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PROBLEMS (JCMN 38, p.4068)

P. Erdds asked if it is possible to find in the

plane five points, no three on a line, no four on a circle,
and no one equidistant from three others, such that they
determine four distinct distances, one occurring once, one

twice, one three times and one four times. The answer is
YES.

D

The points are given in Cartesian coordinates
as follows. C and A are (+ 1,0), B and D are (0, +¢t)
and E is (x, y), where numerically x=.795775, y= .8—80451
and t = .451913, and exactly 4x> + 3x° - 20x + 12 = 0
and l-tz-x-Zyt.

AB = BC = CD = DA = 1.097372
DB = BE = EC = 0.903816

CA = AE = 2
DE = 1.551918
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POLYHEDRAL BODIES AND THEIR GRAPHS
J. B. Tabov

In almost all books on the theory of graphs, the
puzzle of Hamilton about the dodecahedron is mentioned.
This puzzle may be considered for an arbitrary polyhedron,
or more abstractly, for any graph; it leads to the concept
of Hamiltonian and semi-Hamilitonian graphs. A graph is
"Hamiltonian" if there is a circuit going just once through
each node, and "semi-Hamiltonian" if there is a path going
just once through each node.

On the basis of the above idea, by replacing the
vertices of the polyhedron by its faces, one may obtain a
new problem, similar to that of Hamilton. More precisely,
let P be a polyhedron with faces Fy, F,,..., F,- By D(P)
we denote the graph with nodes Ay, Ay, ...y A, in which
two nodes A, and Aj are connected with an edge exactly
when Fy and F, have a common edge. The question whether
D(P) is Hamiltonian or semi-Hamiltonian, or neither, will be
considered below.

To keep to the geometrical aspect of the problem,
let us limit oqur considerations to graphs D(P) generated by
some polyhedron P, or by some polyhedral body P. Here,
by "polyhedral body" (or p-body), we mean any finite part of
the space bounded by parts of planes. About 200 years ago
such objects were called polyhedra, but now the usual
definition of "polyhedron' is rather narrower. In this
connection the famous book'Proofs and Refutations” by
1. Lakatos (Cambridge University Press, 1976) contains
interesting discussions.

Our purpose is to mention and to discuss some
extremal questions about Hamiltonian (denoted by H) and
semi-Hamiltonian (denoted by semi-H) graphs D(P).

Example 1. Let Pl’ Pz, ensy P9 be the mid-
points of the edges of a triangular prism, and let P be



-4098-

the convex hull of the set {Pl, P2, ceey ng. Pis a
convex polyhedron with 9 vertices A

and 11 faces. The graph D(P)
is shown in Fig.1l. The nodes
A and B correspond to (the
parts of) the bases of the
triangular prism. D(P)

is semi-H, but it is not H.

Example 2. Consider the polyhedral body P, made
by cutting two notches in one of the edges of a tetrahedron -
see Fig.2, P has 12 vertices and 8 faces. D(P) is shown
in Fig.3. Ic is semi-H, but not H.

P >
Fig.2 Fig.3

Example 3. Consider the polyhedral body P,
made by pasting a small tetrahedron on a face of a big
tetrahedron (Fig.4). P has 8 vertices and 7 faces.
D(P) is shown in Fig.5. It is semi-H, but not H.

Fig.5
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Example 4. Consider the polyhedral body P,
made by cutting three notches through one of the edges
of a tetrahedron (Fig.6). P has 16 vertices and 10 faces.
D(P) is shown in Fig.7. It is not semi-H. (This example
is by my colleague V. Popov.)

Fig.6 Fig.7

Example 5. Consider the p-body P, made by
pasting two small tetrahedra on a face of a big tetra-
hedron - see Fig.8. P has 12 vertices and 10 faces.
D(P) is shown in Fig.9. It is not semi-H.

Fig.9
And now let us discuss the above examples and

some related questions.
1. Example 1 shows that:

1(a) There exists a convex polyhedron P with 9
vertices and 11 faces, such that D(P) is not H.

1 think that the following conjectures are true:

1(b) If P is a polyhedron with less than 9 vertices,
then D(P) is H.

1(c) If P is a polyhedron with less than 1l faces
then D(P) is H.
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The following questions may be of interest:

1(d) What is the minimal n for which some poly-
hedron P has n faces and D(P) is not semi-H?

1(e) What is the minimal n for which some poly-
hedron P has n vertices and D(P) is not semi-H?

Example 2 shows that:

2(a) There exists a p-body P with 8 faces, whose
faces are polygons, and D(P) is nmot H.

I think that the following conjecture is true:

2(b) I1f P is a p-body whose faces are polygons and
the number of its faces is less than 8, then
D(P) is H.

Example 3 shows that:

3(a) There exists a p-body P with 7 faces, whose
D(P) is not H.

Since the degree of each node of D(P) is not less
than 3, then:

3(b) For every p-body P with less than 7 faces,
D(P) is H.

Example 4 shows that there exists a p-body P with
10 faces, whose faces are polygons and whose D(P)
is not semi-H.

Example 5 showsthat there exists a p-body P with
12 vertices, whose graph D(P) is not semi-H.

Since the degree of each node of D(P) is not less
than 3, then for every p-body with less than 9 faces,
D(P) is semi-H.

One of my students told me that he has proved
(partially by computer) that for every p-body P
with 9 faces, D(P) is semi-H. If we suppose that
this is true, then, having in mind 4 and 6, we can
conclude that the minimal n for which there exists
a p-body P with n faces, whose D(P) is not semi-H,
is n = 10.
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7. Numerous problems about the minimal number of vertices,
faces and edges of a p-body P with non-semi~H and
non-H D(P) are related with the above examples and

comments. We may restrict P to some family of p-bodies

{polyhedra, convex polyhedra, etc.)

8. It is interesting to note that according to the
definition of a polyhedron in Hadamard's "Geometry",
the p-bodies in examples 2 and 4 are polyhedra.

But the more usual definitions require the faces to
be convex, so that (in the notation of this article)
they are not polyhedra.

QUOTATION CORNER 17

1. The question " What is Mathematics?" is as unavoidable
and as unanswerable as "What is Life?". In actual fact

I think it's almost the same question. - E.W. Dijkstra

{n "The Correctness Problem in Computer Science" (R. Boyer
and J. Moore, editors), Academic Press, 1981.

2. Mathematics (and Statistics, a subset of mathematics)
is always true because it is completely irrelevant.
Editorial, IEEE Transactions on Reliability, R - 32 (1983)
p.337.

(The quotations above both sent in by C.J. Smyth)
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A DIFFERENCE EQUATfON EXAMPLE

A. Brown

I did some work last year on the difference
equaction

3

X
n

= F(xn) = ax_"~ + (l—a)xn, (0 < a £4)

n+l
which had been put forward as a simple model for a popu-
lation dynamics problem. The limitations on the para-
meter a ensure that if -1 < xns 1 then -1 € Xoe1 <1,

so F gives a mapping of - 1,1] into itself.

I obtained some results for periodic solutions
of this difference equation and when I sent a copy to a
friend he raised the question:

Given that f(x) is continuous, with -1 € f(x) € 1
for -1 < x <1, must the equation x
have a stable periodic solution?

el ™ f(xn) always

The answer is that you can have cases where all
the periodic solutions are unstable.

If you take the equation above and put a = 4, then
xn+1-4xn3-,3xn
and if -1 < x4 £ 1 you can write Xg=cos ¢, with 0¢ $ <.
It follows that
Xy =lu:os3 ¢ -~ 3cosd = cos 3¢
and, in the same way, xia'cos9¢, ceey X, = cos 3%%. Thus

the solution is periodic, with period N, if cos(3N¢)==cos é.
This gives N
$ = 2MW/(37 + 1),

for any integer M. In practice you can restrict the choice
of M and pick out the solutions with minimum period N.

(It is possible to have a solution which settles into
periodic behaviour after a finite number of terms but
ultimately all the periodic solutions are given by the
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argument above.) So with this example there are periodic
solutions of any given length, N , and these periodic
solutions can be identified.

For a solution of period N, the stability
criterion is

dx

_ Xy dxy (de/d¢)
N — E — =

dx dx0 (dxoldé)

= M(sin 3N /(stnd) = + 3,
since sin 3N¢ = + sin¢ when cos 3N¢ = cos ¢. Thus
|SNI 2 3 and all periodic solutions are unstable.

A simpler example where you can use the same
type of argument is

2
W =~1 + 2wn .

n+l
1f |w0| £ 1, put wo = cOs ¢ . Then Wy = cos 24,

wz = cos 4¢, ... and Wn - cosZn¢. Here again there are
periodic solutions of period N, for any positive integer N,
and they can all be identified. In this case, SN==12N
an® all the periodic solutions are unstable.

If you go back to the first example and write
Xy = cos ¢0, then for each N there are only a finite number
of values of ¢0 in [O,WJ which*make Xy an element of a
solution wit2 period N. If ¢o is one of these values,
then ¢0 = ¢0 /3™ will lead to a periodic solution eventually,
for any positive integer m. This means that there is an
enumerable infinity of values of ¢0 which lead to a periodic
solution with period N. I should expect this to be a set
of measure zero, like the rational numbers, so despite all
the exceptions almost all initial values x,; should lead to
aperiodic sequences.

The same argument should apply for Wy in the
second example.
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BERNOULLI STILL  RIGHT

For years I used to tell my class, whenever I
lectured on gas flow, that Bernoulli's equation {(asserting
that in steady flow %qz +_fdp4p is constant on each stream-
line) failed when a streamline passed through a shock wave,
because then the functional relation between pressure and
density (which is necessary for the existence of the integral)
failed. For a perfect gas p//iT is constant except for a
discontinuous increase on passing through a shock wave.

However, Bernoulli's equation for a perfect gas
can be rewritten so that it holds even with shock waves,
as follows.

Let p = pressure, [’= density, T = absolute
temperature, q = gas speed and ¢ = (Yp/ﬂ) = the speed
of sound. The gas laws tell us that p = RpT (for some
constant R) and that p/f1 is constant for adiabatic (i.e.
isentropic) changes, where Y (=1.4 for air) is the ratio
of specific heats. The indefinite integral _[ deP may
R oor as

Y-1¢F Y-1
for some arbitrary state of the gas, and writing M==q/c0

be written as

RT. Using suffix zero

(a kind of Mach number) we may rewrite Bernoulli's

equation as the assertion that %qz + Y P/f’ or
Y-1,2 Y-1

(equivalently) ——M" + T/T0 is constant on each stream-
2

line. The fact that the constant does not change when
the streamline passes through a shock wave may be veri-
fied as follows.

It is sufficient to consider one-dimensional flow.

Pressure = p Speed x Speed Pressure = p'
«— O P

Density =f v 2 u Density = {*'

Temperature = T @ Temp. =T'
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The equation for conservation of energy is

2 2 .
u-v® .p' PR (p_pih L (BB

2 froP Y-t ¥-1
because RA¥Y - 1) is the specific heat at constant volume.

Y P

2
This shows that & + 2— = is the same on both sides of
2

{17

tha shock wave.

TIMES AND DATES

Since Christmas your Editor has had a copy ot
Captain Cook's Journal of his first Pacific voyage of 1768-
71, and in consequence can now clarify his footnote on
p.4080 of Carl Moppert's "Captain Cook and the Moon".
In Cook's time (as now) the Civil day went from midnight to
midnight, but in the Navy they used "Ship's Time'" in which
the day went from noon to noon, and the "Ship's Day'" started
twelve hours earlier than the Civil day. Astonomers also
reckoned the day to be from noon to noon, but they counted
the day as starting twelve hours after the Civil day. The
difference between Ship's Time and Astonomical Time must be
remembered when comparing the journals of Captain Cook and
of Charles Green the astronomer who went on the voyage:
for instance, according to Cook's journal, the ship left
Plymouth at 2 p.m. on Friday, 26th August, 1768, and at 6 a.m.
on the same day was 4 or 5 leagues from the Lizard. In
Charles Green's journal, kept inAstonomical Time, all this
was regarded as happening on Thursday, 25th. According
to Civil Time (now used by astronomers as well as seamen)
the ship left Plymouth in the afternoon of Thursday, 25th,
and passed the Lizard éarly in the morning of Friday, 26th.

Unfortunately I have not been able to find whether
the Nautical Almanac used Astronomical Time or Ship's Time.
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BOUNDING TAILS OF PROBABILITY DISTRIBUTION

C. J. Smyth

General Bounds.

Let X be a real-valued random variable with dis-

tribution function F(t). We seek upper and lower bounds for
©0

the tailf dF(t). Here B is assumed to be greater than the
B o0

mean of X. We assume that F(t) 1is such that M(s) =je5tdl-‘(t)

is finite for some s > 0. -

Then
e i B M'"M MZ
< min -8 - »
/dF‘s: M'(s)/M(s)<B € ("_—"‘—T> ()
B M" - 2BM' + B“M

o0
2
max M' — BM' (M' — BM)
deés: M'(s)/M(s)>B exp(—s( ) > (L)
B M' - BM M" - 2BM'+ B™M
Remark:  Since M'(0)/M(0) = mean of X < B, and M'(s)/M(s) is
an increasing function of s, there will always be some s such

that M'(s)/M(s) < B. If the tail/ dF is zero then

M'(s)/M(s) £ B for all s. If the t:ail is positive, however,
then for s sufficiently large, M'(s) will be > B (provided
M(s) and M'(s) are finite), so that (L) will give a positive
lower bound for the tail.

Let H(t) be the Heaviside function (1 for posi-
tive t and 0 otherwise), then we bound H(t - B) above and
below, and use the fact that

oo oo
/ dF(e) = J H(t-B) dF(c).
B -0

1. The Upper Bound.

For this case we note that
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2
(£=€)" gs(t-B) / H(t-B)

C-B
0 C B
2 -
H(t -B) < (5—%%) eS(t-B) £or any C < B
so that o )
2 - "_ '
/wdF$./ (t:C_) es(t-B)dt - e~SB _M"-2CM'+CM ]
B ~eo (c-8)?2

If M'/M2 B, this function has a minimum of M at C = -~ oo,

L
i.e., we get Chernoff's upper bound de < e 5By,
B

I1f M'/M < B, however, the function has a minimum of:

2 M

o-SB MMM st C o BN M' .
- 2BM'+ B2M BM-M

2
(Note that C-B=- MIZ2BM'+B'™M o 4 .nq
BM - M'
M- M2 w o M-Mn?
M- 2BM' + B2M M"- 2BM' + BZM

so that the upper bound is an improvement upon Chernoff's.)

2. The Lower Bound.

Here we bound H(t-B) below by

{e-B)(£-0C)  slt-u)
(u-B){(u-C)

H(t -B) 2 = f(t) say,

where C > B and u=u(C) 1is the root between B and C of

s(u-=B){(u-C) + 2u - (B+C) =0
(u 1s where f{t) has its maximum of 1). Then
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.00 o2 '
J dF > Fle)dF < e~SU (M= (B+CIM'+ BCM) _y (o) ooy
B oo (u-B)(u-C)

Now (u-B)(u-C) <0, so we need

M" - (B+C)M' + BCM = M" - BM' - C(M' - BM)
to be < 0 for a non-trivial bound. This function is
positive for C just greater than B, so in order for it
to be negative for some C > B we need M'-BM > 0, {.e.,
M'/M > B. Assuming this, it turns out that h(C) has its

minimum value of
' _ " 1 —
M -BM exp| -8 M- BM7 when u = MI-BM .
M- 2BM"+ B2M M'- BM M- BM

u-B

Tire corresponding value of C is C = U+ —m—
1+s{u-B)

H(t - B)

(t-B)(t-C) es(t:—u)
(u-B)(u-C)

o4
=

3. Results for X = Y+ 2.

We now restrict our attention to X=Y +Z, where
Y and Z are independent, and Z is gaussian (mean 0, vari-
ance 0'2). We give these upper bounds, in increasing
order of strength (and of complication).

-]

f dF € min (1,—1—) ™52 My(s) My(s). (u1)
B Sdm
® 1
J dF & e =B M (s) M, (s) (U2)
exp (-0.38s0) +sSYITn

B
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o~ .
J dF € k(sd) e 5B My(s) My(s) (u3)

B
o)

exp(—x2/2) max e“xf exp(—t2/2)dt for x> 0.

o

where k(x) =
*

The "Modified Chernoff Bound" (Ul) is a con-
sequence of (U2) but we give a straightforward independent
derivation. Let Y have the distribution function Fy. Then

g * 1 s 2
L dF = f dFy(u) -( exp -(t/d)"/2dt. (3.1)
- VI B-u

Now (t:—sdz)2 > 0 and so it follows that

exp -(t/q 12/2 < exp(-st + a2s2/2).

o )
2.2
/ exp-(t/o’)z/z de < expf-L- e %Cac
B-u 2 B-u

- 1 exp(szo’2/2 - sB + su).
s

On substitution in (3.1) we get

o

soyIw j«;F < exp(s20‘2/2 - sB) /:s“ dFy(u) = e'SBMY(s) My(s).
B L

Combining this with Chernoff's bound gives (ut). In-
equality (U2) is derived from (U3) using the inequality
k(x) € 1/(exp(-0.38x) + xJITW) (3.2)

which is proved by asymptotic analysis of k(x) as x tends
to zero and to infinity, combined with numerical veri-

fication.
Equation (3.2) is not valid if 0.38 is replaced

by 0.375.
The derivation of (U3) is similar to that of (Ul).

From (3.1) we have
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oK
o0
(VZTV] dF-e'SBf eSY eS(B—U)j exp -(£/9)2/2 dt dFy (u)
B

- B-u
o

o)
2
< e-sBj esudFY(u)max es"\o'j exp -(t/C)%/2dr
£ ot

£ 0o d
o0

2
- e 5B My (s) max es“do’j exp -t°/2 de
o« o«

= o’e'SBMY(s) VIR exp(szcrz/Z) k(so)
[+ ~]
f dF & kiso) e B (s) M (s) .
B

We now show that k(x) < min(1, 1/(xJZ%)) so
that (U3) is stronger than (Ul). By calculus the « for
o0

which e“x\/‘ exp(-t2/2)dt is minimal satisfies
(= 5

*® 2 2
x/ exp(-t“/2)dt = exp(-o“/2)
ok,
and so for.this o it follows that

YZT k(x) = exp(-xZ/Z + x—ok2/2)/x € 1/x.

2 oo
But also k(x) _explxec - x/2) ] exp(—tz/Z)dt.
\IZTY ol

By inserting the factor exp x(t -o.), clearly 2> 1 in the
integrand we obtain the inequality

o« oo
VT kix) f exp(—t2/2+xt —x2/2)dt <] =JI%
ol - 00

so that k(x) < 1.
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GOAT AND COMPASSES
(JCMN 33, p.4036 and 34, p.4060)

A. P. Guinand

The problem may be changed from two dimensions
to three.

A space-goat tethered to a point on the surface
of a spherical space-ship of unit radius can browse over
a volume equal to half the volume of the ship. Is the
length of the tether rational, algebraic or trans-
cendental?

DIVERGENT MACLAURIN SERIES
(JCMN 32, p.4018 and 33, p.4040)

R. Vyborny

There is a theorem due to E. Borel:

Let {_an; n=0,1, ..} be an arbitrary
sequence of real numbers.

There exists a function f of the real variable,
differentiable any number of times, with n th derivative
at the origin equal to a..

A proof may be found in "An Introduction to
Classical Real Analysis' by Karl A. Stromberg.

APOLOGY

To George Berzsenyi whose name was spelt wongly
in the previous issue (pages 4067 and 4084).
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EXPANSION FROM RAMANUJAN (JCMN 35, p.4083)

Let y be defined as a function of the positive

integer n by

e"/2 = 1+ n+02/2+ .0 +0™ H(n-1)1 4 yn"/n!
How can y (for large n) be expanded in negative powers of n?
Why was it clear to Ramanujan that no half-integer powers

were needed?
First note three simple results:-

®_x.n
Lemma 1 [e x dx = n!
0

o0
Lemma 2 j et (1 +t/n)Mde < 20+l 1
n

o0
Lemma 3 f g2+l exp(—ns2/2)ds = k! 2k k-1

0
Now to begin the calculation, express y in

texrms of an integral.

o n
-t n n -r
e "(1L+t/n) dt = ((ir!'n
[ 2-‘r-O r

0

=n %n!(1 +n+n2/2+ vee +0%/n!)

= n"n!(k"+(1-y)n"/n!). This has established

oo
(1) Z-Zy-Zf e t(1+e/m"dt -n!(e/n)"
0
Secondly we may observe

o0 - -]
(2) f e~ (14+t/m)™dt -f e *(x/n)"dx = n!(e/n)"
- 0

n
Adding (1) and (2) gives

) 0
2-2y = (j -j ) e~%(1+ t/n)"dt.
0 -n

We may discard the contribution from the interval (n,c?)
because by Lemma 2 it is exponentially small for large n.
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From here onwards we must therefore replace the equality
sign by ° which denotes that the difference of the two sides
when multiplied by any power of n will tend to zero as n
tends to infinity.

n 0
2-2y~(J' -f ) e t(1 + /)" de
0 -n

1 0 n
(2-2y)/n "V(/ —/ )(g(s)) ds
0 -1

where g(s) = e 5(1+s) =1_52/2+s3/3-54/8+

This function g(s) has a maximum at s = 0 and
since exp(-sz/Z) looks like a good approximation to g(s)
in the interval (-1, 1) we write

f(s) = g(s)exp(SZIZ) = (1+s)exp(-s+szl2)

3 4 5 6 7 8

-1+5 .5 .8 _s 35 _ 13
3 4 5 9 84 480
For our expansion of y we have
1 0 a 2
(3) (2-2y)/n ~(f -[ ) £(s)® exp(-ns2/2) ds
0 -1

Any term in s* in the expansion of £(s)™ will
1
give a term in f sT exp(-nSZ/Z) ds which is prcportion-

- . 0
al ton (rfl)/Z. However, if r is even the contribu-
tions from f1 and from/o will cancel. This shows
0 -1

that half-integer powers of n will not occur in our ex~
pansion of y. To find the first few terms we need the
first few odd powers of s in the expansion of

f(s)n=1+ns3(l—5 + 2o .00 Mss(l- E.,.“)z O
3 4 5 2 3
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Noting the result:
o
Lemma 4 J[ st epr-nsZ/Z)ds < exp(-n/2)/(n-1),
1

we are able to replace formula (3) for the expansion of y by

(4) (L-y)/n ~

o0
“{ (Sum of terms of odd degree in £(s)™) exp(-n52/2)ds.
0

We can pick out the coefficients of powers of
s in £(s)™ as follows: (The multiplier for formula (4)
is given by Lemma 3)

(of s3) n/3 (Multiply by 2n~%)
(of 8°) n/5 (Multiply by 8n>)

(of /) 3n_nin-1)y (Multiply by 48n~%)
8 2 6

(of 89) (lower powers of n) +

n(n—:)(n-Z) é% (Multiply by 386n-5)

These terms lead to

1-y., 2,8 , (n_nl-1),48  nln-l)(n-2) 384,

n 3n 5n 84 12 n 162 n
2 1,8 64
~ 2 (= - 4 + 22) + higher powers of 1/n.
n nl s 27 gher P
2 4
1y~ 2o + higher powers of 1/m.
3 135n

This gives the first two terms of Ramanujan's result

yfvlg- 4 8 - 16 + cees

3 135n  2835n° 85050~
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"CURIOUSER AND CURIOUSER!"
C. J. Smyth

Have you ever seen this curiosity before? I was shown it
by someone in the Computing Department.

Start with 123456789

Cross out every
2nd number 1 3 5 7 9

For artial
sﬁmg 1 4 9 16 25 squares (well-known)

Start with 1234567891011

Cross out every
3rd number 12 45 78 1011

Form partial

sums 13 712 1927 37 48
Cross out every

2nd number 1 7 19 37
Form partial

sums 1 8 27 64 cubes!
Start with 1234 56 7 89 10 11 12 13
Cross out every

4th number 123 5 6 7 9 1011 13
Form partial

sums 136 111724 33 43 54 67
Cross out every

3rd number 13 1117 33 43 67
Form partial

sums 14 1532 65 108 175
Cross out every

2nd number 1 15 65 175
Form partial ,

sums 1 16 81 256

fourth powers!
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EDITORIAL

Contributions will be welcomed. They should
be written so as to be clear to all mathematicians.

Since Issue 32 (October 1983) the JCMN has been
published by me (the Editor). Issues 1 to 31 were pub-
lished by

Mathematics Department,

James Cook University of North Queensland,
Post Office James Cook,

Townsville, N.Q., 4811,

Australia.

These issues have been reprinted as paperback
volumes

Volume 1 (Issues 1 ~ 17)
Volume 2 (Issues 18 - 24)
Volume 3 (Issues 25 - 31)

and they are on sale for $10 (Australian) per volume
(including postage by surface mail); cheques for these
volumes should be made payable to the James Cook University.

My address is either at the University (address
above) or at home (see page 4094).

Basil Rennie



