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ROLL A BALL
J.M. Hammersley

A spherical ball of unit radius rests on a horizontal table, and needs to
be given an arbitrary prescribed reorientation. You may roll the ball
along any suitable path P on the table; but the rolling must be pure in
lhe sense that the instantaneous axis of rotation must always be hori-
zontal and perpendicular to P and there must be no slipping. Prove that,
if P has the shortest possible length T, then P is a straight segment or
an'arc of a circle, that 0 < T 5_%/3, and that T = 1v/3 if and only if

the desired reorientation is a rotation through an angle T about the
vertical. My own proof of this uses the calculus of variations, and is
long and complicated. Can anybody provide a short snappy proof of this
simple result, preferably a proof depending only upon elementary

Euclidean geometry? What can be said about the more difficult problem

when the ball also has to finish at a prescribed point on the table?

HIGHER DIMENSIONAL ROTATIONS
H. Kestelman

Every rotation in two or three dimensions is a product of two

reflections. The proposition below is an analogue in n dimensions.

A matrix is called involutary if its square is the identity.
Prove that every real orthogonal matrix is either involutary or the

product of two involutary matrices.



-3048-

LINEAR RECURRENCES AND DETERMINANTS
A.P. Guinand & P.L. Manley

Many well-known sequences, such as the Bernoulli, Euler, and Fibonacci
numbers, the Legendre polynomials, and the Bessel functions can be gen-
erated by linear recurrence formulae. Such formulae can be regarded as
sets of linear equations and solved by determinants, but the resulting
determinant formulae are seldom mentioned in the literature. So here
are some examples; in each case the determinant is to be cut off when

its size is nxn.

(1) The Bernoulli numbers (in even suffix notation) are generated by
Bo =1 and B0 + ZB1 = 0,
B, + 3B, + 3B, = O,
B, + 4B + 6B, + 4B, = 0,
n+l n+l n+l n+l
B, + ( 1 B, + (O, )B, + ...+ (n_l) a1t ( n )Bn 0.

Solving these equations for the ratio of B, to Bn’ we have

By . )",

2 0 Oueveeeaa0 1 2 0 [0 JP

3 3 [0 J ¢ 1 3 3 [+ J ¢

4 6 bevenes. .0 1 4 6 [/ ¢

ceeecescssetsnesannns veel0 R ¢

n n n n n n n
(l) (2) (3).......0 (0) (1) (2)""""""(n—l)
n+l n+l n+l n+l n+l n+l
( 1 ) ( 2 ) ISR ¢ n ) ( 0 ) «( 1 )..................(n_l)

The first of these determinants reduces to {(n+l)! and it follows that
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Similar methods lead to the following examples:
¢

‘(ii) The Euler numbers, generated by E, = 1 and the recurrence
n n n
cee = = 2 s see)e
GE_+ (PDE_, + (2OE , + 0, (m=1,2,3, ...)
+
Then E = o 1 0 0 0 0........0
n 1 0 1 0 0 Oueeve...0
0o 3 0 1 0 0........0
1 0 6 0 1 O0Ouiceenss0
0 5 0 10 0 1........0

ceseeser ss s s acesesas e

where the rth row consists of alternate zeros and binomial coefficients

of order r.

(iii) The Fibonacci numbers, generated by F, = F, =1,

-1 0 0 0 O0........0
1 -1 0 0 O0........0
1 1 -1 0 O0........0
o 1 1 -1 O0........0

Deeveneoosnsnsnanaesaal 1 -1

1 U « B S §

O O K

(iv) The Legendre polynomials, generated by P (x) = 1 and the

recurrence Pn(x) - (2n - 1)xPn_1(x) + (n - l)Pn_z(x) = 0.
P (x) = = -1 0 0 0 0
LK) = oo x N

1 3x =2 0 Oeeeerinrennnocens ceeesassesass0
0 =2 5% =3 Oeeeevecerscosconsccansanneassl
Ovevvecnooascecesasssssssnasoassasesssssvsaassl
Oeevevnessvonnnsssa—(n=2) (2n-3)x -(n-1)
Ouveeocvossoncaanoanesl -(n-1) (2n-1)x
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INEQUALITY FOR POLYNOMIALS

v) Bessel functions of the first kind, for which
J.B. Parker

2n
Jo1 @+ @) == J (2.
Let f be any real polynomial and N any positive integer, then

n . © _
z Jn(z) = le(z) -z 0 0 [0 veee 0 2520 I DT @) 1 (drf/dxr)Z exp - x2/2 ix > 0 .

~2Jy() 2 -z 0 0 ..... e ceeenn O B

tProof. Define the polynomials V,(x) b
0 2 4 -z 0 ..., U —_— poym 36 by
. _1

0 0 -z 6 =2 terecesssans . . 0 exp(tx _ t2/2) = Z?=O tJ (J!) 5 Vj (x)

................................. . P ¢

......... i 0 -z ek = sotthat for fnstance Vy(x) = 1, V,(x) = x, V,(x) = G - 1)/V2, ...

Apart from the v(j!) factor these are the Tchebycheff-Hermite polynomials.

Differentiating both sides of the generating equation s times with respect

UNIFORM WAVES IN DEEP WATER to x gives:
. _1
t5 exp(tx - t2/2) = 15 9GH7 @/an® v (1)
Mathematically the problem is to find ¢(x, y, t) with
¢ + ¢ =u 4+v =0 For any non-negative integers j, k and s, consider
xx  yy  x y v
such that the free surface y = n(x, t) determined by L[ (s) (s) x2
2 2 Gt ok 2 J v, (x) Vk (x) exp - 5 dx
¢t +gy+% (W+Hv)=0 ~~ ]
satisfies the kinematic free surface condition /3t + udn/dx = v. (where f(s)(x) denotes (d/dx)sf(x) in the usual way).
The first order approximation is well known, It is the coefficient of tJ uk in
¢ = a(n/k) expéky) sin(kx-nt) - & Vm(u)(x) . o0 Vn(S)(x) 2
and n = a cos(kx-nt) where n° = gk, and o is i{nfinitesimal. [_w zm=0 '—_7%5—_'"—' n=0 ‘—-TZE———"’EXP - ‘E‘dx

Less well known is the fact that the same velocity potential also which because of equation (1) may be expressed:

gives the second order approximation, the relation n2 = gk 1s the same,

Y 2
and the free surface is given by J t° exp(tx - t2/2) u® exp(ux - u2/2)exp - 3%—dx
—00 '
n = a cos(kx-nt) + (azk/Z) cos 2(kx-nt)
[o2]
2
It may be noted that Gerstner's trochoidal waves (which = t%® exp(tu) J exp - (x - u - t)°/2dx = /27 (tu)sexp(tu)
satisfy the free surface condition exactly but have vorticity non-zero) -
s ke
in the case of small amplitude give the same second order approximation It is equal to the coefficient of t3 ° u' ° in V2T exp(tu), and is

to the free surface.
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therefore Vﬁ}/(j - s)! when j = k > s, and zero otherwise.

This establishes the orthogonality equation:

© 2
(2m) 7% L,, vj(S) (x) vk(s) () exp - X ax = .
jt .
G- 97 %K i£32s
= (2)
0 if j <s

Now side-track to establish a result on partial binomial sums:

I, @ = ¥ P

s N) - (3)

This can be regarded as holding for all positive n and N, but for n <N

there is the more convenient form:

TN = 1D, ™ = o0 . (4)

Proof is by induction on N.

Now consider any polynomial f. It is expressible as

£) = [ BV (0

where only finitely many of the coefficients Bn are non-zero.

Equation (2) above leads to A\
en™ [ ¢ )2 exp - Lo p __ml 2
_m X exp 2 n=s (n -s)! n '

Now divide by (-1)°s! and take the sum for s = 0, 1, 2, ..., 2N

s 2
()~ Z_E,I:o Lo J(f(s)(x))2 exp - Z-dx =

s. 2
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2 © 2 2N s ¢ ® n,_ 2
= By+)l, B+ [ o D] ()8

2 o 2 Min (2N,
= B+ Bn[l 4 RN gy (‘S‘)J

0 s=1
_ Rl 2N 2 n _qyS (0 o 2 ,n-1
. - B0 + zn=l Bn[l + zs=1 1) (s)] + Zn=2N+l Bn(ZN)
2 L] n-1,_2
= Byt Lo (0B, 2 0

There is strict inequality unless the polynomial f(x) is of
oo

degree < 2N and has the property that f f(x) exp ~ x2/2 dx = 0 .

—00

It is tempting to speculate that this inequality might be
extended to some wider class of functions, and that there may be a

proof not involving orthogonal polynomials.

A good exercise for the student would be an investigation of

the inequality:

*® r
12 J DT E D 0% expnrax 2 0 .
o .

Another speculation is obtained by letting N + «, the identity

s! 2

-0 -0

5T DS [P (s, () X 2 X
(m= 3} 777 (x)g" 7 (x)exp - Sdx = f(x)exp - dx g(X)eXP.—TTdX.
0 o

It certainly holds for f and g any polynomials, as proved by
applying **: formula found above to f + g and to f - g. The speculation
may be verified in simple cases where f and g are exponentials or sines

or cosines.
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PERVERSE POLYNOMIALS (JCMN 26, p. 3028)
J.B. Parker

(a) To show that Qn(x) = X" - 2xn_1 + 1 is a factor of some

polynomial P in which all non-zero coefficients are +1. Put

Fn(x) = 28_1 xl, then the coefficient of x' in P = FnQn is

lfor0_<_rin—2,and—lforn—l_ir_<_2n-2andlwhenr=2n—l.

(b) To show that Rn(x) =x" - an-l - 1 is not a factor of any

polynomial P in which all non-zero coefficients are +1. If possible

put P = R F, and express F in the form F(x) = ZE a; xt. Clearly
each of the coefficients a; must be an integer. For simplicity of

notation let a, = 0 for 1 < 0 or > m. The coefficients satisfy

a, - 2a, - a = (One of the values -1, 0, 1). Now look for the

i i+l itn

coefficient that has largest magnitude, and if several have the same

take the one with largest suffix, that is a = M and

la;| < ] for all i < k

o,

IA

M -1 for all i > k

Since 2M = Zak is between 41 " 3 E 1 it follows that
a 1= M and & in-1 = 1 - M. Similarly a_, = M, and inductive

reasoning leads to S R - T M.

But the condition a - 2ak-n+l - a = (One of -1, 0, 1) leads

to R having one of the values 3M - 1, 3M, 3M + 1 which are all of

modulus > 2[M|.

=
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OF THE EARTH MURPHY

You have four plants of each of two varieties of potato, P and S.
Eight plots of ground, each big enough for one plant are available, They
are arranged in a straight line behind the boatshed, and are numbered
1, 2, ... 8 in order. Put s(j) =1 if an S plant is in plot j and = -1
11f a P plant. How would you arrange the plants to make the moments
‘M(r) = 2 iF s(i) zero for r = 0, 1, 2? What is the smallest n = n(r)
such that (using n plants instead of 8) we can make M(0), M(1), M(2),...M(r)

all zero?

THE RIG OF A ROWING BOAT (JCMN 26, p. 3037)
H.0. Davies

i
Recall that s(j) =+1 for j =1, 2, ... n and a(i) = 21 s(1)
and b(i) = Zi a(i). Take the a(i) as independent variables, the

table of values becomes

s a(l) a(2)-a(l) a(3)-a(2) a(4)-a(3) e
a a(l) a(2) a(3) ves
b a(l) a(l)+a(2) a(l)+a(2)+a(3) ...

The query was about z b(3) s(j). There is an algebraic identity
a(1)(a(2) - a@)) + (a@) + a(2)) (a3 - a(2)) + ...
+ (a@) + a@) + ... + a(x - D) (a(®) - alx - 1))

=am(a@) + ... +am) - W% +a@% + ... + am)?)
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easily proved by induction on r. Taking r = n it follows that if
a(n) = 0 then ztll b(3) s(3) = -2? :-1(;])2 < -n/2 (because each a(j)

is an integer and two adjacent terms cannot both be zero).

THE SURFACE AREA OF AN ELLIPSOID (JCMN 26, p. 3031)

P.A.P. Moran writes that the surface area S of the ellipsoid

E(lea2 + y2/b2 + z2/c2 = 1) satisfies

3
4m(ab + bc + ca)/3 < S < Aw[(azbz + bzc2 + czaz)/3]

and that these inequalities are proved in a paper that he has written
for the C.R. Rao Festschrift to appear soon. The "Simple Simon" idea
may be refined as follows. Let V be the volume enclosed between E and
the larger ellipsoid with semi-axes a+§, b + § and ¢ + §. Every

point of V satisfies (for some t between 0 and §) and equation

2la+ 02+ b+ 02+ e+t =1 .

(.

and is therefore at distance t < § from the point [a?ftf 5

by cz
+t>c+t

*
of E. V is therefore a subset of the set V of all points outside E
*
but at distance < § from E, and uV < uv . Also
* 2
W = 88§+ 0(57) .

(You can think of this as intuitively obvious or as part of the more
exact result known as Steiner's Formula).

*
Finally S6 + 0(62) =uv >uvV = 4md(ab +bc +ca+ (a+b+c)d+ 62)/3

so that § > 4m(ab + be + ca)/3. N
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WORKED EXAMPLES IN SOCIAL MECHANICS

A visitor to England in 1981 may wonder why this country, which
generated the Industrial Revolution, has sunk from a condition of power
and prosperity to the verge of chaos and bankruptcy. The mineral wealth
and technical skill are still there. Why has a system that used to work

well now failed?

A mathematician might think that insight could be gained by using
the modern techniques of operational research, control theory, time
'series analysis, stochastic processes, and so on. But is there a stream
of papers on the English Disease in the mathematical journals? No! The
reason is that the problems are too easy, they usually succumb to very
simple reasoning, with mathematics of no more than matriculation standard.

let us investigate a few simple questions.

(a) Why did Government loans in the nineteenth century offer about
three per cent interest? The typical potential investor was a married
man aged between 40 and 50. What was a £100 bond at 3% worth to him?
He and his wife could expect from it £3 per year for 20 years and they
would pay two shillings in the pound income tax on it, so that the
interest would be worth £54 to them. Then they would leave the bond,
still worth £100, to their children, what was this prospect worth to
them? The value is hard to estimate, but we take a stab at it, call
the value £50. This means that the value of the bond was £104, so that

the investor is willing to pay £100 for it, but not much more.

(b) How will the calculation above be modified if the era is

changed to the late twentieth century? It indicates a bond interest



-3058-

rate of 15%. The potential investor considers the value of an income

of £f15 per year, With inflation running at 10Z and income tax at 30%
the value is £10+5 (1 + 0.9 + 0.9% + ... + 0.9'%) = £95. The prospect
of leaving the bond to the investor's children in twenty year's time

can be estimated as before to be worth £5, so that the present value of
the bond is £100, which verifies that the appropriate interest rate is

15%.

(c) Consider the setting up of an industry in the nineteenth century.
What return on capital would the business have to generate in order to
attract the necessary investment? The potential shareholder would be
comparing the return from shares in an industrial company with that from
fixed-interest Government bonds, and so the business would be viable only
if it gave at least 3% return on capital. Another consideration would be
that the business might lose heavily through the advance of technology.
Near Sheffield is an abandoned quarry in which are bits of stone partly
shaped into grindstones; the .wheels of natural stone used for centuries
here, driven by water power, for the knife-grinding industry, were
suddenly unwanted when the synthetic materials for grindstones came on
the market. Suppose that we estimate at 1% the probability per year of
an industrial concern losing half its capital value by becoming outdated,
then we conclude that a business would have to generate at least 32

return on its capital in order to be viable.

(d) Now translate (c) to the late twentieth century. The calculation
is a little more complicated, we allow for 10% inflation per year and

reckon all values in terms of the present day pound. Suppose that the
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business generates 187 annually on the invested capital., The plant and
equipment maintained at their initial real value will have their nominal
value increased 10% per year and so on each £100 of initial investment
the income as assessed for tax will be £28. After paying corporation
tax at 407 the income available for distribution to shareholders is £7
and so the shareholder paying inqome tax at 30%Z gets £5. The value of
enjoying this for 20 years (subject to a 4% per year probability of
semi-bankruptcy) is £5 (1 + .98 + ... + .9819) = £83. The expected
value after 20 years is f£67 and the value of leaving this to ones
children paying 40% death duties is £20. These calculations give the
return on £100 invested as £103, so that the business is just viable.
That is why a wise financial adviser these days will tell clients that
a business is not worth starting (or continuing) unless it gives 18%
return on its capital, five times what was necessary in the nineteenth

century.

Try doing a few sums like this yourself, and you will find it

easier to understand the world around you.

COMPLEX FUNCTION THEORY

If a sequence of entire complex functions converges pointwise

then is the limit entire? What else can you say about the limit?

This is a pretty little question but, it must be admitted, not
new. I.N. Baker writes that it is set as an exercise (without any hint)

in Rudin's "Real and Complex Analysis".
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CAPTAIN COOK AND THE LOCH NESS MONSTER
J.H. Loxton

A little known story* from the early life of James Cook is that,
before setting out to explore Terra Australis, he spent many fruitless
years combing the waters of Scotland for the Terror of the North. Accord-
ing to some accounts, his most consistent sightings were obtained from
the grounds of a small distillery not a stone's throw from Inverness.
The advent of recreational computers has led to major advances in the
discipline of transcendental holography, the science of reconstructing
visions and displaying them in glorious three-dimensional technicolour.
To date, only a few random bits of this marvellous new technique have
been received from the margins of outer space and the results do not
quite live up to some of the claims that have been made. It is nonethe-
less possible to make a partial reconstruction of Cook's vision of the
Loch Ness Monster; it appears in Figure 1, perhaps for the very firsg

time, T e

Figure 1. The Monster

I certainly had not heard it before.
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It turns out to be quite simple. The figure is in fact the
graph of the first 5000 terms of the sequence
X 4
LN = Z exp(2mi(log n) )
n=1
that is, the graph is obtained by plotting the points Ll’ LZ’ veey L5000
in the complex plane represented by this page, and joining successive
points by straight line segments. It is possible to analyse the shape

of this monster by considering the angle between successive line segments

namely
4 4 3
Gn = Zw{(log(n + 1)) - (log n) } ~ 8m(log n) /n

for large n. The graph of this function is shown in Figure 2, to

illustrate the point that a picture is worth a thousand words.

o] soo 1000

Figure 2. Graph sans paroles
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The anatomy of the monster has three parts. For very large n, say

n > 100000, en is small and monotonically decreasing to O, and the
monster approximates a spiral slowly spreading out to cover the whole
plane from its ultimate limit point. This can be seen in the graph of
the baby monster in Figure 3; the spiral behaviour takes over much
earlier because the angle corresponding to On is already small for

n > 500. When Gn/Zw is close to an integer, the monster approximates

Figure 3. The Baby Monster

1 2.7
By = ] exp(2mi(logn)”"’), 1 <N <500
n=1
a gmooth slowly turning curve and this accounts for the links between
the blobs in Figure 1. When the distance from On/2n to the nearest

integer is not small, the line segments of the graph make rapid changes
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in direction and the graph is confined to a very restricted region until
en/2w reaches the next integer. The enlarged picture in Figure 4. is the

graph of LN as N runs from 3200 to 3700, giving a rare view of a black-

Figure 4. The Black Hole

hole in the making. The sizes of the blobs increase as N increases

because the rate of change of Gn decreases steadily after its initial
hiccup.

As the above analysis might suggest, the family of graphs of

the sequences

X K
FN = z exp(2mi(log n) )
n=1

becomes more and more random as k increases. The Milky Way in Figure 5
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was obtained with k = 6. It must, however, be admitted that, as a

vision of heaven, it still leaves something to be desired.

Figure 5. The Milky Way

I would like to thank Graeme Cohen of the School of Mathematical
Sciences at the New South Wales Institute of Technology for help in

producing the figures.
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LATTICE COLOURINGS - A COUNTEREXAMPLE
Jamie Simpson

Suppose we are given a set of lattice points
s = {(nl, n,, n3)lkln1 + inz + A3n3 <A, n, 0, By > 0}

where n, are integers and the Ai and A are fixed positive numbers. How

do you colour as many as possible of the points of S, but so that no two
. ] _ ' - ] _ L =

adjacent points n, n (ln1 n1| + |n2 nzl + |n3 n3| 1) are

«coloured?

For the generalised k-dimensional problem, there are always two
non-adjacent colourings called parity colourings - those obtained by
colouring all points n with n, + ... + n, even, or all those with
ny + ... + n odd. For the two-dimensional case, Chris Smyth has shown
(Black and White Cubes, JCMN 23 p. 125, JCMN 25 p. 3017) that one of
the parity colourings is a maximal non-adjacent colouring. However,

for k = 3, we give an example below for which the parity colourings are

not maximal.

Specifically, we take

s = {(nl, n,, n3)|5n1 + 5n2 + 6n3 < 36} .

Put s = n, + n2 and

E(s)
_ 02 even
= # of points (s, n3) in R” with (nl, n,, n3) of {odd
0(s)

parity in S.
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Then for each s there are s + 1 points (nl, nz) with ny + n, = s,

0, M, > 0, so that the last two columns of the following table give the

total number of points (nl, ny, n3) of S of each parity, for each value

of s.
s E(s) 0(s) (s + 1)E(s) (s + 1)0(s)
r--=a
0 4 3 4o 3
i t
1 3 3 L6 6
|
2 3 2 tg o, 6
]
3 2 2 tg ) 8
1
4 2 1 110 4 5
! C
5 1 1 RN 6
6 1 1 7T~ Tt 7
7 0 1 0 S~o. 8 )
~ - Jd
Totals 50 49

Thus the even-parity colouring colours 50 points and the odd-parity
colouring 49 points. However, we see from the table that the colouring
obtained by colouring all even-parity points for s = 0, 1, ..., 5, no
points with s = 6, and all odd—périty points with s = 7, colours 51

points.

This problem arose from a problem of Combinatorial Number Theory
(JCMN24 p. 130, JCMN 25 p. 3019), where it was necessary to obtain the
cardinality of the maximal non-adjacent colouring of sets of points of
the form

T = {(nl, n,, n3)|pnlqn2rn3 < N}
where p, g, r and N are positive integers with (p, q, r) = 1. If we

take p = 148, q = 147, r = 405, N = 4056, then S = T. Hence our example

shows that parity colourings need not be maximal, for sets of this type also.
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BOUND VOLUMES

Both Volume 1 (containing issues 1 - 17) and Volume 2 (issues 18 - 24)
have now been reprinted. They are for sale in Australia for $5.00 each,
postage included. Subscribers in Australia should send cheques payable
to James Cook University. There is some doubt when the new reprint of

Volume 1 will be available (January or February 1982 perhaps).

MAILING LIST

Please write to confirm the address we use, and to let us know if you

want to continue receiving the James Cook Mathematical Notes.
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Your editor would like to hear from you anything commected with

mathematies or with James Cook.

Prof. B.C. Rennie,
Mathematics Department,

James Cook University of
North Queensland,

Townsville, 4811

Australia.



