ is the incentre I of the triangle ABC in the figure

above.
First Proof: Invert the figure from the vertex A,
using the radius /bc. Dencte the image of B by B’, etc.

The triangle AB’C’ is congruent to ACB (because AB’ =
bc/AB = b = AC, and AC’ = bc/AC = c = AB). The image of the
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circumcircle is the line B’C’, and the image of the circle T
is a circle I'’ touching AB’ at P’, AC’ at Q’ and B’C’ at R’,
it is an escribed circle of the triangle AB’C’, so that AP’ =
AQ’ = s = (atbtc)/2. Therefore in the original. figure AP =

AQ = bc/s.
P

A A2 I

R

Denote the mid-point of PQ by J. The perpendicular
distance from J to AB or AC is:

PJ cos A = AP cos %A sin 3A = %(bc/s)sin A = 4/s
(where A is the area of the triangle ABC), which is the in-
radius of ABC. Because J is on the bisector of the angle at
A, it follows that J is I.

Second Proof Use the result of the TRIANGLE PROBLEM in
JCMN 64, that (in the figure below) CI meets RP at S and BI
meets RQ at T, both on the circumcircle. Apply Pascal’s
theorem to the hexagon RSCABT. The intersections P, I and Q
of opposite sides are collinear, establishing our result.
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SECOND TRIANGLE PROBLEM AGAIN

Jordan Tabov has sent a copy of a 1991 article by
Vesselin Nenchev (Becenwn lenuen) of Beli Osam (bonn Ocbm)
about triangle geometry, giving several results, including

essentially a solution to this problem from JCMN 64.

The calculation starts with the equation 0I = /R/(R-2r)
giving the distance from the circumcentre O to the incentre I

in terms of the circumradius R and inradius r.

From this value for the length OI it is possible to

calculate the angle v in the drawing below.

B -

r + R(1 - cos A)

cos ¢ = 2R sin(A/2)

Denoting the radius of the circle T by par WE have three sides
and one angle of the triangle Aool, and by the cosine rule we
get an equation, Py = 2r/(1 + cos A) = r/coszA/Z. This
tells us that I is on PQ.
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POLYGON PROBLEM

poncelet’s Porism (often called the porism of the inscribed
and circumscribed polygon) tells us that if there.are two conics
and if a polygon has all its vertices on one conic and all its
edges touching the other, then there are infinitely many other
polygons (of the same number of sides) with the same property.

It is a theorem in projective geometry, and so it is
equivalent to the proposition with "circles" instead of "conics™".

We can therefore express the theorem as:

Given any n, if two circles are such that one n-gon has all
its vertices on one circle and all its sides touching the other,

then there are infinitely many n-gons with the same property.

The simplest non-trivial case is n = 3. If we start with
any triangle, with in-radius = r and circum-radius = R (where R
> 2r) and with the centres of the incircle and circumcircle at
distance d apart, then 2Rr = (R+d)(R-4). Conversely, any two
circles with these properties are the inscribed and circumscribed
circles of some triangle, and therefore also of infinitely many

other triangles.

But the circumcircle and one of the escribed circles of any
triangle also form a pair of circles with the required property
of having a triangle with vertices on one and sides touching the
other. The relation between their radii and their centre

distance may be found as follows:
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Comparing two calculations for twice the area of the
triangle AIac, we find (ra/sin A/2)(ra/cos C/2)sin B/2 = bra
= 4Rrasin B/2 cos B/2, and r, = 4R sin A/2 cos B/2 cos C/2,
The angle IaAO is (B-C)/2 in the diagram above, and the length

AIa is ra/sin A/2 = 4R cos B/2 cos C/2.

By the cosine rule

a? = r? + 16rR% cos®B/2 cos?c/2 - 8R%cos B/2 cos C/2 cos 559,
d2 - R2 = 8R2 cos B/2 cos C/2 (2 cos B/2 cos C/2 - cos E%E)
= 2Rr_.
a
Consider the general question: If an n-gon has all its

vertices on a circle of radius R and all its edges touching a
circle of radius r, then what condition must R, r and the

centre distance d satisfy?

For n = 3 we have found the answer: R2 = d° t+ 2Rr.

The ideas above suggest a geometrical problem:

The figure below shows any triangle ABC with its
circumcircle and one of its escribed circles. Show that the
tangent to the escribed circle at the intersection of the two
circles will meet the circumcircle again at a point of contact
of a common tangent to the two circles.
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T~

Now return to the inscribed and circumscribed polygons
associated with two circles. What about n = 47 Consider
+ the figures below, they are chosen to be symmetrical to make

the calculations easier.

(1) (ii)
From the figure (i) above we may calculate
RZ = a® + r/(2rR? + 2d%)
and from (ii) almost the same equation, in this case d > R,
R? = a% - r/(2r? + 2d%).
Both equations may be written rR* +a* = 2r%a? + 2a%r? + 2r?r?.

Is there any other possible configuration leading to a

different equation for the case of n = 4?
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Yes there is! If R = d the construction is possible,

for any r < 2R, as may be seen from the drawing below.
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YEAST MIXING

This is a model for what might happen in making bread.

The yeast is a fine powder suspended in a fluid which may be
thought of as water, though in fact it is a mixture containing
milk, sugar and other additives. This yeast mixture is
initially at a temperature of 0°; the scale of temperature is
not relevant though you may like to think of it as on the Réaumur
scale. Yeast is inactive when cold, and for it to work in the
bread dough we want it to be at 20°. To accomplish this we mix
three parts of the cold yeast mixture with one part of boiling
water at 80°, stirring them together. Assume that there is no
conduction of heat, the hot and cold fluids mix by diffusion.

It is an unfortunate fact that yeast is killed by temperatures
over 40°. What proportion of our original yeast will be killed

in the mixing process?
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POWER MEAN INEQUALITY (JCMN 42, p.5020)

This problem, from Dmitry Mavlo, was in JCMN 42, p. 5020,

in February 1987.

Let x be a vector of non-negative components
(xl, Xor wees xn), and denote the vector (xf, e, XE)
by xX. Write A and I for the arithmetic and geometric

means respectively. Prove that
k k 1-k k k
AT(x) - I'(x) 2 n (A(x) = D(xX7))  ceennn (1)

for positive integer k. Find the cases of equality.

We have not yet had a solution sent in, but some progress
can be made. It is sometimes convenient to put (1) in the
equivalent form:

nKakixy 2 na(d®) + (nf - ;¥ .l (1)

Theorem 1 The inequality (1) or (1’) holds when n = 2.
Proof If u = I'(x) we may write the vector x as (uy, u/y),
and the required inequality becomes:

(y +k1{y)k R oyR o Ko L . (2)
r=k-
or 2 (k) o
r
r=1

and by changing the dummy variable to k-r, i.e. reversing the
order of the terms in the binomial sum, the LHS becomes

2 () -

and because ys + y-s - 2 2 0, the result is established.

It may be noted that there is equality in (2) for all y
when k = 1 or 2, and for all k when y =1, i.e. x = (u, u).

Theorem 2 The inequality (1) holds when n = 4.
Proof Take the vector x to be (a, b, ¢, 4d)
Theorem 1 may be written in the form
(x‘+ y)k 2 xk + yk + (2k - 2)(xy)k/2
and by successive applications of this we find that:

k

(atbtc+a)X 2 (atb)X + (bre)® + (2 - 2)(a+b) K % (cra) X/ 2
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> a¥epKeckeak 402X - 2)((ab)¥ 2+ (ca)¥/ 24 (a+p) X/ 2 (c+a)K 2

Now use the AM~GM inequality, x +y 2 2/x/y,

(atrbrcta)® 2 aKebKicKid® +(2K-2) (2(abcd)¥/ %+ 2¥(abea)¥/4)

= ak+bk+ck+dk + (4k—4)(abcd)k/4

or  4¥aK(x) 2 aa(x®) + a¥r¥(x) - ar(xX) QED

Theorem 3 The inequality (1) holds if n is a power of 2.
Proof The proof is by induction, and it is the obvious
generalization of Theorem 2. Let x be the vector of length
2n formed by joining end-to-end the vectors u and v, both of
length n.

2k k

AT (x) (A(u) + av)k (now use Theorem 1)

> aKqu) + aK(v) + (2% - 2y/akw)a®(v)).
(2m¥aK(x) » nKaK(u) + n¥a¥(v) + nK(2K-2)/aKw)a¥(v))

> na(u®) + na(v®) + (n¥-n) (X (wy+r(v))
+ nk(zk—z)rk/z(u)rk/z(v) (by the induction hypothesis)

ana(xX) + 2(n®-m)r*2wr¥’2(vy  + n®2%-2)r 2y r¥2(v)

2nA(xk) + (2nk - 2n + zknk - 2nk)rk(x)

2nA(xk) + (zknk - 2n)Fk(x). QED

v v

v

Is there a way to extené the proof to values of n that
are not powers of 2? A difficulty is that applying the
(n=4) result to a vector (x, X, Y, Y) gives an inequality
weaker than that obtained by applying the (n=2) result to the

vector (%, y).

Another problem —— what happens if k is not an integer?
Take any X > 1 and consider the function
(x + 1/x)k - xk - x—k + 2 - 2k
We know that it is zero when k = 1 or 2. Prove (or

disprove) that it is < 0 when 1 < k < 2 and > 0 when k > 2.
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RECONSTRUCTING AN EXAM QUESTION

A. Brown
(50/55 Burkitt st., Page, A.C.T. 2614, Australia)

In an article in the American Mathematical Monthly (Vol 101,
1994, 151-161) H. B. Griffith and A. E. Hirst cite a 1910 Higher

Certificate examination guestion:

Prove that if «, B, y are the three roots of the equation

3

x~ = 21x + 35 = 0, then @® + 22 - 14 will be equal to

B or v.

They provide a way of answering the question, and add "The

question makes one wonder how the examiner found the numbers in 1

it so that it would work at all".
ask about finding p, g, a, b, ¢ such that if

To throw light on this they

C(x) = x3 Q(x) = ax2 + bx + ¢,

and if a is a root of the cubic C(x) = 0 then Q(a) is one of

-px + g and
the other roots of the cubic.

From the point of view of an examiner, it is desirable to
have integer coefficients in C and Q, but not to have the
cubic with roots that can be recognised easily. Special
cases such as a triple root or a double root present no
difficulty, so that we can assume that the roots are real,

distinct and non-zero.

At first sight there seem to be eight possibilities —
Q(a) = B or ~, Q(B) = y or a, Q(y) = @ or B,
but it is easy to check that there are only two distinct 1

cases, exemplified by

(1) Qa) =8, Q(B) =a, Q(v) = ¢,
(ii) Q(a) = B, Q(B) =+, Q(v) = a.
In case (i), Q(B) = Q(v) gives b = -a(B+y) = ac and in

similar fashion Q(a) - Q(8) = B - a gives -a(a + 8) - b =1,

and b + 1 = ay, so we have

»
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a = b/a ¥y = (1 + b)/a B=~-a-+vy=-(1+ 2b)/a.
From these expressions for «, 8, y we can deduce that

p =By -qa-aB=(l+3b+ 3b°)/a’

q = -aBy = b(1 + b)(1 + 2b)/a’

c =B - aa2 - ba = -(1 + 2b + 2b2)/a

The discriminant of the cubic is

(2 + 9b + 9b2)2

a6

a = (B 2(y-0)?(a-8)2 = ap® - 27¢® =

For case (ii) we can think of ¢, B, y as the elements of
a period three solution of the recurrence relation

- _ 2
X = Q(xn) = ax,

a1 + bxn + c.

Note that a shift of origin for x gives a recurrence relation
of similar form, so we can assume that a + 8 + vy = 0.
The cubic (x-a)(x-8)(x-vy) then provides a suitable form for

C(x). Thus we have the basic equations

[}

8
2
aB” + bB + ¢ = 4

aa2+ba+c

a72 + by + ¢ =

and C(x) is determined if we can use these equations to obtain
p = =(aB + By + ~ya)
finding «, B, v explicitly.

and q = -aBvy, without necessarily
The equations for a, 8, vy have
cyclic symmetry, so it is convenient to use I for cyclic
summation over ¢, B and v,

e.qg. ZaZB denotes

aZB + Bzy + 72a.
A = Za, B =ZaB, D = aBy, we have
2 2

In general, if we write

algebraic identities za® = A - 2B,

sa® = 3D + A> - 3aB

sag? = B? - 2aD

sa® = a% + 4aD + 2B - 4a%B

$(a’B + aB?) = AB - 3D
For A = 0, B = -p and D = -g, these identities become
sa? = 2p, n(a2B+aB?) = 3q = -sa°, za? = 2p? = 2:a282.
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By using the basic equations, we can obtain
2

aZa” + bZa + 3¢ = IB
a2a3 + b2a2 + cZa = ZaB
3204 + bZa3 + c):a2 = ZaZB
aza®s? + bzas® + czs? = 8>
and hence 2pa + 3¢ = O
3ga = (2b+l)p
2p2a - 3bg + 2pc = Zazﬁ
ap2 + bZaBz + 2pc = -=3q
The last two equations, using Z(QZB + aBZ) = 3q, give
3g(1 + b + b%) = ap3(2b - 1) + 2pc(b - 1).
Hence p = -3c¢/(2a), gq = (2b + 1)p/(3a) = -(2b + 1)c/(2a2),
and -2c(1 + 2b)(1 + b + b%) = ac2(l + 2b).
If we assume q # 0, to avéid a zero root for C(x) = 0, then

c(2b + 1) = 0 and the conditions become

ac = -2(1 + b + b%),
p = 3(1 + b + b%)/a’,
g = (1 +2b)(1 + b + b%)/a°.

In this case the discriminant is

A = 4p3 - 27q2 = 81(1 + b + b2)2/a6 = (3p/a)2-

The solutions for cases (i) and (ii) agree with those
given by Griffiths and Hirst, who note that in both cases the
expression for A offers solutions of the Diophantine problen:

Find integers p, g, r for which 4p3 - 27q2 = r?.

The 1910 exam question is an example of case (ii), with

a=1and b = 2, and indeed the simplest way of constructing a

problem of this type is to take a = 1 and b an integer.

The approach used in this note can be extended by starting
from the same recurrence relation and writing down the basic
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equations for, say, a period four solution, and then working from
the basic equations to construct a fourth degree polynomial whose
roots are the elements of the period four solution and hence
satisfy a cyclic relation of the type considered in case (ii)
above.

As an example we could construct the question:

F(x) = x4 - 10x2 + 15x - 5, Q(x) = x2 + 2x - 5.

Prove that if a, B, vy, § are the four roots of F(x) = 0,
then for a suitable ordering of the roots:
Q(a) =8, Q(B) =+, Qv) =6, Q(8) = a.

MATRIX INEQUALITY

The following problem, from H. Kestelman, was in JCMN 9

in May, 1977, but we have not yet had a solution.

If a real square matrix M is positive definite (i.e. xTMx

> 0 for all real x = 0), prove that every principal sub-
determinant of M is positive. (A principal sub-matrix is
one obtained by deleting any subset of the set of rows and

deleting the corresponding columns)

Is the converse true?
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A
Absolute prime numbers 6184
Acuteness of random triangles 6023, 6029, 6031,
Acuteness of random triangles 2 6084
Acuteness of random triangles in a disc 6079
Acuteness of random triangles in a square 6082
Adding numbers 6199
Adding numbers 2 6203, 6252
Adelaide Advertiser (newspaper) 6031
Admiralty Manual of Navigation 6033
Advice to a young scientist 6198
Affine plane (finite) 6215
Airport runway 6246
Alexiev, Harry 6173, 6192, 6276
Algebraic (over a field) 6307
Algebraic equations 6173, 6192, 6372
Algebraic number theory 6270
Ali, Firasath 6156
Alice 6274
Almost periodic functions 6243
American Mathematical Monthly 6372
Amusing little proof 6006 '
Analysis problem 6084, 6110
Analyst, well-trained 6030
Analytic extension 6197
Analytic inequality 6007, 6029, 6351
Analytic inequality 2 6008, 6030
Analytic inequality 3 6135, 6170
Analytic inequality 4 6171
Analytic inequality 5 6221
Angles in the plane 6090, 6117
Angular momentum 6349
Animals 6182
Applied mathematics 6036
Aquinas, St. Thomas 6048
Archimedes 6046
Arithmetic means 6359, 6370
Arithmetic progressions from Pascal’s triangle
Arrowheads 6034, 6076
Arrow, Kenneth 6043
Arrows in the target 6019, 6032, 6063
Arthur, King 6032, 6162, 6178, 6343
Astronomy 6236, 6237, 6279
Asymptotic behaviour 6106, 6139
Athens 6247 -
Australian Mathematical Olympiad 6330
Automorphisms 6307
aAxial symmetry 6323
Axioms 6275

Babylonia 6049, 6343
Bagehot, Walter 6254
Bank robbery 6050

Basic statistics 6044
Bayes, Thomas 6024, 6044
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Beaglehole, J. C. 6236
Beautiful determinant (Comtet’s) 6064
Bessel functions 6323
Beta functions 6167
Bhargava, T.N. 6184
Binomial coefficients 6195, 6256
Binomial identity 33 6093
34 6098, 6162, 6169
35 6134, 6162, 6169, 6196
36 6156
37 6173, 6198
38 6342, 6361
Binomial multiplication rule 6169
Biologists 6297
Bipartite graph 6156
Blumenthal, L.M. 6117
Blunders 6033, 6235
Book review (God and the new physics) 6048
Book review (Journey into Geometries) 6274
Boy in the pool 6071
Bradman, Sir Donald 6070
Branham, Richard L. Jr. 6279
Bread 6369
Brearley, M. N. 6233
British Mathematical Olympiad 6156
Brown, A. 6031, 6091, 6093, 6098, 6099, 6131, 6146,
6172, 6192, 6310, 6372
Bulgaria 6100, 6362
Bullen, K. 6239
Business 6052

C

Cambridge University 6268, 6278, 6298, 6304
camelot 6019, 6032, 6178, 6343
Camera 6258
Cantor enumeration 6102
Carroll, Lewis 6274
Cauchy distribution 6286
Cauchy-Schwarz inequality

6172, 6344, 6351

Cavalry 6178

Chaos, deterministic 6061
Charon (satellite) 6282
Chebychev polynomials 6271
Christmas 6116

Chromatic number 6264

Cicero 6046

Circular cylinder 6134, 6179
Circular error 6107, 6261

Circular points at infinity 6127, 6194
Circumcircle 6194, 6338
Clare College, Cambridge 6278, 6304

Clocks 6107, 6136, 6260
Coaxal circles 6128

Cocked hats 6033, 6076, 6284

Coins (tossing) 6310

Colchester 6019

Combinatorial number question 6329

6166

6007, 6008, 6011, 6029, 6151
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Combinatorial question 6137, 6160, 6212, 6217
common sense 6165, 6234
Commutation relations 6011, 6350
Companies 6005
Complete graphs 6018

Comtet’s "Beautiful determinant"; a problem-solving
experience 6064

Condorcet’s paradox 6041

Congratulations 6360

Conjugation function 6309

Continued fractions 6342

Continuous real functions 6084, 6110

Convergence 6138

Convolution 6021

Conway, J. 6256, 6293

Cook, Captain James 6236, 6298

Coppersmith, Don 6201, 6228, 6337

Corradi 6159

Cricket 6070

Critical circle (Guinand’s) 6127

Cube roots of unity 6193, 6220, 6276

Cubic equations 6372

Curves 6256, 6293

Cyclic inequality 6004, 6047, 6074

Cycloidal pendulum 6107

Cyclotomic integers 6269

Cylinders, circular 6134, 6179

Cylindrical polar coordinates 6323

D
Davies, Paul 6048
Decimal representation 6184, 6206
Democracy 6247, 6299, 6322
Democracy from the point of view of mathematics 6036, 6116
Density of rock 6239
Deranged knights of Camelot 6196
Derivative (Kuznetsov’s) 6102
Derivative (non-existent) 6209, 6251, 6294, 6312, 6316, 6322
Descartes, René 6360

Determinants 6062, 6064, 6339, 6375
Deterministic chaos, an introduction (book) 6061
Diameters 6088

Diananda, P. H. 6123, 6146, 6172, 6230
Dice 6310

Differentiable functions 6110, 6209, 6251
Differential Calculus 6336

Differential equations 6136, 6174
Diophantine Equations 6330, 6374
Diophantus 6269

Directional derivative 6317

Dirty statistics in a dirty world 6234
Distances in the plane 6062, 6089
Donovan, Peter W. 6097

Doppler effect 6348

Dough (for bread) 6369

Doyle, P.H. 6184

Drawing, perspective 6134, 6179
Dreaded Zeta three again 6360

-
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Drinking straws 6264

Easy Question 6257

Eddington’s cricket problem 6070

Eddington, Sir Arthur 6070

Edge-colouring (of graphs) 6264

Editorial 6116

Education 6134, 6179, 6299

Education in South Australia 6299

Eigenvalues 6006, 6175, 6346, 6359, 6375

Einstein, Albert 6348

Ekklesia 6247

Elasticity theory 6109, 6136, 6174

Elections 6036

Elizabeth II, Queen 6116

Elliptic curves 6268

Endeavour, H.M. Bark 6236

Engineering 6134, 6179

Entrance Scholarship examination 6278, 6304

Enumeration of pairs and Kuznetsov’s derivative 6102

Equation to solve 6054, 6092

Erdds, Paul 6060, 6062, 6088, 6117, 6144, 6159, 6160
6199, 6203, 6212, 6229, 6252, 6257, 6318

Errors 6234, 6236, 6240, 6248

Escribed circles of a triangle 6366

Euclid 6333

Euler axis (or Euler line) 6127

Euler function ¢(n) 6064, 6357

Euler’s theorem 6357

Examination question 6372

Example 6321

Experimental errors 6234, 6236, 6240

Exponential means 6023

F
Factorizing complete graphs 6018
Factors 6173, 6230
Faith 6049
Family of polynomials 6099, 6130, 6131, 6166
Fano plane 6160
Fat knights 6164
Fermat point 6092
Fermat’s Last Theorem 6268
Fermat’s little theorem 6187
Feynman, Richard 6270
Finance companies 6051
Finite geometries 6160, 6212
Finite projective plane 6274
Firasath Ali 6156
Fitting 6284
Fitting polynomials 6124
Fixed-point theorem 6006
Floating-point numbers 6078
Florey Institute for Medical Research 6257
Flywheel 6011
Flywheels in quantum mechanics 6349
Forest island tree counting 6119
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Fosse Way 6343
Fourier coefficients 6245
Fourier series 6251
Fourier transform 6313
Freud, Robert 6199
Functional equation 6306

Functional inequality 6202, 6228

G
Galileo 6107
Games 6232, 6248
Garbage in — garbage out 6248
Gardner, Martin 6184
Gaussian distributions 6234, 6286, 6295
Gauss~-Newton method 6279
Geelen, James 6212
Generalized Hadamard ineguality 6339
Generalized mean 6023
Genesis (Book of) 6048
Geometrical inequality 6047, 6074, 6098, 6135
Geometrical probability 6012, 6032, 6079
Geometrical probability 2 6017, 6031
Geometrical probability 3 6017, 6063
Geometrical puzzle 6055
Geometric means 6370
Geometries 6274
Gergonne point 6127
GF(p) 6160
"God and the new physics" (book review) 6048
Gold, T. 6249
Goulden, Ian 6156
Grandfather clocks 6109, 6262
Graphs 6018, 6089, 6156, 6264
Greedy algorithm 6252, 6320
Green, Charles 6236
Guinand, A.P. 6128
H
Hadamard, J. 6315, 6339
Hajnal 6159
Halmos, Paul R. 6310
Hamiltonian (of a system) 6347

Hamiltonian paths and circuits 6018, 6264
Harborth 6144

Harbour Master’s dilemma 6246

Hardy, G. H. 6070

Hardy, Littlewood & Pdélya, Inequalities 6021
Hardy & Wright, Theory of Numbers 6153
Harmonic means 6342, 6359

Harzheim 6203, 6252

Hausdorff space 6232

Hebe (asteroid) 6280

Heisenberg’s uncertainty principle 6009, 6350
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Henderson, Anthony 6094
Hermite, C. 6308
Hermitean matrices 6061, 6339, 6342, 6359
Hermitean operators 6346, 6349
Heterocedasticity 6280
Heuristics 6064
Hexadecimal notation 6078
Higher Certificate Examination 6372
Hilbert space 6008, 6029, 6049, 6346, 6349
Homomorphisms 6049, 6306
Homothety 6334
Hong Kong 6360
Honsberger, Ross 6156
Huygens, Christiaan, 6107
Hyperbolic plane 6274 '
Hyperboloid areas 6020
Hypergeometric series 6132
Hyperplanes partitioning n-space 6223, 6255
I
Icosahedron 6264
Images 6049, 6258
Incentre of triangle 6338, 6362
Inclusion-exclusion principle 6156, 6162, 636
Inequalities 6004, 6007, 6008, 6023, 6029, 6
6098, 6106, 6135, 6172, 6270, 6271, 6339,
Inscribed polygons in a conic 6365
Integral inequality 6106, 6139, 6146, 6168,
International Mathematical Olympiad 6360
Inverse probability 6310
Inverse tangents 6328
Inversion (in circle or sphere) 6096, 6193, 6
Involute pendulum 6107
Involutes 6073
Isometric projection 6179
Isomorphisns 6307
Isosceles triangles 6209, 6250
J
Jacobi polynomials 6099, 6133, 6166
Jeffries, Sir Harold 6044, 6238
Johnson, A.W. 6184
Jones, Peter 6247
Journalists 6249
Journey into Geometries (book review) 6274
Junior Mathematics Challenge 6329
K
Kendall and Stuart, Advanced Theory of Statistics
Kepler, J. 6245, 6279
Kestelman, H. 6340, 6375
King Arthur’s bluff 6178

1
047,
6344,

6170

335,

6074
6351

6362

6284
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Kisin, Mark 6004, 6122, 6124, 6135, 6223

Klein, Felix 6346

Knights of the Round Table 6162, 6178, 6196, 6343
Knowing the answer 6135

Kolotov, A.T. 6184

Konhauser, J.D.E. (Obituary) 6144

Kummer, Ernst 6270

Kuznetsov’s derivative 6102

Laplace’s equation 6323

Latvian 6043

Leader, (voting for) 6040

Least squares 6241, 6284

Lee Kuan Yew 6299

Legendre polynomials 6098, 6150, 6243, 6323
Lengths 6049

Lewis, C. S. 6254

Line at infinity 6194

Log-log graph paper 6024

Long-case clocks 6109, 6262

Lorentz transformation 6277

Lyttleton, R. A. 6070, 6198, 6238, 6239, 6249
M

Macalester College 6144

Magnus, J. 6335

Maiden overs 6070

Mandan, Sahib Ram 6274, 6332, 6362

Mariner (spacecraft) 6282

Markoff, A. A. 6221, 6254

Markoff, V. A. 6273

Markoff chains 6006

Markoff’s inequality 6271

Maskelyne, Nevil 6236

Mass of Mercury (1) 6237

Mass of Mercury (2) 6239

Mass of Mercury (3) 6240, 6289

Mass of Mercury (4) 6242

Mass of Mercury 6279

Massaging data 6236, 6298

Mathematical Democracy 6247

Mathemetical Gems III 6156

Matrices 6006, 6061, 6339, 6342, 6359, 6375

Matrix eigenvalues 6175

Matrix inequality 6375

Mavlo, Dmitry 6370

Maximum likelihood 6044, 6241

McBride, Dr 6298

McKelvey’s theorem 6039

Means 6007, 6023, 6172, 6284, 6370

Measure theory 6121, 6207
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Medawar, P. B. 6198

Medians 6037, 6284

Medical research in Australia 6257, 6298
Mendip Hills 6343

Mercury 6237, 6239, 6240, 6242, 6279
Merlin 6164, 6178, 6343

Minimal polynomial (of an algebraic irrational)
Mining companies 6005

Misprint 6159

Mitrinovic, D.S. 6074

Mdbius function 6066

Modelling 6036

Momentum 6010, 6350

Monomorphisns 6307

Monotonic functions 6007, 6135, 6170
Monte Carlo 6047 :

Monte Carlo estimates 6023, 6046

More fitting 6291

More simultaneous equations 6277

Mullin 6161

N
Natural boundary 6315, 6321
Navigation 6033, 6076
Negative exponential distribution 6241
Negative numbers of Scotsmen 6165, 6195
Nenchev, Vesselin 6364
Neumann, J. von 6011
Newcombe, Simon 6237
New proof that 2 =1 6233
"Newspeak" and ways of thinking 6100
Nice little elasticity problem 6109, 6136
Nine point circle 6127, 6145, 6296
Nine points with eight distances 6060
Non~differentiable functions 6209, 6251, 6294,
Non-differentiability 6294, 6316, 6322
Non-Euclidean geometry 6274
Normal (Gaussian) distribution 6280, 6286, 6295
Normal numbers 6207
Normal triangles 6208

6307

6312

Norms (of polynomials on the unit interval) 6222, 6344

Number puzzle 6220

Observables 6009, 6346

Octahedron 6264

O’Halloran, P. J. 6329

0ld-fashioned problem 6342 :

Olympiad competitions 6144, 6156, 6360

Orthic limit of an isosceles triangle 6209, 6250,
orthic limit of a triangle 6296

Orthic limit point 6145, 6209, 6250, 6296

6294,

6296




-6384-
orthic limits of triangles 6138, 6316
Orthic triangles 6127, 6138, 6145, 6204
Orthic triangles 2 6209
Orthocentres (of triangles) 6127, 6138, 6296
Orthocentres in photography 6258
Orthocircle 6127, 6259
Oorthogonality 6130, 6149, 6167
Orwell, George 6100
Overarm and underarm 6116
Ozolins, Irini 6036

P
Pach, J. 6144
Pages 6178
Palasti, Ilona 6060, 6088
Pannwitz, Erica 6144
Parker, John B. 6017, 6023, 6028, 6033, 6091, 6129
6192, 6198, 6234, 6284

Parliament 6322
parseval’s identity 6313
Parties (political) - 6036, 6247, 6322
Pascal’s hexagon theorem 6363
Pascal’s triangle 6195, 6256
Peach computer 6078, 6209, 6330
Pendulum clocks, 6107, 6136, 6260
Penguin books 6048
Pentagons 6055
Pericles 6249
Permutable primes 6184
Perspective drawing 6134, 6179
Peterhouse 6341
Photography 6258
Photons 6346
Pi Mu Epsilon 6144
Pin-hole camera 6258
Planck’s constant 6010, 6346
Plane topology 6256, 6293
Planets 6237
Plato 6247
Platonic solids 6264
Plott’s theorem 6037
Pluto (planet) 6282
Points and angles in the plane 6090, 6117, 6159
Points and distances in the plane 6062, 6088, 6089, 6144
Political platforms 6036
Pélya, G. 6064
Polya and Szegd Aufgaben und Lehrsétze ... 6064, 6254
Polygon problem 6365
Polynomial inequality 1 6221, 6254
Polynomial inequality 2 6222, 6344

Polynomial inequality 6344
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Polynomials 6099, 6106, 6124, 6130, 6139, 6146, 6155
6166, 6254, 6271
Pomerance 6060
Poncelet’s porism 6365
Pons Asinorum (Euclid 1, 5) 6333
Pooh-sticks 6028
Position lines 6033, 6076, 6284
Positive definite matrices 6339, 6342, 6359, 6375
Power-mean inequality 6172, 6370
Prime numbers 6184, 6297, 6358
Prime number theorem 6153
Prime pairs 6297
Primitive root (mod p) 6187
Princeton University 6268
Princeton problems 6232
Problem in algebra and geometry 6062, 6094
Problem of Serov 6120
Progressive waves 6174
Projection, isometric 6179
orthogonal 6179
Projective plane (of finite order) 6212
Property boom 6051
Pseudo~random numbers 6078
Ptolemy‘’s theorem 6095
Pure mathematics 6036
Putnam competitions 6144

Q

Quadrants 6236
Quadrilaterals 6020
Quantum mechanics 6008, 6009, 6270, 6346, 6349
Questions to think about 6328, 6356
Quick inequality 6270
Quotation Corner 34 6005

35 6031

36 6061

37 6110

38 6134, 6179

39 6198

40 6236

41 6254

42 6254

43 6270

44 6297

45 6299

46 6341

47 6352

48 6360

R

Rabinowitz, Stanley 6256
Radar 6283, 6348
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Radical axis (of coaxal circles) 6128
Rails 6174
Random line segments 6017, 6063
Random numbers 6078, 6295
Random triangles 6012, 6017, 6023, 6028, 6031

6079, 6082, 6091, 6204
Random variables 6010, 6044, 6285, 6295
Rapidly decreasing function 6313
Real estate 6050
Réaumur (scale of temperature) 6369
Reconstructing an exam question 6372
Regular Hausdorff space 6232
Religion 6048
Rennie, Basil 6117
Repunits 6184
Richert, H.-E. 6184
Rigby, J. F. 6074, 6092, 6096
Right ascension 6237, 6245, 6281
Robust statistics 6234, 6248
Rock 6239
Rolling sphere 6233
Roots of cubics 6372
Round Table 6162, 6343
Rousseau, Cecil 6064, 6156, 6254
Royal Navy 6033, 6236
Rudin, W. 6121
Runway, (airport) 6246

S
Salem, R. 6337
Sarkdézy, Andrdés 6229
Satellites 6237, 6279
Savin 6257

Scholarship examination 6278, 6304
Schrédinger’s equation of motion 6346

Schuster, H. G. 6061

Scientific Establishment 6049

Second triangle problem 6338, 6362

Second triangle problem again 6364

Semi-stable 6268

Sequences without arithmetic progressions 6318, 6321, 6337
Serov, M. I. 6106, 6120

Set of equations 6099, 6122, 6123

Shirali, Shailesh 6173, 6328, 6332, 6338, 6356, 6362
Simpson, Jamie 6212

Simultaneous equations, 6054, 6092, 6123, 6173, 6192, 6277
simultaneous symmetric equations 6278, 6304

Singular measures 6121

Slate 6239

Slin‘ko, A. M. 6038, 6102, 6116, 6184

Slipping 6233

Small Polynomials 6155
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Smart, Robert 6179

Smart, W. M. 6237

Smith, Cedric A. B. 6304

Smithies, Frank 6181

Smooth function 6313

Smyth, C.J. 6119, 6360

Solid geometry 6140

Solutions in radicals 6054, 6093, 6173, 6192
Some problems 6229

Spectrum 6349

Sphere 6046, 6233

Spherical polar coordinates 6323

Squares 6055

Statistics 6044, 6234, 6240, 6248, 6284, 6291
Stochastic matrices 6006

Stone, Arthur H. 6304

Subgraphs 6212

Subscriptions 6182

sum of a series 6098, 6323

' Sumner line 6284

Sunscreen (sunblock) creams 6352

Sved, Marta 6274

Symmedian point 6127

Symmetric inequality 6123, 6172

Symmetric or Hermitean matrices 6061, 6342, 6359

Symmetric simultaneous equations 6054, 6092, 6123, 6173
6192, 6276
Syracuse 6046
Szekeres, Esther 6098, 6120, 6145, 6332
Szekeres, George 6094, 6098, 6117, 6252
T
Tabov, Jordan 6020, 6063, 6100, 6277, 6332, 6364
Tahiti 6236
Taniyama-Weil conjecture 6268
Tao, Nigel 6305, 6330, 6360
Tao, Terry 6006, 6018, 6021, 6061, 6062, 6071, 6074, 6076
6094, 6098, 6121, 6145, 6155, 6162, 6166
6170, 6195, 6204, 6221, 6230, 6250, 6255
6268, 6270, 6271, 6293, 6294, 6296
6306, 6312, 6316, 6318, 6342, 6359

Tao, Trevor 6330
Tetrahedron 6096, 6264, 6297
Thalidomide 6298

The mass of Mercury 6279
Thermometer 6240, 6369

Thucydides 6247

Tides 6238, 6246

Townsville airport 6246

Trams 6044

Transcendental (over a field) 6307
Transferable vote 6247
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Transit circle 6283

Trees 6119

Triangle geometry 6127

Triangle problem 6305, 6332

Triangles 6054, 6074, 6092, 6124, 6140, 6258
Triangles - are they unfair to their orthocentres?
Triangles, random 6012, 6017, 6023, 6204
Triangular lattice 6088, 6090

Tribute to Paul Erdés (book) 6062

Trilinear coordinates 6127, 6193, 6344
Trinity College, Cambridge 6278, 6304

Trinity Hall, Cambridge 6278, 6304

Tritangent centres (of a triangle) 6138, 6365
Two Problems 6060, 6088

Twos and threes 6343

U
Ultra-violet light 6352
Uncertainty principle of Heisenberg 6009, 6350
Universe 6048
Urquhart, M.L. 6116
Useful information 6295
Useless information 6297

\Y
van der Waerden, B.L. Moderne Algebra 6278
Vanishing points 6258
Vector product 6193
Venus (planet) 6237
Vibrating rails 6174
Vikings 6178
Virtual work 6136
von Neumann, J. 6011
Voting 6036, 6247, 6322

1
Waterloo, University of 6161
Wave functions 6010, 6346, 6349
Waves, progressive and standing 6174
Weierstrass, Karl 6251
Weyl’s inequality 6008, 6351
Whatif, Dr 6274
Wiles, Andrew 6268

Yeast Mixing 6369

Zeros 6168

Zeta function (Riemann’s) 6360
Zhelev, Zh. 6101

zZorn’s Lemma 6308
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