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SOME PROBLEMS
P. Erdos (See also p. 3122)

Denote by An the least common multiple of all the positive
integers not exceeding n. Prove that for every integer k

(positive, negative or zero) the sum of the series Z:=1 nk

/A,
is irrational. No doubt if f(x) is a polynomial with integer
coefficients then z:=l f(n)/An is also irrationmal.

Let a > 0 for n=1, 2, ... be a sequence of integers. Let
An be as in Problem 1 above, the least common multiple of all
positive integers not exceeding n. Prove that if a, tends to

infinity but not too fast then Z:=1 an/An is irrational. Obtain

as sharp a result as you can.

Take any natural number n. Find the maximum of 2151 a; for all
finite sets of integers {al, e ak) such that each a; > 2 and

n!

———— 1is an integer.
! ! !
al : az LI ak.

The same problem as 3, but with a>t instead of a, > 2.

Prove that only finitely many binomial coefficients (:) (n > 2k >2)
are the product of consecutive primes >k, e.g. (;) = 35 = 5x7, and
(ﬁf) = 1001 = 7x11x13. Probably there is no solution for n > 14.
This should be easy to prove. I think (:) is the product of
consecutive primes only finitely often. This I cannot prove, in
fact I cannot even prove that (;) = 2X3X5X...ka has only a finite

number of solutions.
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Does the equation

@ =
¥ TP Pi2) T Pio)
where r < k < pi(l) < pi(z) < e pi(r) and n > 2k > 4,

have infinitely many solutions? I do not know.

Let there be given n points in the plane, not all on a line.
Join every two of them. Prove that you get at least n

distinct lines.

Prove that there is an absolute constant ¢ so that (for any n)
if 2n points are in the plane, with no nt+l of them on a line,
then these 2n points determine at least cn? distinct lines. 1
could not prove this, and offer a hundred dollars for a proof or

disproof.

Let xl, Xz, ey xn be n points in the plane. Join all possible
pairs. This gives the lines Lis - Lm. First observe that if
m > 1 then m > n. Denote by ¥y the number of the points on the
line L;. Let the lines be labelled so that y, > y, > ... > y_.
Estimate as well as you can the number of possible choices of

the set {yl, ces ym}. Denote this number by f(n). I would like

to prove f(n) < exp(c /n) for a certain constant c. I offer a

hundred dollars for a proof or disproof.

-3101-

Determine as accurately as possible the set of possible values

of Y ¥;- It is easy to see that n 5»Zyi < n(n-1) but not
i=1

all values between n and n(n-1) are possible values of zyi.

m
George Purdy proved that zisl ¥y < 3m.

Prove n? < z yi < 2n(o-1).

A DOUBLY-DEFINED INTEGER SEQUENCE
C.d. Smyth

A sequence Sl < S2 < eee < Sn < ... can be defined as follows:

k-1
=2 ] DN s 02 @z

S
k m=1 o

So S,=1, §,=5, S,=40, S,=437, $;=6046, Sg=101192, 5,=1986790, ... .

From the above definition it is not completely obvious how to prove
that the sequence is increasing, and not at all obvious how to obtain
a rigorous éstimate of the size of Sk' However, Sk satisfies another
recurrence, namely

k-1
2k kim
Sk k+m (k-m) Sm + 1. k> 1)
m=1

Since this recurrence has positive coefficients, the inequality
S > ZkSk_1 is immediate.
Can you prove that the two recurrences do indeed define the

same sequence? My proof of this fact is rather roundabout. Also,

any closed formula for Sk would be most interesting.
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DIVISION IN OLD GERMANY

J. Innes-Reid showed us an old manuscript book which seems to

. 72
have been used over several generations by a German family for
2355
exercises in calligraphy and arithmetic. One feature is that people
v 16637
studying arithmetic were taught to check all their calculations, after ’ ¢
' 691853 6584
adding two numbers to subtract one of them from the sum obtained, etc.
1817437 276
It 1s a pity that this excellent habit has not survived to modern days.
276666 39504
Their methods of setting out addition, subtraction and ! 2717 46088
multiplication are the kind that we still use, but division was 22 13168
performed in a strange way. The following two examples from the book 1817184
are possibly dated about 1692. 253
1817437
22
1741 This is an example of division with a remainder, and the
29793 3546 ‘ section on the right verifies that 6584 x 276 + 253 = 1817437,
1152450 325
2
325555 17730 Can anybody explain the working of this method of division?
3222 7092
33 10638
- ¥
1152450 . SPECIAL FUNCTIONS
J.B. Parker

The bit on the right is the check, verifying that 3546 x 325 = 1152450.
X
Let ¢(x) = J exp(~-t2/2)dt so that ¢'(x) = exp(~x2/2).

It is easily seen that ¢'/¢ is monotonic decreasing, but show that

x + ¢'/¢ is positive and increasing for all real x.
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TRIANGULAR TEAPOT STAND

Among our household goods there i1s a teapot stand made of a
piece of plywood with three little wooden feet equally spaced from one

another.

Apart from its practical uses this teapot stand is a source

of problems in mechanics.

Take the feet to be vertices of an equilateral triangle, and
suppose that one third of the total weight is carried by each foot.
Assume the usual simple laws of friction, that there 1s a coefficient
of friction y such that if a foot is slipping there is a frictional
force on the table in the direction of slip equal to u times the
normal force, and if a foot is not slipping the friction cannot

exceed y times the normal force.

P Suppose that in the direction shown a
slowly increasing horizontal force P is
o
50°-8 applied to one of the feet. For what

value of P will the stand begin to slip?

For a few values of the angle 6 the problem is reasonably
simple, suitable for a first year class. Taking the limiting

frictional force on each foot as unit of force the answers are:
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[} 0° 30° 60° 90°

P 3 4173 2 2

For other values of 6 the question is more difficult. Of
course it is sufficient to consider only values between 0° and 90°
because considerations of symmetry show that the answer is unchanged

by changing the sign of 6 or adding 180° to it.

P Readers preferring a problem in
2} pure mathematics should find a
point R to minimize the ratio

RA + RB + RC

R mr , where ABC is

equilateral and 8 defined as

before (CAP = 150°-9).

The point R of the geometrical problem is the centre of

rotation in the mechanical problem.

GRAM BUT NOT SCHMIDT
H. Kestelman

let X and Y be m x n matrices, show that X*X = Y*Y if and only
if X = QY for some unitary m x m matrix f (the asterisk notation

denotes the complex conjugate of the transpose).
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BINOMIAL IDENTITIES 12 AND 13 ‘(JCMN 28, p. 3071 and p. 3083)
Marta Sved

Both identities can be interpreted by the Principle of

Inclusion and Exclusion explained below.

Let S be a set of N objects, and let S(1), ... S(p) be subsets
of S. For any {4, j, ... k} = {1, 2, ... p} let N(4, 3§, ... k) be the
number of elements in the intersection of the subsets S(1), S(j), ...
S(k). Then the number of objects in S that are in none of the subsets
s No=N-JP N+ T N D - .+ DN, 2, L p).

Let<ysp

Many combinatorial identities involve terms alternating in
sign. The I-E principle provides a way of interpreting alternating
sum identities by purely counting methods. On an algebraic level
these identities could also be derived by inverting summation formulae.
A general treatment is given by G-C Rota: On the Foundations of
Combinatorial Theory I. Theory of Mobius Functions, Zeitschrift fiir

Wahrscheinlichkeitstheorie, 2, (1964) 340-368.

Binomial Identity Number Thirteen

m r (mtn-r)!
=0 -1 m = 1 for m < n. -

Let S be the set of subsets of {1, 2, ... m + n} that have cardinality
m., Let S(1) for {f = 1, 2, ... m be the set of all those that do not

include the integer 1.
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Clearly N = (“’:‘) and each N(i) = (““:"1), so that
NG = m(m+;_1). In general there are (:) choices of
min-r
(il. 1, «ons ir} and each N(il, veus 1r) = ( m ). There is only
one subset, namely {1, 2, ..., m}, not in any S(i), and so the I-E

principle gives:

Pe ™ - ™0l 4 s CDTEET™ ¢ L D).

Binomial Identity Number Twelve

It is more appropriate to sum to r = [(n-1)/2] instead of
[n/2] because the terms all vanish for r > n - r - 1. The equation

is then

E[(n—l)/Z] nF (n-:-l) 2n—2r - on.
=0

We need first the following

Lemma: The number of ways in which k objects can be placed in n
slots without any two being adjacent is (n-t+1). This can be proved

by induction on k or by combinatorial interpretation on a model.

Proof of the identity: Consider the set S of all functions mapping
{1, 2, ..., n} into the set {0, 1}, that is all sequences of n numbers
each either 0 or 1. First note that the number of monotonic functions
is 2n. Now we must count the non-monotonic functions. Let f be one
of the functions, and 1 < { <n. If f(1) =0 we say that "the
monotonicity breaks at i" if f(i) =1 and £f(i+l) = 0, similarly if

f(1) = 1 we say that the monotonicity breaks at 1 if f(i) = 0 and
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f(4+1) = 1. For example, in (0, O, 1, 1, O, 1) the monotonicity
breaks at 4, and nowhere else. In (1, 1, 0, 1, 0, 1) there are two
breaks, 3 and 5. A function is momotonic 1f‘ and only if it has no

breaks.

Clearly breaks cannot occur at consecutive points. Let S(i)

be the set with a break at i, then N(i) = 2n—2. There are n-2 possible

values of this i and so | N(1) = (n—2)2n-2. Now consider the general

case of r breaks. Let them be at 11, 12, vensy 11’ where ik+l >2+ ik

There are (n-:hl) choices for the set (11, ey 11:} and for each choice

there are zn-2r possible functions. Therefore Z N(il, ees ir) =

(n-:-l)zn-Zr- The I-E principle now gives the required formula

n-2

2n = 2P - ( " n~2 r n-r—l)zn-Zr

)2 + .00+ (1) ( r + ...

BINOMIAL IDENTITY 13 (JOMN 28, p. 3083)
J.B. Parker

(mn-r)!
r!(m-r)! (n-r)!
n

This identity Xr:O -0~ =1 for m<n arose from
substituting f(x) = & and g(x) = x

Z:-O (—l)r r(xr/r!) f(r)(x) g(r)(x) e ¥ix = rf(x)e-xdx g(x)e-xdx.
1] 0 0

in the conjectured equation

See "Inequality for Polynomials', JCMN 27, pp. 3051-3053. Proof of
this binomial identity establishes the truth of the conjecture when

f and g are polynomials.
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BINOMIAL IDENTITIES 12 AND 13 (JCMN 28, p. 3071 and p. 3083)

n-1
] ec-v)}

r=0

n-r-1 . nil22(n_t_l)tn-r-l E (_l)s(n-:—l)ts

C.S. Davis
[n/2]
-1 n-r-1, ,n-2r n
Binomial Identity 12: VDT : ) 2 = 2" - 2n,
r=1
@
Remark The sum may as well be written ] , and T do this here
r=1
and elsewhere, 1f the spirit moves.
T 1 n-r-1
Note that |} (-I)S(n-:- yes = (1-t) . Hence
s=0

r=0 s=0

The coefficient of t" 1 4n the r.h.s. of (1) is

nilzz(n-r-l) (_l)r(n-:-l) - 2n-2 (2“-5) ,

T

=0

2
where S 1is the given sum. Writing u = 4t(l-t) [so l-u = (1-2t)°],

the 1.h.s. of (1) is

nfluj =t ?T:%Eyf (1-u") = E a(20)" 11227 1-0)"}.

j=0 m=1

Hence 2n—2(2n_s) = n.2n_1, so S = 2%-2n.

Further Comment I found a note that the equivalent identity
Xé_l)\)(n;\))zn—Zv = o+l appears in Comtet, Advanced Combinatorics, 168.
v

1 n
I give the proof, mine (?) or Comtet’'s (?): from iz = Z z , we
0

have

" .
1 ;rsi:seeh-z ) " sin n0 and hence, writing 2 cos 8 = u,
. i .
— -2V
81:§2+é)e - z (-l)v(nvv) un eee (2)

v>0
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Letting 0+0, we have the result., (I would guess that (2), like almost
BINOMIAL IDENTITY 12 (JCMN 28, p. 3071)

everything else, is to be found in Bromwich, or in Chrystal's Algebra J.B. Parker

(sic.).)

: Consider the two families of propositions (for N =1, 2, ...)
The result just proved is a special case of R Prop *

{ N r-1,2N-r+l, ,2N-2r N
k o - n * (aN) - ) 2 = 27 -nN-1
I ¢n (“kk)t:k(uc)n % ) &, N ¢)) . ; Zr‘l r
k>0 k=0 , )
N WD Tl @) a2 W2y g
which may be established in much the same way, or in a variety of other ‘) =1 r

ways. In passing, I note that this result underlies the 'interesting
They can be proved inductively.

identities' appearing as a by-product in Carroll and Giola: "On a ‘ .
F aN) and (bN) we can deduce (a(N+1)) and (b(N+1)), usin

subgroup of the group of multiplicative arithmetic functions", Jour. rom (aN) ) N g

the identity (n+l) =M+« ("),

Aust, Math. Soc., 20 (1975), 348-358 (355): r r r-1

n+i n-i

ntl = T = ] DMEEH

n+i n-

o™ = § D™ (1)t

BINOMIAL IDENTITY NUMBER 14

where T(k) = J1, o) = Jd and | = zn . C.J. Smyth
dlk dfi 0<i<[3)
m — Show that for k >0 and 0 <m <k
Binomial Identity 13: DT L) -} form < n.
IZO T (er) T {n=1) | a3 'Z‘ Ay o em_k Zem
j=m m’ 23 2k-m - m °
Remark The condition m < n is superfluous. The sum may be written
m L]
as z , Z or Z , since the terms vanish for r >m or r > n.
=0 r=0 =0
-r)! —r)! - 4 ' TRANSPOSES SIMILAR
Note that ! (m-m!r). B — m! ' (l:ﬂ’n r); - (m)(m-m T,
r!(m-r)!(n-1)! rt(m-r)! m!(a-r)! '’ n-r H. Kestelman
T T 1
Since ) (-1)r("l:):’r = (1-)" and ] ( ss)cs = (1-t) ™7,
r=0 s=0 Show that any square matrix M is similar to its transpose
® _ ' T -1,T .
T -DF® (®'""T)  {g the coefficlent of t” in the expansion of M°, in the sense that M = X "M'X for some X.
=0 " oo-r
L i.e. 1.
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COMPLEX FUNCTION THEORY (JOMN 27, p. 3059, 28, p. 3080)

I.N. Baker

What can you say about a sequence of entire functions
converging pointwise? In Walter Rudin's "Real and Complex Analysis"
Chapter 13, Exercise 3 asks - 'Is there a sequence of polynomials Pn
such that Pn(O) =1 for n=1, 2, ... but Pn(z) + 0 for every
z # 07" The answer is YES. This result can be derived from Runge's
approximation theorem, but you might like to have a solution depending

upon only the most elementary parts of complex function theory.

Lemma For each n =1, 2, ... there is an entire function Fn

such that Fn(O) = 1 and Fn(z) + 0 uniformly
as z + @ in the secter Sn where the phase

(alias "amplitude" or "argument") of z is

between 1/n and 2m-1/n, i.e.

5_ = (e o10. 1/n < 8 < 21-1/n, r > O}.

Proof of lemma For any n and any radius p, consider the function

n

. ._n exp(t )
Fn(z) i L s dt defined on .
the left of the infinite path C

shown, consisting of a circular

arc {p exp 10; -B < 6 < B} and two )

half-infinite lines {r exp * if; r > p}, with B such that
m/(2n) < B < m/n. This choice of B ensures that the (improper)
integral exists. The convergence of the integral is uniform with

respect to z in any compact set not meeting the path C. The function
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Fn is therefore analytic to the left of C. By Cauchy's theorem the
radius p may be increased without changing the value of the function
at the points where it 1s already defined. Therefore the continuation

of the function Fn above 1s an entire function.

Again by Cauchy's theorem we may choose any B in the given
range, say B = (3/4)7/n. For z in S, the distance from z to any

point of C is at least k|z| and so

a .
n exp(t)dt
|Fn(z)| <o J J——ET;T———l < Kn/lzl for some constant K .

c
This shows that as z + ® in S, !Fn(z)! + 0 uniformly. Finally, to

evaluate Fn(o) take 8 = 7/n and change the variable of integration to

u= tn.
Fn(O) = E%I J (1/t)exp(tn)dt = E%I Ju_lexp udu-=1
(the last integral being round the unit circle, Iul = 1)
Main proof Define An (for each positive integer n) so that

IFn(z)| < 1l/n for all z in Sn with |z] 2 A Then |Fn(n Anz)| < 1/n

for all z in S, with |z] > 1/n. Put Gn(z) = Pn(n Az exp(-21/n)),

it is entire and takes the value 1 at the origin. Also |G (z)| < l/n
n

in the region Hn shown here.

H = {r exp i6; !/n <r <n, 3/n <9 <2m+ 1/n}
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Y
Because Gn is entire we may put Gn(z) =1+ Z:=lgvz and choose

N(n)g 2V satisfies
v=] YV

N(n) so that the polynomial Pn(z) =1+ Z
|P“(z)| < 2/n in Hn. Every point z # 0 is in Hn for all sufficiently
large n and so we have a sequence of polynomials, each = 1 at the
origin but converging to zero at every other point. This gives the

answer to Rudin's exercise and the question in JCMN, that the limit

function need not be entire.

One form of Runge's approximation theorem is as follows.
Suppose that K is a compact set in the plane and that in the sphere
(the extended complex plane) the complement of K is connected, and
that f is analytic on some open set containing K. Then f can be

approximated arbitrarily closely on K by a polynomial.

This theorem gives a quick proof of our result. For any
n let K = {0} v H_ and put f(z) = 1 for |z| < 1/(3n) and £(2) = 0
for |z| > 2/(3n). The conditions for Runge's theorem are satisfied

and there is a polynomial Qn such that
[£(2) - Qn(z)l < 1/n for all z in K .

Put Pn(z) = Qn(z)/Qn(O), then Pn(O) = 1 and for all z in Hn'

IPn(z)l j_;%i IQn(z)| < 1/(n-1), giving the result as before.
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DISTINGUISHED INVERSE (JCMN 26, p. 3040)

H. Kestelman

Suppose that m < n and that the m X n matrix A has linearly
independent rows, then AA* is invertible and X = A*(AA*)"1 is a right
inverse of A, in the sense that AX = I. What distinguighes X from all

the other right inverses of A?

The answer is that XA is Hermitean. To show that X is the
only right inverse with this property, take any n X m matrix Y such

that AY = I and YA is Hermitean,

YAA® = (YA)*A* = A*Y#*A* = A*(AY)* = A%, and so

Y= A*(AA*)_I = X.

SOLVING ALGEBRAIC EQUATIONS

With a simple programmable calculator it is fairly easy to
find the real zeros of any real polynomial. You just set the machine
to calculate the polynomial p(x) for any x, and then keep trying
different values for x. But is there a way to find complex zeros?
Often 1t is only the real parts of the complex roots that matter;

is there a way of finding them?




(a)

(b)

(c)

(d)
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BEACHCOMBINGS (JCMN 28, p. 3079)

P < _¢ci

——— der suggested that by cross-
Venez a Sans One reader gges y

multiplying this it could be regarded as a French pun -
“phaysans venez ici", or "peasants come here". Voltaire's
answer Ja could then be interpreted as meaning that Germans
were peasants but French were not. Another theory also
interprets the first message as a French pun - "Venez souper
3 Sans Souci" and Voltaire's answer not as a German word but
as two letters, one large and one small, making another French

pun, "J'ai grand appetit."

(Continuing the given sequences). The rule of formation of
the sequences will be apparent when each is continued with two

more members as follows:

110, 20, 12, 11, 10, 6, 6, ...

63, 94, 46, 18, 001, ...

The function f£(x) is the number of letters in the English name

for the number x.

What constant is not named after Captain Cook? This is a
difficult question and two theories have been put forward,
(1) A ple is defined as a quantity of fruit or meat, already
cooked, which is to be placed under a crust of suitably
prepared flour. As you cannot cook what is already cooked,

7 is not named after Captain Cook. (ii) In a part of the
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world that shall be nameless, a scientist who obtains a result
not acceptable may modify it either by adding a number or
multiplying by a number, after making a suitable choice for the
number and calling it "Cook's constant". Captain Cook never did
this (see JCMN 10, page 8) and so Cook's constant must have been

named after somebody else.

(e) Rearranging the matchsticks. The least implausible suggestion
is to make ¥1 = 1. Another candidate is VI = II, for an
equation does not have to be true to be good (see the quotation

from Vilfredo Pareto in JCMN 10, page 4).

PROBLEM OF IDENTITY (JOMN 28, p. 3078)

We are given that f is a real function of the real variable,
not identically zero, and that f(xty) = f(x) + f(y) and f(xy) =
f(x)f(y). From A. van der Poorten and H. Kestelman we have essentially
the same solution. Firstly £(1) = 1 because f is not identically
zero. Secondly f(rx) = r £(x) for any integer r. Thirdly the
function must map a rational number on to itself. Now the tricky part;
the image of a positive number is positive because if x > 0 then x = y2
and f£(x) = (£(y))? > 0. It follows that the function is monotonic

increasing, and therefore continuous, and so it is the identity function.

None of our readers has commented yet upon the relation between
this problem and the one (PLANE MAPPING PROBLEM) that was printed just

above it on page 3078.
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LITTLE SQUARE MATRIX (JCMN 28, p. 3077)

H. Kestelman

a

Let M = ( have complex elements. Under what conditions is M
c

)
expressible as M = SQ with sT = s and 2'0 = 17 The answer is
"unless ad - bc = a2 + b% + ¢2 + d%2 = 0". To prove this we first have
to dispose of four simple special cases, where a = * d and where

b = + ¢c. For each of these it is clear that either Q = (é t?) or @ =

(? té) gives the required result. Now suppose b2 # c? and a? # 4%

Every § with QQT = I is either

cosf -s5inf or cos sind
sin6 cosf sin6 -cosb,

for some complex 6 and the factorization of M is possible if and only
if either

(atd)sin® = (b-c)cosb or (a-d)sin® = (b+c)cosh.
This means that tan® = either (b-c)/(a+d) or (b+c)/(a-d). The only
values not taken by the complex function tand are *i and so the

factorization is impossible when (and only when)

(a+d)? = =(b-c)? and (a-d)? = —(b+c) 2.
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THE FALKLAND ISLANDS

After James Cook's first great Pacific exploration in H.M.S.
Endeavour, he reached England in July 1771. The ship was refitted and
used for four voyages carrying stores to the Falkland Islands between
October 1771 and September 1774. She was sold out of the Royal Navy

in March 1775.

The naval base at Port Stanley in the Falkland Islands emerged
from obscurity again in December 1914. Admiral Sturdee's squadron was
refuelling there when Admiral Graf Spee's squadron appeared. 1In the

battle that followed all but one of the German ships were sunk.

To anybody lecturing on mechanics it is of interest to recall
that the first salvos from the twelve-inch guns of the battle-
cruisers HMS Invincible and HMS Inflexible seemed badly aimed; in the
rushed journey from the North Sea to the South Atlantic, the gunners
had forgotten to adjust the fire control system for the change in

Coriolis force.

MATHEMATICS IN LONDON
B.B. Newnan

(Extract from a letter sent back home to Townsville)

I was consulted on a project with a program not working very
well. There was one error in the program that I am particularly

proud of finding. They defined PI = 3.14... and I spotted an error
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in the eighth decimal place. You see, as a joke, I once learnt =% to
40 decimal places, and I have remembered this absolutely useless piece
of information for many years (perhaps not completely useless, as I
always manage to get a laugh from students when I quote it and add

that 22/7 is good enough for our purposes).

SURFACE AREA OF AN ELLIPSOID (JCMN, pp. 3031 and 3056)

Murray Klamkin writes that there has been a considerable

amount published on inequalities for the surface of an ellipsoid.

G. Polya, Approximations to the area of the ellipsoid.

Publ. Inst. Mat. Rosario, 5 (1943) 1-13.

D.H. Lehmer, Approximations to the area of an n-
dimensional eilipsoid, Canad. J. Math. 2, (1950)

267-282.

B.C. Carlson, Some ir=squalities for hypergeometric

functions. Proc. Amer. Math. Soc., 17 (1966) 32-39.

M.S. Klamkin, Elementary approximations to the area of
N-dimensional ellipsoids. Amer. Math. Monthly 78

(1971) 280-283.
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MATRIX PROBLEMS (JCMN 28, p. 3072)
A. Brown

In Question 3 H. Kestelman asks for the eigenvalues of the
matrix with components LI 14f r =s 1, and = 0 otherwise. If
we use Cn for the n X n case of this matrix and In for the unit n X n
matrix then Pn(k) = det (cn - AIn) satisfies the recurrence relation

P +AP +P =0 (n=2,3,..) withP =-AandP2=A2-1. The

n+l 1
n roots of Pn(A) = 0 are the eigenvalues of C,» and each satisfies
-2 < X < 2 because the two matrices 2 In * Cn are positive definite,

and so we put A = 2 cos ¢ and note that sin ¢ ¥ 0.

It 1s easy to verify that
Pn = (-l)n (sin(n+1)¢)cosec ¢
satisfies the recurrence relationship. The zeros are

A =2 cos(Nn/(n+1)) with N=1, 2, .., n.

This problem is essentially the same as that of finding the
frequencies of vibration for small transverse vibrations of n equal
particles which are attached at equal distances, a , along a light
elagtic string of length (n+l)a , with the end points of the string
fixed. As such it is discussed in detail in D.E. Rutherford's
"Classical Mechanies", pp 183-186 (Oliver and Boyd, 1951) and the
solution to the eigenvalue problem above simply omits the mechanics.
A large number of books on mechanics discuss particular cases cf this
problem (n = 1, 2 or 3) and there is a tradition that Euler obtained
the frequencies of vibration of a wniform string by letting n tend
to infinity. So it is a problem with‘a respectable history in applied

mathematics.
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LATEST NEWS FROM HUNGARY

P, Erdbe

My problem number 9 (on page 3100 above) has been proved by
Szemerédi and Trotter, and I think that a young mathematician here

has proved 8.

Here is another problem. Denote by A(n; k) the least common
multiple of ntl, n+2, ..., ntk. Probably the equation
A(n; k) = A(m; k) with m > n+k and k > 3 has only a finite number of
solutions in n and k. If true - this will not be easy. There are
surprisingly many relatively small solutions. It is easy to see that
A(n; k) = A(n+l; k) has only a finite number of solutions in n for
fixed k. Prove this (not hard) and estimate the largest solution

n as well as you can,

MYSTERIOUS MESSAGE (JOMN 28, p. 3073)

Comments from A. Brown and J.B. Parker shed a little light.
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There must have been either shift-works or watchkeeping duties,
by seven squads or sentries, labelled A, B, C, D, E, F and G. Each
one was allocated seven periods, totalling 24 hours, in the week.

G, for example, was on duty in early Sunday morning for period number
one from midnight to 3.25 a.m., then A took over for the second period
from 3.25 to 6.51, while G was off until Monday afternoon, period 5,

from 1.42 p.m. to 5.08 p.m.

BOUND VOLUMES

Reprints of earlier issues are available, bound as paper-back
volumes., Volume 1 (Issues 1-17) $10 and Volume 2 (Issues 18-24) $5.

Both prices are in Australian currency and include sea-mail postage,

EDITORIAL

We would like to hear from you anything connected with

mathematics or with Capt. James Cook.

Prof. B.C. Rennie,
Mathematics Department,

James Cook University of
North Queensland,

Pogt.Office James Cook,
Toumsville, N.Q. 4811

Australia.



