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THE DREADED ZETA THREE AGAIN

A. van der Poorten

t?coth t dt = ZT 1/nd.

log {(1+v5)/2)
Show that 10 I

[+]

/6 .
Also (288/17) J t{log(2 sin t)]zdt = zl 1/n*.
o

ANOTHER BINOMIAL IDENTITY  (JCMN 19, p.29)
B,B. Neuman

The problem was to show that if 0 < p < 1 and k 1s a positive integer

then

lim N/k}] Ny ik N -1k

Now Limo  legd P C1-P) = k.
To simplify notation let us agree that r, 8 and t, as free or dummy
variables, take values 0, 1, ... k-1, that m is a non-negative integer
variable, that all limits are as N+« and that all congruences are modulo

k. Let u be a primitive kth root of unity.

Pt A, M = 1 (M) Pta-pt TR, then

): uts A(t, N)
t

[}
[a X aus}

I (3) 6*9)"a-n"""

(1 ~-p+ uep)N

which = 1 1f s = 0 and which + 0 if s # 0.

-r t
Therefore ): u e Z ut® A(t, N) » 1, but also this expression =
s t
XA(t, N (1 + Wy 2t T
t

A(r, N) + 1/k, a slightly more general result than the one suggested

+ ...) = k A(r, N). This shows that

which was the case r = 0.
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A ROSE BY ANY OTHER NAME

The computer of the North Queensland Electricity Board, formerly called
FRED (flaming ridiculous electronic device) is to be known as SOLITUDE
(simultaneous on-line interpretative terminals for user data entry-

enquiry).

GRAPHS FOR GROUPS (JCMN 18, p.10)

What are the smallest graphs with automorphism group C,? G. Szekeres

writes that Harary's book “Graph Theory" (page 170) gives

which has 9 nodes and 15 edges. A smaller graph may be found by those

with no prejudice against multiple edges,

which has 6 nodes and 12 edges.

ANOTHER EXPANSION PROBLEM (JCMN 18, p.16)

Alf van der Poorten

1/2

Note that (1 - 6x + x%)~ (1 - z.x(l-x)")"/zl(l—x)

= Jeo" Flll/z)x“(l—x)"““

R RN R R S S N N
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Because (-Io)n (-1/2] - (2:) it follows that the coefficlents bn of

n

the power series are all integers. A more challenging task would be
to show that the recursion
3 -1)3 - 3 _ 2 _ -
n® u, + (n=-1) u . (34n 51ln* + 27n 5)un_l with u, 1
and u, = 5 gives rise to a sequence of integers.

.

ANOTHER EXPANSION PROBLEM (JOMN 18, p.16)

C.S. Davie

-1/2
The question from A. van der Poorten was to show that if (1 - 6x +x?) /

n _n +k
= b, X then the b are all integers and b = Zk=o (E] " X ) and
nb + (n-—l)bn__2 = (6n—3)bn_l-
Because bn is the Legendre polynomial PD(B) the recurrence follows

from the relation (Whittaker and Watson, page 308)

(n+1)Pn+](z) - (2n+ 1)z Pn(z) +n Pn_l(z) = Q.

Also (W. and W. page 311) Murphy's expression for Legendre polynomials
as hypergeometric functions is '

Pn(z) = F(n+il, -n ; 1 ; (1-2)/2),

so that bn = F(n+l, -n; 1l ; -1)

_ ¢ (a+)(@+2)...(a+k) p@-D...n-k+) _gmtk o
- ): k! k! 2( k ) (k)

Since Murphy's expression is perhaps a little esoteric, it mav be worth

giving a direct proof from the formula of Rodrigues:
P_(1-26) = (1/ab) (/40" (c - )™ = (@/an” [} “o* ) PLALYRY
k oy nt+ky k
= 1D (k](k ]t ’

and putting t = -1 gives the expression for Pn(3) =D .

JCMN20,




It is inceresting to consider what can be found about bn without

appealing to the theory of Legendre polynomials, (at all events, explic-

itly). Writing Z: bn X" = f(x) = (1 --6x+x1)_l/2 = (p(x))_l/z, we have
pf'+ %p'f = 0; equating coefficients of ! then glves
ob o+ (n-—l)bn_z = (6n-3)b__,
ny m+k (n+k)t n+ky (2ky | .k mtky-1/2
note that () (%, 7) = @ Tioma (o) (G = 0" (0 )-

We do not seem able to get away from the identity (i}] = (—4)k (~l£2)

do we?

Now take a sufficiently small positive x (in fact 0 < x < 3-2v2 is

sufficient). We try to evaluate § = Z Z (:) F]:k) x" with summation

over 0 S k £ n <®, Add on the terms (all zero) for which -k £ n <k,
and change the notation by putting m = n+k, then the sum is for m 20,

k20, S§=] Z (;1] (uﬂfz) (—lo)k xm—k which is the constant term in

the Laurent expansion of F(t) = § x"(1+1/)™(1-4t?/x)" '

Vi) oxox/e)”

<1/2
(1-4c2/x) / in the region of convergence which is between two circles
in the t-plane, in fact where |t-x?/(l1-x%)] > x/(1-x%) and [t| < Yx.
The constant term is the residue of the function F(t)/t = (t - tx -x)_l

/2

-l
(1-4t%/x) at the simple pole where t = x/(1-x). Theretore

/2 /2

-1 2,41 2y~!
§ = Residue = (l~x) (1-4t%/x) = (1-6x+x°)

This shows that bn has the given expression as a sum of products of

binomial coefficients, and is an integer.

QUOTATION CORNER (2)

Most of the young are not backward, but merely remedial, -— A young
social worker reported in the Townsville Daily Bulletin on 4th July
1979.

111101
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A PARTY GAME (JCMN 18, page 8)

The players in turn add A, B or C to a sequence, and any one complet-

ing a repeated segment of length two or more loses a point.

Letters from V. Klee of the University of Washington and P.J. Campbell
of Beloit College both point out that the game can go on for ever with
nobody losing a point. It is not clear where is or what was the first

proof, but the following references may help those interested.

T.C. Brown, Is there a sequence on four symbols in which no two
adjacent segments are permutations of ome another? Amer. Math. Monthly,
78, 1971, pp. 886-888.

Axel Thue, Uber unendliche Zeichenreihen, Norske Vid. Skr. Mat.-Nat.Kl.,
Christiania, 1906, No. 7, pp. 1-22.

Martin Gardner, The Incredible Dr. Matrix, Scribmer's, 1976 pp. 198-200.

Gardner notes the application to drawn games in chess, which was first

noticed by the mathematician and World Chess Champion, Max Euwe.

The finite Thue sequences on two symbols are as follows

01
01, 10
o1, 10, 10, 01

etc. Each is obtained from the one before by the rule of putting Ol
for 0 and 10 for 1. Each finite Thue sequence contains the one
before as its first half, therefore the limit, the infinite Thue seq-
uence, is well defined. The simplest theorem on the subject is that
no segment (of length one or more) repeats three times consecutively
in the infinite Thue sequence defined above. For a proof, suppose
that a triple segment were to appear, then it would be in one of the
finite sequences. It can be shown that there would have to be a
triple segment in the previous finite Thue sequence. The principle

of induction would then lead to a contradiction.

Thue sequences on three symbols are a little more complicated but use

the same ideas.
JCMN20.
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The transformation taking A to ABC, B to AC, and C to B, leads
to the following finite Thue sequences

ABC
ABCACB
ABCACBABCBAC
ABCACBABCBACABCACBACABCB  etc.

and as before these give an infinite Thue sequence.

Theorem The infinite Thue sequence on three symbols does not contain

any segment (of length one or more) followed by a copy of itself.

Proof. The theorem will follow by induction if we can show that the
presence of a repeated segment in one of the finite Thue sequences
implies the existence of a repeated segment in the preceding finite

sequence. This can be done in eight steps as follows
(1) There cannot be AA or BB or CC or ABA or CBC.

(i1) If a segment x occurs as the image (under the transformation)

of a segment y, then it cannot occur as the image of z # y.

Now we eliminate in turn the six possibilities of a repeated segment,
according to the six possible combinations of first and last letter of
the segment. (The first and last letter must differ, by (1)).

(1i1) There cannot be B x C repeated (where x is a segment, possibly
empty). The possibility of x being empty Is eliminated by
(1). The B of the beginning of the second occurrence of the
segment must be the image of a C in the preceding sequence,
this C must be followed by A or B and so x must start
with A. Therefore xC = A ... C 1s the image of a segment vy,
and the preceding sequence contains Cy Cy.

(iv) There cannot be C x A repeated. The AC from the junction of
the two segments must be the image of a B in the preceding
sequence. The situation may be represented diagrammatically

as follows, the preceding sequence above, and the vertical

bars ghowing where one segment is the image of another

13511 HFHFHHHHHHH
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? u B u ?
C X AC x A

The ? symbol in both places must be A or B, but neither can be B

because that would give a repeated segment in the preceding sequence.

We therefore have to consider if AuBuA 1is possible. If such a

segment were to occur them u wonld be non-empty by (1), and also wu

{th A or B, therefore u is either C alone or
but this is impossible

cannot start or end w

CyC and the segment u Bu contains CBC,
by (1).

v) There cannot be AxB repeated. By (1) x cannot be empty and
cannot end in A. Then Ax = A ... C must be the image of a

segment u and the preceding sequence contains uCuC.

(vi) There cannot be AxC repeated because AxC has to be the

image of a segment.

(vii) There cannot be CxB repeated, for by (1) x would have to end

in A, and the repeated segment would have to be CyABCyAB
which must be followed by C. This is impossible because yABC

has to be the image of a segment.

(viii) There cannot be Bx A repeated because by (1) x would have to
start with C and the repeated segment would have to be

preceded by A, the argument going as in case (vii) above.

This completes the proof.

P. Campbell writes that the method of Morse and Hedlund (Unending Chess,

Duke Math. Journal 11
bols and put

Symbolic Dynamics and a Problem in Semigroups,
(1944) 1-7) is to start with the Thue seqguence on two sym
A where there is 01, B where there is 00 or 11, and C where there is

10, as follows
0110100110010
A B CACOBABTCTBAC
Can anyone explain why this should give the same 3-symbol sequence as

the other method?
T JCMN20.
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ANALYTIC INEQUALITY (JOMN 19, page 29)

The problem was, given £(0, 0) = 0, £(0, 1} = f(l, 0) = 2 and
£(1, 1) =5, to find the largest M such that (somewhere in the square)
(3/3x)° + (3€/3y)% 2 M.

The answer is 25/2. This is clearly a possible value because the
mean gradient of the function on the diagonal from (0, 0) to (I,
is 5/¥2. To show that M = 25/2 is the best (largest) possible value,

one wav is to observe the plecewise linear function
f= S5(x+y)/2 where (5+/14)/11 < (1-y)/(1-x) < 5-/14
f = 3y+2+ (x-1)Y(7/2) vhere (1-y)/(l-x) > 5-/14
£ = 3x+2+(y-1)/(7/2) where (1-x)/(1-y) > 5-7/14

(The contour lines are sketched below.) This function has the same

(scalar) gradient everywhere in the square.

)

The restriction to differentiable functions in the original problem

has no effect on what values of M are permissible.

Another way of showing that this M is the best possible is from the

S SRR EREEESRE
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following proposition.

Let f be a real function on a set F in a metric space, with a
Lipschitzcouditionlf(x) - £(y)] ¢ kd (x, y), where d(x, y) is tze
distance between X and y; then, given any set E containing [,
there is a function g extending f , defined on E, and satisfyicg a
similar Lipschitz condition with the same constant k. This thecren
is a kind of non-linear variation of the Hahn Banach theorem, and it
should be of interest to logicians and civil engineers. For the
former, here is a problem, does the proposition above tmply the

axiom of choice?

The interest to civil engineers arises from the fact that the uppér
surface of the sand or silt on the bed of the sea may be confidently
supposed not to have a large gradient, though we can assume nothing
about the curvature. Neither practical experience nor the theory

of static equilibrium of sand rules out the possibility of a con-
tour line having a sharp corner. Therefore when we try to inter-
polate contours from a finite set of soundings, we need be concerned
only with gradients. There is no obvious best method of fnterpclal-
ing, but it is reasonable that we should in some sense minimize
gradients. The theorem above says that we can interpolate depths
over the whole region without ascribing to the sand anywhere a
gradient greater than that which 1s made necessary by the data, that
is the 1argést of the ratios (difference of two soundings)/{distance
between points). See the contribution "Algorithms Wanted" in JUMN

18, (vol. 2, page 8).

GEOMETRY IS ALGEBRA IS GEOMETRY IS ... (JCMN 18,
Vol. 2, p. 21)

The conjecture was put forward in our last issue that (in three
dimensions) if the four planes through homologous triads of vertices
of three tetrahedra meet in a point, then .the four points of inter-
section of homologous triads of faces are coplanar. This was a
pretty idea but sadly not true. Below is given a counter-example,
tetrahedra A, B and C, each with vertices numbered 1, 2, 3, 4,
JCMN20.
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and with each face pumbered 1like the opposite vertex.

B [} Planes of
three vertices

1 (1,0,0,0) 0,2,2,1) @,1,1,1 (0, 1,-1,0)
2 (0,1,0,0) (1,2,1,1) (2,0,2,1) (1, 0,-1,0)
3 (0,0,1,00 (1,1,2,1) (1,1,0,1) (1,1, 0,0)
4 (1,1,1,1) (2,0,1,1) a,3,2,1) (4, 1,-2,0)

Tetrahedra: A

Vertices:

 Intersection of faces
(1,0,0,-1) 2,1,1,-5) ( 3,1,-1,-4) (r, 2, 1,1

1

2 (0,1,0,-1) (1,1,0,-2) (1,1,-1,-2) (1, 1, o,1)
3 (0,0,1,-1) (2,1,2,-6) (3,1, 1,-8) (3,-2, 1,1
4 (0,0,0, 1) (1,1,1,-%) (-1,1, 1, 00 (O, 1,-1,0)

Faces

The four planes that each contain a homologous triad of vertices
Ai' Bi and Ci for i =1, 2, 3, 4 all meet in (0, O, 0, 1), but
the four points where homologous triads of faces meet are not coplanar.

|
MATRIX NUMBER THEORY (JO¥ 19, Vol. 2, p.39)
Sholander [1] has proved that the most general proper 3 x 3 orthogonal )
matrix with rational elements is
al+pioci-d®  2(ac+bd) 2(ad - be)
A —b——|2(ac - b b2 4+c? -a? ~d? 2(ab +cd)
a® + v+ i+ d? s 2 a2
2(ad +be) 2(cd - ab) b2 +d“~-a"~c
with a, b, ¢, d integers. With the special choice a = 3, b = 0,
c=d=2.
1 12 12 ]
1
A 7 12 -9 8 s
LIZ 8 -9
go that )
12 12 1
M = 8 -9 12
L—9 8 12

gatisfies MPiT =« 17% 1, coatrary to the assertion made in the note.
The matrix A, being symmetric, is an example of a square root of the

jdentity matrix.

[1] M. Sholander, Rational orthogonal matrices, Am. Math. Monthly,
63, (1961), 350.

E.S. Barmes, R.B. Potts.

The editor apologises for his carelessness in the last issue. The

suggestion there can now be revived as follows.

Cconjecture 1. Given any integer vector of integer length, there
exists another of the same length orthogonal to the first. In other

words if a? + b? + c? = m® (all integers) there exlst inlegers X,

2 = p?, The

y and z such that ax +by +cz=0 and x2 +y? oz
three-dimensional result implies that in any other number of dimen-

sions.

Conjecture 2. In three dimensions if two orthogonal integer vectors
have the same integer length m, then their vector product has every

component divisible by m.

There has been some interest in symmetric orthogonal matrices.
(R.B. Potts, Symmetric square roots of the finite {dentity matrix,
Utilitas Mathematica, 9, 1976, 73-86.) The unique proper symmetric

orthogonal matrix with top row a/m, b/m, c/m, 1s

a b c
2
1 b b - bec
m m+a m+a
bc c?
c - m
m+a m+ta

The improper one nay be found by changing the signs of the whole
matrix above and of m. This formula is of no help with Conjecture
1 above, for example 392 = 347 + 14% + 132 but there is no way of
choosing a, b and ¢ as a permutation of 34, l4 and 13 to nake

JCMN20.
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(@mta)af 2

o a éctor of b? and ¢?. Both conjectures are satisfied in
case because (19, -22, -26) 1s orthogonal to (34, 14

their vector product is 39(2, -29, 26) '

» 13) and

SUMS OF RESIXE CLASSES

Givea 2n - T idue classe od n, tan you oose un o em wit
1 residue ¢ g8ses m N choos f th 1

Y h

sur cougruent to zero? This is an 2ld Erdos problem, and 1s on the

tough side.

G. Sazekeres

NATURAL PHENGMENON (JCMN 19, page 29)

Why wa
an: do:nt:: :;::n:ozj :arbed wire in the old fence vibrating slowly up
alm January morning near Blanefield? The

::estion puzzled me until Ann Evans told me the following answer

ere would have been drops of water formed by melting of snow i; h
:::; ::dft::y would fall off the points of the barbed wire. The f:r:t

all would start a small vertical oscillatio .

then the drops would tend to fall off when the wire :a:fo:h:h:i;:;esc

point of its oscil tion
latio » chereby putting more energy into the oscill-

Does the id
e ea lead to a good question in elementary mechanics? A
cke
angs from a length of elastic, rain falls steadily into it

and water dri s from small holes in the bottom at an average rat
ps f e equal

to that of ¢
he rain coming in. Assuming that the drops are small, that

the interval v S ompared
between successive drip: trom one hole is large comp
with the period r v (o4 atio CcKe that
P of free ertical oscillation of the buck t, and
friction is n - v ca
' egligible, show that the semi amplitude of vertical
oscillation of the bucke s - -
( / )
t is L(1 exn t/T) where L is the 1ength of
. F ulum with fIEQUQHCy the same as that of vertical oscillat-
ions of the buck d 0 collect
et, an T 1is the time taken for the bucket to coll

an amount of ra
in equal to the average mass of the bucket and wat
er.

EEERRRRARRERRR N

.

GOME MATRIX POLYNOMIAL QUESTIONS — (JON 18, p.i2 and 19, p.31)

The question was asked whether 1f B commutes with the non-degenerate

" Some readers have

matrix A, them B must be a polynomial in A .

expressed doubt about the meaning of the word "degenerate', your editor

takes it to mean "having two eigenvalues equal but has not been able

to find an authoritative book to support him, the nearest is G. Arfken's

"Mathematical Methods for Physicists' where the word is used in this

sense to describe self-adjoint operators in Hilbert space.
We might re-cast the problem as follows. what conditions on & square

sufficient to ensure that every matrix B comuuting

matrix A are
A (that is AB = BA) is a polynomial in 47 1Is it sufficient that the
0 1) has the

eigenvalues of A be all unequal? Note that A= (
0 0

with

property that every matrix B commuting with A is a polynomial in A,

in fact B =b,, I + blz A, but A 1is degenerate, having repeated

eigenvalue zero.

In the case where A 1is diagonal with unequal eigenvalues we can

answer the question whether every matrix commuting with A 1is a poly-

nomial in A . For in fact AB = BA will imply that B 1is diagonal and

vice versa, so that the set of all marrices commuting with A is

precisely the set of all diagonal matrices, which is the set of all

polynomials in 4. On the other hand 1f A is diagonal with a palr

of equal eigenvalues then it does not have the property, for we cun

find a diagonal B not & polynomial in A.

A that can be

similarity transformacion A= TAl DT

The result can be extended from diagonal A to any

made diagonal by a (where D s

diagonal and T has an inverse).
See the contribution "Commuting Matrices"

There remains the questlon of non-

diagonalizable matrices.

on the next page.

JCMN20.
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COMMUTING MATRICES

H. Kestelman

Take integers m and n both 2 2, define the (m + n) X (m + n) matrix

A = 0 1 0. ... In other words
o ot ay = 1 f L+ l=3#m+1
. c 1 0
= ¢ 1if m<i=}
c
0 c = 0 otherwise.

Show that if ¢ # O then every matrix B commuting with A must be a

polynomial in A, but that if c = 0 this is not the case.

BASIC CALCULUS (JCMN 19, Vol. 2, p. 32)

Does n f (x/n) + x imply that f(x)/x + 1?7 The answer in general is
NO. Set g(x) = £(x)/x. If we know that (for each fixed x) g(x/n) »
1, then does it follow that g(x) + 1 as x + 0? Take a rationally
independent sequence a,, 8,, ... in the interval (1, 2) (so that no
member of the sequence is a rational multiple of any other). For
instance the powers of e or ¥ reduced (mod 1) to the interval (1, 2)
will do. Define g(x) = 1 + kx for x any rational multiple of a
and g(x) = | for any other x. Then for x = r a, with r rational,
g(x/n) = 1 + kx/a + 1 as n *> =, but g(ak/k) =1l+a > 2. Since

ak/k + 0 as k +» it follows that g(x) does not tend to any limit as
the real variable x tends to zero. I am sure that with some non-
elementary effort one could even comstruct a continuous (though of

course non-rectificable) f(x) = x g(x) giving a counter example.

G. Saekeres

A similar answer has come in from 4. Keetelman.

RECYCLING CONTAINERS
R.B. Potts and J. van der Hoek

A crushed beer can of varying cross-section (but with no holes) is

S SxaliRRERERER
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gradually filled with a non-frothy liquid, When is the centre of wuauns

of can and liquid at its lowest point?

INTEGRAL CALCULUS (JCMN 18, page 13)

J.B. Parker

The problem was to show that

T 7
1 l—cosmxcosmxdxdy_l+_l_+‘_.+
27T 2 -~ cos x - COsS ¥ 3

o

[}

We must consider

mow
7 = 1 I J cos{(m~-1)x cos(m-1)y — cos mx cos @y 4. dy .
2n 2 - cos X - COS Y
o ©

First notice that putting T - x for x and 7 - y for y leaves the
integral unchanged except for replacing each minus sign by plus in the

bottom line of the integrand. Also

1 1 - 4 - 1
2-cosX —cosy * 2 +cosx +cosy 4-(cosx+cos s l-cos? x—+21coaz x;!

With a trigonometric substitution in the top line this leads to

T T
8mJ = cos (m-1) (x+y) + cos(m~1) (x~y) 2— cos m{xty) - cos m(x_-y-ldxdy
1 - cos?(x+y)/2 cos®(x-v¥)/2
o ‘o
n
Now change the variables by 2u = X-Y
and 2v = x +y, the Jacobian is 2, and
the region of integration becomes as u
shown.
ol = sin(?2m- Du sinu_+ sin(Pm- 1)v sin v du dv

2 2
1 - cos“u cos™v

The integrand is unaltered i1f we replace u by -u or Vv by T-v, and

A
therefore by putting in a factor v

4 we may change the region of _12_r
integration to the triangle

where 0 < u < v < 1/2.

JCMN20.
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Next, as the integrand is symmetrical

n/2
between u and v we may take the inte-

gral over the square where 0 <u, v<7n/2

if we put in a factor of 1/2. S

Then, again using the symmetry, we may /2

omit one of the two terms and-put in a factor of 2. And finally we

come to
ﬂh ﬂy;

(m)ng ] Mﬂ:l_)u_sin_ud;,dv,
(+]

1 - cos?u cos?y

1-cosu cos?v

2 o«
- sec’v dv = dt - m
; 1+ tan®v - cos?y sinu + t2 2 sin u
o

Wz
J -J sin(Zm~1)y du = 1/(2m-1)

[+]

MISTAKES IN OUR LAST ISSUE

On page 31, line 3, in the list giving the known Mersenne primes, the
number at the end of the line should be 44497, not 4497.

On page 35, lime 3, the equation B? = 8 + 2 should be amended to
B =B+ 2,

On page 39, line 6, the rational orthogonal matrix should be described
as n X n, not n X m.

The mistaken assertion on Page 39 about the integer vector (12, 12, 1)
has been corrected in the note (page 56) by E.S. Barmes and R.B. Potts,
and G. Szekeres also gave the vector (-8, 9, -12),

Mistakes are being corrected for the reprinting in Volume 2.

IR N RINNNNNREEERD
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ANOTHER BINOMIAL IDENTITY (JCMN 19, p. 29)

V. Laohakosol gives a solution rather like that of B.B. Newman above,
(page 47) and comments that the case p = % is closely related to a
result (problem 7) given in J. Riordan's book "An Introduction to
Combinatorial Analysis", pages 40-41.

ANOTHER EXPANSION PROBLEM (JCMN 18, p.16
and 20, p.49)

A.P. Guinand

This problem of A. van der Poorten was about the coefficlents in the
expansion (1 - 6x + x )_% - Z bn x". They are the Legendre polynomials
Pn(3) for which the recurrence relation is well known. The expression
b = 22 [:)(rltk')is obtained from equation (3-135) in Gould's book
(reference below). Last week I programmed my HP97 to calculate the
coefficients and I attach the result, with written in supplements

because the machine gives only 10 figures. This led to some conject-

ures.
n Pn(3)
0 1.
1 3.
2 13,
3 63.
4 321.
5 1683.
6 8989, -
7 ' 48639.
8 265729,
9 1462563,
10 8097453.
11 45046719.
12 251595969.
13 1409933619.
14 7923848253.
15 44642381823,
16 252055236609.
17 1425834724419,
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(a) All the coefficientg are odd.
(b) They are alternately congruent to 1 and -1 mod 4.

(c) The bn modulo 2k+l have periodic residues with period 2k
(which reduces to (a) and (b) for k = 0 and 1).

(d) Forn 29, bn is a multiple of 3.

(e) From n = 5 onwards the last digit repeats 3, 9, 9, 9, 3.
Some of these questions can be answered easily from the book

of Gould's mentioned below.

Reference: Combinatorial Identities, by H.W. Gould,
revised edition, privately published at Morgantown,
W.Va., U.S.A., 1972,

QUOTATION CORNER (3)

I was able to put my hand on the tiller and everyone fell in behind.

"Northern Churchman" September 1979, page 12.

Your editor would like to hear from you anything connected with

mathematics or with James Cook.

Prof. B.C. Rennie,
Mathematics Department,
James Cook University of
North Queensland,
Townsville, 4811,

Australia.
JCMN2Q.



