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ORTHOCENTRES (JCMN 50 p.5204)
J. D. k. Konhauser and A. Brown

In the Mathematical Gazette (vol 46, 1962, p.51) John
Satterley recounts that the name '"orthocentre'" '"... was
invented by two mathematicians, Besant and Ferrers, in 1865,
while out for a walk along the Trumpington Road, a road feading
out of Cambridge toward London. In those days it was a
tree-lined quiet road with a sidewalk, a favourite place for a
conversational walk."

The Greek Lexicon of Liddelland Scott tells us that
KEV¥Zpoy  comes from a verb meaning to stab or prick, and
hence € cfey meant a sharp point, such as a goad or a spur.
Because of this, KELZ > was used for the sharp point of a
pair of compasses and, one step further on, as the centre of
the circle drawn by using the compasses. S0 is the
orthocentre the sharp point where the altitudes meet?

Perhaps 1 should add something about the "ortho" part
of the word. ; é#tﬁ Yilar, 4 was used even in classical
times for a right angle, from @b s meaning straight, right,
correct ... Sometimes the angle part § Yer,x) was left out,
or implied, so ; éﬂff became a right angle or a perpendicular
line, which would explain how it got into the act in discussing
the altitudes of a triangle.

The circumcircle and the 9-point circle of a triangle
have the orthocentre as a centre of similitude.

The circle with respect to which the triangle is self-
-polar is given in trilinear coordinates by xzsinZA + yZSiHZB
b zzsiHZC = 0. The orthocentre (sec A, sec B, sec C) is the
centre of this circle. This circle is one of the co-axal

system including the circumcivcle, the 9-point circle and

Guinand's critical circle (JCMN 30, p.3128).

-
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CONVERGENCE QUESTION (JCMN 50, p.5215)
C. C. Rousseau
With g = (¥5-1)/2, the series Z}fa/lsintrwgl converges.
The result is not new, it comes from a 1922 paper of Hardy and
Littlewood, using the Thue-Siegel-Roth theorem. However, a
simple proof is as follows.

For integer r, let x_ be the non-integer part of rg.
k .
Theorem 1 lef:ll/xr and zﬂxil/(l_xr) both < 4k + 2k log(2k).
Proof Choose n so that M = F(n-1) € k < N = F(n), where F(n)

denotes the nth

Fibonacci number. Let x¥ be the non-integer
part of rM/N. The N-1 numbers Nx? (r=1,2, ... N-1) are
unequal integers. {(To prove inequality, let (r-s)M- gN, then
q < M, impossible because M and N are coprime) and so the xi
are a permutation of {1/N, 2/N, ... (N—l)/N}.

Recall that Ng''ys = 1 - (—l)ngzn, so that

2
VSIN-1)g" € 1-v5gh+g?t < (1-gM% < 1.
Therefore x}'i-—xr = (r/N)(M-gN) = f(‘g)n/N =+ &

where Ng = rgn < r/(WSN-#5) £ 15 < 1/2. For each

r < N let s be the integer Nx?, then

X, > X5 -€ = s/N -¢ > (s-5%)/N, and
SN L/, < NYNT1/(s =) < N2+ logN).

Also the values of N(1<-x¥) are a permutation of 1, 2,

N-1 .
N-1, and a similar argument shows that Err:ll/(l—x b=

r
2N + N logN. Since 3N < k < N, the theorem is proved.
Theorem 2  The series }:n_Z/xn and Ern_z/(l—xn) both converge.
Proof Recall Abel's formula on partial summation:

3o >-n~1 ( > = & .. .
)_larbr = Anbn + 2-r:1Artbr‘br+1) where A= aj+a,+ ta_
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Put a_ - 1/x_ and b_ - r 2. From Theorem 1 we have A <=
Y r s r
4r + 2rlog(2r), also b -b_ .~ (2re1)/(r%eri? = 0(r73).

-2
Therefore 2}1 /xn converges, the other result is similar.

Theorem 3  The series Zh~2/1sh1nhg| converges.
Proof Divide the terms of the series into two classes:

(a) where x, < %5, and |sinnwg| - IsinTr‘xnl > 2xn

N

(b) where X > , and |sinnmyg| = Isin'nﬁl—xn)l > 2(1—xn)

The result follows from Theorem 2.

Historical note Given an algebraic irrational x of order n,

for which & is there ¢ = ¢(x, 8) > 0 such that [x-p/al > cq—e?

The following answers have been given

6>n Liouville 1844
8 > 3n+1 Thue 1909
8> 24 Siegel 1921
9> 2 Roth 1955

Hardy and Littlewood in 1922 would have known that our Theorem
3 above could be extended to the case of g any quadratic
irrational, Liouville's result being sufficient. Now, using
Roth's result, we know that Theorem 3 can be extended to the

case of g being any algebraic irrational.

Obvious modifications of the calculations above give:
Theorem 1% .ZE:IX;Q and Ysﬁl(l—xr)vz both < 2m2K?.
2 -2

Theorem 2% The serics Zh_3x; and Zh_z(l-xn) both converge.

Theorem 3% The series z:n_s/sinznvg converges.

Theorem 1 S*(N) = a_sinn(2N+1)7g / sin nirg.

The term for r = 0 is Eﬁﬁ]‘%{ For any positive or negative
r it can be seen that cos 2nnxr - cos Znmrg+integer) - cos 2nmrg
and similarly sinZnnxr = sin 2nwrg, so that
f(xr) + ftx_r) = ag + 2 Z?ﬁ;,an cos 2narg
S*(N) = §~:fl a (1 + Z'Yﬁfl cos 2nnrg)

ZF§S1 a_sinn(2N¥+1)7g / sinamg. QED
Theorem 2 S*{N) is bounded.
Proof Recall the proof in C.C.Rousseau's note on page 522
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MONTE CARLO INTEGRATION
(JCMN 46 p.5104, 47 p.5129 and 50 p.5214)

Some of the phenomena indicated by numerical evidence
in the previous note can now be proved. Also some more
empirical results arise wanting explanation.

As before, let f(x) have its derivative continuous in

the closed interval O £« x £ 1, and let

1
0

where x _is the non-integer part of rg - %r(y5-1), and £ixgy)

st(N) - SN (F(x ) - /ol Fio0dx)

= r=-N

is to be understood as 5f(0) + %f(1).

. We may assume without loss of generality that £(0) = f(1),
because if this is not so we may add to f a linear function of
x to make it so. This addition will not change S*(N). On

this understanding we express f(x) as the sum of its Fourier

eries: ( x L X . Gin 2nhs
series: fix) = zag Zgzlanc052nvx + bnsln 207X
in which the coefficients a and bn are O(n~2>, as may be

proved using integration by parts.
fu'g
n-1

Proof S*(N) is a sum of 2N+1 terms, and ~/('Slf(x)dx - %ao.

above that zfn_z/[sirlnngl converges, and the observation above

2

that a_ = O(n “). The result follows from Theorem 1. QED
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Now define L* and U* as the lower and upper bounds of

S*(N) for N = 1, 2,

Theorem 3 lim inf S*(N) & -U*
VI
Proof F i ici i i
or simplicity we write S for an/SLn nwvg, then
o - T e :
S*(N) = 2 n-1 Cp Sin n{2N+1)7 g

which is absolutely convergent because Z;Cn is absolutely
convergent. Take any & > 0. Choose m so that

z'gfllcnl < ¢, and so {(for all N) S*(N) differs by less than
¢ from A(N) = 2:2:1 ¢, sinn(2N+1img.

Recall that the parity of the Fibonacci numbers
follows the sequence odd, odd, even, odd, odd, even, etc.
Therefore we may choose arbitrarily large P so that 2P+1 is
an odd Fibonacci number preceded by an even one. Recall
also that two successive Fibonacci numbers, F{n-1) and F(n)
satisfy F(n-1) = gF(n) + (-g)". Therefore we have
arbitrarily large P such that (2P+1l)g is arbitrarily near to
an even integer, in fact differs from an even integer by less
than G/ZTnlcnf.

Take any positive integer Q < P.

A(P+Q) = YU ¢ sin((2P+1)nwg + 2Qnwg)

n=1"n
will differ by less than & from ngzlcrlsin(Zang).
Similarly A(P-Q) will differ by less than ¢ from -(the same).
Consequently A(P + Q) + A(P-Q) will be between +2¢, and so
S*(P+Q) + S*(P-Q) will be between + 4E.
By the definition of U* as upper bound, there is N1 such that
S*(Nl) > U* - €. For each of our arbitrarily large P we

put Q = P - N, Then

S*¥(2P-N;) = S¥(P+Q) < =-S¥(P-Q) + 4E - —S*(N,) + 4& < ~U* +5¢.

1

This is for arbitrarily large P, and so lim inf S*{N)g -U*+5£.
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This is for all & - 0, and so lim inf S*(N) £ -U*, QED
Theorem & lim sup S*(N) = U¥

lim inf S*(N) = L*
and L* = -U*.
Proof From the previous theorem, and from the same result

for the function -f(x),

0

/N

1im inf S*(N)} + U*
1im sup S*(N) + L*¥ = 0
Subtraction gives U* - lim sup S*(N) £ L* - lim inf S*(N),
but in this inequality the LHS cannot be negative and the RHS

cannot be positive, therefore both sides are zero. This

gives the first two results required, the third follows. QED

In consequence of the boundedness of S*(N) we may
observe that EZS:—NE(Xr)/(2N+1) will be a numerical estimate
for u/glf(x)dx with error O(1/N). This shows a difference
between the pseudo-random numbers x. and genuine random
numbers, for with the latter the error is O(1/WN).

As the numbers S*(N) vary between bounds L* and U*
equally spaced on the two sides of zero, one might ask if
(in any sense) they have mean zero. The answer seems to be
yes, in the sense that S$*{0) + S*(1) + S*(2) + .. + S*(N)

- O(logN), but this result is only numerical, no proof has
yet emerged. 1f this were true then we would be able to
strengthen the comment on numerical integration above to the
proposition that

LONST)CECO)+£(1)) & 30 (Nalor) (£(x ) Flx_ 1)

=

as an estimate for the integral has error O(N—ZlogN). This

formula raises another idea about pseudo-random numbers, that
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a weighted mean over the variables may perform better than
the unweighted mean. The idea takes a precise form in the
next theorem.
Theorem 5 If £'(0) = £'(1) then
T{(N) = S*(0) + S*(1) + ... +S*(N)

is bounded.

Proof In the notation that we have been using
T(N) = Yr::l a, (sinnwg + sin3nrg + .. + sin(2N+1)nvg)/sin nag
20 . 2 C 2
= zfnfl,an sin“(N+1)nwg/sin“nag.

X

Therefore |[T(N)| < fnillanl/sinznng for all N.

From the condition f'(0) = £'(1) (remembering that
£(0) = £(1)) it follows that a_ = O(n_3), and by Theorem 3%
of C. C. Rousseau's note (page 5221 above) we see that T(N)

is bounded. QED

Theorem 5 shows that in the case where £'(0) = f£'(1) the

weighted mean:

(f(0)+f(1))/(2N+2)r}:Ejl(f(xr)+f(x_r))(N+l—r)/(N+1)2
estimates the integral with error O(N_Z).
More computational results
For the functions f(x) = (n+1)x" (where n = 1, 2, .. )
the upper bound U* of S*(N) seems to be U* = %(n-1).

Thoughts on the topic

There is an analogy between random numbers and rubber.
Until the middle of this century random numbers were found by
tossing coins, rolling dice or looking at the last ten digits
of a value from a book of 20-figure logarithm tables. As
computers can not do any of these things we now have to make

do with pseudo-random numbers instead of genuine random
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numbers. Most computers offer a family of pseudo-random
numbers, but the book of instructions does not reveal how the
numbers are generated.

Likewise, when your Editor was a boy, rubber came from
rubber trees, usually in Malaya. During the War, firstly
Germany and then Britain were cut off from supplies of natural
rubber and had to make and use synthetic rubbers, such as
neoprene. Engineers soon discevered that neoprene was better
than natural rubber for some purposes, such as making oil seals,
though not so good for some other purposes. The latex from
a rubber tree is doubtless admirably well suited to playing
its proper part in the life of the tree, but it would be rash
to jump to the conclusion that it is the best possible material
for making tennis shoes or oil seals or garden hoses. The
chemists making synthetic rubbers do not try to imitate natural
rubber, they try to make a material suitable for the application
in which it will be used. Mathematicians, however, are still
using pseudo-random numbers that have been designed to be as

much like genuine random numbers as possible.

BINOMIAL IDENTITY 31

Terry Tao

= n- - 2n + 2
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ROLLE'S THEOREM IN THE GEOMETRICAL IDENTITY
Jordan Tabov
Recall the geometrical identity mentioned by Mark Kisin
in JCMN 48, If Al’ AZ’ -.. are the vertices of a regular
polygon then for certain k the sum <Z(MAr)k is constant as
M moves round the circumcircle. I mentioned (JCMN 50, p.
5210) that when we have found all the positive integer k for
which this is so, it is possible with Rolle's Theorem to deal
with the question of non-integer k. The method is best
shown by an example. Let -
ABC be an equilateral triangle
in the unit circle.

oY 7 €
Suppose that (for some k)

the sum AMk + BMk + CMk remains constant as M goes round the
circle. The fact that it takes the same value when M is at

A as when M is at the mid-point of the arc BC tells us that
k

Fiky -2y nR -2k
has a zero at these values of k 1in fact at k - 2 and k - 4.
The derivative F'ik) - (VB)k]og 3 - Zklogz
has only one zero for k in (0, o). This tells us that the

two known integer values,? and 4, are the only real positive

values for which F(k) = 0.

ANALYTIC INEQUALITY
Let f(x) be a positive function of x with positive
continuous derivative for 0 < x < c. Show that

JoSx/Ex)dx < o a/Eix) dx. Is the 4 the best possible

constant in the inequality?
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3-DIMENSIONAL GEOMETRICAL IDENTITY
Mark Kisin
Imagine a regular pentagon (with circumradius = 1)
rotating about its axis (the line through the centre
perpendicular to its plane). Let Vl’ Voo e V5 be the

vertices, let V be any one of them and let P be any point in

the space.

\'

Plan: /

2 )

Side view: &~ - D>

b

o
! P
Consider (PV)Zk - (b2 +C2 +1-2¢ cos B)k as a function of B.

It is a trigonometric polynomial of degree k. The term of

<5 2k
If k € 5 then 2411(Pvr)

k
highest degree is 2(-c) cos k@.

is a constant, because any term cosnf (n =1, 2, 3 or 4) when

summed over the five vertices gives zero. If k = 5 then the

contribution from the fifth degree term depends on B, in fact

cos 50 takes the same value on all the vertices. Therefore
5
:55 (PV )10 - Constant - 10 ¢” cos 58.
r-1 r
///’/’ Now imagine another equal pontagon
e

\\NM rotating on the same axis., at an angle of
/ o} e e £ - .
S » 367 - /5 to the first. We can calculate

——_— the sum of powers of distances as before,

but with V_ replaced by V;, b replaced by

\\\\\\\\\ b', and £ replaced by g' = £ + 367, 1f

k < 5 then {tPVr)Zk 2k ig constant.

SV
QL r
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If k 5 then the sum Constant - 10c”icos 5.« cos 5:' ).
This also is independent of & because cos 54' - cos 3is . 369
- - cos 52 To verify that when k . 6 the sum is non-constant,
one calculation will suffice. Take ¢ = 1 and b' - 0.

(PV)12 - (b2 v 2 —2C(ﬁ;3}6 - 2cos 67 - 12(b2 +2)cos S5& =

Similarly (PV')12 = 2cos 62" - 24 cos 5&" - L.,
Recall that any term cos n® or cosnf' will vanish on summation

unless n is a multiple of 5. Also cos 50 = ~ cos 58'.

12 12

(PVY) T (PV;) Constant - 60 bzcos 52
This has shown that the sum of 12th powers is not constant,
except of course when b = 0 and the two pentagons are in the

same plane.

&l N
Icosahedron Dodecahedron

Now we come to the question raised bv Jordan Tabov (in
JCMN 50, pp. 5209-5211) about the sums of powers of distances
to the vertices of one of the Platonic solids.

An icosahedron has 12 vertices, diametrically opposite
to one another in pairs. Bach of these 6 pairs of vertices
determines an axis about which the icosﬁhedron has rotational
svmamet vy of order 5. The other 10 vertices {(those not on
the axi-: form 2 pentagons, arranged as described above, their

plane- orpoendicular to the axis. Consider the icosahedron

it g
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rotating about the axis. If P is any point, the result above

2 ey 2k
B Y

b

shows that 2 is constant if k is 1, 2, 3, 4 or 5,

1
r
but not if k is 6.

Similar reasoning applies to the dodecahedron. [t has
20 vertices and 12 pentagonal faces. It similarly has 6 axes
of rotational symmetry, each Joining the centres of two parallel
faces. The vertices form 4 pentagons, in two pairs, one pair
is the two faces whose centres are joined by the axis, this pair
has the property considered above, of being displaced from one
another by an angle of 36°. The other pair also has this

9 .
property. The result above shows that Ej;?l(PVr)Zk

is constant
if k - 1, 2, 3, 4 or 5. To show that it is not constant for
k - 6, consider the terms in cos 58 that come from the two pairs,
a litcle thought shows that they are of the same sign.

Now to consider the implications of these results for the
two solids. From now on we use "solid" to mean either the

iccsahedron or the dodecahedron. If k -1, 2, 3,40r 5, and

P is any fixed point, then the mean (over the vertices V of the

solid) of (PV)Zk is unchanged by any rotation of the solid
about its axis of symmetry. Also it is unchanged bv rotation
about any of the other 5 axes of symmetry. Therefore it is

unchanged by any (3-dimensional) rotation of the solid about
its centre. Averaging this result over the 3-dimensional
orthogonal group, it follows that the mean fover the vortices)

of (PV)Zk is cqual to the jntegral mean of LPX)Zk over points

X of the circumsphere of the solid. This 1s easilyv calculated.
o1 o1, -
fe is (lR‘r)2&+L—\R—r)bk+2)/(ARr(k+1)W where R is the dictance

of P from the centre and r is the circumradius.
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SPHERICAL TRIANGLE PROBLEM
(JCMN 50, p.5204)
A. Brown

If ABC is a spherical triangle and the mid-points D,

E and F of the sides form an equilateral triangle, then must
ABC be equilateral? NO.

Use the standard notation, with the sides a, b, ¢, and
the angles A, B, C all between 0 and Tr. We shall find the
answer that DEF is equilateral when either A=B=Cor A+B+C
= 27T, 1f ABC is any spherical
triangle then by the cosine rule
cosa = cosbcecosc + sinbsinccosA
cos EF = coskb coskc + sinkb sin Lc cos A

From the second of these equations

4COSEFCOS%COS-§ = (1 +cosb)(l+cosc) +sinbsinccos A
-1+ cosa + cosb + cosc =K
Similarly 4 cos DF cos%cos% = 4 cos DEcos%cosg— = K.

Given that EF = FD = DE, there are two possibilities:—

Case 1. K # 0. cosf} = cos% = cos% and ABC is equilateral.
Case 2. K = 0. EF = FD = DE = 77/2 and the angles A, B
and C are all obtuse, because cos A = - coOt %cot% < 0, etc.

For any triangle it can be shown that K = 0 if and only if

A+ B+ C = 297, i.e. the triangle ABC covers 1/4 of the area

of the spheve. To prove this, add the cosine rule equations
for the sides b and c. This gives
(cosb + coscl)(l - cosa) = sina (sinccosB + sinbcos C)

Multiply by (1 + cos a)/sina, and then use the sine rule.
{cosb + cosc) sinA = {1 + cos a) sini(B + C)

Now the "if'' and the "only if" are both clear.

1
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NON-BINOMIAL IDENTITY (JCMN 50, p.5200) (1)

Mark Kisin

For real positive x, Za;l{Z_nx+%} = [x]
e - .
Proof: First note that [y] + [y + %] = [2y], which is clear by
considering the two cases y - [y]> % and < %
I% = |
T8 - YR - Y%
1 5] = 2127 %] - Y T12TxT = Ik,

NON-BINOMIAL IDENTITY (2)
P. H. Diananda
Let x be a real number, there is no need for it to be
positive as it was in the original problem. Then
[x] = [

|
. Nr,yl- _
Hence Zl[z nXJ] - ZIII[Z nx} + N[Z_nx+%}

o

x] + [l/2x+%

1
Thus  [x] - [27N) = FN a7ty
For large n, [27%% +%] =0
2 - 0 s
N X2
i ol 4

Hence o 1y - S Ix] if x> 0

Zn:l[ xrzd l[x]+1 if x < 0

Similarly, since [x] = [x/s) « ¥ 70 ix/s o t/s]

for integral s > 2, it follows that

A - s5-1 -n ol .
Doy [T t/s] - {%iﬂif x = 0

if x < 0.
More generally, with integers Sys SS9 e 2 2,
Z{’O s -1 u
n X t ! 1 if
n=1 Zt:l "ss...s * s - \[xj 20
7172 n n / [x]+1 if x < 0.
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PROBABILITY PROBLEM (JCMN 50, p.5208)
Mark Kisin

I have a desk with drawers Dl’ DZ’ ... and I have left
my car keys in one, but cannot remember which. The probability
of the keys being in D; is 27t Each time I look in a drawer
there is probability % of finding the keys if they are there.
What is the best search strategy? and the expected number of
looks in drawers? Do the answers change 1f I must start with
the first drawer and if after looking in Di I must go to one of
Di—l’ Di and Dirl?

Solution Consider one drawer certainly containing the keys.
The situation can be represented by a new model, a sequence of
boxes By, B,, ... with probability 27J that the keys are in Bj’
such that one look in the box will certainly show if the keys
are in it, and under the constraint that I must look in the
boxes in the right order, i.e. Bj before Bj‘l’

Transforming the problem in this way, we have a doubly

infinite set of boxes Bij (i, j =1, 2, ... ) as shown below.

1/16 | 1/32 | 1/64

1/8 1/16 1/32

1/4 1/8 1/16

{In each box is shown the probability that the keys are in it)

The optimal strategies are now clear — first look in
Bll’ then in B}2 and B21 (in either order), then in 313, B22
and B (in any order), etc. The expected number of looks

31

needed is

1 2+3 4+5+6 7+8+9+10 N 2 /2n+2
Tt gt 76 * 77 o Zq +1)

It
3
3
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To find the sum (= 7) of this series an easy way is to use
tour times the lemma that

y

> (flor1) - £(n)) /2"

Y ) /2™ - £(1)

n=1

The answer to the last question is no, for one possible

optimal search strategy is that indicated below.

N

EDGE~COLOURED GRAPHS (JCMN 42, p.5015 and 50, p.5216)
Mark Kisin
Let f(n) be the largest m such that the complete

m-graph can have an edge-colouring of n colours with no

monochromatic circuit. We shall see that f(n) = 2n.
Theorem 1 Any graph with the number of edges > the number

of nodes contains a circuit.
Proof Use induction. If all nodes are of degree 2 or
more then there is a circuit; if not then remove a node of

lower degree and the edge (if any) to it.

Theorem 2 Any complete 2n+l-graph with n edge-colours must
contain a monochromatic circuit, i.e. f(n) £ 2n.

Proof There are n(2n+1) edges, therefore in the subgraph
made up of the edges of one colour there are ™ 2n+1 edges and
<= 2n+1 nodes, so that by Theorem 1 there is a circuit

in this colour,
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Theorem 3 For any n there is an edge-colouring of the
complete 2n-graph with n colours giving no monochromatic
circuit, i.e. £(n) == 2n.

Proof We use induction on n. The case n=1 is trivial,

and cases n=2 and 3 were given in the previous contributions.

Take a complete graph with 2n vertices Vis Vos v Vo> the
edges coloured in n colours, C1> Cos +o- T with no
monochromatic circuit. Add two more vertices, V2n+1 and
V2n+2 joined by an edge in the new colour Chal” Join V2n+1
to the original vertices as follows; with edges of the new
colour CL,q to Vl, V3, e VZn—l’ and (for each i = 1, 2, ..n)
with an edge of colour c; to V,.. Now join V2n+2 with edges
of colour Chal to V2’ VA’ - v2n’ and (for each i € n) with

~ 4
an edge of colour ¢y to ‘21—1'

Suppose that the enlarged graph were to contain a
monochromatic circuit. This circuit would have to contain
one of the two new nodes, V and V (by the induction

2n+1 2n+2
hypothesis). The circuit could not be in one of the
original colours, because each of the two new nodes is on
only one edge in each of these colours Cys Cgs +vv Cov The

circuit could not be in the new colour Chit because the

subgraph made up of the edges in this colour is a tree as

sketched below. &V /V
1 A2

,:‘\ P e

U3 — 0o

. Vot 7 (aniz ;
- N - -

v - N .

NG (Y2n
The enlarged graph is a complete 2n+2-graph with n+1

edge colours and no monochromatic circuit, and so the theorem

is proved by induction.

Theorems 2 and 3 show that f(n) = 2n.
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BINOMIAL IDENTITY 25 (JCMN 47 p.5123)
(see also p.5243 below)

A. Brown
SIMICDT(UTP Y /(2001) = (-4 K/ (bmipe1)

where for p = 0, 1, 2 or 3, j and k are given by

'l o 1 2

j 0 0 1
"k 1 2 2

' -

o - w

The origins of this problem are in an article '"What
they don't teach you about integratiom at school' by A. D.
Fitt in the Mathematical Gazette, 72 (1988) pp.11-15.
‘ Let Jp :‘/37/4 cos pt/(cos 61P+2 44,
Integration by parts shows that
2ps1)a ) - 2145 gin /s,
This recursion gives the following few values:

(p+2)Jp+1 =

p 0 1 2 3 4 5 6 7 8 9 10

Jp 1 1 2/3 0 -4/5 -4/3 -8/7 0O 16/9 16/5 32/11

From these data we may guess J4m—1 = 9, and deduce that

J, = (-4)"/ (4ms1) = (=4)"/(2m+1) and J 2(-6)"/ (4n+3) .

4m J4m+1

The guess is then proved by induction.

4m+2

An alternative calculation for Jp is obtained by putting
C = cosf and S = sin/, so that
cos pf = Real part of (C+iS)P - cP - (§>sch'2 + (E)s‘*cp““ -
cos stecp*ZE - sec?B1 - (g)tanzﬁ + (E}tan
Integrating from O to ©/4 gives
(peina - (P1hy o (Ry L (aTy

Comparison of the two calculated values for Jp leads to the

binomial identity.
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BINOMIAL IDENTITY 30 (JCMN 50 p.5208)

C. C. Rousseau

S OR(BE) - cM2a
To prove this, let C be the circle z = Re'® where R > 2.
Ig)
Firstly (?ﬂf = f%ﬁ ! (z+1)n+k/22k+1 dz, and the required sum
//" ’ 4 n —
is therefore 2;1 e {z+1) ZLE:0(~4(2+1)/22)kdz.

Summing the geometric series gives

¥ ' .
L [, 2(ze)M(ze2) 7 {1-(-@(z+1)/zz>“*1} dz

271 .,
2n+1
1/ n -2 (4)”/’1 {z+1)
_ oyl Z(Zfl) (Z+2) dZ - A ‘_“—__'”dZ-
2mri Jh 2mi C ZZn+1(Z+2)2

The second integral is zero, as can be seen by letting R>&.
The first term can be evaluated from the residue of the
function at the double pole where z - -~2.

Sum = (-1)M2n+ 1).

BINOMIAL IDENTITY 32

22&262] ey (kY -2

CONGRATULATIONS
On 29th June 1989 Professor Paul FErdds was elected a
Foreign Member of the Royal Society of London.
At the 1989 International Mathematical Olympiad in

Braunschweig, Mark Kisin won a silver medal.
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POLYNOMIAL PROBLEM
(JCMN 46, p.5103)

In the polynomialQn(x) the term of highest degree is
(—l)rlxzn. All the other terms are of odd degree. Also
Qn(x) = Qn(l—x). Show that Qn(x) = Pn(x—xz) where Pn is a
polynomial of degree n with all the coefficients positive

integers except the constant term, which is zero.

Put x = %+t, then Qn(x) is a polynomial in t, say R(t),

with the property that R(t) = R(-t), so that R is a polynomial
in t? - x2——x4+%. If we put y = X - x% then Qn(x) = R(t) is

a polynomial in y, say Pn(y), in which the term of highest

degree is yn. Clearly P(0) = Q(0) = O. Therefore put
Pn(y) = 22:1 arnyr, where a -1 The first few cases are:

2 .
Poly) =y = x-x" = Q]\x)
ley) = y+y2 = x—2x3+x4 = Qz(x)

3 3 5.6

Poly) = 3y+3yZey® = 3x-5x0+ 30 x" = Qui0)

Pa(y) = 17y+17y2+6y3+y4 = 17x—28x3+14x5—4x7+x8 = Q4(X)

Poly) = 155y+155y%455y7+10y"ry’
2 T T, r - ) 2m ..
In P_(x-x"}) = }a__x (1-x)  the coefficient of x (if
n rn
m < n) is zero. Therefore
20, Yya -0 (for m < n) REY
This implies the matrix equation BA = 1, where
B = 1 -1 0 0 O .. A= 1 1 3 17 155
0 1 -3 i 0 .. 1 0 1 3 17 155
0 0 1 -6 5 0 0 1 6 55
0 0 0 1 -10 0 0 0 1 10
0 0 0 0 1 0 0 0 0 1

|
4
\‘

3, and of A is a. ..
1]

The i, j component of B is f—l)i+j{2£1j
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Each a, . can be expressed as a determinant in elements

1
of B, and so it is an integer. But is it positive? The
matrix equation BA = 1 may be writtenm AB = 1, giving another

ke oy (2
Fay DN, ) =0

where summation is over the k for which the binomial

recursion

coefficient is non-zero. Now take m as fixed, and simplify

. . _ d
the notation by putting a.. = ¢, We know that Cm 1, an

¢ =0 for all r ¢ m. The other values are determined by

r

the recursion

3 n )
S (S/Cn-l - <4)Cn_2 o .. (3)

Now use induction, assume that for m+l £ v n

0 £ 2cr < r(r—l)crﬁ1 < 3Cr ... (H)
This (H) can be seen to be true for n < 5. Assuming (H), the

ratio of magnitudes of two successive non-trivial terms of the
series in (3) is

: (2r+1)(
(ZHr)Cw-r‘ /{<2rn+2)cnwr—l}>(n—§1t—l)

Therefore the series in (3) is of the familiar kind with terms

2r+2) (n-r)(n-r-1) 4
(n-21) 3 >

alternating in sign and decreasing in magnitude. The sum is

between the first and second partial sums, therefore less than
the first term but greater than three quarters of it.

< 3nin-1)c ¢, > (3/8)n(n-1)c_ 4 > nln-1)c /3

“n X n-1°

This has established (H) also for r =n, completing the proof
by induction. Now that we have shown all the bmn = ¢ to be

non-negative, it follows without difficulty from the inequalities

above that they are strictly positive.
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BOOK REVIEW (1)

"A brief history of time" by Stephen Hawking in a
bookshop was a temptation not to be resisted. I do not
regret buying it, but in some ways the book disappointed me.
The author explains how the publisher had urged him not to have
equations in the book, on the grounds that the public does not
understand equations. I think that trying to write a book
on theoretical physics without equations is like trying to play
football without a ball, but the book was not written for JCMN
readers, it is a brave and probably successful attempt to
communicate difficult ideas to the general public. The author
makes an exception to the rule against equations by quoting
Lo mcz. Every journalist knows this equation and thinks it
ls something to do with the atomic bomb, but of the many people
who can quote the equation, few understand what E means, what
m means, or what ¢ means. The 2 up above the line is the
casiest symbol to understand, which brings your reviewer to
another comment — the author wants to give readers some idea
ol the size of the universe, and to that end writes numbers

19

Iike 1077, and each time adds the information that 1019 means

1 with 19 noughts after it,. perhaps this was on the advice of
the publisher who aims at a readership of people who know what
16000000000000000000 means but not what lO19 means. Perhaps
the trouble is that we of the late 20th century have lost the
art of using appropriate units for measuring things. For
describing the universe, the parsec or the light-year used to be
used, they avoid these difficulties of very large numbers,
Professor Hawking is an academic, and we should not hold

it against him if he shows symptoms of the occupational disease




~5242-

of that profession — jealousy. But a good publisher would
have cut out from the book the few embittered remarks about two
of the author's great predecessors in Cambridge, Newton and
Eddington. Mathematicians often find it necessary to point
out that the work of others is inaccurate or obscure or
misguided, but we should try to do it politely, avoiding
personal defamation. To sum up, this is an important book,
vou should read it if only to cope with questions about it from

vour non-mathematical friends.

BOOK REVIEW (2)

"Fourier analysis' by T.W.Korner (Cambridge Universitv
Press, 1988, 591 pages, paperback £20 in U.K.) Do not be
misled by the title, this is not a rehash of Zygmund or of
Carslaw. As the author writes in his preface, it "is meant
neither as a drill book for the successful nor as a lifebelt
for the unsuccessful student.” About half the book is on
Fourier analysis, the rest is on many &ther topics, often
including diversions into history, and quotations from the
writings and sayings of great mathematicians. There are
delightful little bits about Monte Carlo integration, stability,
statistics, prime numbers, Brownian motion, ... Indeed the
author describes the book as a series of interlinked essays.
The book is divided into 110 chapters, each more or less
self-contained, so that it is easy to open the book at random

and become fascinated. Highly recommended.
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LETTERS IN WRONG ENVELOPES
Someone wrote n letters and addressed the corresponding
n envelopes, but put the letters in the envelopes(one in each)
at random. The number of letters in their correct envelopes
is the random variable Y. It can be seen that E(Y) = the
expectation of Y = 1. What can you say about the distribution
of Y? If Z = Y - 1 then

k

E(Z") = Moment of order k of Y about its mean

has the following values for the first few n and k

k =1 2 73 4 5 6 7 8
n =1 0 0 0 0 0 0 0 0 -
n o= 2 0 1 0 1 0 1 0 1
n = 3 0 1 1 3 5 11 21 43
n = 4 0 1 1 4 10 31 91 274
n=>5 0 1 1 4 11 40 147 568
Are these moments all integers? Do they converge as n tends

to infinity?

BINOMIAL IDENTITY 25
(JCMN 47, p.5123, 49 p.5183 and p.5237 above)
Observe that /gl(l+ix)n_1r(1—ix)n‘1dx

— L
=n 1 22n+1 sinnm/4.

= —(i/m) (1) - (1-0)™)
Also by expanding the integrand in powers of x we find the
value 2;2(~1)r(ygj’)/(2r+1) where summation is over all r
for which the binomial coefficient is nén-zero. The

required results may be obtained by equating these values,

treating separately the four possible remainders of n mod 4.
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FACTORIZING COMPLETE GRAPHS
Terry Tao
Consider the conjecture Cin) that the complete graph

on 2n nodes is a union (or '"product') of n simple paths. If
this is so then each path is of length 2n-1 and is Hamiltonian
(contains all the nodes). Also every node is an end of just
one path, and the paths are disjoint, no two have an edge in
common.
Theorem 1 Cin) is true if and only it the complete graph on
2n:1 nodes is a union of n simple circuits.

Proof is trivial.

Theorem 2 Cim) is true if p = 2n -1 is prime.

Proof Consider the complete p-graph, with the nodes labellced
by the residue classes mod p. For each r 1. 2, ... n, the
edges xy for which x - v = v mod p form a circuit, with
nodes 0, r, 2r, ... 2nr, (mod pl. These n circuits are

disjoint, and their union is the complete graph.

[s Cin) true for all n?
The quesiion may be put in terms of the storv of King
Arthur and his knights of the Round Table — if there were an
odd number, 2n:1, could they sit at the Round Table on n

different days so that each pair sat together just once?



