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STMULTANEOUS SYMMETRIC EQUATIONS (JCMN 62, p.6278)
Arthur H Stone and Cedric A B Smith

(North-Eastern University and University College London)

A  Cambridge FEntrance S$Scholarship FExamination in 1899

proposed the guestion:

Given y3 - z3 = ayz, (1)
z} - x3 = azx, (2)
x? = y? = axy, (3)
3 3 3
prove that X" + Yy 4+ 27 = 3xyz. (4)

It was noted that with complex variables and with a = 0 the

result 1is not always true. So assume that the examiners
intended that a = 0. Consider two cases:
Case 1: At least one of x, y and 2z is zero. Then clearly

X =y =2 = 0, satisfying (4).

Case 2: The variables x, y and z are all non-zero. Add the
equations (1), (2) and (3) and divide by a, it gives
Yz + zx + xy =0 . (%)
so that Xz + yz = =Xy ce.. (6)
Subtract y x (2) from x x (1), giving
xy3 - xz3 - yz3 + yx3 = 0, or, rearranging,
xy(x2 + y2) - (xz + yz)z2 = 0.
Using (6), replace xz + yz by -xy and cancel the common factor
Xy (= 0), obtaining x2 + y2 + 22 = 0. e (7)

But any reasonable scholarship candidate should know that

2 3 3

(x + vy + 2)(x2 + y2 + 2% - yz - zxX - xXy) = x°+ y3 + z° - 3xyz,

so that (5) and (7) together imply (4).

This may be how the examiners thought of the question.
But more can be deduced.

Add 2 x (5) to (7) to get (x +y +2)2 =0,
whence x + y = -z, Multiply by z and use (6), to get

-Xy = —22 which implies xyz = 23. By symmetry

also xyz = y3, so y3 - z3 = 0, whence from (1) ayz = 0,
contradicting the assumptions of Case 2.
So only Case 1 can hold; giving the trivial solution

X =y =2 = 0. (This conclusion holds in any field)
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TRIANGLE PROBLEM

Nigel Tao

(v, Jennifer Avenue, Bellevue Helghts, 5050, Australia)

A circle [ touches the sides AB and AC of a triangle ABC,

at points P and Q respectively,

internally at R. Denote the incentre by I.

disprove)

that PR must meet CI on the circumcircle.

Prove

and ' touches the circumcircle

(or
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FUNCTIONAL EQUATION (JCMN 44, p.5062)

Terry Tao
(Dept of Math, Princeton University)

In the 1987 note under this title R.L.Agacy asked:-
Let £(f(x)}) = x, f(x+y) = f(x)+f(y) and fixy) = £(x)f{(y) for
all x and vy.
(a) If the variables are real, prove that f(x) = x.

(b) If the variables are complex, what can you say about f7?

In both cases it is easy to see that f(1) = 1, f(2) = 2,

etc. so that f(r) = r for any rational r.
(a) In the real case, x > 0 implies f(x) = f(J/x./x) =
f(/x).£(/x) > 0. The mapping preserves order, and it must be

the identity.

(b) In the complex case there is little more that can be said
about f. The identity function and the complex conjugate both
satisfy the given conditions, but they are not the only such

functions. This fact may be shown as follows.

Notation We shall use capital letters for fields, they are all
subfields of the complex field C. We shall use small letters
for the elements (which are complex numbers), and Greek letters
for functions (sometimes called mappings, they are either

polynomials or homomorphisms, see below).

Some of the jargon of algebra is needed. A homomorphism
from F to G is a mapping that preserves addition and

multiplication, note that the image of F need not be the whole

SH30

of G. A monomorphism is a homomorphism such that the images

of distinct elements are distinct, i.e. it never maps a non-zero

element to zero. A monomorphism from F to G s called an
-

Isomorphism 1if the 1image of F is the whole of G. An

isomorphism from F to itself is called an automorphism.

An element (complex number) b is called algebraic over F if
b is a zero of a polynomial with coefficients in F; if this is
so then of all such polynomials there is one, called the minimal
polynomial of b, which is monic (leading coefficient = 1) and is
a factor of all the others, it is irreducible over F. If an
element b is not in F and is not algebraic over F, then it is
called transcendental over F. If b is not in F (it may be
either algebraic or transcendental) there is an extension field
denoted by F(b) which is the smallest field containing b and F,
a typical element of F(b) 1is a(b)/B(b) where o and B are

polynomials with coefficients in F, and B(b) = 0.

Lemma 1 Suppose that ¢ is a monomorphism from F to C, and
that b is algebraic over F. Then ¢ can be extended to a
monomorphism from F(b) to C.

n 1

Proof Let a(z) = Zi=0 az be the minimal polynomial for
b, so that a is irreducible over F and a(b) = 0. Define the
polynomial a* by a*(z) = 22=0 w(ai)zl. Since C is

algebraically closed (every equation has a root) there is g in
C such that a*(g) = 0. In order to extend ¢ over F(b),
start by putting e¢(b) = q. This fixes the other values.
Take any element B(b)/+y(b) of F(b), the image under ¢ must be

Y(B(b))/v(y(b)), which is known because if B(z) = = bizl, then




©(R(h)) must be % w(bi)w(b)i = 3 w(bi)qi, and similarly for
the other polynomial y.

To be sure that the extended ¢ is a monomorphism, we
must check that the inverse image of zero is zero. Suppose
that B(b)/vy(b) maps to zero, then ¢(B(b)) = 0. Therefore
= tp(bi)qi = 0, but recall that % w(ai)qi = 0. We have two
equations with coefficients in 9(F), both with g as a root.
As ¢ is a monomorphism over F, it is an isomorphism from F to

9(F), and it has an inverse. Applying this inverse to the

two equations we see that & bizl (= B(z)) and =% aiz1

(= a(z2)), both with coefficients in F, have a common zero (in
Ch. But a is irreducible, therefore is a factor of 3, and so
B(b) = 0. QED

Lemna 2 There is a field F containing i, such that e is
transcendental over F, but there are no complex numbers
transcendental over the extension field F(e).

Proof As shown by C. Hermite in 1873, e is transcendental

over the field Q of rationals, and therefore over the field
Q(i) of complex rationals.

Consider the set of fields that contain i, and over which
e is transcendental. By Hermite’s result the set is non-
empty. By Zorn’s Lemma the set has a maximal member, call
it F. Is any complex number transcendental over F(e)?

Let y be transcendental over F(e). There exists no
two-variable polynomial ¥ over F with v(y, e) = 0.
Therefore e is transcendental over F(y). This contradicts
the maximality of F. Therefore there is no y transcendental

over F(e). QED
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Lemma 3 Given F as in Lemma 2, there is a monomorphism ¢ on

C such that ¢(z) = z for all 2z in F and ¢(e) = e + i.

Proof As e 1s transcendental over F, every element of F(e)

1s of the form B{e)/y(e) with B and coprime polynomials over
F. Let ¢ map this element into B(e+i)/y(e+i). Thus we
have a monomorphism on F(e), and by Lemma 1 it can be extended

to C. Clearly w(e) = e + 1. QED

emma_4 The monomorphism ¢ of Lemma 3 is an automorphism,

and is hence invertible.

Proof Let G = ¢(C) be the image of C under o. G Is an
algebraically closed field because C is. Also F(e) is a
subfield of G because gp(e-1) = e and @(F) = F. Since every

complex number is algebraic over F(e) by the definition of F

(see Lemma 2), G must equal C, and we are done. QED

Lemma 5 There exists a map € from C to C that is not the
identity or the conjugation function, such that:-
(1) 8(x+y) = 6(x) + 6(y)

(2) e(xy) = 8(x)86(y)

(3) e(8(x)) = x for all x and vy.
Proof Let I' be the conjugation function, I'(x+iy) = x-iy,
and take ¢ as in Lemma 3. Define 8(z) = @—l(r(w(z)))
The properties (1), (2) and (3) are all immediate. Also
e(e) = v Y(r(e+i)) = ¢ Y (e-i) = e-2i, so that @ is not either

the identity or the conjugation function.



INVERSE PROBABILITY

A. Brown

tfoyou toss four unbiassed coins and count the number of
neads, the possible results are 0, 1, 2, 3, 4, with probabilities
in the ratio of the binomial coefficients, 1 : 4 : 6 : 4 : 1.
You might ask if it is possible to mimic this probability
distribution with four biassed coins, and it is not too difficult

to show that this cannot be done.

A similar question occurs in Problems for Mathematicians
Young and Old by Paul R. Halmos; although I should confess that
I have not read the book, only a review of it. Two dice are
marked 1, 2, ... 6 in the usual way. When they are rolled and
the results added, the sum takes the possible values 2, 3, ...,
12 with probabilities in the ratios

12 :3:4:5:6:5:4:3:2:1
which is as it would be if the dice were unbiassed. Does it

follow that the two dice are both unbiassed?

The example below illustrates the kind of matching that is
possible with two pairs of biassed dice. (In the table P(3)

denotes the probability of the number j turning up)

P(1) P(2) P(3) P(4) P(5) P(6)
Die 1A 1/12 1/6 1/4 1/4 1/6 1/12
Die 1B 1/32 5/32 5/16 5/16 5/32 1/32
Die 2A 1/24 1/6 7/24 7/24 1/6 1/24
Die 2B 1/16 3/16 1/4 1/4 | 3/16 1/16

For palir 1 {die 1A and die 1B), as well as for pair 2, the
sum takes the values 2, 3, ... 12 with probabilities 1n the
ratios 1 : Y/ @ 23 @ 4% o A2 72 1 48 25 0 0

JCMN readers may like to ponder a more general guestion.

Suppose that Y is the sum of M independent random variables, each
having the range of values 1, 2, ..., N}, and that the
distribution of Y is what 1t would be if all the M random

variables were unbiassed (i.e. with each value having probability

1/N). Does it follow that the random variables are all
unbiassed? The two questions mentioned above are the cases
(M, N} = (4, 2) and (2, 6).

The possibility of simulating unbiassed random variables by

biassed ones is shown by the following example.

The random variable X T - T
( value | 2 { 3 i 4
is described by: { :
Probability l 1/4 T 1/2 | 1/4
I
- T
and Y by: ! Value 0 2 i 4 l 6 ( 8
|
| I
| Probability | 1/9 2/9 J 1/3 { 2/9 l 1/9

It is easlily verified that the sum X + Y has the same
distribution as the sum of the values glven by two unbiassed
dice, i.e. 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, with probabilities

in the ratios 1 : 2 : 3 : 4 : 5 : 6 : 5 : 4 : 3 : 2 : 1.




NON-DIFFERENTIABLE FUNCTIONS
Terry Tao
tMath Dept, Princeton Univ, Princeton, NJ 085%44)

In the work below the variables x» and t are always real and

inteqrals are from -o to o unless otherwise specified.
Lemma 1 Suppose that a function f(x) is bounded and is )
differentiable at x = 0, and that there is a continuous complex-
valued function u(x) satisfying:- )
(a) [ u(t) dt = o
(b)Y | t u(t) dt = 0.
and (c) ju(t)| < C/(1 + lty)3 for some constant C > 0.

Then (1/h)[ £(th) u(t) dt - 0 as h - 0.

Proof Pick any § > 0.
By the definition of differentiability, for any é§ > 0,
there exists H > 0 such that
[£(x) = £(0) - x£(0)| < &§|x|/(4C) if x| < H .... (1)
From (a), (b) and (c¢), there is M > 0 such that for all N > M

200y [Ny uce) at| < sn/(an)

and [£7(0) JHN t u(t) dt| < SH/(4N).

Consider any h satisfying 0 < h < H/M.
H/h )
(1/h) J-H/h f(th)u(t)dt )

= (1/h) J?é;h(f(o) + thf’(0) + E)u(t)dt

where |E| < §|th|/(4C) by (1) above. Noting that
H/h > M , and that [[tu(t)|dt < ¢, it follows that

(1/h)lJ§éBh £(th)u(t)dt|

£(0
< l_%_ll|J§é2h u(t)dt| + |f1(0)|[J§é?htu(t)dt| + g %%
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§H H sh
an(H/ny  * an(a/n) 7 an 3674,
( S c/(1+]t]) at
also (/M| - | < § 1ty -H/nC ¢

which will become less than 6/4 when h is sufficiently small,

in fact when h < 36H°/(4AC). Therefore (with h > 0)
z J f(th) u(t) dt -» 0 as h -> 0.
the same result follows for h < 0, similarly. QED

A note on Fourier transforms

Define the Fourier transform f~ of a function f(x) as
£7(x) = 1/(27) [ exp(-ixy) f(y) dy.
The inverse transform is given by

f(x) = [ exp(ixy) £7(y) dy.

We describe a function as '"smooth" if it is
differentiable any number of times, and as "rapidly
decreasing" if (for all integer n > 0) it is o(|x| ") for
large x.

The transform of a rapidly decreasing function is smooth,
and of a smooth function is rapidly decreasing.

By equating the two repeated integrals of
f7(s)g (t)exp(ihst)
we find ff(th)gA(t)dt = ff7(t)g(th)dt for any h, which is a
form of Parseval’s identity.
Lemma 2 Suppose that 0 < 6§ < 1. There exists a complex
function u that satisfies (a), (b) and (c) of Lemma 1, and is the

Fourier transform g~ of a smooth function g zero outside the
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interval (1-é, 1+6), and such that g(1) = 1.

Proof Choose a smooth function g, zero outside (1-§, 1+§)
and with g(l) = 1. Define u as the transform of g, so that
g~ = u. Requirements (a) and (b) follow from the observation
that g(0) = g’(0) = O. Requirement (c) follows because the

transform of a smooth function with compact support is bounded

and rapidly decreasing. QED

Lemma 3 Suppose that:-

0 < Cc_ < c for some ¢ > 1 and for all n = 1, 2,
n n+1l
a0
and o1 (|an]+|bnf)/cn = A < x,
© . .
and f(x) = Zn:l(an/cn)exp(lcnx) + (bn/cn)exp(—lcnx),

and f(x) is differentiable at x = 0.

Then (an) and {bn) both —> 0 as n —> .

Proof Choose § so that 0 < § < 1-1/C, then C and 1/C are
both outside the interval (1-6, 1+6). Take the functions u
and g as in lemma 2.

£f7(x) = E(an/cn)é(x—cn) + (bn/cn)é(x+cn)

If m is any positive integer, consider h = l/cm.

fl

Then J- f7(x)g(hx)dx Z(a /c)glc se) + (b /cygl-c /c)
= am/cm (all other terms vanishing)
Now use the form of Parseval identity mentioned above
Cn J f(t/cm)u(t)dt = am

Since l/cm —> 0, Lemma 1 shows that ay -» 0. Similariy, by

taking h = -1/¢c., it follows that b —> 0. QED

Theorem Suppose that:-~

ag and bn are complex, and ch is real for n =1, 2, 3, ....,

~-6315-
and C > 1 and 0 < Cc_ < C for all n =1, 2, ...,
n n+1
and ¢ (|an|+|bni)/cn converges, and

the sequences (an) and (bn> do not both converge to zero.

Q0 . . .
Then the functions znll(an/cn)exp(1cnx)+(bn/cn)exp(—1cnxj
oc .
and anl(an/cn] cos cnx + (bn/cn) sin c x

(though both clearly continuous) are both non-differentiable

for all x.

Proof Lemma 3 tells us that the first function above is
non-differentiable at x = 0. It can then be shown to be
non-differentiable everywhere, using multiplication of the
coefficients by suitable factors with unit modulus. The

result for the second function then follows easily.

The theorem above reminds us of a result of Hadamard:

Theorem Suppose that a, are complex numbers, and c, are

positive integers for n =1, 2, 3, ....... , and that

. c, _
cn+1/cn > C > 1, and that the power series I an 2 = f(z)
has unit radius of convergence. Then the unit circle is a

natural boundary (i.e. there is no point on the circle from

which analytic continuation of the function f(z) is possible).
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ORTHIC LIMITS OF TRIANGLES
(JCMN 58, p.6138; 60, p.6209; 61, p.6250 and 62, p.6296)
Terry Tao
(Math Dept, Princeton Univ. Princeton N.J. 08544, U.S.A.)

Let g(z) be the function

n
2 2T e = - 2720 v 2t - 2788

By the article in the previous issue (JCMN 62), if A, B
and C are thought of either as complex numbers or as points,
and if O = O(A, B, C) is the circumcenter of the triangle ABC,
then the orthic limit of the triangle ABC is

L(A, B, C) = O + k[g((A-0)/k) + g((B-O)/k) + g((C-0)/k)]

where k = k(A, B, C) is a scaling factor such that

A-O0 B-0O C-0
kK k k

= 1.

Unless A = B = C, a special case which will be discussed
later, the functions O and k, thought of as functions of 3
complex variables, can be chosen to be smooth, and even
holomorphic (i.e. differentiable) in each variable in a
neighbourhood of (A, B, c). Questions about the
differentiability of the orthic limit function L(A, B, C) are
thus reduced to questions about the differentiability of the
function g(a) + g(b) + g(c), where a = (A-0)/k, etc. Note
that a, b and ¢ are restricted to be on the unit circle and that
abc is constrained to be 1. (Amusingly, the locus of such
points is a torus). Note that a, b and c are kept fixed if the
triangle ABC is dilated, rotated or translated (four of the six
degrees of freedom), and thus L has directional derivatives in

these directions.
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Replacing a by exp(ix) and b by exp(iy), we see that
differentiability questions reduce to consideration of the

tunction H(x, y) = h{x) + h(y) + h(-x-y) where x and y are

[e<] . -n n.
real, and h(x) = anl<—2) expl((-2) 1x)

The theorem in NON-DIFFERENTIABLE FUNCTIONS (pages 6312 -
6315 above in this issue) shows that h is nowhere differentiable.
But what about the function H? Does it have a directional
derivative at any point? More specifically, do there exist x,
y, u and v such that the single-variable function H(x+ut, y+vt)

as a function of t, is differentiable at t = 0?

Returning to the case A=B=C, one can see that L does in fact
have a directional derivative in every direction, arising
somewhat trivially from the homogeneity of L. But L is not
differentiable at this point, for (as can easily be proved), if
it were the homogeneity of L would then imply that L was a linear
function of A, B and C, which is not true (as can be shown from

the non-differentiability in the case of isosceles triangles).
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SEQUENCES WITHOUT ARITHMETIC PROGRESSIONS
Terry Tao
(Dept of Math, Princeton Univ. Princeton NJ 08544)

Whenever a letter such as A, B, A’ or Bn’ etc. is used it
denotes a set of positive integers such that no three elements
of the set are in arithmetic progression.

A special case of a conjecture of Erdds is:

} .
Conjecture 1 zneA l/n < w© for all A

In JCMN 46, p.5107 this conjecture was proven to be
equivalent to

Conjecture 2 There is a constant C < o such that

ZneA 1/n < C for all A.
For all natural numbers N define c(N) to be the largest
possible cardinality of a set A ¢ (1, 2, ..., N}.

Alternatively c¢(N) is the supremum (over all A) of
#{n € A: n < Nj.
One easily sees that c(N) £ c(N+1) < c(N) + 1,

c(N + M) < c(N) + ¢c(M) and c(NM) < Nc(M). This shows for

example that if N = O(M) then c{(N) O(c(M))

I first show that Conjecture 2 is equivalent to the
following:

Conijecture 3 Z:=1 c(3n)/3n < o,
Proof that Conjecture 3 implies Conjecture 2.

Let A be a set as above, A = AO U Al U vvens , Where

A, = (m e A: 3" << 3n+1). The cardinality of each
™

An is at most c(3n+1 - 3 < 2 c(3n), and for any m in An

1/m < 37", Thus = 1i/m < 2sc(3™) /3%, giving

meA

Conjecture 2.

~6H319-

Proof that Conjecture 2 implies Conjecture 3.

For each natural number n choose An o {1, 2, ... 3“}
with cardinality c(?n). Now consider the union of all the
sets A ]n+l. It is a routine matter to check that the

n

union contains no arithmetic progression of length 3, and

hence by Conjecture 2 the sum of the reciprocals is at most C.

. . . n+1
However, since the sum of reciprocals of elements in An + 3

is at least c(3n)/(3n+l+3n), we thus have that
1 ® n n ) .
i Enzl c(3 )/3 < C, thus proving Conjecture 3. QED

From the elementary properties of ¢, it can be seen that
c(3M/3" is a decreasing sequence. However it is certainly
not apparent that c(3n)/3n tends to 0, let alone that
Conjecture 3 holds. On the other hand, the obvious lower
bounds for c(3n) are not much more than 20. This leads us
to conijecture:

~€

Conijecture 4 There is ¢ > 0 such that c(n) = O(nl y.

This would easily imply Conjecture 3, though Conjecture 3
may hold without it. I will show in a moment that
Conjecture 4 follows from an even stronger conjecture. But

first we need a lemma.

Lemma Suppose that aij and bi' are real numbers in [0, 1)

]
for i =1, 2, ..., rand j =1, 2, ... s. Suppose also that
r .
Zi=l aijbij < 1 for all j, and that
r
c(n) < max(Z;_,; aijc(bijn)) + 0(1),

] .
where if x is not an integer c(x) is understood as c([x]).

Then ¢ satisfies Conjecture 4.

Proof Let bO be the smallest non-zero bij’ and let b’ be the
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largest. Write max 2§= =1 - &, and choose € > 0
J

such that 1 - § < (bO)E. Then one can see readily that for

1 2i4Pi5
a sufficliently large C and n, if c(m) < Crnl_6 for all m € b'n,

then c(m) < le’6 for all m < n. Thus we can prove

Conjecture 4 by induction.

For the statement of the next conjecture we need another
function. We define d(n) to be the largest cardinality of a
union of two sets A and B that are both subsets of the set
{1, 2, ..., n}. Alternatively, d(n) is the maximum of
|A| + |B], where A and B are disjoint subsets of (1, ..., n}.
Clearly d(n) < 2c(n), with equality or near-equality holding
only if one can find two disjoint, nearly-maximal subsets A
and B of {1, 2, ..., n}. Because of the nature of these

sets (those given by the greedy algorithm tend to look like

Cantor sets), it seems reasonable to conjecture:
Conijecture 5 There is € > 0 such that d(n) < (2-€)c(n)+0(1).

Theorem If 0 < 6 < 1, c(2n) < max(2c(n-né), d(n+né)) + O(1l).

Proof Let A ¢ (1, 2, ..., 2nj}. We divide into two cases.
Case 1. There is no element of A in [n~né§, n+né]. Then,

since A is contained inside two intervals each of length

n - né§ + 0(1), we have |A| < 2c(n-né) + O(1), as desired.
Case 2. There is an element m of A inside [n-né§, n+né].
The remaining elements of A can be divided into the set Al
of elements < m, and the set A2 of elements > m. Since A
contains no arithmetic progression of length 3, the sets Al

and m - A2 are disjoint and are contained in an interval of

6320 -
length at most n + né + 0O(1l), as desired.

Corollary Conjecture 5 implies Conjectures 1, 2, 3 and 4.
Proot With € as in Conjecture 5, choose § such that

(1 + &3(2 - ¢) v 2, and apply the Theorem to the Lemma.

AN EXAMPLE

There is one well-structured example of a sequence of

positive integers with this property of not containing any

three in arithmetic progression. It is as follows.
F
n a(n)
The sequence A = {a(n))} =
1 1 1
{1, 3, 4, ... } 1s constructed as 2 10 3
3 11 4
shown. The binary 4 100 9
5 101 10
representation of n is the 6 110 12
7 111 13
ternary representation of a(n). 8 1000 27
S 1001 28
10 1010 30
There are three remarks to be 11 1011 31
12 1100 36
made about the sequence: 13 1101 37
14 1110 39
(a) It contains no three numbers 15 1111 40
16 10000 81
in arithmetic progression (as 17 10001 82
18 10010 84
noted in JCMN 47, p.5125) 19 10011 85
20 10100 90
(b) The sum of reciprocals converges.
(c) The power series f(z) = = za(n) has the unit circle as

a natural boundary, i.e. no analytic extension across the
unit circle is possible.
To prove (c), take any positive integer k and integer p,

and consider the radial line z = r exp(2nip/3k) for 0 < r < 1.

K X
z(3 ) = r(3 ) and a(2k + n) = a(n) + 3k , and therefore
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exp(2ﬂia(2k+n)p/3k) = (z/r)a(n) forn =1, 2, ..., 2k—l

f(z) = (za(0)+ za(l)+ ce. + za(zk_l))(l + r(jk]+ r(z'jk)+ )
= (20 Ay za(zk_l))/(l NELN

which - © as r - 1. This means that the point z =

exp(2ﬂip/3k) is a singularity of the function f(z). But

such points are dense on the unit circle, which is therefore a

natural boundary of the function. QED
Problem — I wonder if we can add (d):
(d) z:=1 ET%T exp(ia(n)#) is non-differentiable everywhere.

DEMOCRACY

In setting up a mathematical model for parliamentary
government, one question arising is how to model the voting

policies of members of Parliament. The guestion may be
expressed —— what objective function is the member optimizing
when deciding how to vote? It is tempting to assume that

members vote according to what they regard as the best interests
of the country, but this supposition is not in accord with the
available evidence.

In July this year the ruling party of the United Kingdom
parliament was split on an important question; 24 members
disagreed with the rest of the party and announced their
intention of voting against the Government. The Prime Minister
responded by threatening that those who voted against the
Government would not be sponsored by the Party at the next
General Election, (and so probably would lose their seats).
Then 23 of the rebels changed their minds and voted with the
Party, the other abstained.

In the absence of any other good evidence, it seems
established that most members vote purely to promote their own
political careers.
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SUM OF A SERIES (JCMN 57, p.6098)

The problem was to tind % Pq(x) yn/n!
and the answer 1s Jo(y .

One possible proof is as follows.

[n three dimensions we have Cartesian coordinates
(x, v, z), cylindrical polars (p, ¥, 2z), and spherical polars
(r, ¢, v), connected by:-

X = 0 COS ¢, y = 4+ sin v, p = r sin 4, zZ = r cos §.
The function F = Jo(p) e? satisfies Laplace’s equation
82F/Hx2 + ﬁzF/ay2 + 32F/322 = 0, and has axial symmetry

about the line x = y = 0, and takes the value e? on the axis.

But Ei 0 " Pn(cos )/n! also satisfies Laplace’s equation,

has the same axial symmetry, and takes the same values on the

axis where ¢ = 0 (and so Pn(cos ) = 1).

_ © n |
Therefore Jo(p) exp z = Zn=0 r Pn(cos g)/n!

and a change of variables gives the result required.




