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Our cover picture was taken from a stamp, issued by the U.S. Postal Services to mark
the 200th anniversary year of Capt. Cook's arrival in Hawaii and his visit to Alaska

in 1778. [The seascape depicts Capt. Cook’'s ships, HMS "Resolution' and HMS "Endeavour',
anchored in. Hawaii. It is based wpon a line etching by Johm Webber, an artist who
travelled with Cook, entitled "A View of Karakekooa in Owyhee". We are indebted to
Prof. J.D.E. Konhauser for sending some mint copies of the commemorative stamps.

AN EXPANSION PROBLEM

Given the positive integer m, does there exist non-zero k such that all the

/m

coefficients in the power series for (l—kx)1 are integers?
E.0. Tuck

INTELLIGENCE TEST (JCMN 15)

Why is the knob on my washing machine marked dwnd? Perhaps the answer had to come
from an Australian geometer who lives in the opposite hemisphere. A.P. Guinand writes

that d@md~" = pump.
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RIEMANN ARE YOU THERE?

The function l—zn—(l—z)n for any positive integer n 2 2 clearly has just two
real zeros, 0 and 1. But do all the complex zeros have real part = 1/2? To save
you spending too much time om it, the solution is given on the back page, but

promise not to look until you have made your guess at the answer.

QUADRATIC FUNCTIONS

Let f be an infinitely differentiable scalar function in n dimensions and let
the vector function v be 1its gradient, that is v, = Bf/axi. It is quite easy
to show that 1f f is a quadratic function of the variables then 2h . v(x) =

f(x + h) - f(x - h) for any vectors x and h, but theinteresting fact is that
the converse is also true, if f satisfies the equation then it must be a quad-
ratic. The case n=1 makes a good first year question. The general case can be

proved in the analagous way by operating on the equation with Bz/ahiahj.

. John van der Hoek.

APPLIED MATHEMATICS

Text-books on mechanics often ignore real applications and choose the strangest
examples to illustrate their theories. When I was taught about impulsive motion
we were bidden to consider such things as four uniform rods smoothly hinged to
form a rhombus and sliding on a smooth horizontal table. Now that motor cars are
built without starting handles they provide a practical problem in impulsive
motion. When your starter has failed and you have mustered some kind friends to
start the engine with a push, what gear should you engage when they have got the

car moving? This gives a good illustration of Lagrangian methods.

The car can be regarded as a system with two degrees of freedom, take coordinates
X, the distance along the road, and 0 the angle of rotation of the crankshaft.
The kinetic energy is of the form ax? + bB2. Engaging a gear and the clutch is
imposing a constraint X = ké, where the driver has a choice of a few values of k .
The imposition of such a constraint invokes impulsive forces and discontinuities
in the velocities. The general theory shows that the velocities afterwards are
such as to minimize what is called the "kinetic energy of velocity changes". 1In
our example let the velocities x and & be u and zero beforehand, and be kw
and w after. Then the actual w is the value that minimizes a(kw-u)? + bw?,
and this value is kau/(k%a + b). The problem for the driver is to choose k to

maximize this function, again a simple exercise in calculus, and the best value
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for k is (b/a)vz. The average motorist would not want to find the relative
speeds of the back axle, the oil pump, and the generator, and the moments of
inertia of the rocad wheels and the fan and so on in order to calculate a and b,
and in fact there is no need. With this optimal k the angular velocity of the
engine is l/zu(a/b)Lﬁ and the road speed is %u. The best gear ratio is the one
that makes the speed drop by half when you engage the gear. The wise driver
should be able to determine this best gear beifore exhausting the strength of the

people pushing.

Years ago there used to be some smail radial aero engines with inertia starters,

can anyone tell us about them?

EASY ALGEBRA

Here's a polynomial query, try it when not feeling weary. Find a polynomial P,
non-constant it has got to be. I want two other things to boot, zero must not
be a root, and every root a sum must be of some two other roots of P . Now find

such P, of least degree.

C.Jd. Smyth

SOLVING EQUATIONS

Let f, g be two differentiable real functions. Suppose there is known to
exist an x: f(x) = g(x), which we want to compute. Newton's method could clearly

be tried:

f(xn) - g(xn)

f'(x ) - g'(x )
n n
If, however, [ or g has a differentiable inverse function which can be computed,
then using a desk calculator the ragurrences

v -1 -1
(a) x = f l‘\g(xn)} or (b) X =g (f(xn)>

s

would be easier to use, 1f f'(xl)/g'(xq) is continuous and not equal to + 1 at
(x, x), show that provided the starting value X is sufficiently close to X,
exactly one of (a), (p) produces a sequence converging to x .

o

, ., —1 . ~1 . - . , .
fry it on sin x = (sin x) {that weli-known schoolboy identity).

C.dJ. S7r'lyt;l

JCUFIE .
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THE FRIENDSHIP THEOREM (JCMN 15)

If every two people have just one common friend is there somebody friend of all?

In algebraic terms the problem is this; on a set S is a binary relation F which .
is symmetric (xFy = yFx) and non-reflexive (never xFx), and for all x#y there
exists one and only one 2z such that xFz and y¥z; 1is there p such that for all

x, XFp? 1In graph-theoretical terms suppose that in a simple graph each pair of
distinct nodes is joined by just one patn ¢f length two, is there one node joined

to every other node?

The question can also be put in the language of marrix theory. Let A be a
symmetric matrix of zeros and ones with zeros on the principal diagonal and
suppose that A% has all off-dlagonal eiements equal to 1 . Prove or disprove

that one row of A consists entirely of ones except for the zero on the diagonal.
y P

G. Sazekeres points out that if the relation of friendship were not symmetric (if
the graph were directed) there would be a counter-example in the field of residue
classes module 7, with xFy when x-yZ any one of the quadratic residues 1, 2 and
4. The reason is that these three quadratic residues form a compiete difference
set, for amny- unequal % and y the difference x-y is uniquely expressible as a
difference of two members of {1, 2, 4} and these two are taken as x-z and y-z

respectively, this determines the unigque z, friend of both x and y.

This construction is tilustrated in the picture above, given any two vertices,
there is just one other vertex to which there is, from each of the first two,
a path curving gentiy toc the left. The pretfty way to draw a directed graph is

to curve the edges instead i decorating them with arrows.

The story of how the friendship tneorem came to the JCMN is that I went to the
suly 1969 Combinatorial Comierence at Oxford. There H.S, Wilf gave a lecture on

finite projective geomecries, and the notes that { wrote on the margins of the

~+

conference programme mention the Sriendship theorem with a hint on how to prove it.

Sadly T cannot now

the friendship theorem and finite pro-
jective geometries, but perhaps L¢ was clear ar the time.

B.C. Renniz.




AFTER DINNER MATH

Readers will remember how ¢, Moppert vecaiied for us the beautiful little fact
that 1f a circle roils inside a rixed civcie of double the size then any point
on the first circle moves in a straight .ine. Lan Fedoe wrires to point out how
this result is useful for the geometry ot the ellipse., In fact it links the

following four theorems.

(1) If two lines & and = weer at

and if a straight rod AB moves

s¢ that 4 wvemains on % and B on ™, then the locus of any other point on

the line AB is an ellipse.
(2) The same except that the two lines need not he perpendicular,

(3) If L and m are lines meeting at right angles and if the triangle ABC
(regarded as a rigid body in the plane of the lines) moves so that A is

on £ and B on m, then the ‘ocus of C 1is an ellipse.
s P

4) The same as (3) except :that the two lines may meet at any angle.

This last resulc includes she 7icst chnree as special cases, it was known to

Leonardo da Vine:d
1976, page 97;.

{see Geomctry snd the Liberal Arts by Dan Pedoe, Penguin Books,

b

The first result can be seen from this
figure, where I{ the two Lines are
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taken as Cartesian axes x = & cos o
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and y = b sin ©. Now to prove the

result (4). é» , 9\

Suppose that A and 3 move L Lwe Cdnes 6 ond o meeting 2t C . Draw the
circle througn 4, V¥ ond . his is the roiiing carele, With centre 0 draw a
cirele of wwicd oo siwe Jlils iw ine

fixed circle. By ar iriscg 4 and o

to the rolling 1 0. % .. Con woiwe Lhewm

move along the “1ex 2 and M as

required. Now diaw 2 line from &

through the centre of
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This question irom .o, cosec’ 2mi/n = (n%-1)/3

when n is any odd irnteger. G Bode, H.C. Davies,

A.P. Guinand, V. Lachakogel we have seven sclutions.

In all of them we usze < to densite ore

sum, ana write m for the integer
such that n = Zm + 1., Since cosweus 27170 = cosect 2m{rn~3)/n the required sum =

n-1 g
s =" )

First Solution. Let ¢ = ¢os O and 3 =

5, then sin nd, being the imaginary

Pt . -
part of (c + is) is a sum of

of ¢ and an odd power of s;
. 2 Z . . - - ~ .
replacing each ¢® by 1 - 5% gives a sum of odd powers of s. TIn fact sinn 0O =
2 4N 3 . S e ] £ oy o e o Y e - - £ o1 1 3
ns -~ n{n“~1)s”/6 + ... {a polynomial of degree n ). The values of sin(27j/n) for

i=1, 2, ... ® are non-zerc and unequali. and they satisfy the algebraic equation

This equation contalns <n.v evVen pows™s,

all
satisfy -

O = ax = nin-iox Tiu v, (of degree m)

Since the mw values are wvneguai thev magd 30 e roots, and so their sum must be

the sum of the roots, ciiaz is:

~ ey .
L Cased (Lo 37iu, T oAn L
. P o o p2 “
As noted above tnis leads o 3 = 1 DA
Second soliuviior ! Foene ol orne s oLEs St s Yor o o= 107, .. m,  then

{cos € +1 sin G} oo and e i v T s sesed” L. Equate imaginary parts.

(e LG, s -3 -

- Tl - : ! ha %
Th - ralues of 8 - - , - = 1 sarigtyi
NG Mmoo vaijues or g & PRI PR O o {0= Jl ad BaATIS8IVING

These values are hw TooLe o0 hoie o
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in JCMN 5, 6, 7 and 12.
© —«2
(7%/a%)s = § 1, = 2(1-n" )m3/6

S = (n%-1)/3.

Fifth solution. Consider the complex function f(z) = 42z2(z

The integral round a large circle is zero and so the sum o

b

£ es i
is zero. The residue at the simple poles exp(2imj/n) is -(1/n) cosec 273 /n.
The residues at 1 and -1 are (n“-4)/(12n) and n/4 respectively, and the given

result follows.

Sixth Solution. For odd n the polynomial
(z+l)n - (z-l)n = 20zt 4 Z(H) 2 + to. + 2

has zeros given by =z + 1

i

(z-1) exp 2mir/n, whence the roots are

n

, . . . n .
z=1 1 cot mr/n (for r = 1, 2, ... m). Hence (z+1) (z-1) " = 20il(z® + cot? wr/n).

. T . n-3
Equating coefficients of z gives:-

i - , -
2n )" cot? mr/n = n{n~1)(n-2)/3.
4
There fore “? cosec” nr/a = (n®-1)/6

which gives the result as before.

Seventh Solution. Let I and [ cencre sums and producce with che dummy suffix r

taking values %1, *2, ... m (but noct ZeTo)

=1 = (z~3i{z=0_) where w = exp 2i7r/a
T b i
- i i LA . .
ni{z “Dfla=iy; = R
The “ithm haviny many values does not watter because we are going to differen-

. . . o . T, . o
tlave. <Changing vre sugn of z gives ini{z wl)/(le)) = ) in(-z-w _}.

Adding gives: In{{z =1}/{z"-

;

n{i-z*+2i zsin 27r/n

o

Let 6(z) be the

g
.

i

b=

second derivative of eitiher side of this aquation.

2
B 5 o . -
From RES Glat = 7 2 y 2¢ - 2% sip Zﬁr/n) .
STCIN s, [UR R, ! 7 - 2 3 - - - \2
-z 4 21z sin Yur/n {l-2° + 231 z sin 27y/a)
DLy = o=dyoh, cose aivein



The LHS has a removable singularity at z=1 and so we must use limits.

2n-2 n Zn -2

(d/dz)? 1n(zzn—1) = 2n z (1-—2n—z2 Y(z =1)

Putting z = 1 + u and expanding in powers of u, this is:

v ? o+ (2n-1) (20~5)/12 + powers of u.

Subtracting the expression when n=1 gives:
$(z)
¢(1)

i

(n-1)(n~-2)/3 + powers of u

(n-1)(n-2)/3 .

Comparing this with the other values found above:

Z cosec® 2mr/n = 2m + $(1) = n-1+(n-1)(n-2)/3 = (n®~1)/3

and S = En:l = 2 Zﬁl = (n%-1)/3.

It might be interesting to work out another proof based on a caiculation of
“n-1
)ﬁ—o cosec?(a + 2mj/n)

where o 1is any angle and n any integer.

COVERING WITH TRIANGLES (I) (JCMN 15)

The centre of a regular (2k+l)gon is in how many triangles made from its vertices?
Three readers sent in the answer k{k+l)(2k+1)/6, two of them commenting that it was

equal to 1% + 22 + ... + k? but that they could not see the geometrical significance

of the sum of squares.

From E. Szekeres and H.0. Davies. Let the centre be C and the vertices numbered

0, I, ... 2k in order anticlockwise. We shall count the triangles containing C

with O as a vertez. Let the next vertex anticlockwise from 0 be i, them i £ k

and the third vertex f‘because 0C and iC are S k+Hi o ki
~ L3’

lines of symmetry) can be chosen from among

t. The wumber of triangles with 0 as a C

vertex is therefore i +2+4+ ...+ k= Lk(k+1).

Adding the mumbers for all vertices gives

each triangle three times, hence the resuit, 0 \‘i

From A.P. Guinand. It is easier to count the triangies not containing the centre.

Consider such a triangle, let the right-hand vertex seen from C be numbered 0,

there are k-1 triangles with second vertex 1, viz. (0, i, ?), ... (0. i, k), and

similarly k~2 with second vertex 2, and sc¢ on, making (k-1i+{k-2)+. .. +2+1 = 5k(k-1).

The number of tviangles not containing the centre is therefore L k{k-1)(2k+1).

Subtra~ting this from the total k(4k%-1)/3 gives the resul:r above.

TN INT o
& Loty .Lg .
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DOES IT CONVERGE? (JCMN 15) i

This problem from V. Laohakosol was about

; 2 n. % RN
Sn(x) = (I+x(14x“(. . (I4x ) 2009 D,

Our first solution is due jointly to G. Szekerece and B.C. Remnie. The expression

is monotonically increasing with x for each positive integer n, and with n for
each x > 0,

_ 1 11
Snz—l = x(l+x2(... + x° 1(1+Xn)ﬁ )2)’ﬁ

In each bracket on the right of the equation divide both terms by x? and increase

by one the power of x outside the bracket on the left

-2 n—-2 _ =2 ~2 1 1.1
S, %=1 = x%(x 4x(...x (x4 )LD DHE
~2 —2 -
For all x 2 1, since x <1 and x" °< x™? we have:
-2 -1 % !
Sn2—1 < x2(1+x(...xn (1+-xn )4 ..)/2)2 = x2Sn-1
s 241 < x%s < x%s
— n n-1 n

Therefore Sn is between the two roots of the quadratic b?- x%b-1 = 0, that is

Sn(x) < 1/2x2-§—1/2(x1’+4)1/2 for x 2 1, It follows that Sn(x) converges to some limit

S(x) for all x 2 1, and also it converges for 0 £ x € 1 because Sn(x) < Sn(l) <5815,
For 0 £ x £ 1 reasoning like that above can be used, but since x_2 21 and

n-2 n-1 . . . 2
x 2z x the inequality is reversed and S(x) 2 4x® + L(x*+ 4)

N

3
.

Now to find inequalities the other way. For 0 < x S 1, since x°% Xy ove X
it follows from (1) that

i , n-2 n-i % L.k
Srz—l S x{lx(o.4x (I4x D)%) 9% = x S__,

and taking the limit as n tends to infinity

1
S(x) S i+ L(xHe) 2

for x > 1 a simple inequality comes from:

50 > (x(x2(... (ML) DD

and since the infinite sum 1/2 + 2/4 4+ 3/8 + ... = 2, it follows that S(x) 2 x2.

To sum up

A
2]

Le . - s
LxZHs(x ) 2 € s(x) < bxHs(x“H4) 2 for 0 < x <1

) o w1
S(x) £ L +Hs(xTH4) for x 2 1.

A

and X

In the first of these inequalities the difference between the upper and lower bounds
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becomes zero at x = 0 and x = 1. In the second the difference is 0(1/x2) for large

X

The other solution came from J.B. Parker who proved convergence and gave a smaller

upper bound for the limit as follows, taking x 2 1

- 2 - 1
—_ (s 2-1)"-1 = x?(1hx® (ox™ (1™ 2L L)

-2 —2 =2 -2 1 1.1
3 2K (x +x" )/2...)’5)/5

IA

- _ 1 1. 1
x3(1_b(2(...xn 2(1""Xn 1)’5...)/5)2 - Xz(snil— 1)

An argument very much like the one above proves convergence and gives

L
S(x) S (1 + kx* + %(x® + 4x2)H7

The correspondingly improved lower bound comes from (1)

n
n-1, nl Ll 142/24, ..
Snz—l > x(x?%(...x (xn)/z...)/z)2 = x / n/2

- 1
Taking the limit as n tends to infinity, S(x) 2 (1+xl‘)/i for x > 1.

- -t
The two bounds establish that S(x) = x? + Lx 2+ 0(x ) for large x.

Another question now suggests itself, does this function S$(x) continuous on the

positive real axis have an analytic continuation into the complex plane?

COVERING WITH TRIANGLES (II)

Given any n points in the plane, the line segments joining them divide the convex
hull into polygonal regions. Supposing that no three of the n points are in a line
and that no three of the line segments meet in a point, what are the possible values

of the number of regions? For example n=4 can give either three or four regions:

For each region we can count the number of triangles formed from the vertices that

cover the region (comsidering only the interior and ignoring the boundary points).
Let T be the largest of the counts for the different regions. We have seen that
for the regular (2k+l)gon T = k{(k+1)(2k+1)/6. Are there other arrangements of

2k+1 points giving a smaller value of T than this? or giving a larger value?

M.J.C. Baker

JOMNIS .
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THE PANCAKE PROBLEM (JCMN 14)

A stack of n pancakes sits on a plate. They are to be rearranged so that the
smallest 1s at the top, the next smallest second, and so on down to the largest at
the bottom. The only permitted move is put a lifter anywhere in the stack and

invert the pile above it. What is the minimum number f(n) of moves that is needed

to achieve the final arrangement?

G. Szekeres writes that he had suggested this problem for a group of fifth-formers
at a Summer Research Project run by the UNSW for talented high school students last
December. The group consisted of David Batts, Sam Needham, Alison Nicholson, Barry

Martin, Cecilia Bjorksten and Christina Gumner, supervised by M.D. Hirschhorn.

They found by hand the values

n 1 2 3 4 5
f(n) 0 1 3 4 5

and the inequalities f(n) 2n for n24 and f(n+l) €2 + £(n).

7 and £(7) = 8,

it

Turning then to a computer they were able to find f£(6)

There are two arrangements of six pancakes that require seven flips, they are
536142 and 462513 (where the pancakes are numbered in increasing order of size
and where the left of the row means the top of the pile) and there are 35 config~

urations of 7 needing 8 flips.

A natural conjecture is that f(n+l) 2 1 + f(n). Can you prove it? or even just
f(8) 2 97

SOLUTION FOR '"RIEMANN ARE YOU THERE?"

For values of n up to 7 it is true that all the complex roots have real part a half

but if z = ¢7187284 + 71586791 then (1-z)% = 1-2% = - +1211643 + -01788581.

b

USELESS INFORMATION

0 < 10691/462 - expm <10 °

Your editor would Like to hear from you amything connected with mathematics or with
James Cook.
Prof. B.C. Rennie, Mathematics Departrment,

James Cook University of North Queensland,

Post Office James Cook University,

Towumsville, Australia.

JOMNVIE .



