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 ANOTHER IDENTITY FOR BINOMIAL COEFFICIENTS
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The origin of this may be of interest. Some calculations in fluid mechanics

using Legendre polynomials indicate that .j;l (u) du  ought to be equal to
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the binomial coefficient ( ). but Rodrigue's formula shows that the

)/(2714-1). The identity can of course be slogged

out, but is there an elegant way?



INTEGRAL ROOTS

2

For what values of a and b do both the quadratics =z + ar + b = ¢ and

=2 + bz +a =) have both roots integral?

C.J. Sruth.

A NEW PROOF OF A THEOREM OF SCHUR

by ¥. Kestelman

The following result is due to Schur (Amer.J. Math. 67, 1945, p.472)

- ’

Theorem Every complex symmetric matrix - can be written 4 = ¥J+~ where &

is unitary (WW* = I) and D {s real diagonal. Also AA* = WD?W*,
Proof. The first step is to show that there is a non-zero column vector v
and real X satisfying Av = Ap. If 4 =3 + i C with B and C real and
symmetric, this will follow if the symmetric matrix (B -C) has a real

-C -8

eigenvalue, which is of course true. 3

Now assume that the proposition holds for all Xk x k matrices, and take any
symuetric (k + 1) x (k + 1) matrix A. Choose U as above and then a unitary

matrix U whose first column is v.

Since 4¢' has Ay for its first colum it follows that

Fav = A g
0 x

where 1 is some row vector and X is x X k. Since vFAU 1is symmetric it
follows that ¢ = ¢ and Y is symmetric. By the induction hypothesis
T

X = (7

where Z is unitary and T is real diagonal. Hence

COC A D

Now set W =1 (1 0) and the formula A = WDW' follows. Finally

A

0 2z

AA* = WDV'TP-DV‘ = WD?W*. Exercise for the student. Prove that 1f A {is
symmetric n X n with eigenvectors spamning & A= SZDQT where ” is

diagonal and QQT = I,

-

RANDOM FIGURES (JON 15)

Independent random variables x and y each have a Gaussian distribution
with mean zero and variance one. Let A(n) be the area of the comvex hull
of a sample of n points (x, y). What is the distribution of A(n)? The
following considerations give a rough answer for large n.

Taking n very large, define R by R?exp(R%/2) = n, and put h = (3/R) log R.
Then R will be large and h small. Given a sample of n points, the expected
number outsile a radius R from the origin is n f: rexp(—r2/2)dr -

n exp(-R*/2) = R?. The expected number outside the radius R + h is
n exp(-R*/2 - Rh - h?/2) = (1/R) exp(-h?/2) < 1/R.

There will be a large number of points (about R?) in the narrow annular region
at radius between R and R + h from the origin, and probably none outside 1t.
The convex hull is probably roughly circular, with area between TR? and W(R+h)2.
For large n these values are about 2m(log n - log log n) and (2 log n +

log log n).

IRREDUCIBLE POLYNOMIALS

Is it possible for one root of an irreducible polynomial (with rational
coefficients) to be the mean of two others?

C.J. Smyth

SUMS OF SQUARES

George Szexeres has shown that the information in Sierpinski's Theory of Numbers
on sums of four squares leads to every number from 2809 upwards being expressible
as the sum of squares of five distinct positive integers. What is the largest
number not expressible in this way?

John Mack

NON-NEGATIVE MATRICES

Consider real rectangular matrices A(m X n) and B(nxm) in which all elements
are non-negative. If for some positive integer k the product (AB)k has all
elements positive, what extra conditions on A and B are necessary and suff-
icient to ensure that there is some positive integer h for which (M)h has all
elements positive? (This is for first year students.)

H. Kestelman



AN ELEMENTARY PROOF OF MORLEY'S THEOREM

by E.C.G. Sudarghan (University of Texas at Austin)

Let ABC be any triangle., Let the adjacent trisectors of the angles meet
pairwise to form the triangle UW. Then, UW is equilateral.

Let d = 2R be the diameter of the circumcircle of the triangle ABC.

Then BC = d sin A; CA = d sin B; AB = d sin C.

In triangle WAB

wAB=1a wBA-33 AB = 1805 - 3 (A +B)
A - d sin C. sin B/3
AW = sin WBA. AB/sin AWB = ~ein IBY/3 (1)

d sin B sin C/3
sin (A+C)/3

AV
We can simplify using
sin 38 = gin 6(3 cos’H - sin?B)

= 4 sin e(—?cose-%lin E)(iz‘.’-cose-&%sm 8)

4 sin 6 sin(60° + 8) sin(60° - %)
sin(60° - €/3), so that sinC =
4 sin C/3 sin(60° + C/3) sin(a+B)/3.

and sin(A+B)/3

4d sin B/3. sin C/3. sin(60° + C/3) = d' sin(60° + C/3)
where d' = d sin B/3 sin C/3.

Similarly AV = 4 d sin B/3 sin C/3. sin(60° + B/3) = d' sin(60° + B/3)

60° + B/3 ' = 60° + C/3 then B' : ¢ . g0°

From (1): AW

Put B’ _A
6
AV =4d' gin B' AW = d' sin C'

(oontinued overleaf)

w2 = d'? {81n?B' + 8in?C' ~ 2 sin B' sin C' cos

Wik

{ \
J
- ar? { (08 MY (g bt - etn c'p + (L8 N3 o8 M3
(sin B' + sin c')‘}
- Iod'z{cosz % cos? (—B';C'] sin? (_B';C') + linz%

sin? (B';C'] cos? FB“_;C_'}}

_ot v_pt
szC +w81320 )

2 A 24
= 44’ sinzg cos’g (sin

= {a' sin'—;)z
A B c
or w d sin 3 sin 3 sin 3

Hence UV = W = WU and so UW is equilateral.

BIGGER EIGENVALUES

Notation. Write A 2 0 if the matrix A has every element 2 0, similarly
> 0 if every element > 0.

Problem. Suppose that A and B are umequal real square matrices and
0<£A<B and B > 0. If u is any eigenvalue of A show that B has a
real eigenvalue > |u|. ~

It may be observed that Theorem 28 in §41 on page 83 of Beckenbach and
Bellman's Inequalities is similar to the proposition suggested above but

assumes more and proves less.

8. Kestelmgn

NOT QUITE ORTHOGONAL

Suppose that the real n X n matrix A 1is such that AA' « D and A'A = E
are both diagonal, prove or disprove that D = E.
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PLEA FOR HELP (JOMN 9)

X H
The textbooks tell us that expressions like )( e " dt and rgtdt are

' ‘1t
"non-elementary” integrals. In this note we look at how this is precisely

defined, and sketch how one can show such facts by reasonably direct methods.

The original theory of non-elementarv integrals was developed by Liouville in

the 1830's. His proofs used analytic techniques. This account is based on an
algebraic treatment of Rosenlicht (Pacific J. Math. 24 (1968), 153-161).

First of all, we define a 'differential field' F to be a field containing the
complex numbers, together with a map D:F-+F satisfying D(fl+fz) = Df, + Df,,
D(f,f,) = £,Df, + ,Df , forf, f, ¢ F.

Suppose we want to know whether a function f has an elementary integral. We
define Po to be the smallest differential field containing f, so e.g. if
2

-2

_,2
f=e ", Po - C[z, e ), while 1f f = e’ log z, Fo = c(z, log 2, e? log z).

Here we take D-i.
dz

We then produce an ascending sequence ("'tower") of differential fields

l"ocF c...c F,, where fori =0, ..., N-1 either

(a) F - Fi(u)' where u € Fi-n satisfies a polynomial with coefficients in F,,

i+1 i
or
(b) F1+l = F1(1°8 “1) for some u € Fi'
or
- ’
(c) F1+l Fi(exp ui) for some u € Fi'

Here log u, is an element of F with D(log ui) = Du,/u,, and exp u, is an

i+ 1771 i

element of Fi-H with D(exp ui) = Dui exp u,.

We then say that our function f € Fo has an elementary integral if there is a

differential field FN constructed in the above way, and a y € FN with Dy = f.

The essential result is that if Dy = f ¢ Fo, then

n
fa cif“_1_+nv, n

i=1 uy

where the ¢y € € are linearly independent over ¢, and the uy and v belong to F .

The proof of this result uses induction ¢n the number N of extensions in the
tower. (Trivial if N = 0). The induction hypothesis allows us to assume that

-7-

the result is true for the tower F, <...C Fy (i.e. N ~ 1 extensions), so
that we can assume that (1) holds with the u, and v 10 F, = Po(t) say.

To show that in fact these elements lie in Fo' Rosenlicht first shows by
direct methods that they must be polynomials in t over Fo , and then that
we can assume that these polynomials do not in fact contain t. The argument
is complicated, or at least lengthemed, by the need to consider the three
possible types of extension F,/Fo ~ finite (1.e. type (a)}, log and exp. .
(The paper is by no means difficult, however, and could be digested in an

evening).

The result (1) has narrowly restricted the form of these f with elementary

integrals. Using it, results such as the following can be prowved:

Theorem: Let g(z), h(z) be rational functions of z. Then h(z) exp [g(z))
has an elementary integral iff there is a rational function a(z) satisfying
h = Da+ aDg.

Applying the theorem to e-zz, we ask whether there is a rational function a(z)

with 1 = Da - 2za. Expanding a as a polynomial and a sum of partial functioms,

a(z) = p(2) + ] oy » we see that no such a exists. The same applies to
(z--cx:l)“1

z
e? , which gives rise to the equation % = Da x a. Hence the integrals of both

-22 z
and ¢  are non-elementary.
z

C.J. Smyth
THE FRIENDSHIP THEOREM (JCMN 15 and 16)
If every two people have just one common friend is there somebody frieand to all?

Suppose that there are N people satisfying the condition that any two have just -

one common friend. Then:

Theorem 1 . Either one person is a friend of all the others or N = nl+n+l

(for some integer n) and everybody has n+1 friends.

Geometrical proof: let A= (au) be the matrix of friendships, that is
19 - 851 =14f { and j are friends.v and = 0 otherwise. Consider A as
an incidence matrix of points and lines, the points being the rows of A and

a

the lines the columms. Then it follows that:
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1) There is one and only one line through two distinct point, and
2) There is one and only one point common to two distinct lines.
I1f in addition there is nobody a friend of all the others then

3) There exist four points, no three of which are on a line.

These are the three axioms for a projective plane (Marshall Hall: Combin-~
atorial Theory, Waltham Mass., Blaisdell, 1967. p.173). Consequently, if
the set of points is finite, we must have, for some integer n, exactly
n? + n + | lines and points each incident with exactlv n + 1 points and

lines (op. cit. Theorem 12.3.1, p.173).

Graph theory proof. This is much longer, and so we just state the three

lemmata which together make up the proof.

Lemma 1. I1f p and q are two friends and r their common friend and

if they have x + 1, v + 1 and z + 1 friends respectively, then N-1 = xy+z.

Lerma 2. Of the three numbers x, y and z of the previous lemma, either

they are equal and N = x2 + x + 1, or two of them are 1 and the other N - 2.

Lemma 3. There are only two possibilities, (a) all but one of the

people have just two friends and the other has X - 1, and (b) all the people

2

have the same number n + 1 of friends, and n“ + n + 1 = N,

Now that Theorem 1 is established we continue.

Theorem 2. The relation ¥ » n? + n + 1 camot hold except in the trivial

cases of N =1 and N = 3.

Proof A = a+l 1 1
1 n+l 1

has the simple eigenvalue X 4+ n = (n + 1) and the eigenvalue n with

2

multiplicity N - 1 = n? + n. The efgenvalues of A must be:

n+ 1l (simple)
vn (multiplicity t)
-v/n (multiplicity N-1-t = n?+n-t)

The sum is the sum of the diagonal elements of A which are all zero.
) n+l+2tyn = n(n + 1)vn
Therefore 2t = a(n + 1) = vn -~ 1//n which is not an integer except when

n=1,

This proves the Friendship Theorem in the finite case. For an infinite number
of people it is untrue, for let people be lines through the origin .in E,, and
let your friends be those that are perpendicular to you.

M.J.C. Beker

AFTER TEA MATHEMATICS

In Ramsay's Hydrodynamics (Section 9.84, page 247) is quoted the following
passage from the epoch-making 1858 paper of Helmholtz in Crelle's Journal,

volume 55.

"We can now see generally how two ring-formed vortex-filaments having
the same axis would mutually affect each other, since each, in
addition to its proper motion, has that of its elements of fluid

as produced by the other. If they have the same direction of rotation
they travel in the same direction; the foremost widens and travels
more slowly, the pursuer shrinks and travels faster, till finally if
their velocities are not too different, it overtakes the first and
penetrates it. Then the same game goes on in the opposite order, so

that the rings pass through each other alternately.

If they have equal radii and equal and opposite angular velocities,

they will approach each other and widen one another; so that finally,
when they are very near each other, their velocity of approach becomes
smaller and smaller, and their rate of widening faster and faster. If
they are perfectly symmetrical, the velocity of fluid elements midway
between them parallel to the axis is zero. Here then we might imagine
a rigid plane to be inserted, which would not disturb the motionm, and

so obtain the case of a vortex ring which encounters a fixed plane.

In addition it may be noticed that it is easy in nature to study these
motions of circular vortex rings, by drawing rapidly for a short space
along the surface of a fluid a half-imersed circular disk, or the
nearly semi-circular point of a spoon, and quickly withdrawing it.
There remain in the fluid half vortex rings whose axis is in the free
surface. The free surface forms a bounding plane of the fluid through
the axis, and thus there is no essential change in the motion. These
vortex rings travel on, widen when they come to a wall, and are
widened or contracted by other vortex rings, exactly as we have

deduced from theory."

One of the minor pleasures of the tea table is to make two such vortex half-rings
with your teaspoon and to see the second ring overtake the first. Unfortunately
I have never had a cup big enough for the first ring to gather itself and start
seriously to overtake the upstart. Now, after lecturing on the subject I have
had to conclude that I was wrong about it all. The disturbance in a perfect
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liquid produced in this way by a plane semicircular spoon or padile (assuming
the free surface constrained to be horizontal) is not in fact 2z vertex ring.
The vorticity in the fluid after the spoon is removed is not cincentrate? in

the semicircular rim, it is spread in a sheet over the half-disc.

This motion has the property that it will travel unchanged througn the liquid
after the disc has been taken away. One might imagine that the velocity
potential or the Stoke's stream function would be expressible fairly simply in

terms of Legendre polvnomials, but such a result has eluded -e.

NONLINEAR AERONAUTICS
A.A. Richardsor. points out that to carry the largest possible case on Trans-

Australian Airwavs you must maximize xyz subject to 0 S x S 50, 0 £ v < 38,
0zzs< 20 and x+y + 2z S 100.

WILL THE REAL GRAM SCHMIDT PLEASE STAND LUP?

If v, v, ..., v are column vectors in Cn, q < n, such that viv =38
1 2 q r s rs
T
£ £ 5
when 1 r, 8 q, then vq+1 cees v exist such that Ve vs = “rs when
1$r,s $n.
I, Zestelman.

COVERING WITH TRIANGLES (JOMN 15)

Here is an alternative approach to the calculation of how manv triangles cover
the centre of a regular (2k + 1) gon. For each such triangle pick out the one
side (call it the base) such that the point Ao is either at the clockwise end

o of the base or is on the part of the circum—

ference of the polygon cut off by the base.
The number of sides of the polygon cut off
by the base (call it n) mav be 1, 2, 3 ... k
(triangles with n > k cannot cover the centre).
If n = 1 there is only one possible base,

° Ao Al ’
centre, for the third vertex must be Ak+1' If n = 2 there are two possible

and only one triangle covering the

bases, Ao A2 or Az A , and for each of them there are two possibilities for

k 1’
the third vertex, this gives 22 - g triangles. 1In fact for each n there are

n possible bases and for each base there are n choices for the third vertex to

—ake the triangle cover the centre. This shows that the number of triangles

covering the centre is 12 + 2° + ... + k2.

4.0, Davies

COVERING WITH TRIANGLES III

Two nonagons are illustrated. The regular one has regions covered by

7, 12, 15, 16, 17, 20, 21, 23, 24, 26, 27, 28, 29, 30 triangles. The other
one has regions covered by 7, 12, 15, 16, 17, 20, 21, 23, 24, 25, 26, 27,
28, 29 triangles. This shows two things: first the various thicknessas
that occur and in particular the greatest thickness depend on the arrangs-
ment of the points; and secondly it shows that the thickness of covering
can go down in the middle. For in the second nonagon the cemtral triangle
is covered 27 thick, the regions just across ite sides 28 thick, and the
regions diagonally across its vertices 29 thick.

I find that the quickest way of counting triangles is to consider the change
in covering as you cross a line joining two points, say A and B. The only
triangles you leave are As ABP with P on the hither side of AB, and the

only ones you enter are As ABQ with Q on the further side. Thus for instancs
in the nonagon you can change thickness by 7 (at the outside omly), or 5

or 3 or 1. This argument shows that for an even family of points the

triangle covering is everywhere even.

I guess a) that the above numbers give the. only thicknesses that cam occur
with nonagons (whether the nine points are all extreme points of the convex
hull or not) and b) that the regular polygon gives the thickest covering.

M.J.C. Baker.




CONVEX N-GONS WITH EMPTY INTERIORS

Zuzi Norrie (Umiversity of S:ey)

1t is an unsolved problem whether, for any given n 2 3, there exists a
number C(n) with the property that givem C(n) points in the plane, no
three collinear, one may find a convex n-gon with its vertices at n of

these C(n) points and such that no other of these points is in its interior.

For n = 3 the result is trivial, and it is known that c(4) = 5. C(5) was
known to exist, but it has only recently been shown that, in fact, C(5) = 10.
The proof giver below was found independently in the course of solving Problem

10 of the 1978 Sydney Universitv Mathematical Society's Problems Competition.

We wish to show that given 10 points in the plane (no 3 collinear), we can
always find 5 which are the vertices of a convex pentagon, such that none of

the other points lie in the interior of the pentagon.

The proof described below is based on a division of the problem into 19 cases,
and then finding solutions for each individual case. This makes for a fairly
long and tedious proof, so in the following, I will merely describe how the

cases arise, and then give some examples of the individual proofs.

If we have a set of N points in the plane, we can form their convex hull in
the usual way. Lf we remove the vertices of that hull, we can form the convex
hull of the resaining points. Proceeding in this way through all the points,
we get a nested sequence of convex polygons. We can describe any gi\‘ren config-
uration by a sequence
(n), T,y ooo» “k)

where the outer huil is an n, -gon .

the next hull is an n,-gon

etc.

The conditions on this sequence are that

Enl =10 and

ny > 3 for all i except possibly the last.

It is easy to show that there are exactly 19 possible sequences:
(10) (9, 1) (8,2 (7,3 (6,4 (5 5 (4, 6) (3,7
6, 3, 1) (5 4, 1) (4,5,1) (3,68, 1) (5, 3, 2) (4, 4,2
(3, 5, 2) (3, 3,4 (4, 3,3 (3,4, 3) (3,3,3, D

These configurations of ten points correspond to the 19 different cases of
the proof.

I shall now give 2 examples of the proofs, proving the existence of an empty

convex pentagon (ECP) for the configurations (4, 4, 2) and (3, 3, 3, 1).

Notation: In the following,

3 denotes a point of the innermost hull
bi denotes a point of the 2nd hull

[« etc.

(i) (4, 4, 2).

Draw the line £ though 8, and a,. If it cuts the quadrilateral

b, b, b‘ b, in adjacent sides, we are done (see diagram 1). Otherwise,
2 cuts the quadrilateral in opposite sides. Then divide the part of
the plane outside the quadrilateral into four regions, A B ¢ and D

as shown in diagram 2.

If there is any one of the points c¢,, ..., €, in A or C, we are
done (e.g. pentagon P, in the diagram). If there are 2 or more points
in either B or D, we again have an ECP (e.g. pentagon P, in diagram) .

But we have to distribute the 4 points c¢,, ¢,, ¢,, c, amongst A,8,C0,

and sc one of these cases must occur.

Diagram 1




(ii)

(3, 3, 3, .

Divide the plane outside the triangle b,_ bz b, into three regions
R1 ({ =1, 2, 3) using the rays ab, (1=1, 2, 3). If any of these
regions contains two of the three points CH we have an ECP. (e.g.
Pentagon P, in diagram 3.)

Otherwise, each of the regions R must contain exactly one of the points
ey Using these points, divide the plane as shown in diagram 4.

The region A for instance is bounded bv the bent line c, l::1 c,-

If any one of A B and C contains twe cf the points d1 then we have an
E.C.P. If one of the regions con:tained three points, then the triangle
d, d; d, would not contain ¢, c, ¢, : therefore each of A, B, C contains
one of the points d1 , and the intersections A N B etc. do not contain
any. But if for instance B were tc contain d, as shown in diapram 4,
then ¢, b, a b, dy would be an E.C.P. This disposes of all the poss-
ibilities for case (i1) of (3, 3, 3, 1).

Diagram 3
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INACCURACIES IN A RESISTANCE NETWORK

P.A.P. Yoran and B.(C. Rennie

Suppose that n electrical resistors are to be connected as a network with
two external terminals, the resistors have nominal resistances of R’: ohms
(i =1, 2, ..., n) but owing to inaccuracy of manufacture their actual

resistances are Pi Ri where the Pi are random variables. The errors are
assumed small, so that second order terms in them can be ignored. What is

the error in the resistance of the network?

Given a fixed input current, the currents in the network are given by
Kelvin's theorem, as follows. Of all the current distributions that satisfy
the conservation law, the actual one, the one that satisfies Ohm's law, is
the one that minimizes the total heat generated.

Suppose that with a unit input current the nominal currents in the various
resistors are Ci - The nominal network resistance R is equal to the nominal

rate of heat generation, that is

= 2
R=J]cC*R .

The actual resistance is the actual rate of heat generation, which (because
it is a minimum) we may calculate from the nominal currents instead of the

actual currents, that is

where Ei is the (nominal) rate of generation of heat in resistor i when the
network input current is ome unit. Since ) Hi = R = H is the total heat
generated with nominal resistance values and with unit current input the
formula above may be written P = Z Pi (Hi /H), or expressed by saying that
the percentage error in the network resistance is the weighted sum of the
individual percentage errors, weighted in proportion to the heat genérated

in each resistor.

QUERY POSITIVE DEFINITE
by P.A.P. Moran

Given n disjoint spheres in three dimensions define a real symmetric matrix

M as follows; each diagonal element Mo is the reciprocal of the radius of
sphere r, and the off-diagonal elements are given by "'rs = mar = the reciprocal
of the distance between the centres of spheres » and 8. Is this matrix
positive definite?
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EASY ALGEBRA (JCOMN 16)

There are polynomials of degree 6 but no lower of which each zero is the '
sum of two others, for instance z® - 1 or generally the polynomial with )
roots ta, *b and *(a + b). A less easy problem is to find a polynomial ;
of lowest degree with the same property of each root being the sum of two
others and also with no two roots having the same modulus. One suggestions
is tﬁe polynomial with the following nine roots:

7, 5, 3, 2, -1, -4, -6, -8, -10.

J.B. Parker
ONE PER CENT PERSPIRATION

Find the last hundred digits of 404!

C.J. Smyth

DOUBLY STOCHASTIC MATRICES (JCMN 15)

Are doubly stochastic matrices diagonalizable bv a similarity transformatic

Answer: NO.

Let M= 1 1+ 22 1 -2 1 -2
3 1-2A+24 1+2i-u 1-Xi-uy
1 -Xx-2u 1 - X+ u 1+ 22+

L)
The row-sums and column-sums are all equal to 1, and for sufficiently small
A and u all elements are positive and so M is doublv stochastic. The

orthogonal matrix

P = 1//3 0 216
1/v3 -1/72 -1/v6
1773 1//2 -1/v6
makes P 'MP = 1 0 0 ‘
Y -2u/3 o
0 A

which clearly camnot be diagonalized. Alternatively (a special case of ths

above) just note that 1/3 1/3 1/3
2/3 1/6 1/6
0 1/2 1/2

has a zero as & double

eigenvalue but the corresponding eigenspace is only one~dimensional.

Z.0.G. Sudarehan.

CABLE LIMIT

Define g(x, y) for 0 < x <1 and y >0 by

%
y8(x, y) = x¥/y - log(l - x) - , Y7 - v,
(]

What can you say about the behaviour of g as x + 1 and y + 0?
This problem arose in a study of electric cables.

Z. Kestelman.

THE DAUGHTER OF TIME

In A.S. Ramgey's Hydrodynamics, (Fourth Edition, 1935) there is quoted on
page 90 the following question, ascribed to the University of Londom, 1911.

If q 1s the resultant velocity at any point of a fluid which is mowving

irrotationally in two dimensions, prove that
My, (ap . 2
(%) + (5 q ¥ q.

The suggested proposition is untrue (fbr instance take u = 1 + x, v = 0),

perhaps the examiner forgot to specify incompressibility.
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AN ELECTRICAL CIRCUIT (JOMN 15)

An electrical circuit is made from the n-dimensional Cartesian lattice

points by joining each adjacent pair with a one-ohm resistor. What is the
resistance of the circuit between two adjacent points A4 and B? The .
answer is 1/n ohms. To prove this, first comsider unit current going in

at point ‘A and dispersing to infinity, the voltage drop from 4 to B {is

1/(2n) beceuse equal currents must flow in all the 2n resistors joined to

A. Now consider unit current coming out at B, again there must be a voltage

drop of 1/(2n) from A to B. Superimposing the two current patterns (as we

may because Ohm's law is linear) we see the required result,

For the two dimensional case an amusing proof has been circulating for some
years in the folk-lore of circuit theory. Replace one of the resistors by

a two-volt battery with one ohm of {nternal resistance. Then all the compon-
ents are self-dual and so the circuit is self-dual, so that the battery
current and voltage must be equal, therefore both one unit.

READ ANY GOOD BOOKS LATELY?

We would be glad to publish book reviews, asking only that they be not too
specialised for the majority of readers.

OUR COVER PICTURE ’

Do any of our readers know the artist?

If 80 please offer our thanks for his picture, and explain that we copied 1t
from a Christmas Card. While having great respect for the laws of copyright, ;
it is often hard to do anything about them.

Your ecditor would like to hear from you anything commected with
mathematice or with James Cook.

Prof. B.C. Remnie,
Mathematice Department,
James Cook University of North

Queens land,
Townsville, 4811,
Australia.
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