
TRITANGENT PLANES OF BRING'S CURVE

W. L. EDGE

A B S T R A C T

Bring's curve, being canonical of genus 4, has 120 tritangent planes. Their equations, and the coordinates
of their contacts, are all found.

A canonical curve of genus 3 is a non-singular plane quartic whose 28 bitangents
compose one of the most widely known figures in plane geometry. The canonical model
of a non-hyperelliptic curve of genus p is of order 2p — 2 and lies in [p— 1], projective
space of p— 1 dimensions; it possesses 2P~ 1(2P— 1) contact primes: 28 bitangent lines
for p = 3, 120 tritangent planes for p = 4. While certain contributions have been
made to the geometry when p = 4—indeed Coble's book [2] grew out of lectures on
this very curve and Coxeter encountered in his early work [3; p. 169] a specialisation
of the curve whose tritangent planes corresponded to the 120 diagonals of a polytope
in 7-dimensional Euclidean space—much more remains to be discovered.

It may, therefore, be appropriate to record information recently acquired about
the curve, Bring's curve, of genus 4 specialised to admit a group of 120 self-
projectivities isomorphic to the symmetric group S5 of degree 5. Two earlier
appearances of B were recorded in [4]; as tritangent planes are now to be examined a
third appearance [5] has to be acknowledged.

1.

Bring's curve B is the intersection of the quadric

Q:x2 + y2+z2 + t2 + u2 = 0 (1.1)

with the (diagonal) cubic surface

D : x 3 + y 3 + z 3 + t 3 + u 3 = 0 , (1.2)

the supernumerary homogeneous coordinates being subject to the identity

x + y + z + t + u = 0 . (1.3)

It is invariant under the 120 permutations of the five coordinates. It has
[4; p. 544] 60 stalls, points where the osculating plane has 4-point intersection; their
coordinates are permutations of (1,1, a, /?, y) where a, /?, y are, and will be throughout
this note, the roots of

03 + 202 + 30 + 4 = 0 . (1.4)
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216 W. L. EDGE

The stalls lie [4; p. 541] six in each often planes such as x = y, and the tangents of B
at such a coplanar hexad of stalls concur at a vertex VtJ of the pentahedron P of
coordinate planes; the tangents at the hexad in x = y concur at V12(1, —1,0 ,0 , 0). So
the tangent at (1, l , a , fi,y), its join to K12, is

z/a = t/p = u/y. (1.5)

But then the plane t/fi = u/y contains not only this line but also

x/<x = t/fi = u/y and y/v. = t/fi = u/y

which are the tangents of B at (a, 1,1, ft, y) and (1, a, 1, ft, y); t/fi = u/y is therefore a
tritangent plane of B. Each tangent at a stall thus lies in three tritangent planes; for
example, (1.5) lies in

t/P = u/y, u/y = z/a, z/a = t/fi (1.6)

so that 60x3/3 = 60 of the 120 tritangent planes of B are accounted for. This
substantiates part of a twice discovered theorem, the two enunciations running as
follows.

THEOREM (Emch, 1934). If a sextic of genus 4 is on ten cubic cones whose vertices are
the corners of a pentahedron it has six tritangent planes through each of the ten edges of
the pentahedron. Through each of the sixty lines of contact of these with the corresponding
cones passes a fourth tritangent plane. The whole figure is invariant under a group oj 120
collineations [5; p. 13].

THEOREM (DU Val, 1979). The curve B has two distinct types of tritangent planes, 60
of each. Of type (i) all three contacts are stalls; of type (ii) only one is a stall. Each stall is the
contact of three planes of type (i) and one of type (ii).

Du Val remarks in a letter (dated 31 July, 1979) "For the tritangent planes to share
their points of contact in this way is unexpected but not, as far as I can see, impossible,
though I don't quite know how it will fit in with the theta function theory".

Immediately on seeing [4] Du Val, interested in any visible shape of B, took P to be
bounded by three real and one pair of conjugate complex planes, and so produced a
sphere on which the real circuit of B was a closed sinusoidal curve confined to an
equatorial zone and cutting the equator at the vertices of a regular hexagon. It was
thereupon suggested to him that B would have a pair of tritangent planes parallel to the
equatorial plane, and he then quickly found the theorem.

2.

The identity
(2.1)

indicates the procedure for eliminating x and y between (1.1), (1.2) and (1.3); the
outcome [4; p. 542] is

ztu + {z + t + u){z2 + t2 + u2) = 0, (2.2)
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TR1TANGENT PLANES OF BRINGS CURVE 217

the cubic cone Kl2 of chords, including six tangents, of B through Vl2.
The join of the two contacts other than(l, 1, a, 0, y) of any of the three planes (1.6)

contains K12: for instance u/y = z/a touches B at (0, 1, a, 1, y) and (1, 0, a, 1, y) whose
join is t = u/y = z/a; the tritangent plane touches Kl2 along this line. So each of the
three planes (1.6) through the generator (1.5) of Kx2 touches Kx2 along a second
generator. There are however four tangent planes of K, 2 through (1.5) in addition to its
tangent plane along this line; it is the fourth of these that is of Du Val's type (ii).

Regard (2.2) for the present as a plane cubic. The polar conic of (a, 0, y) is

atu + fiuz 4- yzt + (a + 0 + y){z2 +12 + u2) + 2(z +1 + u)(az + 0f + yu) = 0 . (2.3)

The six intersections of the cubic and the conic consist of a contact at (a, 0, y) and of the
contacts of the four tangents from (a, 0, y) to the cubic. Three of these four contacts are
(1,0,y), (a, l,y), (a,0,1); where is the fourth? Wherever it is it will be fixed under
simultaneous cyclic permutations {ztu) and (a0y).

3.

Dialytic elimination of z between (2.2) and (2.3) provides a binary sextic S in f and u
with coefficients of degree three in a, 0, y; S = 0 is the set of six lines joining t = u = 0
to the intersections of the cubic and conic. Among these six lines f/0 = u/y occurs
thrice, yt = u once, t = fiu once. In order to identify the sixth line it is only necessary,
the other five all being known, to find the coefficients of t6 and u6 in S. Each of these
coefficients is the outcome of transposing 0 and y in the other.

So put u = 0 before eliminating z; the resulting eliminant is the coefficient off6 in S.
As (2.2) and (2.3) then become

+ r ) = 0
and

yzf + (a + 0 + y)(z2 + f2) + 2(z + f)(az + 0f) = 0,
or

z3 + fz2 + f2z + f3 = 0
and

(3a + 0 + y)z2 + (2a + 20 + y)zf + (a + 30 + y)f2 = o,

the eliminant is

I f f2 f3

1 t t2

The combination

of the columns shows the determinant to have the factor 2a + 20 + y; remove this, and
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218 W. L. EDGE

then use routine operations on the rows and columns of the determinant that do not
alter its value (a start could be R\ = Rl-tR2 followed by C5 = C5 + ̂ 0^. The final
result is

-/?)2}r6 (3.1)

which, being symmetric in a and /?, can be expressed in terms of y only.

4.

At this juncture a momentary digression concerning calculations that involve
a, /?, y is in order. As roots of (1.4) they satisfy

txp = 3, a p > = - 4 , (4.1)

while their power sums ok = a.k + pk + yk satisfy the recurrence relation

ak + 3 + 2ak + 2 + 3ak + 1+4ak = 0 (4.2)

with initial conditions [4; p. 544]

0"o = 3, cr1 = <T2 = c3 = — 2.

Any symmetric function of two of a, /?, y is expressible as a function of the third
only. For example,

= - I l y 2 - 8 y - 1 6 ,

so that the multiplier of t6 in (3.1) is

(y + 4)(lly2 + 8y + 16) = lly3 + 52y2

= Ily3 + 52y2-16(y3 + 2y2) by (1.4)

= -5y2(y-4).

But, since

0 = (y3 + 2y2 + 3y + 4)(y-l) = y4 + y3 + y2 + y - 4

an alternative and, it will soon be seen, more convenient form for this multiplier is
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TRITANGENT PLANES OF BRINGS CURVE 219

5.

It is now apparent that the equation of the six lines t = AM joinings = u = 0 to the
six intersections of (2.2) and (2.3) includes the pair of terms

so that the product of the six values of X is

But the product of five of them is, as explained at the start of §3, /?4/y4i the sixth is,
therefore,

which indicates that the sought intersection has

It only remains to check that this point (z, t, u) does satisfy (2.2) and (2.3). It makes

(« 3 - i ) ( / ? 3 - i ) ( y 3 - i ) a W - ( / ? 3 y 3 + y 3 « 3 + « 3 / ? 3 ) + < 7 3 - - i 7 , , u

ztu = = = 7 I J 1 i

( a l ) 0 3 l ) ( y l ) a j 5 y ( j 5 y + v a + aj5) + T i ' I • >

where one may use

. jS3y3 + y3a3 + a3j53 - 3a2£2y2 = (fiy + ya + a

Also

I+GQ = — 1 ,

1 + o-o = — 20-i+c-o = 7 ,

and (2.2) is satisfied. Similar routine work verifies (2.3).
The fourth tritangent plane of B that contains (1.5) therefore meets x = y in a line

through

and touches B at its two intersections with the join of this point to Vl2. These two
contacts are obtainable from each other by transposing their first two coordinates ^,rj.
But

= -z-t-u = 1, £2 + rj2 = -z2-t2-u2 = - 7 ,

so that £,Y) = 4 and £, ^ are the roots of X2 — X + 4 = 0. The contacts of that tritangent
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220 W. L. EDGE

plane of Du Val's type (ii) of which one contact is the stall (1,1, a, /?, y) are, therefore,

and (5.2)

These coordinates must, of course, also satisfy <f3 + ^3 = — z3 —f3 —u3 and can be
verified to do so; (2.1) gives £3 + >?3 = - 1 1 .

As no two of q, rj, z, t, u are equal the pair of contacts is one of 60 pairs and the 120
contacts compose, as Du Val expected, a single orbit under the symmetric group of
permutations of the five coordinates. It seems unfitting not to display the equation of a
tritangent plane of type (ii); a reader will be content with the equation itself and allow
the details of finding it (they use §4) to be omitted. The plane with contacts (5.2) is

)M = 0

and the others of type (ii) are obtained from this by permuting a, f], y and imposing 55.

6.

Clebsch [1; p. 238] remarked that the 360 contacts of the 120 tritangent planes of
any canonical curve of genus 4 are its intersection with a surface of order 60 composed
of 30 quadrics. For B [4; p. 545] the contacts are also its intersections with three
surfaces of order 20 belonging to a pencil /.S4 + //S5 = 0. It has now appeared that rhe
60 stalls are to be reckoned four times among the 360 contacts; as they are [4; p. 541] cut
twice on B by S| = 2OS5, which is the square of ten planes, this surface must be
included twice among the three members of the pencil. The third member cuts B at the
120 contacts, other than stalls, of the 60 tritangent planes of type (ii), and so a question
asked in §9 of [4] is answered.

At points (5.2), in the notation of §2 of [4],

S5= -5f = 5^+l-pjztu= 140,

by (5.1), while

= — 4 e = — q j ( )

2 2 2 2 - 2 8 = 20

and the member of the pencil has /.(20)5 + )u(140)4 = 0. The contacts, other than stalls,
of Du Val\s second type of tritangent plane all satisfy 24OIS4 = 2OS5.
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7. Principal chords of B

A non-singular curve of order n, class ri and genus p has [7; p. 86]

%n-3)(n-4)+i(ri-3)(ri-4)-\2p

principal chords; chords, that is, which lie in the osculating planes at both their
intersections with the curve. Equation (7.1) of [4] shows that the contacts of those
osculating planes of B through a given point {X) are on a sextic surface so that, for
B, ri = 36; as n = 6 and p = 4 there are 483 principal chords. These must be
permuted among themselves by S5, and fall into four classes. Indeed several of these
chords, though not there remarked as principal, have appeared in [4].

Each cubic cone Ktj has nine inflectional generators S; the tangent plane along 6
osculates B at both its intersections with S, which is then a principal chord. These S
include [4; p. 542] the 15 diagonals of P; each diagonal is common to two Ku, each Ku

includes three coplanar diagonals and so has six other 5 lying on a quadric cone. These
latter d, each belonging to only one Ku, provide 60 principal chords.

It was also remarked [4; p. 543] that Q contains six quadrilaterals of tangents
of B. If aba'b' is one of these the osculating planes at a,b,a',b' are, respectively
[4; p. 543],

b'ab, aba', ba'b', a'b'a,

so that ab, ba', a'b', b'a are all principal chords and 24 are thus recognised. But these
must be counted twice. Without using more space by giving a full justification let it
suffice to say that ab is not merely a chord: it is a tangent as well as a secant, touching B
at a and intersecting it at b. It thus lies in two "consecutive" osculating planes at a as
well as in that at b. So the quadrilaterals on Q account for 48 principal chords.

Now 483 — 15 — 60 — 48 = 360 and these residual chords will presumably compose
three orbits under S5.

It is fitting to close on a note of interrogation.
Bring's curve B has 255 systems of contact quadrics [1; p. 238], each system

associated with a 4-nodal cubic surface [5; p. 376] containing B; these 255 systems, with
the 255 cubic surfaces, are permuted among themselves by 55 . But S5, of order 120,
cannot permute 255 objects transitively: how are they distributed in orbits? Is there an
orbit of 15? If so, what geometrical features distinguish its members from the other 240?

Among the contact quadrics of any one system are 28 consisting of a pair of
tritangent planes [1; p. 238]. How many of these 28 pairs are {a) both of type (i), (b) both
of type (ii), (c) one of each type? The answers will be the same for systems in the same
orbit but need not be for systems in different orbits. If, moreover, two tritangent planes
are not both of type (ii) they may share a contact, or they may not.

Lastly, what are, for genus 4, the special theta relations associated with Bl Do they
suggest extensions to higher genera and, if so, what are the consequent properties of the
specialised canonical curves?
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