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GEOMETRY RELEVANT TO THE BINARY QUINTIC

by W. L. EDGE

(Received 5th February 1986)

Introduction

The aim in this paper is to indicate one way of interpreting covariants of a binary
quintic F geometrically, interpretations having been found recently [7] for its" quadratic
covariant 2C2, called T in [7], and its invariant /4. The symbol dCn will denote a
covariant of order n in the binary variables x, y and degree d in the coefficients of F, Id

being used in preference to dI0 for invariants. The sum d + n is 4 for both 2C2 and /4,
and no other covariant affords as small a sum; so it is natural to have begun by
interpreting these two and to use them as auxiliaries in interpreting others.

Similar procedures apply to the covariant 2C2 and invariant I4 when F has any odd
order 2m + 1, but it will be enough first to concentrate on m = 2 and perhaps allude to
the generalisation thereafter.

The rational normal curve and its osculating spaces

1. The whole discussion hinges on the rational normal quintic curve

C: *, = (-*)' 1 = 0,1,2,3,4,5

in projective space S of five dimensions. The point P(a,b,c,d,e,f) maps the binary
quintic

F:axs + 5bx*y + 10cx3y2 + \0dx2y3 + Sexy* + fy5

whose zeros x/y are consequently the parameters of contact with C of those five of its
osculating primes cu4 that contain P [6, p. 312]. One uses a>k to denote any osculating
[/c] of C, including its points coo. When P is of general position it does not lie in any u>k

with /c<4; if, however, it does happen to lie in such an a)k(i) then t is a (5 —fc)-fold zero
of F. As t, and so the point on C, varies wk(t) generates a locus O.k+i; these loci are [11,
p. 95]

nj(=q, ns, " I "4-

The points of the octavic primal Q4 map those F having a repeated zero.
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2. Any two QJ3 meet in a line, and this doubly infinite set of lines generates a
threefold V double on fif; the points of V map those F having a pair of repeated zeros.
In co3(t) these lines are the tangents of the locus T(t) of its intersections with the co2: T(t)
is a twisted cubic sharing the osculating spaces <o0(t), co^t), co2{t) with C. This is rapidly
substantiated by taking t = 0, co3(0) being x4 = x5=0. Since co2(<£) is

i+3=0 i=0,1,2

its intersection with <w3(0) satisfies

d>}x0 + 3(p2x1 + 7>4>x2 + x 3 = 0 2 x j + 3 0 x 2 + 3x 3 = <f>x2 + 3x3 = 0,

x o : x 1 : x 2 : x 3 = 10: — 6<f>:3<j>2: — <t>3,

the parametric form of T(0), whose tangent joins this point to

xo:x1:x2:x3 = 0: — 2:2$: — <f>2

and both these points satisfy both the equations

4 3 2
 + 3 + x1+4 = 0 r = 0,l (2.1)

of w3{4>).
The tangents of T(t) generate a quartic scroll, and V is generated by this scroll as t

varies.
The equation of ill >s t r i e outcome of eliminating <f> between the pair of equations

(2.1), and Sylvester's dialytic process provides an 8-rowed determinant immediately.
Only the single term x%x% in its expansion involves x0 to a power as high as the fourth;
this, therefore, is the leading term or leader in the sense of the dictionary or lexicon.
Replacing the x, in order by a,b,...,f produces the discriminant of F, an invariant
/8 led by a4/4- It is labelled Q' by Cayley; its 59 terms are written out by him in full
[4, p. 288; see, too, 12, p. 209].

When handling a sole covariant any non-zero constant multiplier need not be relevant.
This is no longer so if more than one covariant is involved; for example: a linear
combination of / | and /8 has to be identified precisely, as have the leaders of the two
invariants. The natural procedure is to decide that the lexicographically leading terms
of invariants, and of the leading seminvariants of covariants, all have coefficient + 1.

The first linear covariant

3. Baker [1, p. 137] proved that fif is the base surface of a net N of quadrics, and
the way to the sought interpretation called in aid [7, p. 136] those quadrics of N that
are singular; these are all point-cones with vertices on C, the Jacobian curve of N
consisting of C reckoned thrice. There are two of these cones through P; it is the
parameters d>,ip of their vertices A, B on C that are [7, p. 137] the zeros of
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where

= ae~4bd+3c2, nt = -af + 3be-2cd, n2 = bf-

and so

led by a2/2.
Were this geometrical setting to determine a point on C uniquely its parameter would

be the zero of a linear covariant. One such point J is the residual intersection of C with
the [4] spanned by P, (o^A), co^B). As a^A) is given by the four equations

i=0,l,2,3

and as ip2tj + 24/ti+1+ti+2 is symmetric in <f>,tp the bitangent solid of C spanned by
a>i(A) and a>i(B) is given by the two equations

i=0,l

or, since and 4»l> =

(3.1)

The [4] =0 meets C where

xi

i+2 = 0

(3.2)

so that the parameter of J is

where

a b c

b e d

c d e

b e d

c d e

d e /
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and J maps the linear covariant

(3.3)

The leader of t]'Mot} (it will be remembered that a is absent from n2) comes from r\\c
and is a2cf2.

4. The above discussion is, as the null polarity set up [6, p. 312] by C in S shows,
t a n t a m o u n t to determining 5Ci as that linear form which, when multiplied by the
square of 2 C 2 , produces a quintic apolar to F. The condition [9, p. 213] for apolarity of
F and

(ax

gives (3.2) instantly.

3y + fa? + 2ifof|2)x V -

5. This exhibition of the coefficients of sC^ as ternary quadratic forms in rio,ni,n2

places no burden on the memory and enables one just to "write down" the covariant. It
does rely on having prior knowledge of 2C2, but this we do have, there being an
automatic procedure for "writing down" rio,n1,n2 [7> P- 139]. It is perhaps a welcome
alternative to producing a string of 20 quintic monomials as Cayley [2, p. 274] and
Salmon [12, p. 216] were constrained to do. There are of course two strings, one for
each coefficient, but either comes from the other on imposing the triple transposition
(af) (be) (cd), this being the special instance for n = 5 of the "symmetry" of covariants of
a binary n — ic. [8, p. 124].

Cayley displayed in extenso 23 covariants of F. His resource in constructing
generating functions and his skill in manipulating them enabled him to forge a tool that
ascertained the number of linearly independent covariants of given order and degree. He
could then employ differential annihilators to calculate their actual form; these matters
are described in Elliott's book [8, Chs. VI, VII, VIII]. For the recorded existence of SCX

see [2, p. 264], for its actual expression [2, p. 274]. One can read the facts duly
recorded by his successors [5, p. 277; 12, p. 216; 9, p. 131; 8, p. 299]. One must also
record, as a tiny by-product, one might almost say a throw-away, of a work of Hilbert
[10, pp. 115-116] the determinantal form

Ac
3d

2e

f

Sb
5c

2d

— e

a
b

c

d

•

b

lc

3d

a

2b

3c

— 4 / e Ae Ad

led by 8a2c/2, of the coefficient of x.
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6. The occurrence of Mo and Ml suggests that the matrix

a b e d

b c d e

c d e f

should be used, the more especially when it is readily checked that

315

(6.1)

0/2

a b e d

b c d e

c d e f

= -(3A4,A3)A2,3A1)

A, being the determinant of the residue when the ith column is dropped; in particular
A1 = |M1|, A4 = |M0|. Then

r\'Mor\ = -

and one has another form for

-3 f / o y

-*lix-ri2y

3t]2x

a
b
c
d

b
c
d
e

c
d
e

f

in which, too, the leader of the coefficient of x proves to be a2cf2.

Geometrical interpretations of other concomitants

7. The harmonic conjugate J' of J on C with respect to A, B maps a second linear
covariant. The chords of C joining pairs of that involution of which J is a focus and AB
a pair generate [11, p. 97] a quartic scroll; two of the generators are tangents of C; the
tangent at J is one, that at J' is the other. The harmonic property is equivalent to
saying that this second linear covariant is the Jacobian [9, p. 133; 8, p. 300] of 2C2 and
5C,; its degree is therefore 2 + 5 = 7; it is a 7Q and duly registered by Cayley [3,
p. 286], each coefficient involving 49 terms. The Jacobian of riox

2 — r\lxy-\-r\2y
2 and

ax + Py is

-(prll +2<xt,2)y

and the substitution of f/'M0/j for a and r(Mxr\ for 0 produces 7C,.
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Since the harmonic pairing involves J and J' symmetrically not only is 7Ct the
Jacobian of 5 C, and 2C2: 5Ct is the Jacobian of -,Cl and 2C2; that this latter Jacobian is
a 9Cj can only mean that it is the product of 5Ct and 74. This is indeed a special
instance of the reducibility of the Jacobian of a Jacobian [9, p. 78]. In that text take
f = 2C2 = tj/, (fr^sCi, the first and third terms of equation XIX are zero because <j> is
linear, leaving only the middle term, the product of s Q and the discriminant of 2C2.

That J,J' are harmonic to A, B is among the facts announced by Todd [15, p. 5]; in
his notation the statement is "ft is the harmonic conjugate of a with respect to i".

8. The matrix (6.1) is central to the geometry of the trisecant planes of C, there
being [11] a unique trisecant plane through any point P of general position. For the
plane spanned by the points on C having t = a, /?, y is, if

fly + ya + a/? = e2

determined by the linear equations

i=0,1,2

so that one and only one such plane contains P, namely that for which a,fi,y are the
zeros of

i -e e1 - 0 3

a b c d

b e d e

c d e f

(8.1)

or

so that

./= A4x3 + A3x
2>< + A2x>>2 + A,)>3

is the covariant 3C3 that plays an important part [12, p. 148; 5, p. 277; 9, p. 132] in the
theory of the binary quintic. The qualifying phrase "of general position" restricting P
means that (6.1) has rank 3. As P is in the plane spanned by z,p,y on C,F is linearly
dependent on (x—ay)5, (x — fiy)5, (x — yy)5 permitting the canonical form so profitably
exploited by Salmon [12, pp. 206-215]. Note, to gain full access to this treatment, that

(P - y)(x - ay)+(y - <x)(x - py) + (a - j?)(x - yy)=0

so that F is a linear combination of the fifth powers of three linear forms summing
identically to zero. The shapes that all 23 concomitants take for this canonical form are
listed [12] by Sylvester. See also [15].
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Note, too, the special case of P lying on Q3, and so in an <w2(t). This implies not only
that F has (above, p. 311) a triple factor but that j is a perfect cube. Since <w4(t) now
accounts for three of the five a>4 through P j is a factor of F [9, p. 230].

9. The discriminant of ; is an invariant /12 whose full expression was elaborated in
the earliest stage of the theory [3, p. 294; 12, p 210]. As it is the eliminant of

and A3x
2 + 2A2xy + 3A1><2 (9.1)

one merely solves, equating these two polars of j to zero, for x2, xy, y2 and obtains

t A4 - A2A3)
2 = 4(A| - 3AX A3)(A

2 - 3A2A4). (9.2)

This is more concise than the 252 terms of the original expression; not only so, but it
affords some insight into the geometry of II, the duodecimic primal in S obtained on
substituting the x; for a,b,... in /12. Denote the outcome of this substitution in A, by
Aj(x). Then T\ is generated, as x/y varies, by oo1 threefolds M3 given by equating both
quadratics (9.1) to zero. It may well not have escaped notice that (9.2) is a precise
analogue of the quartic equation of the developable of tangents of a twisted cubic; the
M% correspond one to each of these tangents while the threefold

3A1(x)/A2(x) = A2(x)/A3(x) = A3(x)/3A4(x),

of order 62 — 32 = 27, corresponds to the cubic itself and so is cuspidal on II.
Ft is the locus of points P such that the unique trisecant plane through P touches C,

and so contains every plane joining an w0 to an cu^ So it is generated by

(a) the cubic line-cones projecting C from its own tangents,

(b) the sextic point-cones projecting fi2 from the points of C.

When each of a,ft,... is replaced by the appropriate ( — t)' the rank of (6.1) sinks to 1;
C is therefore a double curve on each A,(x) = 0 and so, at least, octuple on n. This
implies that every chord of C, and so [7, p. 137] the threefold M\ that the chords
generate, lies wholly on IT Indeed, as will be seen in a moment, M% lies on each A,{x) =0
and so is, at least, a quadruple threefold on II.

To vindicate this last statement substitute 1( — u)'+fi{ — v}' for a,b,..., in (6.1). Each A;
then becomes the sum of 23 = 8 determinants each of which involves multiples of at least
two columns of either A;( — u)1 or A/ — v)', and so is zero.

If one looks upon the pair of equations (3.2) as equations of conies it is clear that,
since two conies intersect in four points, there are four bitangent solids of C through an
arbitrary point P. The condition for two of these to coalesce is that the two conies
touch: their tact-invariant must be zero. But it is readily seen that the invariants
generally designated in treatises on conic sections by

A, 0, 0', A'

are here (each of 0 , 0 ' is at first sight the sum of three determinants, but two of these



318 W. L. EDGE

are zero)

A4(x), A3(x), A2(x), A,(x)

and so the condition in question is (9.2). One therefore has a double interpretation of
In-

If P maps a quintic having Ii2 = 0 then two of the three intersections of C with its
trisecant plane through P coalesce, as also do two of the four bitangent solids of C
through P.

If one follows Hammond [8, p. 301] and takes an F with c = d = 0, so lacking its two
central terms, its map P is in x2 = x3 = 0. So one achieves this by using one of the four
bitangent solids through P and assigning 0 and oo to be the parameters of its two
contacts.

10. The geometry proffers many sets of points on C as representatives of covariants
to be identified. A quadratic suggests itself at once: the two points harmonic on C to
both pairs AB, JJ'. Now the quadratic harmonic to both of two given quadratics is
their Jacobian, and here the two are 2C2 and the product S C J ^ C J . Since

d(U,VW)= d(U,W) d(U,V)

d(x,y) d(x,y) + d(x,y)

the new covariant is seen, on taking U = 2C2, V = 5Cl, W = 1Cl to be a linear
combination of Z^C,)2 and (7Cj)2.

A second proposal is to pair the residual intersection of C with the [4] spanned by P,
A, (O2(B) with the corresponding point in the [4] spanned by P, a>2{A),B. The
parameters <$>, ip are involved symmetrically and the pair maps a quadratic covariant.

A different procedure is to take, on the unique transversal line from P to a>2(A) and
a>2(B), the harmonic conjugate P' of P with respect to the intersections of the transversal
with the planes; P', P are harmonic inverses in w2(A), a>2(B). Then F maps a quintic
covariant F' of F. But the symmetry of the harmonic relation does not imply symmetry
between F and F': the pair A',B' on C derived from F as A, B were from P will, in
general, be another pair and so map another quadratic covariant.

The geometric interpretation of the skew invariant /1 8 is immediately apparent from
the opening sentence [12, p. 212] of Salmon's Section 229. If / i 8 = 0 P lies in the co4 at
one of the three intersections of C with its trisecant plane through P. Dialytic elimination,
using (8.1) and F, produces 718 as an 8-rowed determinant; the A, provide the elements
of five, the at of the other three, rows.

The binary form of odd order 2m +1

11. Similar proceedings to those used above apply to the mapping of a binary form
F of order 2m+1 by a point P of the projective space [2m +1], the cardinal feature
being the rational normal curve C of order 2m+l. All the com_, of C lie on the quadrics
of Baker's net N [1, p. 137]; the singular members of N are all point-cones with vertices
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on C which, reckoned m +1 times, is the Jacobian curve of N. There are two of these
cones through a point P of general position, the parameters <j>, i]/ on C of their vertices
A, B are the zeros of

2C2: riOx2-1ixy + ri2y
2,

the quadratic covariant (ab)2maxbx of F, where t), can be written down by rule of thumb
[7, p. 139]. Then

The residual intersection J of C with the [2m] spanned by P, com-l(A),ajm_l(B) maps
a linear covariant 2m+i^u its harmonic conjugate J' on C with respect to A, B mapping
a second linear covariant 2m+3Ci- The covariant 2 m + 1 C 1 is that linear form which, when
multiplied by (2C2)

m, provides a (2m + \)ic apolar to F.
Take the residual intersection of C with the [2m] spanned by P, cor{A), cos(B) where

r + s = 2m —2 and pair it with its analogue in the prime spanned by P, a>s(/l),a>r(B); here,
as equality has already been considered, r,s are unequal but each can take any value
other than m — 1 between 0 and 2m — 2 inclusive. The pair so obtained on C involves </>
and ip symmetrically and provides a quadratic covariant; a string of such covariants
occurs on taking the different values of r, s.

There is, just as was shown for m = 2, a unique (m+l)-secant [wi] of C through a
point P of general position; the parameters of its m +1 intersections are zeros of a
determinant analogous to (8.1) and supply the covariant m+iCm + 1, or canonizant, of F.
Its coefficients are (m+l)-rowed determinants A, whose elements are coefficients in F
and its discriminant, of degree 2m in its coefficients, provides an invariant I2m(m + iy
Replacing the a, by the coordinates x, in this invariant produces a primal of order
2m(m+l), the assemblage of all those secant [m]'s that touch C, meeting C in m —1
further points.

Since the a}2m_t generate a primal fi2" the discriminant of F itself is an invariant /4m.

12. As it will provide an intriguing problem for solution a final word about the
nonic is in order. Its coefficients, shorn of their binomial multipliers, are

a, b, c, d, e, f, g, h, i, j (12.1)

to which the respective weights

0, 1, 2, 3, 4, 5, 6, 7, 8, 9

are assigned, and the rule gives

t]0 = ai-8by + 28cg- 56df + 35e2,

rjl=:-aj + Ibi - 20c/i + 28dg - 14e/,
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so that

led by a2j2. This tallies with Cayley's expression [4, p. 318] led by —a2j2, but Cayley
would have had to perform some calculations to obtain it. What is surprising at first
sight is that Cayley produces a second quartic invariant J4. But any surprise is
misplaced if one recalls Hermite's law of reciprocity [12, p. 135; 8, p. 155]: the number
of invariants of degree n of a binary p — ic is equal to the number of degree p of binary
n — ic, "number" here implying "functionally independent". The binary quartic has, in
the customary notation, two invariants /, of degree 2, and J, of degree 3; so J3 and I3J
are both of degree 9. The binary nonic has therefore two quartic invariants.

Cayley would start from knowing that the number of linearly independent invariants
of degree 2<r is the coefficient of r9a in

which, for a = 2, is the coefficient of r18 in

a polynomial of degree 37. He would then catalogue those quartic monomials in (12.1)
that are of weight 18 and seek those linear combinations of them that are annihilated
by the two differential operators or, alternatively, are annihilated by either operator
and are either invariant or multiplied by — 1 under the fivefold transposition
(aj)(bi)(ch)(dg)(ef). His two eligible expressions appear juxtaposed in two columns [4,
p. 318]; the column led by —a2j2 is — 74, that led by 2aci2 is J4. There is one clear
misprint (ce3i for ce2i) in this column, and it is suggested that the multiplier of d2g2

should be — 47, not +47 as printed. The numerical multipliers in J4 are noticeably
lower than those in 74.

The occurrence of two quartic invariants of the nonic was later noted by Sylvester
[14, p. 281].

13. This is, surely a challenging situation. The interpretation, given a point P of
general position in regard to a rational normal curve in [2/n + l] , of 74 was found in (7);
it now appears—or did away back in 1856—that for m = 4 there is a second quartic
primal inherent in the figure about which nothing is yet known save that the left-hand
side of its equation is Cayley's string of isobaric quartic monomials of weight 18. But
how is it identified in the geometry? Indeed there is now a whole pencil of quartic
primals to be interpreted and their common intersection, of order 16 and dimension 7,
may be significant for the algebraic theory of the nonic. Which members of this pencil
have higher singularities and do they acquire greater significance thereby? Does the fact
that the numerical multipliers in J4 are comparatively small have any import, or is it a
mere accident?
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