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/ JAMES COUUR MATHEMATICAL NOTES - '

The clock knowm as K1 made by Larcum Kendal in 1769 as a replica of

John Harrison's H4. The picture is about full size. Captain Cook

used K1 on hie second voyage (1772-1775) in the Resolutiom. s
(See the article by J.B. Parker on Page 7.)

NORMS (JCMN 11)
-The"' "‘x{onn of a real vector being undefined except that it has to satisfy the usual
axioms, we use it to define the norm of a square matrix A as max” Ax "/" x” . The
problem of Kestelman was to show that the norm of

0 1

A= l:l lil must bevstrictly greater than one.
A proof came in from C.A. Davis. For brevity use the notation and ideas from the
first page of JCMN 11. -Put A = I + B, then Bz- =0 and An - I + nB,. "By the triangle

- dnequality n|| Bx || = |} A"x—x]|| S |a"x || xB<(lla 1"+ 1) i x|l . 1£ || All € 1 then the
inequality would lead to a 4c'onfrad1ction’- wﬁén i:‘n 1ncfeas"es and x 48 any vector for

" which Bx ¢ 0. s | S
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GUINAND'S THEOREM (JemN 3, 4, 5 and 6)
by C.G. Broyden (University of Essex)

Definitions. A G-matrix is a 3 x 3 matrix whose every diagonal element ig Zero,
It 1s a proper G-matrix if also every off-diagonal element is non-zero, otherwise
it is an improper G-matrix.

Editorial note: In JCMN 3 it was set as a problem to prove that 1f ABC = I and
if A and B are proper G-matrices and 1if two diagonal elements of C are zero then
so 1s the third. J.B. Parker produced an ingenious geometrical proof using the
theorem of Pappué, but A.P. Guinand later told me that it all started with Pappus'
theorem, he thought there oughtAto be a neat algebraic proof.

Lemma 1. A non-singular G-matrix is proper 1f and only if every element of its
inverse is non-zero. The proof is left to the reader because this issue is short
of space ---~ Editor.

The inverse of a non-singular G-matrix G must be
a b c
¢la [ra Ab uc

va ~ Avb/y  ve

because the Principal 2 x 2 gub-matrices must be singular. None of the parameters
a, b, ¢, A, U or v can be zero. It is now readily verified that G-l may be
expressed as

¢cla AB A (1)

where A = diag (1, A, v)

A = diag (a, b, c)
_ , ,. £ 1
B = |1 1 (2)
1 1/8

LA}

aqdfé‘;iﬁ/k 4 1 (for nonsingularity) =

We consider now the neceséarfﬂéﬁdAéuffidiengrc5hdifibﬁ§:fé; ﬁﬁ; R:odué; of the
inverses of the two proper G-matrices G, and G, itself to be a G-matrix. From

equation (1) we have, with obvious notation, R

I -1 . _1 ".l sty Ptk dy "_ . B
(66 ~ =6, G, MBAMBA

PR 3

ted only 4n whether, thy disgonal flements of the product

.., 8Te gero ve need only, gince A, and Ap-are.both diagonal and, nonsingular,.consider

- the product BZRBI’ vhere R = A2Al' If : R

$ - s
L Il & W

R = diag (r, s, t) ‘ (3)
it follows from equation (2) that
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where the values of the elements denoted by x4 are irrelevant, so that the necessary r

and sufficient conditions for BZRB1 to be a G-matrix are

r+s+t=0 | | (5)

and B, = B, S | 6 ,

Note also that the .vanishing of.anyatwo diagonal elements of_ﬁzRBl implies the
vanishing of the third (Guinand's Theorem).

It is now possible to demonstrate directly, using equations (4) - (6), that if
BZRB1 is a G-matrix then it is a propét G-matrix. A simpler and more rewarding

proof ‘follows from

Lemma 2. The product of a G-matrix with an improper G-matrix cannot be the inverse

of a proﬁer G-matrix.

-

Proof.f:Lgt Gl and G2 be G-matrices with Gl improper. Then at least one row of G1

has but a single nonzero element so that at least one element of GIGZ is zero, and

»;he_pgqgfﬂthgn follows from Lemma 1.
The result leads immediately to the following

Theorem. If Gl’ G2 and G3 are G-matrices satisfying

. _ G1G2G3 =T | n
. then either every factor G1 is proper, or no factor Gi is proper.
.:Proof. Let one factor, G1 say, be improper. Then 62 é.chl_and G3 ?‘Gle

' 86 'that, from Lemma 2, both G, &na?G3 are improper. Similar arguments in respect
of G, and Gy establish the theorem. '

hn",:AssﬁmE now that G,, Gz‘and Gy are proper G-matrices satisfying equation (4). It
'Ef'“follows from equation (1) that : 3

e !

where, since each factor G, is the productAOf;ihe ipverées of the two other factors,

the matrix B is the same for all values of 1 (equation (6)). Inverting equation
. (7) thus yields

NI ‘

on 12)




A3BA3’\ZBA2AIBAl

and this may be rearranged to give . i
: -1 S I

= I

BRBRB =R, '- 9

where ;3A3A2 - Rl; (103)
Tt .:ré%Al '.3 e o 5 - “(10b)
and A1A3 - RZ‘ _ N R . o 00

Now R’tRl and R2 are diagonal matrices and expansion of thesleft-hand side of

BRB is diagonal

equation (9) using equations (2) and (5) shows that the product BRl

if, and only 1if, ' o 7
Bk R i , S (11a)
where k1 is an arbitrary scalar. Similarly

R, =k, R - | ' '"'f i - (1p)

so that equations (9) may be nritten
3 3

K™ = LI (12)
~where = = K= BR
and L} = (k7! e

Finally, evaluation of the diagonal elements of K (BR) shows that these are
equal to unity if and only if o '

kk, rst(B + 871.2) = 1 (15)
where B is defined in equation (2)'end R = diag (r, s, t).

The preceding analysis shows that 1f Gl’ 62 and G3 sre proper G-matrices satisfying
equation (7) they are each related, through equations (8) and (10) - (13), to the
single matrix K. This matrix is not arbitrary since 1t is required to satisfy both
equation (12) and the condition that K2 is a proper G-matrix. It is trivial to
-show, though, that any matrix that does satisfy these conditions may be used to
generate three Guinand factors satisfying equation (7)

Ve now consider the eigenvalues of K, From~equation (12), :it“foilonsvthat, with the
usual notation, the eigenvalues of K are L, Lw and lmz Finally we note that, since
_det(B) -8+ R 1-—2 ‘and det(R) = rst, ‘the cube of equation (15) nay be obtained by
taking determinants of the equation

2(BR) = I.

o , : o st b

In order to investigate the possibility of an. extension of this theory to 4 x&

R NEITRE .
A o RETHIER '
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matrices it is instructive first to consider the case of 2 x 2 matrices. It is
readily verified that the}p;qdnct_of:three mafrices, each having zeros on the
diagonal cannot be diggqpéilgut'that the product of two such matrices always is.
This, together with‘thé:éiggpvalugglof K deduced above, suggests that if an analogue
of Guinand's theorem exists for 4 x‘4 matrices 1§_shou1d refer to the product of 5225
factor matrices. That improper 4 X 4 Guinand factors exist is' deduced immediately
from the fourth order cyclic permutation matrix
r-0 0
K=

0

1 o
0 1
0 O

©C O O =

0
0
1

L J

for which K4 = I and the diagbﬁal éiemehts of K3 are all zero. If it were possible
to construct a matrix K such that K4 = I, the diagonal elements of K3 were all
zero and the.offfdiagonal.glemencé éf K3 were all nonzero it would be possible to
generate four "groge;? G-m;;r;cgsﬂci;hibi 1, 2, 3, 4 such that

616656, =1 0

Whether or not then a theorem analogous to Guihand's Theorem could then be discovered,

though, 1s at the goment a matter of conjecture.

SOME HARD ANALYSIS

Let n be a positive integer, and let y ﬁe.defined'in terms of x by the equation
8in(x/2) = ginh(y/2).. Prove or disprove

fﬂcot(x/Z) sin (nx) e dx = /2
o S

i )
and _ I cot(x/2) sin (nx) e™ dx = 31/2 - -1)"r
() o B . .

ANECDOTE ONE (JCMN 5, 6 and 7. .
MORE TRIGONOMETRY (JCMN 10 and 11)

There is a connection between thesé contributioné. ‘From fhe formula
I} tan’rm/(20+1) = n (2041)

we may obtain (replacing r by n+l-g)

2
2 n_ 7 .2 2r-1
T T4 e %t

[N : . [

.. and taking the limit as n tends to infinity (Wé;g;stiésé‘ustest)

. ) 8/(2r-152 o _,;
L |

(JCMN 12)




c Ry " 2
[EEC RN S

I | MATRIX NORMS AGAIN ., . ..

fl ._lna 1 RS P
In n-dimensional complex vector space take any norm satisfying ‘the psual axioms,

DR tvasgeg

that H gu .0 with equality only when x = 0, ||tx ||= ltl llx[land the triangle )
gL ine@ual;ty. The norm of a square matrix A is ||A||- maxlle U/ILxll i Prove or
disprove that if lim Af = C then zllA -c|| 1s finite. AT b e

o Kestepman,

N »
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EQUATIONS (JCMN 11)

If a,, ... a are the complex zeros of a polynomial f(z) and are distinct, show

that 'Z a /f (a ) is zero if k18 0, 1, ... n-2 and 158 1 if k = n-1. (Apologies

for omission of the condition that the leading term of the polynomial must be 2z .)

RAT St

T e el . <. Sl N SFi:

The four solutions that have come'in can be claSSified into ‘three eqpivalence
classes, Vichian Laohakosol and thn.Rarker '‘both’ use complex integration‘,L as follows.
The given sum is the sum of the residues of the function 2 /f(z) at all its poles.

. The inte§ral‘round a large circle tends to zero when k < n-l but 1f k = n-1 the

function is approximateiy 1/z on a large cirvecle and 80, .the igtegral tends to 2mi,
and in fact equals 2ni, Lo : o

R
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. ‘ [ O
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G.M.L. Gladvell uses first the partial fraction expansion of 1/f(z)

ol KESYER

f(z) f'(dr)g?rar).

for Izl > max Iarl expand both sides of this equation in pd&ersﬁof l/z..:ﬂn

S Sy

- -n-1 L k -
z "+ Zarz n + = k=0 {LZ:=1 a /f'(ar)} z

Equating coefficients of z-l, z-z, etc. gives the reduired result. In fact this
method also gives the.sum in the case k = n, and with a little bit more work, for
larger values of k. - .-

TN

skogr

C.A. Davis expresses zk l/f(z) in partial fractions and lets 2z tend to zero.

L.

fir

TWO POINTS IN A TRIANGLE (JCMN l 2 and 3)

o -

Given any triangle ABC thinking of it as in the complex plane, the two points L

Db A S

and N may be defined as the" stationary values of a cubic that vanishes at the
vertices A, B and C. (,A., Davig has written to say that L and N are the’ ‘foci of the
ellipse that touches the sides of the triangle at thei: mid-points which is the
inscribed ellipse of maximal area. Can anyone supply ; proof?

A /08 TN
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7 capmm COOK. AND 'nm nnmmm'rmn OF. LONGITUDE : -:;, .
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“Determination of a ship s longitude was ‘an unsolved problem until the second half
"ot the eighteenth Lentury. The vital natiire of the- -problem had however, ‘been”

recognized much earlier, and in 1714 (a few' ‘years. after a navigational disaster

to the English fleet off the Scilly Isles), ‘s Board of Longitude was set up,

maximum prize of. 120 000 being offered for determining longitude with an error of

3 N

“not mote than: half.a, degree.l_ ' OO
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The two ‘main. tines of attack were to develop a devioe for measuring GMT accurately

e

throughout what could be a very 1engthy voydgé, and the.method of Lunar Distances.
The affinity between longitude and time'had long been recognized (1 degree of
longitude corresponding to 4 minutes of time) so that if the positions of the

R IR AT
heavenly bodies were known relative to some reference meridian, a single appropriate

IR

astronomical sight would yield- longitude provided GMT vere known. fhere Iong

remained two snags. !Fir8t GMT, as opposed to local time, could not be obtained
..('_):’1?.

nearly accurately enough and seconply the existing thsfrumentatipn for, measuring

the altitude of a star wag inadequatg, The mathematiciahs therefnre-pqph-poohed

. this ‘Iine of’ attack ‘even after, the appearance of ‘Hadley's octant.in 1732 which

removed the ‘second’ difficulty. S . SRR

) ._)I..).J
— : R

: N Y
The Lunar Distance approach was the mathematicians' favoured?route. First ‘one

measured the distance of the Moon's limb from the 1imb of the sun or from a
suitable star, using the sextant (a slight refinement of Hadley's octant). The
exact local time of this measurement was noted. Next, using Lunar Distance tables,
" thé Greenwich . time for which the distance between the moon and the other body was
equal to that observed was found. After a foolscap page of calculations, longitude
was found. Though long recommended by the mathematicians, it wasgnot until
reliable Lunar Distance tables became available (Tobias Mayer, 1755) that the
method could be used to yield longitude reasonably accurately.

The necessary complex calculations could be swept aside 1f accurate GMT could be

_ carried on board ship. In 1763 Harrison's chronometer was put to the test on a

long sea voyage and performed very well, the error after 147 days being under two
minutes (= half a degree in longitude) yet Harrison was-only given #10,000, some
of the members of the Board of Longitude not being satisfied. '

So at the time of Cook's second voyage (1772) there were two viable methods of
determining longitude, though neither had by any means gained wide acceptance.
It was the thoroughgoing approach of Captain Cook that nailed the matter once
and for all. Equipped with modern instrumentation, including two chronometers
(one by Kendall, a replica of Harrison'as) and a Hadley sextant, astronomical
observations were systematically carried out throughout the voyage and longitude

(JomN 12)
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determined by both methods: At the closé of the second voyage the error in the
Kendall Watch was only about 30 seconds (8 minutes in longitude) and’the argument
was af an end. Harrison (by now a very old man) got his outstanding ten thousand
rquid.

J.B. Parker :

BICENTENNIAL PROBLEM

Every function of the form p(z) + exp 2z, where p is a pplynqmialu(nog,identically
_zero); has a complex-zero.  C.A. Dav:l‘s"'poitits out that ‘b'ecat'xe_e the zeros of p are
bounded the function. exp(~z)p(z) has no gero in a neighbourhood of the'.isolated
..essential singularity at infinity. By Picard's second theorem the function takes
every value except zero in the neighbourhood, and in particular it takes the value
-1, and so p(z) + exp(z) has a zero.'

‘,Dlme Mary: Cbrtwrmght also comments. Your bicentennial problem 1s .a very special

_case of . the extensive theory -of exceptional values, Nevanlinna and Picard are the
._great names. There:is 'a: technique ‘used by Hatdy about 1904 on a more complicated
.function-to find a zero. Our editor, unable to find Hardy 8 paper, tried to

reconstruct a direct way to find a zero.

. Without loss. of. generality we may take the equation as

) t - ‘J
' exp z - z + a1 zn‘1«+ see +‘an .

:Then for any large positive integer -m,-take 2 z,=n log (2mm) #’ﬂi(2m4n/2) as first

Z‘approximation._ In the circle of ynit radius round this point the function

: F(z) = log (z + ...) with the imaginary part defined as between 7(2mtn/241) is a
conttaction mapping with contraction ratio 0(1/m) because |F' @) = 0(1/m) uniformly

" in the circle,'end F maps 2 into a point at distance 0(1/m) from zo. Therefore F

has a fixed point._l A T I Co

- | fa b .::;‘:
NUMBER THEORY

Given integers a and b, for what positive integers n does pq = a (mod n)
imply p+q = b (mod m)? e

- C.A. Davié
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INEQUALITY WANTED (JCMN 10 and 11)

I£0 < a S ... € a 1s there an inequality

‘a +...+a
k/a) I (ay-ap? <2 B (a.eapt/

"< (k/a) T -a)?
R 1$1<9n o) L (e

n " 184<jSn

where k 1s a function o_f‘ n?

Solution from G. Szekeres:-

The correct constant in Williams' ineqixélity is 1/(2n2). Take the right-hand
inequality, the other can be proved similarly. More generally consider
(for 0 < k < n)

aytec by +od 1/n ¢ _1 (a,-a )%+ _m 2

k
ay ... - (a;...ab" —— 1 % T2 J(b-ay
n 1% 2n%a, 1€1<y8k m’a 1 1

where m = n-k and 0 < a, ... % a £ b, The original inequality corresponds to

to the case where m = 1 and b' = a . Inequality (1) follows 1f we can show: -

(1) The b-derivative of the left hand side of (1) 1s £ the b-derivative of the
-right hand side, -
and o :

(11) the inequality holds for b = a,.

The second statement (ii) follows trivially by induction on k if we can also prove
the first part (i). Now the b-derivatives are

(m/n) [1-(a1 ces an)”n bm/n-l) and m/(nzal) Zl; (b-a,)

and we must show:-

1/n  m/n-1 ok -
(2) .o 1=(a; ... a) ™y S 1/(na)) J,(b-a,)
for all b 2 a, . Again taking b-derivatives, the derivative of the left hand side is
1/n , m/n-2
(l-m/n) (al s o0 ak) b
= @/ (G oo (s m) MR by s ki)
which 1s the derivative of the right hand side.
" For b = a, the inequality (2) becomes .

I RPN Sl St Aat i B VICTI I ot (S

which follows by induction on k because when k = 1 both sides are zero.
This establishes (2) and therefore (1).

(JomN 12)




ACCORDING TO COCKER

Seven sclences supremely excellent,

Ate ‘the chief stars in Wisdom's firmament?

Whereof Arithmetic is one, whose worth

The beams of profit and delight shine forth:

This crowns the rest, this makes man's mind compleat;
This treats of numbers, and of this we treat.

" From Mr., Edvard Cockégbswfféfhce to his Arithmetic,
- published posthumously in 1677,

" RATIONAL APPROXIMATIONS (JOMN 11)
Show that Tn(z) = (z_z—_l)li Uﬁ‘l(z) +,0(z-n) for large z and hence find the

Padé approximation (1-x2)* = Pd(x)/Qn(x) + R(x) where P, and Q are bdi&hémials

s

- of degree n and where R = O(izn) for ‘small k;

Similar solutions from C.A. Davis and J.B. Parker were as follows. The numbers
- o . . L D

may be thought of as real, but with a little care the complex case 1s also

covered. Given z, take t so that z = cosh t and s = sinh t 1s one of the

two square roots of zz—l. The Chebyshev polynomials may be defined by

Tn(z) = cosh nt and s Uﬁ;Iki) = ginh nt. Then

T,(2) - 80U _,(2) = et u (245)™"
T )
If 0<|x|<l put z = 1/x and note that x?ﬁ;(z) = Pn(x) and xn°lUn-l(z) - Qn(x) are

polynomials of degree n or n-1 or n-2.

Multiplying the equation above by x/Un_l(z) gives

1

xe = P_(x)/Q (x) ~ x**(14xx) "/Q_(x)

Now it is necessary to choose the square root. Take xs = (l-xz)li to be the
value that has real part positive, then the remainder R v - xZn/ZZn—l for
small x. The proposer, G.M.L. Gladwell, asked also for a generalisation, but

none has yet come in.
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PROBLEM UNSUITABLE FOR 'UNDERGRADUATES  (JCMN 11) !
v A

The real function £(x) is defined for all real x and has finite derivative at
every point of the set A, which has Lebesgue measure zero. Does the image set
f(A) also have measure zero? The answer is YES, and similar proofs came from
J.¥. Barmersley and H. Kestelman. . i

Let. Emn..(for positive integers m and n) be the set of x in A such that 1if
"fh:l < 1/n then |f(x+h) - £(x)| < m|h|. The union of all Emn is A which has
measure zero, therefore each Emn has measure zero and so can (for any €>0) be
covered by open intervals I, = (pr - Q. P+ qr) such that q_ < 1/n and P, is
in E__ and Zq <eg. If x is in such an interval I_ then

mn r r
|£(x) - f(pr)l < m|x—-pr| <mgq, and so f(Ir) is in an interval of length no more

than qur. Therefore uf(Emn) S 2m qu < 2me. - This is for all € > 0 and so

uf-(Emh) = 0. Finally f(A) 1s the union of all f(Emn) and so has measure zero.

JM. Hammersley adds :the comment that it is not necessary to assume that f is
' differentiable, it is sufficient if £ satisfies a Lipschitz condition of order
1 at each point of A. o !

TWO QUESTIONS ON BINOMIAL COEFFICIENTS
These come from C.A. Davis.
(a) If n is a po,'s’itive'integer and
u(k) = 0 - n¥ @ W

show that u(k) = O for k=0, .1, <o n-1, and find u(n) and u(n+1)

(b) . I,_f, k and: 't rare':non‘-negative integers show that

I »® (':) () - v (%)

(JoN 12)



CAN YOU SOLVE A QUADRATIC EQUATION? ‘ \

If a and b are real positive parameters, what conditions must they satisfy

for the quadratic

b

z2+az+b+:la-=0

to have the real parts of both roots negative?

Readers may be interested in the origin of this problem. Prof. J.F. Ward of
the Physics Department of JCUNQ showed me an article "The Motion of a Small

. Sphere in a Rotatmg Velocity F‘zeZd A Posoible Mechanism for Suspendzng

' Particles in Turbulence" by Paul F. Tooby, Gerald L. Wicks and John D. Isaacs
1n the Journal of Geophys»ical Research, Volume 82, pages 20‘96-2100. l'l'his
work was motivated by interest in the suspension and tra'nspor‘t"efn sediment by

turbulent water.

Suppose that a small object when in st:lll water obeys a law of motion: " External
force = Mk + Ax + B, vhere M 1s an effective inertia, A is the factor giving
the resistance to motion at small Reynolds numbers, x 1is the position vector
and B is the product of the volume and the pressure gradient, which ;is,‘t_he
Buoyancy term. ~,(:ons:lclet: this particle in water rotating‘unifarﬁly (as 1f solid)
about a fixed horizontal axis. In the plane perpendicular to tﬁia axis take
coordinates x horizontally and y 'vert:lcally, with origiri on the axis, and

let z = x + iy,

The equation of motion 18 of the form

Mz+A(z+iwz)+C(mz—ig)+mig-0

If M and sz are small enough to be neglected the equation has a solution
giving a circular orbit for the particle, but 1f these terms are included

they will modify the circular orbit and the question arises whether they make
the orbit shrink to a point (so that the particle remains suspended in the eddy)
or make the orbit expand (so that the particle leaves the eddy and probably
pursues a random path tending to settle on the bottom). This leads to the
problem given above about the two roots of a quadratic.v '

Your editor would like to hear from you anything commected with mathematics
or with James Cook.

Prof. B.C. Rennie, Mathematics Department,
James Cook University of North Queensland,
Pogt Officé James Cook University, Q.4811,
Toumsville, Australia.




