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LRRATIONAL SUMS

Paul Erdos

(a) Let uy be a sequence of integers satisfving
_on
- u, > 1 as n > oo. I[s it then true that

ji l/un is irrational?

(b) In the Indian Journal in 1943 I proved that
T /02" 1) is irrational. I think rhat if
np< N, <y <.+ ds oany infinite sequence of positive
integers then Z;xi l/(Z(nk) - 1) is also ifrrational .

This will perhaps not be casy.

CONGRATULATIONS

Esther Szekeres was given the degree of Doctor of
Science (honoris causa) by Macquarie University on the 2nd.

May, 1990.

QUOTATION CORNER 30

"You can vote before the election if, on election
day, vou ... are ill, or ... "
—— From a circular distributed by the Australian Election

Commission before the Federal Election of March 24th.

-
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LETTERS IN WRONG ENVELOPES (JCMN 51, p-5243)
Mark Kisin

If n letters are put in their envelopes at random, let
Y be the random variable representing the number of letters
that are in their correct envelopes. Use hn( ) to denote
the expectation of any random variable, wherc n is the number
of letters. What caun be said about the moments of Y?

For 0 € k = n let pn(k) be the number of ways of
putting the letters with exactly k in their right envelopes.
Clearly pn(k) = (;z)pn_k(O) R (1)

Let q (y) = pn(y)/n! be the probability that the random variable

Y takes the value y. Using the inclusion-exclusion principle
p 01 = rt - (D)=« (D)r-20r - Ly e
STl o= /1w /20 - Lo (-1 S Uii)

Consequently from (i) we have, for 0 £ k £ n:

p k) s (1 - 1/1r . 1/2 - GO a0 L i
quly) = (U/yiiL - 1/10 + 1/20 - =0T Y ey
Note that qn(y) = 0 if either vy < 0 or v > 1. and wo

from (ivl it follows that in all cases

vg lyv) =« c tyv—11 S L
Yants he1
At this stage 1L s possible to caleulate o fow o Che
moments ot Y for example En{ Y = Zy Qv Z T, | .
: )
and F_ov© Z\,"'q (v qu {v-1) > Teviag oo 2
n no S on=1"7 il
The summations above are over all integer v. But now we

return tc¢ more general results.

Theorem If Fis a polynomial then ELCEOYD) Ls dndependont ot

n for n > the degree of F.

Proot Use induction on n. Supposing the propesition untrue,

take the smallest n for which it fails.
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fxample 2 Let M) - 2-70 yt/y' whicho for vt & n is 1/c¢
There must be a polynomial  of degree < n such that hw‘}(f‘Y‘J Y= _ o0 i
’ m times the moment of order ¢t for VY. Lot Hix) Z i 0M(i)x /it
£OE (E0Y)). Therefore there is m < n such that k. (¥Y"} / ~ , (X
nm nel Z:Zj(xy)l/Il‘y') ZZQXy/yY < et ) R tix)
Ew(Y ) RBut
! o m Hence by Taylor's Theorem M(t) is the value when x-0 of
hn(Y ) qun(y) y {now use (v) above} o (e®)
i Ld/dx) e . This gives another way of calculating the moments.
Z:qn_l(y—l) ym (now change the dummy variabloc)
m-1 lxample 3 Let L{t) = e‘lzm (s-1)%/s"
Zq,_ty)ly+1) | s=0
— t
. - o0 t -1 —x)
Rn-l((Y’])m Ly (how use the induction hypothesis) Hix) = Z_t:OL(t)X /t! = e Z:Z_(Z? T'
- . m-1 ~ L 1 VX .
B tey-1) ) ) - e IZjexs Xfs1 = e I-xgte™) | expre-t-x],
m— . '
Z g,y iyl) (now change the dummy variablc: Lit), which is the moment of order t for Y about its mean, is
L om-1 , . e oo .
Zayty-lly (now use (v} above again) thervetore the value at x=0 of (d/dx)Lexp\ex—l—x/.
zqmlz’y)ym - Emlwm,». .
y bxample 4 Another way to calculate any moment h”\Y ) with
The proofl by induction is now complete. B £ n e ae follows It 1 -l prrm/v’ i eflf "
. . m & SAs . oy 1! o R
O v ! m o< “he < = E T | - oo . R .
Corallam b= o then hn(Y ) In((Y*]) ‘ Vi where Iwnx] ZE()ymxy/y! which can be calculated recursively
A nice way of proceeding from here is to let n —> . 1rom {r X X f% 1(x) and fo(x) _ e
il -
) -1
lac ; Ly = ! - 7 s W ; ‘
replacing qpiys by qegly) ey In other words we take Using any of the methods above, we find for t < n
o . . ¢ v . . .
the distribution of Y to be Poisson with unit mean. The . 0 1 ) E 4 3 5 I
-y ™~ - : 3 7 ~ ]
theorem above shows how this gives us the right answers when iyt ] 1 9 5 15 59 203
we calculate expectations of polynomials of degree < n.
If F is any such polynomial then These calculations are also related to Terry Tao's
e EIFIY )Y i:F(y)/y' ..... (vii) Binomial Identity 31.
i 2 p .
To any polynomial F corresponds a function n m i-1)"m B n 2 _ ) noo 2
! zm Ozi O irin-m)t Xm:Om ' m) Zm:()‘” m q”tm)
oo v . .
Alx) Foyld x7/y! which is of interest. 5
v 0 - 2 on . n , n 2
. n ZNV(‘: q,tmi - anmiom qntm) e 3wt tm)
Example 1 It F I then A{x) = e”, and for any j < n 9 - R
N . . . noo-Z2n 20 as required.
e’ P/ dx Ty Z:v yly=-1) .. {y—j+1)x7 " d/yr
Putting « Poatves B JYIY-1) 000 (Y=3+1)) = 1 ... {viii)

This is called the factorial moment of order j for the random
variable Y. 'he factorial moments of order > n are all zero.
It is now cles thal the moments of Y are all positive integers,

thev can be calculaced from the factorial moments.




Binomial Identity 31 (JCMN 51, p. 5227)
C. C. Rousseau

Note that the identity to be proved can be written

n _ 2n-m *1"
Z("—'ﬂz(_' =n’—2n4+2 (n>2).
m=0 T i=0 b

We obtain this result as a consequence of a more general identity and show the connection
between the latter and well-known formulas for Bell numbers. Following the notation of
Graham, Knuth and Patashnik in their recent book Concrete Mathematics, we use ¢ %
to denote the falling factorial function z{x —1)---(z — k + 1). On the vector space of all
formal series

¢(I):ickrk (1)

where
oo

37 Jer] < o0,

k=0

define the sequence of linear functionals (L,) by

|
q T s 1

NgE

La(¢) = ~ #m) nizm(f'l)‘, (n=0,1,2...).

m

il

We claim that with ¢ given by (1),

To see this, first note that

P (1) et

Z( : ) = [tp] s

‘ ! 1t

where [t?] f(t) is the coefficient of £ in the series expansion of f. It is thus apparent that
ela=1)t

1—t°

Ln(a®) = [¢"]

Differentiating this equation & times with respect to a and setting a = 1, we obtain

t* 0 n<k
L.(z%) = [t"] =
1 n>k.
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Thus (2) follows. To evaluate L. (@) for the case in which ¢lz) = (n ) 2nz ot
we use

o

1=z r=zt 2 .

Gl
i
H
Sl
“\

to find

and thus L,(#) =n’ —2n+4 2 for all n > 2.

There are other amusing consequences of (2). First, in view of the formula

" = ZS(r,k) Tk,
k=1

’ L,(£") is a sum of Stirling numbers of the second kind:

La(z") =3 S(r,k).

k<n

Thus
. L.(z") = B,, (n>r),
where B, denotes the rth Bell number. Letting n — oo, we obtain the limit functional
o0
- ¢(m)
Lo, =e! .
(¢) =e mZ:O m!

With #(z) = ="', this leads to Dobinski’s lormula:

Br+l = Lm(Ir+l)
0 r
1 m
= e P
mZ:‘l (- 1)t

Also, we can obtain the generating function for Bell numbers using an argument similar

to that of Rota [The number of partitions of a set, Amer. Math. Monthly 71 (1964), pp.
108-504;

B, . o Loo(z")
LD
[ r=0

gk

r

i




THE DERANGED KNIGHTS OF CAMELOT
Marta Sved

It was something of a revolution sparked by Sir Movdred,
always Lhe most pugnacious knight. It came at a time after
he scored great successes in the spring games. When the
knights came in to their round table, he demanded that they
form a ranking order, naturally putting himself well in front.
He distributed leaflets to the knights, marking the rank of each.
When King Arthur became aware of what was going on he was
very angry:

— Here in Camelot we have no ranks or privileges. We
serve the common good as equal brethren adhering to our
ideals. This is the reason for having a round table. 1
see that cach of you holds a leaflet marking his rank, I want
you to keep it so that no one ever claims the place accorded
by this rank number. —

— Your majesty, it will be very hard, if not impossibic
to stick to this rule. — countered Sir Gawain.

Mevlin smiled; — It will not be that hard. There
are many arrangements that satisfy this new rule, the rule of
derangement s. By now you should all be familiar with the
inclusion-exclusion principle, and able to arrange derangements -=
Sir Lancelot volunteered: — We all know that the total

number of possible arrangements (when the n seats at the table

have been labelled) is n! = n(n-1)(n-2) ...2.1. ALl we have
to do is to take away all the arrangements where any one of us
is at the place allotted to him by Sir Mordred. There are
n such places, and the rest can be arranged in (n-1)! ways,

— This is (n-1)! multiplied by n, — exclaimed Sir
Mordred triumphantly — if we subtract n(n-1)! = n' from n! we
obtain zero. The king demands the impossible if he wants to

displace every one of us from his rightful place. —

— 1t secems, Sir Mordred — laughed Merlin — that vyou
for one forgot the Inclusion-Exclusion principle. —

— oir Mordred — said Sir Lancelot — you have been too
eager (o make vour point, and did not wait for the end of my
story. I was fully aware that I subtracted twice the number

of arraungements when both you and I were to occupy the places
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allotted by you, with (n-2)! arrangements for the rest of the
knights, and this error would occur for each of the possible

( g) pairs occupying forbidden places. Hence, to compensate,
we add (5 )(n-2)1 —

— The story does not end here, — added Sir Gareth, —
Thinking of 3 knights in illegal positions, we then subtract
<§)(n—3)'\ and going on, using the I-E principle we rinally
obtain n! -nin-1)! . (S)(n~2)?— (g)(n~3)Y* o —

- Fnding with +1 or -1, — nodded Merlin. — We could
simplify, and write more neatly

1 1

n
Din) n'l - IT 3T - é% o (=1)

n!

),
‘using the symbol Din) for the total number of derangements. —

— Did you say total number, Merlin? — asked Sir Archibald.
— Could you have just a partial number of derangements? -

— Of course, — answered Merlin. — It is possible that just
2 or 3 or k pecople are in unassigned places, and they can be
chosen in (.;), (‘g> or ( E) ways. —

— What about 1 person? — came a voice from the back of
the hall. Quecen Guinevere, who had slipped in quietly,
listening to the debate, gave the answer:

— Well, T can not sce that just one person moves to an
unassigned place, and the knight who had occupied 1t still

stays there. -

— Listesn to the voice of common sense, — sald Merlin,
~— ool Ccourse we o will o bave D 0L while DOl Foowince hore
Ls Just one way e whiich overvhody stays in the assisgimed place
and so none T deranged. Looking then at all these cuses. wo
get all the arrangements
(oIpior (Mo RN T (D)o
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Rivg Archoar produced suddenly o shining helmet and a

beautitul sword. = b ohave iotended for some time to give
these two presents to one or Lwo deserving knight s, Of course.
after to-day's happenings. | would not call any knight standing

in the place marked by Sir Mordred a deserving knight. —
Sir Mordred was quick to take up the challenge. He
did not want to fall out of grace for good.

— Suppose — he said — rthat there are exactly k deranged
knights eligible for the presents, who may be found in (E)
different ways, then the presents can be allocated to these in
k2 ways, so this case would give k2(12>D(k) possibilities. —

— Quite so, — added Merlin — and since k can take any

value from 0 to n, the total number of possibilities is

EEE:O kZ(E)D(k>. —

— You consider k = 0 or 17 — asked Sir Gawain. — The
contribution of these cases to the sum is zero, — answered
Merlin — I sce no harm in including them. —

— This gives a very long sum, and you must know Dik) for
each k. — objected Sir Lancelot.

— If vou ure willing to use again the inclusion-exclusion
principle fthe second time to-day), you could get a simpler
answer. — said Merlin.

— You mean — asked Sir Lancelot — that we should begin
with counting the possible allocations of the presents by

ignoring the restrictions imposed by the King? —
g g p 3 &

— Correct — said Merlin.

— In that casec we would have nZ n' possibilities — said
.. ) . 2
Sir Lancelot — allowing for a total of n! permutations and n

ways of allotting the presents to 1 or 2 of the n knights. —
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Merlin continued: — Now, following our usual procedure,

we subtract Lirst all the arrangements where the sword goes to

the wrong place. — — You mean that the sword goes Lo a

knight taking his assigned place? —  asked Siv avchibald. |
»

— Yes,— was the answer —  and s6 we must subtract n"in-1)"

arrangements, since there are n choices for a possible "wrong"
place, (n-1)! arrangements for the remaining knights and n
choices for allocating the helmet (without restrictions). ——
— But - added Sir Archibald — should you not consider the
cases where the helmet goes to a wrong place? —

— Yes, surely,— said Merlin — by the inclusion-exclusion
principle we will have to subtract an(n—lk‘ n.n!
arrangements, considering both the sword and the helmot. —

— And this is not the end, of course — said King Arthur.
— No — said Merlin — but the end comes pretty fast, for we
must consider for corrections only the case when both sword
and helmet go to wrong places. This can occur in two ways.
In the first case there are two wrongly placed recipients,
chosen in n(n-1) ways, with (n-2)! possible arrangements for
the others, hence altogether n(n-1)(n-2)" n' possibilities.
In the second place, when both presents go to onc illegally
placed knight, we have again n! possibilities, for there are
n choices for the placement and (n-1)! arrangements tor the
other knights. So, adding n! again, we obtain all th

arrangements, and get the simple formula

2 . . - 1 2. n
( -2n - ! ste S , i Dkt
(n N 2in instead of Dk o k K it
— 1t i< much simpler indeed — said the King. what
is more — added Merlin — Binomial Identicy 31 .. P 2T
P2
D e 2

obf JOMN ST will be Elg 0 iI?O PR p—

1 . SRR

comes to this very formula if vou mulcipiy o




-5258-

THE WONDERFUL WHEEL
Mark Kisin

The following is an address given by Rolland Devian, at
the celebration of the five billionth anniversary (standard
Galactic years) of the discovery of the wheel by the inhablitants
of Sol III, the oldest race in the Milky Way:

"All civilizations that are on record at the head office
of the Bureau of Galactic Statistics, on Antares VI, have at some
stage or other invented the wheel. This has come in various
forms, but in all cases the implementation of an object with a
round surface, be 1t sphere or cylinder, was achieved.
Research conducted by the now famous archaeologist, Friedrick
Kleinbottle (the surname passed down for generations was due to
a hereditary deformity of the nose in his family), showed that
the stage at which the wheel is discovered is dependent on the
shape of the protrusion housing the major cerebral centre (it is
of course a well known, if unexplained, fact that such a
protrusion is to be found in all the sentient species so far
discovered). Thus in the case of the beings of Vega II, who
have perfectly spherical cerebral containers, the wheel was
discovered before the Vegans had become at all sentient.
Indeed the present Vegans do not consider the inventor of the
wheel on their planet to have been of their race. Traces have
been found, however, of these pre-Vegans, or hemiglobii, as they
are locally known, together with small spheres, which seemed to
have been grasped by the animals. What is incredible is that
no other artifact was being made by the hemiglobii during this
period, only the wheels, which would have been quite useless in
isolation. This dealt a serious blow to the then popular
theory that wheels, like other artifacts, were created when they
were needed by the evolving civilization. What remained of the
theory was, of course, demolished by the now famous discovery of
a planet whose sentient inhabitants were themselves spherical,
and on which stone spheres had begun appearing before there was
any life at all on the planet.

"It is often assumed (quite wrongly) by species possessed
of a reasonably round cranium, that despite Kleinbotttle’s
theory, a civilization must neverless neeed the wheel in a fairly
early stage of development. This mistake is made from the
assumption that civilization cannot progress beyond a certain
primitive stage without the wheel. The wheel, however, is
remarkably deceptive in these matters, and just as there have
been many cases of species developing the wheel before there
could have been any possible use for it, so civilizations have
developed to very advanced stages without a hint of the wheel.
We are all aware, gentlebeings, of the case of the inhabitants
of Beta Centauri I, affectionately known as ‘squareheads’.
They went through all the normal phases of civilization,
discovering steam, electricity, nuclear energy, and local space
travel, but without the need for wheels. Those of us ignorant
of the details may well ask how they provided smooth
transportation without anything resembling a wheel, which term
(let us not forget) covers not only circular cylinders and
spheres, but also all shapes of constant width, which can be used
as rollers. The remarkable fact, gentlebeings, is that the
'squareheads’ used squares to support their vehicles, and the
rails on which the vehicles travelled were shaped to give a
perfectly smooth ride. All other apparent difficulties were

N
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An early steam locomotive from Beta Centauri I

overcome in equally ingenious and remarkable ways.

"Having developed local space travel, and even sceelng
their planet from space, the Beta Centaurians failed to get the
hint. Finally, when they discovered interstellar space travel,
their ships met those of the Galactic Federation. The Beta
Centaurian commander, coming on board a Federation ship, was
amazed at the ‘strange un-square like things’, as he put it
that were used throughout the ship. Although he finally
acknowledged that the various wheels served their purpose, he did
not see any need for them, and maintained that this was indeed
a very ‘round-about’ way of doing things. To this day,
gentlebeings, the Beta Centaurians have not adopted the wheel.
its use in their society remains extremely limited, and is mainly
for the benefit of tourists, who flock to Beta Centauri I to see
the ‘wavy railways’, and other sights

"It is now evident, on this five billionth anniversary of
the wheel in our galaxy, that the wheel is no mere common
artifact, subject to the whim of a developing civilization.
No, gentlebeings, the wheel 1is something greater than an
artifact, it comes and goes as it chooses, blessing some with 1ts
presence, abandoning others to their fate. Gentlebelings,
would like to propose a toast: To the wheel, happy birthday and
many happy returns!"
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K-FOLD FUNCTTONS

CJCMNL 3T, pu 3180, 390 4174 40, | alns
H.o Burkill
A k-Told function is o real banction akine cach ol it
values oxactly k times. Define Atk e Uhe aioi mum possible

number of discontinuitics of a k=fold functicn on an open

interval. Similarly (k1 for functions on u half-open
) F

interval such as (0, 1!/, and Y(k) for functions on a compact

interval such as [0, 1.

Previous contributions have established the following

valucs and inequalities:

| i ! {

[ k 1 2 3 4 odd cven o0

l Ak 0 oo 0 0 0

| N , . ' £ bk < Lk

i AT Y ! ' 2 SRR and 2| 0

| f‘ < k! £ Lk :

! Lo ¥ i I : !

| v i \ ‘ fand > and 2 )
A little more can now be proved. We define (for the

purposes of this note) a (p, ¢, r) function as a function on an

open interval taking cvery positive value cexactly p times,

taking the value zero exactly ¢ times and taking every negative
value exactly r times.

It is clear that for any k - 0, 1, 2, we can find a

{2k+1, 2k+1, 2k+1) function, which is saying that A (2k+1) = Q.

In figure 1 below is sketched the case k-2. Adapting this

idea, we can find a (2k:1, k, 0) function and a (2k+1, 0, 0)

function. These are sketched for k=2 in f{ig. 2 and fig.3,

both on the interval (-o00, 0).

fig. 1 Fig.

Putting these ideas together, we can construct a |

function (fig. 4), or more generally a

function, and a (3, 1, 3)

a (2k+1, 1, 2k+1) function

function

4
N/\ /
fig. &
Theorem 1 For anv k = 0.
Proof Take a 12ks1, 2k.:
3, 2, 3) function on (1. 2

a 2k+4-fold function on the

discontinuity only at 1.

with discontinuitieos only

Theorem 2 For k O, 1,
Proof Take a (2k.1., 2k.1,
301, 3 function en i
dives a Zked-told runction

RIS

(2k+1, k+1, 2k:+1)
(fig. 5), or more generally
J
4
ALY
Fig. o

A ket LT

funct ion
Nyt

HERNERAR SVl

{

[T

on (0, 1
0.

0, 21

interval

L

his gives

with

0.

A

&

and

0,

a

a

Thi-
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Theorem 3 Foi ko G 1.2, CMki9) &3
Prool Take a O 3, 7 function on (0, 1)
and o R - - - (1, 23
and kb 2k b, 2kl - - - - (2, 3
and [ OO B - - = - (3, 4)
with (11 bl SN tid 0. See fig. 6 below.
This s a 2ki9-10ld tunction on the half-open interval (0, 4]
with discontinuities only at L, 2 and 3. :
'Y
|
|
iy /
f /
|
| | ‘
r/””
/
. /
/
[ :
fig. 6 ‘

Note that this theorem tells us nothing about /{4(7), but

previous results give /{1(7) < 3.

Theorem 4 Y51 oo 1.
Proof Take a (5, 2, 0) {function on (0, 1) and a (0, 0, 5)
function on (1. 2), putting {10} = £(1) = £(2) = O, see tig.

This gives a 5-fold function on the compact interval [0, 27,

with only one discontinuity. proving ¥ (5) < 1. For rhe

opposite inoquality sew p.dbi6 in JOMN 39.

—
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=
>

fig. 7 fig. 8
Theorem 5  For k - 0O, 1, 2, .. | Yi2k:8) £ 2
Proof Take a 7, 3, 0) function on 0, 13
and a 2kl 2k+1, 2k+1) - - - = - - [
and a 000, T - - - - 2
putting o0y [ tg: 8l [hi . ‘ S i
IRESEERN 1noon the compact e ith 1
ol o aand oo =
Theorem 6 For Kk 0, 1 2 Y2k &
Proot ke 5, 00 O funct i g
nd i 1, 1, 11 - - - - !
and a [2k«1, 2k+l, 2k+11 - - - RN
and a 0, 0, 5 - - - - = oA
with 1i0: foi f2) i3 frd] 0. See rig. U
K |
| WM . 4/}/
| ’#r:” // /b}’ {
[\ J.
- | v e
y i !
f S ﬂ-fﬁ/ | /WW |
/ /y‘ W
fig. 9
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Theorem 7 For k O 1, 2, ..., M2kid) 1.

Proot By Theorem 1 owe need to prove only that  N2k+4) /£ 0.
Use reductio ad absordum. Supposce that | is a

continuous Zkid-fold function on (-1, 1). Without loss of

soenerality we may assume + bounded (because if { is continuous
then /0140011 is continuous and bounded) . Also we may
assume that .ou.b. Iand go) b, -1. The function cannot
attain these bounds, because if it attained its l.u.b. at
Zk+4 distinet points then cach would have Lo be a local
maximum, and consideration of the 2k+3 intervals between these
points shows that the function would have to take some value
at least 4k+6 times, impossible.

Note that f must tend to some limit as x £ 1, because
ST lm o sup oand lim o inf were unequal then every value between

them would have to be taken by fix) infinitely many times.

shmi oy comments apply oot x -1 hererore we extend the
ot Y G hecomt e, the b ased intorval [ -

Phe banctdon st Gt taiy e beenad L and cannot atCain Lhem

the open interval o and so Che bounds must be 117 and te-1

Without loss ol generality we may suppose  that

=1 = fi-1) < fix) <« 1] - 1 for all x in (-1, 1).
bet ) < x, < ... < Kol 4, be the 2k+4 points where f
takes the value zero. In each of the 2k-3 open intervals
tx xr»l) [ix) cannot change sign. Eithor theve are ki2

(or more) of these intervals in which fi{x) > 0, or there are

k+2 in which f(x) < 0. Take the first case, the other may
be dealt with similarly. Take any positive y less than all
the upper bounds of fixi in these intervals. The function f

must take the value y at least twice in each interval (making

2k+4 times) and must also take the value v in the interval

(Xopqr 1) 'his contradict=

and so the theorem is proved.

Theorem 8 A real function on

countably many local maxima and

Proof A local maximum of a

that, for some b > 0, fix) <«

{c-b, ¢) and (¢, c+b).

act that f s 2k«4-fold,

intorval has no more than

1'x) is a number ¢ such

the two open intervals

If ] and ¢, are two lTocal maxima, and if b, and b2

1

are the corresponding interval -lengths, Lhen b, and b, are not

both().[clvcz\. For each

1

maximum ¢ let us choose the

corresponding b as the largest suitable member of the set

{], Loob ...}. This choice

uni quie . Now consider 1!
finite interval. Theyo n
chosen value of b ia 1, bng e
more apart. Stmilarly they
h=5%, etc. Thervefore the (o

The result extends to a function

2lwive pessible s and in fact

v tinitely manv tor whion
number s finite or countabl o

anoinfinite Iinterval ) and

similar reasoning applics to the minima.

Corollary Suppose that a continuous

interval takes values fiq) /

taking any value more than k times

there is y between fla) and fii

4t each point where fix) .

Theorem 9 It is impossible

the half-open interval (o1, |

Proot Woe may take §oto be bounded,
lou.b - M. Note that ' cann

function £ixi on an

and has the property of not

for some finite ki Then

that Lix) - v changes sign

A-told function 1980 on

oty one discont i Uy,

cithogolob. M

cithery of 1t s bounds.
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For example, if f took the value M at one point, it would have
to do so at 4 points, at least 3 would be points of continuity,
with 2-sided continuity at 2 or more of the 3; this would lead
to f taking some smaller value at 5 or more points.

Case 1 The discontinuity is at x = 1. We can define a
continuous function F(x) on the closed interval (-1, 1}, with
F(x) = f(x) at all the interior points and F(-1) = f(-1+) and
F(1) = £(1-).

nust attain them, therefore F(1) and F(-1) must between them have

F(x) must have the same bounds +M as f(x), and

the two values +M. By Theorem 8 we may choose y # f(1) so that

the 4 points x where f(x) = y are not maxima or minima. Then
(as in the corollary) F(x) - y changes sign 4 times between -1
and 1. This is the required contradiction.

Case 2 The discontinuity is at x = d, with -1 < d < 1.

befine continuous functions F(x) on [~1, d]} and G(x) on [d, 1],
both = {(x) in the intericr of their intervals, with G(1) = f(1).
The 3 values (-1}, F{d) and ¢{(d) must include both -M and M.

If F(d) is not one of the two bounds we may reverse the function
on (-1, d), putting f(d-1-x) instead of f(x). Then F(d) and
G(d) are the two bounds. By Theorem 8 we may choose y so that

firstly v # f(d), secondly v - £(1) and Yy - F{-1) have the same

sign, and thirdly the 4 points where f(x) = y are not maxima or
minima. Then the difference f(x) =~ y changes sign 5 times
between -1+ and 1, 4 times at its zeros and once at d. This

is the required contradiction.

Finally, a summary of the results.

T
k 1 2 3 4 | 5 odd even o0
MKk) 0 o0 0 1 ol 0 1 0
}ﬂk) 0 1 1 2 i 1L or 2:1, 2 or 3 1 or 2 0
v(k) 0] oo 1 I 1 1, 2 or 3 1 or 2
|

OVERARM AND UNDERARM THROWING (JCMN4G, p.5182)

Can you throw {urther cverars

mderarm? The ansver i our simploe

model ) ie that the fwe woys aro

cqually good. To investigate

the question, write the
equation of the tra ectory

in vector form.
2 Al
X = a + Vt + %gt
fig
Then naturally onc draws the picture

as a vecltor diagram :{ig. 21, shoaing the poaiat € reached by
overarm throw from A It is cleqar that O can alsn be roadd
by an ucnderarm throw from A and that tho (wo throws have the
same time of flight, t, becauss the two tangents trom B ote the
sirele ave of equal i{ength. Conversely o the same diagram
shows how any point that can be resached by oan underarm throw
can also be reached by an overarm throw.

Now, what are the accessible pwiﬁts’ Roughlyv spoaking,

the answer is the same as in the simple case of project
a point, when the accessible points are those under the

"enveloping parabola'. Move precisciv. theve is such

)

on

AN

.

1

veood

e

1Y
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cnveloping parabola in this case also, and all the
. e C . 2 .
polnts are in itg; if v > ag then every poinl under the

parabola is dccessible. To obtain these

resubts scoe fig.

Use Cartesian coordinates with
origin at the centre of the
circle.

et O be XL v Using
the theorem of Pvthagoras
Inotwe Jdifferent wavs tao

tind the square of OB

Zives the relation

2

2 AR
X "y*%gt )

dccessible

Ihis can be regarded as an cquation to Tind the time of flight

of 4 ball thrown to (x. yi. Write 1t as a quadratic in LZ.
2 2, (L2202 .
&g‘ta + lygfvzitz v (xTeyT-aty 0 i1y

)
Ihe roots (in €7) must be real.

vl s gl

2 / 7 . J
o IyVT g L Vgt 12)

Fhis formala 20 doveriboe the cuveloping parabola, we

o b Chat Tt containsg all o the aceessible ATRR T SR I'he
Cothe P hecaiae ey oD v D b he cirel e
, : > 0> ey Bt
SRR < g Che the Cirole and paraiboio o o
)

Lo it s wheve v V5 /g ceviv. Lo

inotnis case not all the peints in

the parabola are accessible, only

those - shown shaded) where either

voK or xz*v] < AZ. 'his

Lollows from the requirement that

Pl omust have o root t4 > 0. Fig. 4

-
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In the case where V° > ag (the case of practical interest)
the points in the parabola (2) but outside the cirele are all
accessible in four ways, two overars and twoe underarm, because

. 2 C ]
equation (1) for t° has two positive roots.
It is no accident that (17 i< ot degrec 4 in

Because our cquations of motion are fnvariant under roversal oof

time. negative values of ¢ | AT [ R R NS Cohie
Chyowing arm. The stroctur o i AR i [
distinguish botween overarm il vl o v o gt ot b iy [
clockwise and anticlockwise votat oo, ocording too fhe wigen

ol the root € of cquation ] IHowe want to throw the b

to a point inside the circle, we find that o]

ane

B )
positive and onc negative value for (7, because the last torm

is negative. There are two real roots Tor (., ot apposite
signs; they are both overarm in the scnse that the ball e

released when the arm is above the horizontal, but one is with

clockwise rotation, and one with anticlockeise

QUOTATION CORNER i1

Grandmother's warning to voung mothers not o give milk

to children when they have a cold because it chokew vhem up

with mucus Is to be put to the test by o Sdoiaide medica

research team. "It ois a popular belior withont oo

all, and up to 30 per cent of the cor
saying they have personal experience.” b v ie Pianock said

vesterday. Dr Pinnock, clinical lTocturor ia moedd

Flinders Medical Centre, wants to contact (00 peoplo aged

between 16 and 90
— Adelaide Advertiser (newspaper] April 10400

CAnyone Jlecturing on Bayvesian statistics might il thi

oxample uscful;
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MORID NUMBERS

Readers will rocal ]l the set of numhbers H] ment ioned
1

Goryy Myor=son wee JUNE L 51249

related to another Taed i, Foooand to the

These numboers

Fibonacci numbers ¥
1

are

by

aud the fuacas nombes [ he tirst few values are as follows
" 0 ] 2 5 > b 7 8 ;,j,- ) 10 11
I . 0 | i 2 ) S 13 21 34 55 89
C’n 2z i 5 4 / i I 29 47 76 123 199
Hn 0] 0 ] 2 3 Y 15 24 39 64 104
K” | ] 3 5 3 13 22 36 58 94 153 248

fhey may be expressed in terms of g

of one ancther as £o1]ows

n n En*],

t

5 D Ce R 06 .
[ Ielpiiyg s ‘('n—l T
¢ 4—11 o 1 =
1l N 13
o i hie twor 1 we need
AR AFRE TS [ U B R R R N
|
o ! l
Detine 1o cond ok iy
SH S A ~}_: . | R
n ° Tind n+2
, 5y, ~T=1 . W K . 5 y -
Ky 7 2e 38 L 2i-g) -
Fooe 8F 0 - ¢ 3G - 206 - r
n ne-i n n n+ ] n
The following relations are clear
- . oW and 4
Hn-»és Hn+ 3! H.m 1 I e Kmé‘
n Hn+2 Pl }<H~3 and Kn ! K[HZ
K. =H_ +F

% 5-% or

he values r
n

in terms

moditlo Gl as fol lows

N (;IHZ
n
na3 7 Kn+l * Kn
1 = 3F + 2F
n+1

defined

r
0

-5271-

. . - - e - (
Recalling the duplication formulae i42n ) rn('n‘ Mo ESRIIR AR

and 1 -1, we look for analogies.

4yve 2ol 2n 2
) - N
- i H £,oF
H/m ! n 4n -l PANVAY
E
! el Gl . 20
| i |
}.‘ 1t ! h’w !
- , | ,
N :
i | | ,
i (. i ‘ M
Gy )x’:‘ AT In el !
. : ( ) 3 VFL :
. L ; [N Z r 3
K/m-ﬂ lZn»] ["mrw AT 2usd Uil

All the relations above apply cqually when o <
but il we ignore the case of negative n we may describe th

. U OO!. e
numbers by their generating functions, () 'E() Gt et

7
2 Sy | 2,
Foe) N gL 2o/ (} ({
: T-t+207 -t
- t kit - o ‘
hECl - e Clottf it 1
Our Interest in the numbhers Hm and Kn Ps conceried with
. b C b ore {a the nons fnte o
the s SN Z e where L the n
ol ng. YEosocems that SCH_J is a bound of the et

n

SN S H S 1 : hey arc uppoer bhounds
{S(N); 1<« N & hﬂ}. and similarly for }\n‘ they wpy
. ' . e e
i n is oven and lower bounds if n is odd. Numerical ovidenes

indicates hit

L - Il el 1y 750
SiH, 1 i e /30 - G teg) 3g-10 /50
S(H ‘ Cn 200 303-4g) /100 w0t
A ’
S(K_} Ty on jiégL 1+ (=1 (4580 i3-g)/5) » oi 1!
) N’

rl/ngs/f) pooll).




TWO-DIMENSTONAL

Function

FOURIER

TRANSFFORMS 1IN

POLAR COORDINATES

Transtform

fir, 8)

N

//(}gm' OO g

o
//0-2171 rs cos(8-¢) F(s, ¢ )sdsdp

Fire 8)

|
i
f

B for/k, 8 KR ke, 8)
Fir, 8:a) Fir, 8rX)
7 ) a{/;e /a8 -
VI ef e Jrefgg/rt 4m?
£+ raf/dr -F - v9F/r B
glr)etn® zm-ieie)“/(fg(sun(hrs)sds
tr 1/r
. e\p(ﬂn'l‘Z/az) azexp(—ﬂazrz; 7
SL‘:‘C" ] 2meJy (2wer)
g'l‘ﬂ:)g]e —bfic'eje\Il(qucr) T

‘n;/r);i]wZ'n‘cH

Sl rilogr ‘ L/t Togr 27
Corrvections and additions uld be welcome.
GUOTATION CORNER 2
dsowoend ds the bread vou Sl oae o childl!
rinted omotne wrapper ! Dread e [N



