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POLYNOMIAL SEQUENCES OF BINOMIAL TYPE

A.P. Guinand

Let pn(x) (for n =0, 1, 2, ...) be a sequence of polynomials
with real or complex coefficients. The sequence is said to be "of

binomial type'" 1f po(x) = 1 and

P,(x +y) = X:,O [:] prfx) Poy ) - (1)

1
This condition is sufficient to ensure that each Py 18 of degree n or

less. The simplest example is the family of powers of x, pn(x) - X",

Other examples are the rising factorials x(x + 1) (x + 2)
(x + 0 - 1) and the Abel polynomials x(x - n)n_l. Such polynomial
sequences can be generated by products of linear functionals, and this
process has many applications, especially in combinatorics. For an
exhaustive survey of these methods, see "The Umbral Calculus", by
G-C. Rota and S.M. Roman, Advances in Mathematics, 27 (1978), 95-188.
There {is, however, a much simpler way of generating such

sequences, as follows.

Let ¢ .. be any sequence. A polynomial sequence of

0’ cl' Cz!

binomial type is generated by po(x) = 1 and the recurrence
- n n
Py (X = xzr=0 (r] Cocr pr(X) . (2)

Proof First note that p](x) = cox and so (1) holds for n = 0 and 1.

The proof is by Induction: suppose that (1) holds for n = 0, 1, 2, ..., k.
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Then
k k
;—%_y pk+1(x *y) s yz r=0 [r] “k-r Pr(x +y)
k k r r . 1)
= yz =0 [r] Ck-l’ ZS=0 [8] pB (X) pr—s(y) (
k| lk - k r - k k
But l‘:} {;] [s] [r - :] and ] r=0 ) s=0 ! =0 ): r=s

so that the right hand side of (3) becomes
k k k k - 8
{E s=0 (s] ps(x)} {yz r=s [r - s] € (k-8) - (r-s) pr-s(Y)}

Inclusion of a term s = k + 1 in the first sum only adds a zero, and
by the defining recurrence (2) the second factor is pk+1_s(y), and

equation (3) therefore becomes

y k+1 [k (%)
x +y pk+l(x ty) - Z 8=0 [S] pe(x) pk+1—s(y)
Exchanging x and y and replacing s by ktl-s,
k+1 k (5)
x .
x+y Py X+ Y) [ g=0 [k+1—s] P () Pyyy )

wou (] + (s | - 1 ) 5o asding (@) and (5) ve have

(x+y) =

zk'f‘l k+1
s=0 s

Prtl ) ps(x) pk+1—s(y)

That is, (1) also holds for n = k + 1, and by induction for all

positive n. This shows that the sequence 1is of binomial type.

ial
It may also be noted that . = p;+1(0) because every polynomia

except the first has constant term zero, and by (2)

n

n
pn+1(x) = et ) r=1 x[r] n-r pr(x)
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The converse question arises. Can every sequence of binomial
tvpe be constructed by the method above? Yes.
1f [pn(x)) is a given polynomial sequence of binomial type
- ' -
then let . pn+1(0) for n =0, 1, 2, ... . The sequence {cn}
generates (as described above) a polynomial sequence {qn(x)} of

binomial type. Since p (x) =1 = (x) 1t follows by induction
o 9 .

that L for both polynomial sequences satisfy (2).

SIMPLE QUESTION FOR UNDERGRADUATES

Is the canvas of a fire-hose more likely to split longitudinally
or circumferentially? For the purfst one should add that the water
from the hydrant is assumed to be an incompressible non-viscous fluid
in steady motion, .gravity is negligible, and the canvas is assumed to
be infinitesimally thick and to have equal strength in all directions.
Those who emphasise the social relevance of their mathematics will
add the information that a stout-hearted fireman (or fireperson if
necessary) 1s directing towards the seat of the blaze a jet of water
issuing at speed V from the brass nozzle of radius r and area a = nrz.
If you get from one of your students an answer involving the fourth

root of three it will probably be right.

ISOTROPIC VECTORS

H. Kestelman
A vector with complex components 1s called isotropic if the sum
of the squares of the components is zero. If a linear subspace of c"

1
consists of isotropic vectors show that its dimension cannot exceed-in.
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CYCLIC HEXAGON
CONVERGENCE OF SERIES (JCMN 24, Vol. 2, p. 132)

E. Saekeres

1t was pointed out that lnside a certain oval shaped region the

00
series Z()(-z - zz)n = 1 - (z+ zz) +(z2 + 2z3 + za) -

3 4

5
- (z7 + 3z + 3z + z6) + ... converges to 1/(1 + z + zz). If we

remove the brackets to obtain the series

, .
1 -2z-2"+ zz + 2:3 + za - z3 - 3:6 - 3z5 - z6 + zh + ..

what is the new region of convergence?

WELL KNOWN FUNCTION (JCMN 24, Vol. 2, p. 136)

G. Szekeres

What 1s the function f such that the coefficlient of X" in

n+l
(f(x)) 18 1?7 Using n = 0, 1, 2, 3 we may find

F(x) = 1+ x/2 + x2/12 - x°/720 + ...

This problem originates from E. Straus. The hexagon ABCDEF has
which everybody recognizes as x/(1L - e-x). used as a generating

its points (in that order) on a circle of unit radius. The diagonals
function for the Bernoulli numbers.

AD, BE and CF meet {n P. Show that AB + CD + EF < 4. 1

We must verify that 1f xn+ r - e—x)"n—1 = E: a xn then all
n

a = 1. But this is a simple exercise in the theory of residues.

NAMES (JCMN 24, Vol. 2, p. 144) n
- -n-1 z ntl -n-1
- First there is the old Latin proverb: nomen est omen. % ng [z (1= exp = 2 ) ] = reg (1 - exp - 2)
= 2= ‘
The mathematician Kurt Hensel, who was professor in Marburg, was or with the substitution 1 - e-z -t
‘asked whether he would not like going to Goettingen. He answered: : a = res (t—n-l 1 )
n 1 -t

t=0

Oh nein, dort sind alle Klein und Schwara wnd konnen einander nicht

This 1s just the coefficient of t" in 1 ol 14+t+¢t°+ ...,

ausstehen (there they are short and black and can't stand each other). 1

hence 1 :
C.F. Moppert ce equal to 1.

- On 16th December Dr. John Vane spoke on the television news

about cardiovascular disease.
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MOVING ROUND CIRCLES (JCMN 24, Vol. 2, p. 135)

Question 3 in the 1979 International Mathematical Olympilad was
about two points moving in the samé sense with equal angular speeds
round two circles in the plane, starting simultaneously at A. It
asked for a point P always equidistant from the two moving points.
The question in JCMN 24 was whether the phrase "in the same sense’
was necessary.

C.S5. Davis writes that the answer to the query is '"No": there
is such a fixed point Q 1f the points move in opposite senses.
Indeed, 1t 1is the reflection of P in the line CD of centres. In

the picture above CBDP and CQDA are parallelograms.
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A CIRCLE AND A TRIANGLE (JCMN 24,Vol.2,p.141)

Figure 1.

The circle Z (centre J) touches internally at L the circumcircle

s (centre 0) of the triangle ABC, and touches AB at P and AC at Q. The

problem was to prove the midpoint I of PQ to be the centre of the

{nscribed circle of ABC. The proof below comes from E. Szekeres, others

were sent in by B.B. Newman and S. Collings.

The bisector of the angle at A passes through I and J, and meets

S at D, which is also where the perpendicular bisector of BC meets S.
praw LI and LJ to meet S in Z and V respectively. Drop the perpendicular |

1T from I to AB. |

In the usual notation.the radif R and r of the eircumcircle and

incircle are given by
3 a 1

2R = — = etc.
3 ain A/Z sin B/2 sin C/2
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2. Starting with X and Zl' the point A {8 the external centre of
similitude, and Al 1s the axis of symmetry. There are just two circles
through A touching both I and Zi. One is8 S with centre O on line AO.
Since AI bisects the angle HAO (where H is the orthocentre of ABC) it
follows that the other circle touching both has its centre on AH. By
inversion with respect to A to interchange Z with Zl it follows that

one common tangent to X and zl ia parallel to BC (see Figure 2).
4

~—

— e

Figure 3.
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3. Take the line £ parallel AB and at a distance R outside it.
The parabola with £ as directrix and O as focus must pass through A,
B and Jl. Let F be the intersection of S with the perpendicular
bisector of AB. Then the line AF makes the same angle 90° - C/2
with OA and with the axis, eo that AF, and similarly BF are tangents
to the parabola, Pascal's theorem gives the following construction

to find the point J1 (Figure 3).

The hexagon AAB«MDJ1 is inscribed in the pa;abola, and so the
intersections of opposite sides are collinear. Here = means the point
at infinity, the line ® = ig the tangent, which is the line at infinity.

The three Pascal points are where AA meets <o, that is the point at

' infinity on the line AF, the intersection B> with AJl, that is where

the perpendicular from B to AB meets the bisector AI, (these two points
enable us to draw the Pascal line as the line parallel to AF through
the second point) and where AB meetg Jlﬂ. The Pascal theorem locates
the third point where AB wmeets the Pascal line, and Jl where the
perpendicular to AB from this point meets AIl.

EASY HAHN BANACH

A real Lipschitz function on a finite subset of the Euclidean
plane can be extended to the whole space with the same Lipschitz
constant. Can this be proved by elementary methods? That {s, not
using the axiom of choice or the Boolean prime ideal theorem. The
Lipschitz condition for a function f is that If(P) - f(Q)I <k
(distance from P to Q). Background to this question may be found in
JCMN 20, page 54 and JCMN 24, page 135.

TRIGONOMETRIC FUNCTIONS

N
Let f(x) Zl a_ exp(ibrx) (with a, complex and br real).

If f(n) = 0(1/n) for large positive integers n, does it follow that

sinw x is a factor of f(x)?
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S.U.M.S. COMPETITION 1980 (JCMN 23 & 24, pp.124

" S5.J. Surma & 137)

Let A be an arbitrary set. Define the set A+ of all finite

length strings formed from elements of A as the least set such that
(1) A ca’,

(2) 1f x, y ¢ A+ then xy € A+.

Remark Let a, b, c¢c € A. It may well happen that strings (ab)c and

a(bc) are diastinct as are strings ab and ba.

The set P of all primitive strings has been defined in
JCMN 23, Vol. 2, p. 124 as well as in JCMN 24, Vol. 2, pp. 137-138 as
follows

P = {xx: x¢ A+)

while the set G of all good strings has been defined there as the
least set such that

(1) Pc G,

(2) 1if x, xy € G then y ¢ G, for any x, y € A+.

R.N. Buttsworth claims that the problem whether or not a
string is good is decidable. However, his argument seems to assume

that, in particular, all the strings below

(AyA)y, (xAx) (xx), ((yx)(yx)) (y(xyx)),
)
(e (yy)x) ({xy)yx)

are good, which cannot be proved with the definition of P as above.
In fact, assuming that A = {(a, b}, as in the original formulation of
the problem, the problem whether or not a string is good is
undecidable. The proof of the last statement is too lengthy to be

quoted herewith but it can be made available upon request.

Fortunately, Buttsworth's argument can be salvaged. In fact,

it works with the following definition of the set of all primitive
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strings
+
Q = ((xy)(yx), (x(y2))((xy)2) : x, y, z € A’}

with the other definitions unchanged. Namely, with Q instead of P all
strings mentioned under (+) above as well as string xx can be shown to

be good. The rather lengthy calculations are omitted.

Although Buttsworth's argument (with the modification suggested)
looks quite nice, some other nice arguments can also be referred to, for

instance, the following one.

+
With the definitions of A+, Q and G unchanged let x, y € A .

Define a velation x~ y as follows
x~ y 1ff xy € G.

+
One can show that ~ is an equivalence relation on A and that the
partition K+b4 of A+ determined by~ is a Boolean group 1l.e. an

Abelian group with the equivalence clags of xx as its identity element

and such that each element of the group is of rank 2.

As an easy corollary to the above statement we have that
x e G 1ff Na(x) is even for each a € A, where Nz(x) is the number

of occurrences of a in string x.

QUOTATION CORNER (10)

"1t was Voltaire who wrote "it is magnificent but it isn't war"
when discussing the charge of the Light Brigade --- !
From the sports page of the Weekend Australian, 3-4 January 1981.
Perhaps the writer was misquoting P. Bosquet's version of what Adam
said to Eve in the Garden of Eden, "C'est magnifique mais ce n'est

que la poire".
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EXP-LORE

C.J. Smyth

We people of Htrae find multiplication quite easy; however,
historically addition has posed much greater difficulties. Our
calculations were much speeded up when one Nhoj Reipan invented
Exp tables. To add two numbers together, one simply looked both
up in the Exp tables, multiplied the resulting values together,

and then looked up the product in anti-Exp tables.

Imagine for a moment a planet (let's call it EARTH (Htrae
spelt backwards!)) with strange beings who find multiplication much
more difficult than addition. Note that for EARTH-1lings, the product
of two numbers could be found as follows: look up the two numbers in
the anti-Exp tables, add them together {an operation which poses no
problem to these strange creatures, remember!); then look up the sum

{n the Exp tables. Easy as falling off an Exp'

PLANE SAILING
C.F. Moppert

A plane L can be shifted about on a plane E, on which it lies

flat. L takes three positions Ll' LZ' L3‘ Any point P in L takes

the
then three positions Pl, PZ’ P3 (with respect to E). Which are

points P in L such that Py, PZ' P3 are collinear?
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BLACK AND WHITE CUBES (JCMN 23, Vol.2, p. 125)

C.J. Smyth

We were given adjacent piles of blocks of heights

h1 < h2 < el & hJ > hJ+1 > ... 3'hn, and the blocks were to be

coloured black or white but so that no two adjacent blocks (horizontally

or vertically) weére black. The problem was to show that one such
colouring with the maximum number of black cubes is one of the two

'chess-board' colourings of the blocks.

The idea of the proof is the following: we show that we can
pair (denoted e—e or I in the example of Figure 4) most of the
blocks to adjacent ones, such that the few remaining unpaired blocks
all have the same parity (i.e. would be the same colour in a chess-
board colouring). Then since in any pairing only one of the two
blocks can be coloured, the maximum number of blocks which can be
coloured black 1s

%(# of paired blocks) + (# of unpaired blocks).

But this number 1s actually attained for the chess-board colouring
which colours all the unpaired blocks black, so is best possible.
Hence a chess-board colouring attains the maximum number of black

squares coloured.

*To show that such a pairing exists, we use induction on the
number of rows (i.e. blocks at a given height). Note that because of

the inequality for the h,6's, each row is completely supported (in the

i

obvious sense) by the row below.
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Figure 4

How the proof works for n = 11 rows (pile heights 1 < 2 < 3 < 6 =6 <8< 9<10<1l=11>10 =

=10>9>8=8=283>6>5>4>2>1)
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The inductive hypothesis 1s as follows: that the n rows can
be paired in such a way that all the unpaired blocks are on the bottom

row, and alternate there with paired blocks.

Proof for n = 1: Start pairing on the left (say). Then at

most one block (the right-most one) will be left unpaired.

Assume the result for n. To prove it for n + 1 rows, we first
use the induction hypothesis to pair the top n rows, such that the
unpaired cubes are in the next-to-bottom row, and alternate there
with paired cubes. Then we pair these unpaired ones with the only
possible candidates for pairing, namely the cubes directly below them
in the bottom row. Next, we pair‘the rest of the bottom row, working
inwards from both sidea. The effect of this {s easily seen to be that
all unpairable blocks in the bottom row alternate with paired blocks.
This completes the induction. (It might be a good idea to see how it

works in the example).

Generalisations This result was applied to a problem of number theory

(JCMN 24, Vol. 2, pp. 130-132). CGeneralisations to higher dimensions
would be useful for this problem, too. In particular, if in Rk we
colour (with the same adjacency restriction) lattice points

(nl. LPYRERE nk), n, non-negative integers with z:=1 Aini <1

(all Ki > 0 and fixed), then it would be of definite interest to
know whether one of the two ‘chess-board' célourings (colour a
lattice point (“1’ N nk) black or white depending on the parity

of ny + ... + nk) always gives the maximum number of black lattice
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points. It is far from certain that this will be the case, although

I have not been able to find a counterexample. The ﬁest I can offer
is a three-dimensional example which shows at least that the pairing
technique, used in the two-dimensional proof, fails for k = 3.
Congider the set of lattice points (nl, n2, n3) satisfying n1 >0,
n1/3 + n2/3 + n3/2 < 1. (See Figure 5). For these lattice points
there is no way of pairing them so that the unpaired ones all have the
same parity. Try it for yourself and see! However, 'chess-board’

colourings do still give the maximum number of black lattice points.

39

Figure 5

Lattice points (n, n,, “3) satisfying n, > 0 and n1/3 + n2/3 + n3/2 < 1.

2
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BOUND VOLUME

Issues 18 to 24 inclusive of the James Cook Mathematical
Notes are now being reprinted in a single volume. Volume 2 will be
available at a price of $5.00 (including postage). Customers in
Australia are asked to send cheques payable to James Cook University.
Those overseas are invited to send any kind of currency of roughly
equivalent value (for example $5.50 (U.S.A.) or £2.60 (United

Kingdom) etc.)
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Basil Rennie is on study leave in Sheffield until October 1981.
In the meantime your acting editor would like to hear from you

about anything connected with mathematics or James Cook, R.N.

* Dr. Chris Smyth,
Mathematics Department,
James Cook University of
North Queensland,
Towmsville, 4811,

Australia.

JCMN 25.



