
THE FLECNODAL CURVE OF A RULED SURFACE

W. L. EDGE

1. In 1849 Salmon [8; p. 260] proved that the points on a non-singular
algebraic surface F, of order n in [3], at which one of the two inflectional
tangents has 4-point intersection with F, are those of the common curve 2F of F and a
covariant surface of order 11« —24. The tangent plane at any ordinary point cuts F in a
curve with a node at the contact, and the two nodal tangents to this plane curve are
inflectional tangents to F; should either of these have 4-point intersection with F,
and so with the curve, the node is what Cayley [4; p. 28] called a flecnode, there
being an inflection on one of the two branches there. So Cayley [4; p. 29]
naturally called #", of order «( l l«-24) , the flecnode-curve of F. But if F is a
scroll R, one of the two inflectional tangents at a point X is the generator g through
X, and the question arises whether the other inflectional tangent can have 4-point
intersection with R at X. The locus of such X is the flecnodal curve J5" of R.

In 1874 Voss investigated in the course of a lengthy and, to one reader at least,
somewhat difficult paper, the two special cases of R being

(a) the complete set of lines common to three complexes [14; p. 90];

(b) rational [14; p. 107];

a year later he obtained [15; p. 485] the order of $F for a general scroll of order n and
genus p. He also gave, under both (a) and (b), an order for the scroll <f>
generated by these tangents having 4-point intersection—correctly in (b), but the
result he prints for (a) is not correct. There seems to be no flaw in Voss's geometry;
but when he alters the last row and column of his 7-rowed determinant he seems
unconscious of thereby subtracting 2 from its degree in his coordinates JC(; consequently
what is printed as 19 in the last equation on p. 90 ought to have been 20. There is no
manuscript evidence available; but if one may judge from the printed page this may
have been an unlucky accident of dittography. It is regrettable that some devil's
advocate was not at hand to forestall the canonization of this incorrect statement in
standard works of reference ([17; p. 1214], [3; p. 726]).

2. Voss's declared purpose was to exploit the then new theory of line geometry,
developed by Pliicker and Klein, and so investigate the geometry of R by using only
line coordinates, never point or plane coordinates. Here it is proposed to use
Klein's mapping of the lines of [3] by the points of a non-singular quadric Q. in [5];
R is then mapped by a curve C, of the same order n and genus p as R, on Q; nor is
the mapping in any way restricted to special cases, whether (a) or (b) or others. The
map C of R in (a) is the complete intersection of fi and three primals of orders, say,
M, N, P; the genus p of C is then determined by the fact (not available in 1874, nor
for some years later) that the canonical series is cut on C by primals of order

2 + M+N + P-6 = M+N + P-4,
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so that 2p-2 = 2MNP(M+N + P-4). Since the order n of C is here 2MNP, Voss's
calculation makes the order of 3F 5n + 12(p — 1). The order he gives for $ would, after
the correction, be 8(« + 3/? — 3). Both the orders are found by him, correctly, when
p = 0 [14; p. 107 and p. 106] and both are found, for any n and p, below.

3. It was Veronese, profiting by Cayley's handling of curves in [3] both by
projecting them into plane curves and taking plane sections of their scrolls of tangents,
who inaugurated the study of algebraic curves in higher space. He immediately
introduced [13; p. 198] what he called their ranks—orders of manifolds generated by
osculating spaces. He expresses [13; p. 201] each rank in terms of lower ranks; from
these equations three-term recurrence relations between the ranks can be obtained and
were used by Segre [11; p. 245] when he encountered these ranks in another context.
Thus all the ranks can be calculated if the first two are known. But the first rank is
merely the order n of C and the second the order 2(n+p — 1) of the scroll of tangents
of C—or the number of points in the Jacobian set of a gn

l on a curve of genus p.
Hence it is found that the order of the manifold generated by (cf. [12; p. 389]) the
osculating [/c]'s of C is (k+])(n+pk — k). It is this result that we wish to use. It is
relevant to note that, as these manifolds are generated by linear spaces, the order of
each is the same as that of its polar reciprocal in a non-singular quadric.

4. The essential main features of Klein's map can be briefly summarised. Lines
in [3] meet or are skew according as points mapping them on ft are conjugate or not;
in the former alternative the join of the two points is on ft, in the latter it is not.
There are also planes lying wholly on ft; they are of two systems. Points of a plane
a map a star of concurrent lines; points of a plane /? map a field of coplanar lines.
Any two planes of the same system have a single common point. A plane a and a
plane P have a common line or are skew according as the vertex of the star and the
plane of the field are, or are not, incident ([2a; p. 40], [12; p. 238]).

5. Three generators gu g2, g3 of R are mapped by points Pu P2, -P3 on C; their
plane meets ft in a conic whose points map the regulus to which gu g2, g3 belong
(other lines of this regulus are not on R). The complementary regulus is mapped by the
conic in which the polar plane of Pt P2 P3 meets ft. Consider, in particular, the case in
which gu g2, g3 all coincide with a generator g of R. Let n be the polar plane of the
osculating plane co of C at the point P mapping g. Then the conic in which ft meets n
maps the regulus of inflectional tangents of R at the points of g. Since co generates a
threefold of order 3(n + 2p — 2), so does n; this latter threefold cuts ft in a surface J
of order 6(n + 2p — 2) whose points map the inflectional tangents of R. The surface J
contains a singly-infinite set of conies.

The osculating solids of C generate a fourfold of order 4(n + 3p — 3), so that their
polar lines generate a scroll E of this same order. The osculating solid of C at P
contains co, so that its polar line lies in n, its two intersections with ft mapping those
two members of the regulus of inflectional tangents along g that have 4-point inter-
section with R. Since £ meets ft in a curve T of order S(n + 3p — 3), this is the order
of <j), the scroll of tangents of R having 4-point intersection. This seems as direct a
way as any of finding this order.

Equally direct is the determination of the number of lines having 5-point
intersection with R. Each such line is mapped by a point at which the tangent [4] of
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Q is an osculating [4] of C. But the locus of poles of these osculating [4]'s is a curve
of order 5(« + 4p-4) which meets Q at \0(n+4p-4) points; this is, then, the
number of 5-point tangents of R. For p = 0 this was found by Voss [14; p. 108]. He
also [14; p. 99] offers the correct number when R is the set of lines common to three
complexes; but he guardedly makes the offer conditional by disclaiming success in
pushing his work to a conclusion through a highly complicated manipulation of
determinants. The contrast of the two methods has some interest.

6. The tangent lines to R at the points of a generator g are mapped by the inter-
section of Q with the polar solid T of the tangent t to C at that point P which maps g.
This intersection is an ordinary quadric cone, with vertex P, each of whose generators
maps the pencil of lines through a point of g and lying in the tangent plane to R there.
The situation is specialised if t lies on ft, for T then meets Q in the two planes a and /?
which contain /. The points of p map the lines in a plane, and all of these touch R on g;
the plane touches R at every point of g which is what Cayley [5; p. 334] called a torsal
generator; it is known ([1; p. 20], [2b; p. 26], [12; p. 206], [16; p. 220]) that there are
2(n+2p—2) such g. At any point P of C other than these special ones the tangent [4]
to Q, touching C at P, meets C in n — 2 further points; « —2 chords of C through P
lie on Q. But if P maps a torsal generator these n—2 chords include t and the
osculating plane of C at P is in the tangent [4] of Cl. There are, however, in general
no points of C at which its osculating solid is in the tangent [4] of Q.

7. Reconsider, now, the 4-point tangents of R. The polar line of the solid
osculating C at P meets Q at A, B which, as P traces C, trace on Q the curve r of
order 8(« + 3p-3). Were either A or B to coincide with P, the osculating solid of C
there, and its polar line, both containing P, would also lie in the tangent prime of Q,
at P—a circumstance which, it has just been said, will not occur. Hence there is a
(1, 2) correspondence between C and F, without united points. It follows that the
lines PA generate a scroll *P of order

this is clear on setting up a correspondence among the [4]'s through a solid S of
general position, [4]'s being in correspondence when they join S to corresponding
points of C and F. For this correspondence has indices S(n + 3p — 3) and 2n and so,
by the elementary Chasles principle [7; p. 1175], 10n + 24(p— 1) coincidences. And
such a coincidence involves a [4] containing a pair of corresponding points, whose
join thus meets S. Conversely: if such a join meets S it affords a coincidence of the
correspondence. The scroll *¥ is the complete intersection of Q with the
threefold M generated by the planes PAB, so that the order M is 5«+ 12(p-1).

An arbitrary plane w therefore meets 5n+12(p— 1) planes of M; should ew be on
Q, so are such intersections, which are then on *F; thus ¥ meets a plane on Q, be this
plane a or /?, in 5n + I2(p — 1) points—one here presumes the plane to be " of general
position " on Q, and so it will not contain a generator of x¥. If, say, /? meets AP then
it is incident with the plane a* that contains AP so that the plane in [3] whose lines
are mapped on Q, by the points of ft contains the intersection of the generator of R
mapped by P and the 4-point tangent of R mapped by A: i.e. the plane in [3] meets &
whose order is therefore 5n+l2(p— 1).

The dual reasoning, with a instead of /?, shows that the tangent planes to R at the
points of 3F form a developable of class 5n + 12(p— 1).
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8. F is bisecant to the generators of E. The correspondence between the primes
through S, wherein primes correspond that join S to points of r on the same generator
of E, is symmetric, with both indices equal to the order of T; hence these are, by
Chasles' principle, double this number of coincidences in the correspondence. But
these include the primes joining S to those generators of £ which meet it, and indeed
twice over, once for each intersection of T with such a generator. Hence there are

remaining coincidences; these can only occur when T touches a generator of S. This
result does not depend on the genus n of F, but n, as Segre showed [10; p. 127], can
be found by applying Zeuthen's formula ([16; p. 107], [12; p. 82]) to the (2, 1) corres-
pondence between T and a prime section, of genus p, of S. The branch points are
the contacts just noted, so that the formula gives

n = 4n + \2p-\3.
The planes a through PA and PB map the two points of J5" on that generator of R

whose map is P. If a generator of T touches S, A and B coincide and 3F touches a
generator of R. Voss found the numbers of contacts of 2F with generators of his two
special scrolls [14; p. 91 and p. 106]; both numbers are in accord with S(n + 3p — 3).
In passing he drops a hint [14; p. 91] that there may be particular scrolls on which &
touches every generator. He also obtains [14; p. 107] the value of n when p = 0.

9. The points of & are linked to the osculating solids of C. Were C itself to lie
in a solid the geometry would collapse: for this solid would osculate C at all its
points and the only 4-point tangents of R would be its two, possibly coincident,
directrices. The simplest scroll having a proper flecnodal curve is the rational quartic
scroll K4, with !F an octavic, of genus 3, touching eight generators. The 4-point
tangents generate an octavic scroll $8; such a tangent cannot meet R4 elsewhere
unless it is itself a generator, and this, as remarked in §6, does not happen. The
common curve of R* and </>8 is fF, reckoned four times

The quartic C4 lies on the section of Cl by a prime IT, and any curve so situated
maps a scroll R whose generators belong to a linear complex A. Every osculating solid
of such a curve C is in n , so that its polar line contains the pole O of II; 2 is a
cone with vertex O, and two 4-point tangents of R whose contacts are on the same
generator are polars of each other in A. Those generators of E that touch Q do so at
the intersections of T and IT and this makes it, one might say, visually clear that,
when R belongs to A, the number of generators of R which touch J5" is equal to the
order of T, and so of <f>.

10. The quadric containing the generators git g2, £3 of R intersects that containing
£o> £i> Si in £i> £2 and the two transversals of g0, gx, g2, g3. When g^ and g2 are
coincident with a generator g these quadrics touch each other along g. If, subsequent
to this, one allows g0

 a nd 83t0 approach g, it would seem that the 4-point tangents of
R belong to the envelope of its osculating quadrics—the osculating hyperboloids of
Salmon [9; p. 425] and Voss [14; p. 99]. The envelope will also include R, indeed
multiply. This could afford an approach towards finding an equation for 0.

Take, by way of example, a scroll R generated by chords of a twisted cubic y.
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Let the parametric form of y be, as customary,

x : y : z : t = 0 3 : 0 2 : 0 : 1.

One first requires the equation of the quadric containing three chords of y; a search
through standard texts has not disclosed it, but it is, if a,, j ^ ; a2, $2\ a3, /?3 are the
parameters of the pairs joined by the chords,

,1
xz—y xt—yz yt—z

where

= 0,

- a 1 a 2 a 3

and ^ is got by replacing in J / each af by the corresponding /?,-. This follows
because, when A-, J>, z, ? are replaced in the top row of the determinant by

Ax?+ tiPt
3, Aaif + nPi2, Xat + vPi, A + fi,

this top row becomes the product of JR,-+1(rowj+1) by A/i(a( —/?,)2.
The restriction placed on the chord to generate R makes /?; a function of a,-. To

bring the chords to coincidence let 0,0+<5,0 + £ be the parameters al5 a2, a3 and drop
the suffix of otj;

a3 =

with exactly corresponding equations for /32 and /?3 in terms of jS( = j^ ) which is also a
function of 0(= a)—not one-valued, but a definite chord among generators of R
through a has been chosen.

Substitute these values for the six parameters in the determinant, and break off
all expansions after terms of the second order in 5 and £. The details are tiresome, but
the bottom right-hand entry becomes

+ (a - 0)2{ -52 a'? + 2e(5(a'2 - a'0' + /T 2) + e2(a'2 - 4a'0' + P'2)};

the entry above this is got by merely transposing S and e. The entry in the second
row will be symmetric in 8 and s, and of course all entries are symmetric in a and 0.

The avenue to the limiting form opens after making appropriate linear combina-
tions of the last three rows. For it transpires that the infinitesimals of lowest order in

are of the third order (this applies to every column); these terms are all multiples
of £<5(e—5), which can then be cancelled along this new fourth row, and 6 can likewise
be cancelled from the terms of lowest order along a new third row R3—R2. So, in
the limit, the osculating quadric of R along its generator a/? is

xz—y xt—yz

P s

P s'

yt—z1

1

0

0

(a-/*)4

(a-/03(a'-/T)
= 0,
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= x — 3ay + 3<x2 z — a3 t,

539

and s, p are the sum and product of a and /?. Since everything is symmetric in a and
P, so is the whole determinant, which is, after doubling its bottom row,

xz—y2

P

P'

P"

xt—yz

s

s'

s"

yt-z2

1

0

0

Q

(s2-4p)2

(s2 — 4p)(ss' —

— 4p)(ss" — 2p") + 2ps'

2P')
2-2ss'p' + 2p'2

where

Q = -x2 + 3sxy - 9py2 -3(s2- 2p) zx+s(s2 - 3p) xt

+ 9spyz-9p2 z2 -3(s2 -2p) pyt + 3p2 szt-p312.

Here it would seem profitable to take, as a new fourth column

and so arrive at the equation for the osculating quadric in the form

*

0

0

0 2ps'2-2ss'p' + 2p'2

xz—y2

P

P'

P"

xt—yz

s

s'

s"

yt-z2

1

0

0

= 0

s2-4p){2(xz-y2)-s(xt
where

11. Not every ruled surface contains twisted cubics bisecant to its generators,
but the general quartic scroll i?4 has such a cubic y for its nodal curve [6; p. 1100] and
is generated by a symmetric (2, 2) correspondence between the points of y. Such a
correspondence has an equation

'a h g

(P s l)\h b f

\S f

= 0

and so permits p and s to be expressed as quadratics in a parameter. The pinch points
on y are those through which the two generators are coincident: these are the torsal
generators. Since the condition for the quadratic

= 0

in j5 to have equal roots is

the parameters on y of the pinch points are the roots of this biquadratic. Choose the
parameter on y so that it takes the values 0, oo at two of these four pinch points; then

h2 = ab and f2 = be,
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540 THE FLECNODAL CURVE OF A RULED SURFACE

so that one may take

a: b : c: h : / = p2: 1 : x2 : p : x

when the (2, 2) correspondence is

p2 a2 p2 + (<* + P)2 + T2 + 2x(a + P) + 2g<xP + 2paP(a + p) = 0,

(pp + s+x)2 = 2(px-g)p = a2]?, say,

and one may use the parametric forms

p = ij/2, s ——p\jf2 — a\p — x.
When these forms of p and s are substituted in the determinant the outcome is a

sextic polynomial in \J/ with quaternary quadratics for its coefficients; that there are
six osculating quadrics of/?4 through an arbitrary point is of course known—a general
scroll of order n and genus p has 3(n + 2p—2) of its inflectional tangents through an
arbitrary point. But the explicit equation here yields, by using the discriminant of the
sextic polynomial, an equation of order 20 in x, y, z, t. This envelope of the
osculating quadrics of R* presumably consists of R4 itself, reckoned thrice, and the
octavic scroll $ 8 of 4-point tangents.
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