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PROBLEM ON CONVEX POLYGONS (JCMN 46, p.5093)
Janos Pach
(Translated from the Hungarian by Esther Szekeres)

The problem was about a plane convex polygon Cn with

vertices Xl’ XZ’ e Xn' To exclude trivial cases we assume
that n 7. 3 and that the vertices are not collinear. Let S

be the circumference (denoted by S(Cn) in the original probiem)
and let Q be the centre of mass (of the polygon regarded as
consisting of equal point masses at each vertex). For any
two points A and B let d(A, B) be their distance apart and let
p; (A, B) be the perpendiculér projection of the directed line
segment AB on to the line X;Q, and put d; (A, B).= lpi(A, B)]|.
The inequality d; (A, B) = d(A, B) e (D)
can be strengthened to a strict inequality unless AB is
parallel to X;Q-

Lemma 1 If the polygon has all vertices in or on a circle of
radius R then S < 2Rnsinn/n.
Proof Firstly if one or more of

the vertices are strictly inside

the circle we can construct another \ifn
polygon Xi, e Xé with all its
verFices on the circle, see the sketch, where X;X;+1 > XX 1
the line X X! bisects the angle of the polygon. Secondly, of
all the n-gons inscribed in the circle, the regular n-gon has
the greatest circumference because of the concavity of the sine
function.

n

- ‘n
Lemma 2 nd(X;, Q) = >Lj=1 p; (X, Xj) e >—j=1 di(xi’ Xj).

Proof from the definition of centre of mass.
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n
. ! .
Lemma 3 For some i, Eijzldi(xi, Xj} >
Proof Use reductio ad absurdum. Suppose the result untrue.
n
z d; (X;, X.) < %S/ sint/n for all i.
i1 j

%S/ sin"/n.

By Lemma 2 it follows that d(X;, Q) < s / (2nsini/n) = R for
all i. This means that the polygon is strictly inside a circle
with centre Q and radius R, and is therefore inside a circle of
some radius R' < R. By Lemma 1 the polygon must have

circumference < 2R'nsin®/n = SR'/R < S, this is the required

contradiction.
Theorem For some i, u 1d(Xi, Xj) > %5 /sint/n.
J=
Proof This comes from Lemma 3 and the inequality (1). The

inequality becomes strict because there is at least one vertex
Xj with the side Xin not parallel to X;Q.

In the notation of the original problem the result
proved is that f(Cn) > S(Cn)/(Z sin/n). In consequence

f(Cn) > S(Cn) for all n > 6, which answers one of the questions.

CONGRATULATIONS
Terry Tao won a gold medal at the July 1988 International

Mathematical Olympiad in Canberra.
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THREE SQUARES IN ARITHMETIC PROGRESSION (JCMN 46, p.5098)

2

J. B. Parker

If a < b <c are coprime positive integers and a2 +c

= 2b", then what are the possible values of a? Firstly a
and ¢ are both odd. Therefore az +c2 = 2 mod 4, and so b
must also be odd. Put u = %¢ - %a and v = b - ta - %c.
2a2+—202 = 4b2 = (a+c)2 + 4via+c) +4v2 !
u2 = via+c+v) :
c+a = u2/v-v ' and c-a = 2u . -

a = %uZ/v - v - u

b = %uz/v + kv .
c = %%/v-%v+u

Since u+v = b-a is even, u and v are of the same parity.

Also u > v(1#/2) to make a positive.

Case 1, u and v both odd. Case la with v = 1 is simple, put

"u = 2k+1, then a = 2k?-1, giving the values 1, 7, 17, 31,

Case 1b with odd u and odd v » 3. Clearly v must divide u2.
Suppose that v has the prime factor p to the power s = 1.
Then u must have the factor p to a power r > %s. If 2r > s

then a, b and c would all have the factor p, impossible.

Therefore 2r = s; this is for all p, so that v must be a square.

Put v

where

Put m

2
= n” and u = mn.

a = %mz - %nz - mn
b = %mz + %nz
c = %mz - %nz + mn

m and n are odd coprime positive integers with m/n> 1+/2.

It

2k + n. The solutions are
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a = Zk2 - n2
b = 2k% + 2kn + n’
¢ = 2k% « 4kn - n?
for coprime n and k with n odd. Values of a = 2k? - n? are
given below, the values for n = 1 cover Case 1la.
i}Q& 1 2 3 4 5 6 7 8
1 | 1| 7 |7 |31 a9 71 |97 | 127
3 -7 1 23 41 89 119
5 =23 -17 -7 7 47 73 103
l 7V -Hlé;-‘;éiw -31 | -17| -1 23 79

Case 2 Where u and v are both even put u = 2x and v = 2y.
a = xz/y -y - 2x

b xz/y +y

c = xz/y -y + 2x

Reasoning about prime factors as above shows that we may put

2 2

x =mn and y = n". Then a = 2m~ - (m+n)2, so that this case

gives us no new values of a.

Finally, are there, for each a, infinitely many ways of

choosing b and c? Note that 2b2 - c2 = 2(3b+2c)2-°(3c+4b)2.

With bO = b and cg = ¢, put bn+1 = 3bn + 2cn and

¢ = 3crl + Abn. Then a, bn’ and <y have their squares in

n+l

arithmetic progression for all n =1, 2, 3, ... Also the bn

are all unequal because they form an increasing sequence.
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BINOMTAL IDENTITY 24

Marta Sved

It was a day in ancient times
A peaceful day of summer, hot,
When trumpets, bugles, bells and chimes

Summoned the knights of Camelot.

~

News came to the lofty wall,
News of wild marauding strangers.
Here was the need, here was the call,

Here the challenge, here the dangers.

— Forward — shouted every knight,
Overwhelming was their zeal
To meet the enemy, to fight.

But from the King came the appeal

— A fighting corps will be selected,
Our knightage cannot spare your lot,
A leader then shall be selected.

The rest shall stay in Camelot. —

Who should go and who should stay?
Who can count up all the choices?
Everybody had a say,

A medley of conflicting voices.

Z (8N - 2 L)
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How to choose the one to lead?
All knights had equality!
But who were those who had indeed

That more equal quality?

The younger set was clamouring:
— We are stronger, braver, bolder! —

— Wisdom counts more, — ruled the King

— Your leader must come from the older. —

Merlin had his word at last
To still the altercation,
And for the future from the past

Presented this equation:

~

m

1 r+l-j i

—

So here the formulae appear,
Just as the old sage divined.
Can we of this age make it clear

What Merlin had in mind?
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THE KNIGHTS OF THE ROUND TABLE
The n knights were all gathered at Camelot for the

feast of Pentecost, which was celebrated with great solemnity
every year. King Arthur was discussing with Merlin plans
for the procession from the Castle to the Church. This year
there was a difficulty, there was some repair work being domne
and consequently the stalls in which the knights usually sat
would not all be available. "Suppose that only m stalls can
be used," said Merlin "then the first m in the procession must
go there, and the rest must sit in the nave with the people of
the village." "Then, " answered the King "perhaps we should

have the procession in order of seniority, with the oldest

knights in front." "But we have the Round Table to remind us
that all are of equal status.'" objected Merlin. The King
thought for a bit and then came to his decision. "We must

arrange the procession so that, whatever m may be, the first m
knights will have their average age no less than that of the
other n-m. There must surely be several ways of doing that."
"Yes, sire," auswered Merlin 'there are certainly (n-1)! ways,
and possibly even more." "That is hard to believe," said
King Arthur "but I have learnt to trust you in such matters.
What should be done?”

"Choose one of the squires good at arithmetic.' answered
Merlin "Tell him first to calculate the average age A of all the
knights. When the knights are all sitting at the Round Table,
order a waxed tablet to be put in front of each one. The
squire must start at one place, add that knight's age to 100
years, subtract A, and then write the result on the tablet.

Then he must walk clockwise round the table and at each place
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he must add the number on the previous tablet to the knight's
age, subtract A and write the result on’the tablet. When

all this is done you must call on the knight with the highest
number in front of him to 1eaa the procession, he is to be
followed by the neighbour on his right, and so on in the order
in which they are sitting round the table, so that the knight
on the left of the chosen one will bring up the rear of the
procession." "Excellent," said the King "and now I see why
there are so many possible outcomes, for we all know that there
are (n-1)! ways in which the knights can sit at a round table.
If two knights both have the maximum total then either may lead
the procession, and there would be more than (n-1)! ways. But,
tell me Merlin, why did you want the squire to start with 100
years before doing all his additions and subtractions? Surely
it can make no difference to the result." "That is a matter
of history, your Majesty." answered Merlin 'We cannot use
negative numbers, for it will be hundreds of. years before they
are invented. And I remember another bit of history, this
combinatorial problem that we have solved being raised in JCMN

46, page 5103, by Ross Talent in AD 1988."

BINOMIAL IDENTITY 25

A. Brown
Zm+ r( 4mtp m
Zr=0 CDT(AMPY/(2re1) = (-4)™k /(4mepe1)

where for any p = 0, 1, 2 or 3 the numbers j and k are as

follows 0 1

. T
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BINOMIAL IDENTITY 23 (JCMN 46, p.5102)

Cecil Rousseau

[p/2] ) '
qg/n n-«<q _ P
'\': oo (-1) (q)(p_zq}—Z(p)

Proof. The 2n knights of King Arthur are in n pairs and the
king wants to choose p knights so that no two knights of a
pair are both chosen. To compute the number of ways this

can be done, the king uses one of his favorite methods,

inclusion-exclusion. He thus finds that there are
’ 2n-2
-nn q
. % (q) p—Zq)
choices. But then he realizes that he might as well choose

p of the pairs of knights and then choose one from each of
these pairs. He concludes that the result above holds.
Another one of the king's favorite results is the
binomial theorem. To compute the coefficient of x2n—p in the
)0

polynomial ((x+1)2 - 1), he uses the binomial theorem to write

(x+D2 - 1) = > (—1)q(2)(x+1)2“'2q,
q
from which he concludes that the desired coefficient is
_4)4q{ ny(2n-2qy _ _1)q(n 2n-2q .

On the other hand, the polynomial is just xM(x+2)", and it is
clear that the coefficient of x20°P ¢ 2P E ). Having found
that both inclusion-exclusion and the binomial theorem lead to
the covilusion that

[p/2] . ,

9" n-2qy _ ,p (N
Zqzo( )(q) p—Zq) (P)’

the king is prepared to give this result his royal seal of

approval.
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SEQUENCES WITHOUT ARITHMETIC PROGRESSIONS
George Szekeres

In JCMN 46 "Extrapolation'" p.5107, Basil Rennie constructs
a sequence (a;, a5, ... ) = (1, 2, 4, 5, ... ) which contains no
3-term arithmetic progression, and asks whether his sequence has
the largest possible sum E:l/an. It is easy to check that the
sequence al—l, ay-1, ... consists of preciéely those integers
(including 0) whose ternary representation does not contain the
digit 2. Quite generally one can see without much trouble
that the sequence of integers whose (prime) base p representation
has no digit (p-1), contains no p-term arithmetic progression.

How are these sequences obtained? Start with 0 and keep
all integers that do not form an arithmetic progression of length
p with the integers already chosen. This is what is known as
the greedy algorithm: you grab an integer at the first
available oppbrtunity if it does not conflict with the condition
stated. A trivial example is the following: suppose for
given N > 0 we want to find the largest possible number of

positive integers n,

i € Nso that ny and nj are relatively prime

for all i £ j. Starting with 1, 2, 3, we have to discard 4
since it is divisible by 2, so the next term is 5, etc.

Clearly what we get are just the primes £ N, and it is easy to
see that this is the best possible such sequence, as follows.
For any other sequence a; satisfying the condition just replace
a; by its smallest prime factor P; (the p; must be distinct if
(a;, aj) =1 for i # j) and the set {pﬁ. is a subset of the set
of all primes £ N.

The greedy algorithm often succeeds but not always, and

the problem of 3-term arithmetic progressions is an intriguing




-5126-

example to illustrate just that. What is the size of the
longest sequence of distinct integers up to N that contains no
3-term arithmetic progression? The problem has a long -history,
going back to a 1936 paper of Erddés and Turédn in the Journal of
the London Mathematical Society; it even found its way inFo the
International Mathematical Olympiad as Problem 5 in 1983 in Paris.
The obvious conjecture that the greedy algorithm gives the best
answer was disproved by Salem and Spencer in 1942 (Proc. Nat.
Acad. Sci. (USA) 28, pp.561-563). Surprisingly, not even the
order of magnitude given by the greedy algorithm (roughly

Nlng/10g3 for numbers up to N) is correct. In fact Salem and

1-a/log log N elements for

b

Spencer's construction gives more than N
a suitable positive a, which (for large N) is more than any N
for a fixed b < 1. The construction is a clever modification

of the greedy algorithm. Take an integer d > 2 and a multiple

n = kd. The following n-digit integers in base 2d-1,
ay + a,(2d-1) + az(2a-1% + .. 4 a_(2d-1)""1,
with exactly k of the digits a; = 0, k of the digits a; = 1,

and k of the digits a; = d-1, can be shown to contain no 3-term
arithmetic progression. Now these numbers are all < N =
(2d-1)™, and there are n!/(k!)d of them. The estimate of Salem
and Spencer is obtained by judiciously choosing k for a given
large d (k o« logzd will do). They also state (though without
proof) that by modifying the construction one can obtain an
infinite (N-independent) sequence with no 3-term arithmetic
progression and with density y-a/loglog N,

Although the Salem-Spencer sequence contains (for large N)
more terms than the greedy sequence, it does not at all follow

that the corresponding Zl/ai is also greater. On the contrary,
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it seems likely, and it would be interesting to prove, that the

greedy solution is indeed the best for Basil's problem.

FROM CAPTAIN COOK'S JOURNAL
Sunday, 15th. October 1769
At 8 a.m. being abreast of the S.W. point of the Bay, some
fishing Boats came off to us and sold us some stinking fish;j
however it was such as they had, and we were glad to enter into
Traffick with them upon any Terms. These People behaved at
first very well, until a large Arm'd boat, wherein were 22 Men,
came alongside. We soon saw that this Boat had nothing for
Traffick, yet as they came boldly alongside we gave them 2 or 3
pieces of Cloth, Articles they seem'd the most fond off. One
Man in this Boat had on him a black skin, something like a Bear
Skin, which I was desirous of having that I might be a better
judge what sort of Animal the first Owner was. I offered him
for it a piece of Red Cloth, which he seem'd to jump at by
immediately putting off the Skin and holding it up to us, but
would not part with it until he had the Cloth in his possession
and after that not at all, but put off the Boat and went away,
and with them all the rest. But in a very short time they
return'd again, and one of the fishing Boats came alongside and
offer'd us some more fisﬁ. The Indian Boy Tiata, Tupia's
Servant, being over the side, they seiz'd hold of him, pull'd
him into the Boat and endeavoured to carry him off; this
obliged us to fire upon them, which gave the Boy an opportunity
We brought the Ship too, lower'd a Boat

to jump overboard.

into the Water, and took him up unhurt. Two or 3 paid for
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this daring attempt with the loss of their lives, and many more

would have suffer'd had it not been for fear of killing the Boy.

This affair occasioned my giving this point of land the name of
Cape Kidnapper. It is remarkable on account of 2 White rocks
in form of Haystacks standing very near it. On each side of
the Cape are Tolerable high white steep Cliffs, Latitude 39°

43" S.; Longitude 182° 24' W.

BINOMIAL IDENTITY 22 (JCMN 45 p.5081)

1 0 0o 0 o©0 1 0O 0 0 O
1 1 0O 0 O -1 1 0 0o 0
1 2 1 0 0 1 -2 1 0 0
1 3 3 1 0 -1 3 -3 1 0
1 4 6 4 1 1 -4 6 -4 1
Are these matrices inverses of one another? The m, n

R n-j, m-1 -1
element of the product is J (-1)"J( -1 )(g_1 ) where the
summation is over all j for which the binomial coefficients
are non-zero. Clearly it is 0 if m < n and is 1 if m = n.
a-c

If m > n then use the identity (ﬁ )( E) = (z ) ( b—c)'

: m-1 n-j o m-n, _
This gives ( 7 )2 (-1) ( j-n ) = 0.
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MONTE CARLO INTEGRATION
(JCMN 46, pp. 5104-5106)

In our last issue were some numerical results about

N vl
S(N) = 7 (£({rg}) —ff(x)dx)
—r=1 0

where g = %/5 - %. This S(N) is N times the error in a Monte
Carlo estimate for the integral. Since then some more
information has emerged. Gerry Myerson has pointed out that
the conjecture of S(N) being bounded is wrong. Define the
sequence: n 4 5 6 7 8 9 10

H 3 5 9 15 | 24 | 39| 64
with H = Ho 4+ F(n): 77;hen for f(x) = x, S(H ) appears (by
convincing numerical evidence) to be (-1)™n/20 + O(1). For

the case where N is a Fibonacci number, however, several of the

results suggested by the numerical work can now be proved.

1 Exact result for f(x) = x

3 ‘ <

/
2 e

0 =2 XD
i
0w

1 S

0 1 2 4 5

w

Let M = F(n-1) and N = F(n) be two consecutive Fibonacci numbers
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and put X, = {rg}. In the x-y plane consider two right-angled

triangles, the first where 0 < x < N and 0 < Yy < gx, and the

second where 0 < x < N and 0 <y < xM/N. The first is bigger

or smaller than the second according to whether n is odd or even.

Let ¢ be the number of lattice points inside the second
triangle. Since there are (N-1)(M-1) in the rectangle where
0 <x< Nand 0 <y < M, and there are none on the diagonal,
¢ = 3(N-1)(M-1), as may also be calculated by Pick's Theorem.
The first triangle also has c¢ lattice points inside because
M/N is a best rational approximation to g.

For any r = 1, 2, ... N-1 the number of lattice points

on the line x=r inside the first triangle is rg - X., and so

N-1 N-1
c = Z— (rg - x) = BN(N-1)g - z x
1 r=1

N-1 r=
Z X, = BN(N-1Dg-c = 5(N-1)(Ng-M+1) = B(N-1)(1-(-g)™)

= {Ng} = {M—(—g)n} =%+ (-1)"(%-gM
SIN) = (-1)™% - g™ - 5(N-1)g™) = 3(-1)"(1-(N+1)g™)
and because VBNgn =1 - (-1)ng2n,

r

]

=2
I

SIN) = (-1)™(2-g)/5 - B(-g)™ + & g2N 3.

2 Exact result for f(x) = 6x(1-x)

Notation: g* = M/N, x¥ = {rg*}, N = F(n), M = F(n-1)
N-1

N-1
Lemma 1 Z f(x*) = z f(r/N) = N - 1/N.
r=1 ¢ r=1

Proof: The numbers M and N are coprime, and so the x’f\‘ are a

lpermutation of the r/N.

N-1
Lemma 2 }E rx¥ = N(N-1)/4 - (14(-1)")(N-M)/12.
r=1

This can be proved by induction, using the results for
the two preceding Fibonacci numbers, we spare our readers the

details (and spare ourselves the typing of them).
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A Zn N-1) 4 (14 (D)™ g™(1-M/N)
Lemma 3 zlr_lf(xi) Sf(x) = gPM2-1/N(N-1) + (14 g

i = *_
The proof is simple after noting that x"li—xr—r(g g)
= r(-g)"/N.
Gathering together the results we find

S(N) = 68" - 1/N ~ g2™(2+1/N) (N+1) - (14 (~1)™M)g" (1-M/N)..

. All four terms are of order 1/N.

3 Extension to more general functions

Under certain conditions it is possible to prove:-

S(F(n)) ~ (-1)™(£(1)-£(0))(2-g)/5.
Below is outlined a method using Fourier series. Another

method has been suggested by Gerry Myerson.

Lemma 3 If r > 2 is an integer then |sinwrg| > 1/r.
Proof We use the algebraic property of the Golden Ratio.

Let rg = k+x where k is an integer and [x] < 5.

r2 = rglr+rg) = (k+x)(r+k+x) = k(r +k) + x(2k + r + x) and

so 1/]x] £ 2k+r+x <& 3r, and the result follows.

Lemma 4 If {u(m, n)| < a{n) where Za(n) converges, and if

u(m, n) > b(n) as m > 00, then Zna:l u(m, n) - Z:jlb(n).
This is a useful classicél result which can be regarded

as a corollary to Weierstrass's M-test or as a corollary to

Lebesgue's theorem on dominated convergence. Does it have

a name?

Theorem Let f(x) have third derivative continuous on the

- 2-g)/5
closed unit interval. Then (-1)PS(F(n)) —» (£(1)-£(0))(2-g)/

Proof On the closed unit interval define
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g(x) = f(x) ~ A - Bx - Cx(1-x)

where A, B and C are such that g(1)-g(0) = g'(1)-g'(0) = 0 and

ngg(x)dx =0.

period.

Now extend g(x) for all real x to have unit -

It will have a Fourier expansion

‘-OO
glix) = [ r=1 3y €08 2Wrx + brsin 2mrx
where the coefficients a_ and b_ are both O(r_3).

Because Z:_l cos 2mrmg = cos(N+1)wrrg sin Nwrg cosecirrg

and Z:—l sin 2wrmg = sin(N+1)wrg sin Nwrg cosectrrg

S(N) = Zgzlg(xm)

oo
2r=1(ar co§(N+1)rrg + brsin(N+1)‘n‘g) sin NFrg cosecmrg.

we may put (for the function g)

)

By Lemma 3 {a_cos(N+1)wTrg + b_sin(N+1)wrg) cosectrrg = O(r~
and so we may use Lemma4 to give S(N) - 0.

The S(N) for the function f(x) = g(x) + A + Bx + Cx(1-x)
is the sum of the contributions from the four functions on the
right-hand side, and the only non-zero contribution to lim S{F(n))
is from the term Bx.

As B = f(1)-£(0) the required result

follows.

4 Use of extrapolation

For a calculation of JBlf(x)dx we can use the fact that
S(F(n)) = (—l)n(f(l)—f(O))(Z—g)/S + o(1) where the o(1) can
with some extra work be improved to 0(1/F(n)). We can

therefore estimate the integral as (putting N for F(n)):
1§yN n 2-
Rlmq EX) - (-1) (£(1)-£(0))
with error 0(1/N2), the same order of magnitude as with the
trapezoidal rule for numerical integration.
With a little imagination it is possible to do better.

Recall that N = F(n) = (g- (-g)™)AfS, then looking at S(N) in

the two cases for which we have an exact expression, it is

)
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plausible that for any well-behaved function on [0, 1], S(N)

has an asymptotic expansion

(-1 2B (£(1)-£(0)) + Ag” + (-1)"Bg" + cg?™ 4+ (-1)"pg? 4 ..
To eliminate the (-1)" factors we shall from now on consider
the odd-numbered and even-numbered Fibonacci numbers separately.

The raw result of our Monte Carlo calculation is

gy = g YN R - Syl 0 ax + sO/N
If our guess about the asymptotic form is correct then J{(F(2n))

and J(F(2n-1)) each has an asymptotic expansion of the form

2n 4n

A + Bg + Cg + Dg + e

where A is the integral that we want.

2n

Lemma If K(n)~ A + Bx" + Cr + Dr3n + ... then the

asymptotic estimates for A from successive values of K(n) are
2
First order: A = (K(n)- rK(n-1))/(1-r) + O(x"™
3
K(n)—(r+r2)K(n—é)+r K{n-2) _ O(r3n)
(1-£) (1-r%)

_ K(n)—(r+r2+r3)K(n—1)+(r3+r

(1-1) (1-r2) (1-12)

Second order: A =

44r2)R(n-2)-r®K(n=3) (40,

Third: A

Proof Let E be the operator defined by EK(n)=K(n+l), For

the first order estimate operate with E-r, which annihilates
2n

the Br® term, giving K(n+1)-tK(n) = (1-r)A+0(r""). For the

2 .
second order estimate use the operator (E-r)(E-r") which

annihilates both Br" and Crzn. The general case should now

be clear.

In our application of this extrapolation formula we have
r==g2, and the coefficients simplify as follows:
First order: A = K(n)(1+g)-K(n—1)g+0(g4n)

6n
Second order: A = K(n){(7+4g)/5-K(n-1)+K(n-2)(3-4g}/5+0(g™")

1, .. 18g-11 8n
Third: A - 22518 K(n)~"—%§gx(n-1)+§3§—1x(n-2)-—%O—K(n-a)w(g )
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From the computational point of view the assumption about
the asymptotic formula for J(N) is a safe one, because if it is
wrong the fact will show in the extrapolation calculation.

As an example, let us calculate 7 by numerical
integration of A/(1+x2) in the unit interval. In the table
below is shown (after the Fibonacci number N which is the
number of points at which the function is calculated). firstly
the sum J(N), then the same corrected by (—1)n(f(1)—f(0))%ﬁ§,
and finally the third order estimate derived from four successive
values of J(N), as explained above. The first part of the

table uses the even-numbered Fibonacci numbers, and the second

the odd-numbered.

n N
1 1 2-894427190999916
3 2 3.341640786499874
5 5 3-246944410674675
7 13 3-183736088550812
9 34 3-157817548166064
11 89  3-147800059416273
13 233 3-143964658642356
15 610 3-142498796190776
17 1597 3-141938784888633
19 4181 3-141724866177909

2

3
3
3
3
3.
3
3
3
3
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341640786499874

+065247584249853
+136387129774666
+141214057435424
+141559124504298

141588976219643

+141592184803300
+141592588970284
-14159264437235é
+141592652256718

+138506403672553
+141550951015649
-141592258136363
+141592649767558
+141592653546714

3-141592653589192

+141592653589792

A more refined method is to take advantage of the fact

n N
that we know £(1)-f(0), and therefore know the first term in
2 1 2-894427190999916 3-447213595499958
the asymptotic expansion of J(N) - integral. For a sequence
4 3 2-998700629934308 3-182962764767655 4 6m 8m
K(m) = A + Cg™™ + Dg°™ + Eg°™ + ... the third order asymptotic
6 8  3-078551854173998 3-147650154736503 -
estimate for A is
8 21  3-116158109036674 3-142481271155724 3-141505660786111 9 3 3 9
A= (g77K(m) - 4g 7 K(m-1) + 4g K(m-2) - g K(m-3))/60
10 55 3-131671985824063 3-141722647724063 3-141590437350810
Below are the estimates obtained in this way.
12 144 3-137772845962427 3-141611640438122 3-141592601278958 '
14 377 3-140129148001813 3-141595424936827 3-141592652625868 n N no W
16 987 3-141032990712550 3-141593057991678 3-141592653564580 8 21 3-141591831597904 713 3-141556968238019
18 2584 3-141378785967902 3-141592712595031 3-141592653589258 10 55 3-141592653015055 9 34 3:141591908943207
20 6765 3-141510949500386 3-141592662198760 3-141592653589794 12 144 3-141592653602078 11 89 3:141592646616433
14 377 3-141592653589946 13 233 3-141592653531655
16 987 3:141592653589796 15 610 3-141592653589318
18 2584 3-141592653589797 17 1597 .3-141592653589792
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ANALYTIC GEOMETRY FOR SPHERICAL TRIANGLES

Starting with the unit sphere, we modify it by
identifying pairs of opposite points. This gives what is
called the "elliptic plane", which geometrically is something
like a hemisphere with half its boundary, or something like
the real projective plane, or something like the Euclidean
plane with a line ;t infinity added. For a fuller discussion
see H.S.M.Coxeter's "Introduction to Geometry" §6.9, page 92.
The points of the space can be regarded as the straight lines
through a fixed poin;, the centre of the sphere. A point of
the sphere may be represented by the unit vector from the
centre, so that a point in our geometry may be represented by a
unit vector, or any positive or negative multiple of it. A
great circle on the sphere, which may be called a line in our
space, can also be represented by a vector or any positive or
negative multiple of it, namely a vector representing the two
poles of the great circle, a vector normal to the plane of the
great circle.

Take a fixed non-degenerate spherical triangle on the
unit sphere, let a, b and ¢ be the vectors to the vertices A,
B and C from the centre of the sphere. Any point u of the
space may be denoted by the family of three coordinates X =u.a,
y=u.b and z=u.c. We treat (x, y, z) as homogeneous
coordinates, so that (tx, ty, tz) for any t # 0 denotes the
same point. For example, the circumcentre of ABC has the
coordinates (1, 1, 1).
Theorem 1 Any linear homogeneous equation in x, y and z (with
coefficients not all zero) represents a great circle, and vice
versa.

Proof Since a, b and ¢ are linearly independent, any point P

-
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of the 3-dimensional space has position vector la +mb +nc.
Any point u is on the great circle that has P as pole if and
only if u.(la +mb+nc) = 0, that is lx+my+nz = 0. Q.E.D.

Now we introduce the parameters p = b.c, q = c.a and
r = a.b. They are the cosines of the sides of ABC.

The mid-point of the side BC is represented by the
vector b + c, etc. so that the centroid (the intersection of the
medians) is represented by the vector a + b + ¢, and has the
coordinates (1+qg+r, p+l+r, p+q+l).

Convexity theory tells us that a non-degenerate spherical
triangle ABC may be enclosed in an open hemisphere in such a way
that the mid-point of the hemisphere is inside the triangle (any
closed convex set without a pair of diametrically opposite
points has this property). The poles of the side BC are the
points with position vectors +bxc /ilbx¢ll, and one of these
two will be in our open hemisphere, the other not.

Starting with ABC on the sphere we construct the polar

triangle A'B'C' by taking A' to be the pole of BC that is on

the same side as A, and similarly B' and C'. Both ABC and
A'B'C' are in our chosen open hemisphere. When we draw a
picture

Al

B —~C'

we may think of it as representing eiche? the elliptic plane
or the open hemisphere. A note on drawing — we often draw
a spherical triangle with curved sides, to remind the reader
that it is not a plane triangle, but it is legitimate to draw

it with straight sides because the open hemisphere can be
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mapped on the Euclidean plane (projecting from the centre) so
that great circles become straight lines.

The relation between a spherical triangle and its polar
triangle is mutual, A is the pole of B'C' because AB' and AC’
are both right angles.

Now to find the orthocentre of ABC. Because every
great circle through A' is perpendicular to BC, the altitude
from A to BC is the great circle AA'. Since the vectors for
A and A' are a and bxc respectively, the vector for AA' is
ax(bxec) = bla.c) - cl(a.b) = gb - rc, so that the equation
for the altitude is qy ~ rz = O. The other two altitudes are
rz - px = 0 and px - qy = O. They all meet at the point with
coordinates (qr, rp, pq). It may be remarked that a triangle
with two sides of 90° (and therefore also two angles of 90°),
although quite a respectable member of the community of spherical
triangles in most ways, does not have an orthocentre; 1if ﬁhe
angles at B and C are right angles then every point on BC has
the properties of the orthocentre.

Since AA' is perpendicular to B'C', etc. the two triangles
ABC and A'B'C' have the same orthocentre, which is also their
centre of perspective.

In a plane triangle the circumcentre, orthocentre and
centroid are collinear, but in a spherical triangle the three
points are not always on a great circle. Instead we have
Theorem 2 I1f the circumcentre, centroid and orthocentre of a
spherical triangle are on a great circle then the triangle is
isosceles.

Proof The circumcentre is (1, 1, 1).

The centroid is (q+r, r+p, p+q).
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The orthocentre is (qr, rp, pq).

If they are on a great circle then

1 1 1 -0
q + T Y + p P + q
qr p Pq

This determinant is one of those that one gives to first year
students to simplify. With a little care or a lot of work
they find it to equal (r-q)(p-r)(q-p); if it is zero then the
triangle is isosceles. QED

The exceptional triangles in which two sides are right
angles can be regarded as coming within the scope of the theorem
for the circumcentre and centroid are on a great circle with omne
of the possible orthocentres.

This theorem solves the problem in '"Isosceles spherical

triangles'" JCMN 46, p.5098.

OLD GEOMETRY QUESTION

From the First Year Problems paper of Clare College, Gonville
and Caius College, Trinity Hall and King's College. Wednesday
June 4, 1902. 9-12 '

QL. A straight line ABCD cuts two fixed circles X and Y
so that the chord AB of X is equal to the chord CD of Y. The
tangents to X at A and B meet the tangeants to Y at C and D in
four points P, Q, R, S. Show that P, Q, R, S. lie on a

fixed circle.




